L))

Check for
Updates

Localized Explanations for Automatically Synthesized
Network Configurations

Amirmohammad Nazari*
University of Southern California
Los Angeles, California, USA
nazaria@usc.edu

Mukund Raghothaman
University of Southern California
Los Angeles, California, USA
raghotha@usc.edu

ABSTRACT

Network synthesis simplifies network management by auto-
matically generating distributed configurations that fulfill
high-level intents. However, typical network synthesizers
operate as monolithic algorithms, obscuring the internal
workings of the synthesis process and showing no clear con-
nection between the generated configurations and the global
intents. Given the critical role of networks as infrastructure,
it is crucial for network operators to understand the syn-
thesized configurations to establish trust in these automatic
tools. To address this challenge, we propose using subspecifi-
cations localized to each component in the network topology
to enhance the interpretability of network synthesis. These
subspecifications provide insights into the workings of syn-
thesizers by connecting each component’s functionalities
with the global configuration intents.

We propose a potential solution based on constraint sim-
plification techniques to make the explanation of network
configurations manageable. Preliminary results confirm the
feasibility of simplifying constraints to a manageable size,
though generating high-level subspecifications that fully cap-
ture global intents remains future work. This work highlights
the importance of interpretability in network synthesis and
sets the stage for future research to develop more robust and
trustworthy network synthesis tools.

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HOTNETS °24, November 18—19, 2024, Irvine, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696888

52

Yongzheng Zhang"
ShanghaiTech University
Shanghai, China
yongzheng@shanghaitech.edu.cn

Haoxian Chen
ShanghaiTech University
Shanghai, China
hxchen@shanghaitech.edu.cn

CCS CONCEPTS

« Networks — Network manageability; Formal specifi-
cations.

KEYWORDS
Network Synthesis, Explainability, Modular Reasoning

ACM Reference Format:

Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman,
and Haoxian Chen. 2024. Localized Explanations for Automatically
Synthesized Network Configurations. In The 23rd ACM Workshop
on Hot Topics in Networks (HOTNETS ’24), November 18—19, 2024,
Irvine, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3696348.3696888

1 INTRODUCTION

Managing networks through manual configurations has long
been a complex and error-prone task. Intent-Based Network-
ing (IBN) aims to address this issue by automatically gener-
ating network configurations that enforce high-level intents.
IBN provides a user-friendly interface for network man-
agement, allowing operators to specify desired outcomes
rather than intricate configuration details. This approach
not only simplifies the management process but also enables
automatic verification and synthesis of network configu-
rations [2-4, 14, 23-25], significantly enhancing network
correctness and robustness.

Despite these promising advancements, ensuring the trust
and interpretability of network synthesis remains a chal-
lenge. Operators often find the synthesized configurations
to be complex and opaque [13, 19], which hampers broader
adoption. Given the intricate nature of network protocols
and the extensive scale of configurations, it is difficult for
operators to understand how these automatically generated
configurations meet their specified intents. This gap in in-
terpretability can lead to mistrust and reluctance in relying
on automated network synthesis tools.

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

Although synthesis outputs are generally verified against
user-specified intents, they are not without issues. The inher-
ent complexity of network systems and their protocols means
that both verifiers and synthesizers can contain bugs [7, 9].
Additionally, intent specifications themselves can sometimes
be ambiguous [9, 21]. Existing tools aimed at identifying
verifier bugs operate in a black-box mode, leaving users
without insight into why the generated configuration fulfills
the specified policies.

NetComplete [13] enhances understandability by allowing
users to work with familiar templates. However, it assumes
users have a comprehensive understanding of the original
network configuration and can accurately identify which
parts need changes to support new policies. This approach
does not address the fundamental interpretability problem of
network synthesis output, leaving a gap in making synthe-
sized configurations easily understandable and trustworthy
for network operators.

In contrast to the end-to-end specification and synthesis
flow, when network operators manually configure the net-
work, they typically configure network devices one by one.
This method naturally breaks down the global policy into
smaller, local functionalities, allowing operators to reason
about how each local setting contributes to the overall policy.

Modular network verification research [3, 23] has formal-
ized this concept into a semi-automatic process. In this pro-
cess, operators explicitly define local invariants for differ-
ent network components. Similar to modular reasoning in
software engineering, this modularization greatly improves
verification efficiency and simplifies bug localization when
verification fails. These studies highlight the potential for
decomposing global intent specifications into localized spec-
ifications for individual network devices or components.

Interpretability to foster trust. Inspired by these ideas,
we aim to utilize subspecifications to foster trust in network
synthesis. Given a high-level network intent and the syn-
thesized network configuration, our goal is to generate sub-
specifications for each configuration component. These sub-
specifications collectively establish the validity of the global
specifications. Similar to function comments that improve
software readability, subspecifications establish connections
between each part of the network configurations and the
global intents, revealing insights on why the generated con-
figurations can fulfill the global intents.

Faster specification refinement iteration. Network syn-
thesis, like many program synthesis tasks, is an iterative
process where network operators refine the specifications
based on the synthesizer output. Network specifications in
general are hard to write correctly and completely at the first
time [8, 9], as there are many corner cases in the network,
and the precise semantics of the specification language can

53

Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

be hard for the network operators to grasp, especially for
ones who are new to formal methods. Therefore, the inter-
pretability of the synthesizer output is crucial for network
operators to efficiently identify and refine problematic parts
of the specification in an interactive manner.

Localized subspecifications. We propose and investigate
the use of localized subspecifications to interpret network
synthesis outputs. Subspecifications are local specifications
that describe the behavior requirements of individual net-
work components. In contrast to code explanation, which
primarily focus on clarifying the code logic or structure given
a concrete implementation [17, 22], subspecifications man-
date the minimal conditions for a device to satisfy the global
specifications, which is more general and flexible.

In addition, subspecifications are tailored to the global
intents in question. Essentially, they project all device con-
figurations onto the specific global intent, isolating the lo-
cal behaviors irrelevant to the global specifications. This
is crucial because networks typically have to satisfy multi-
ple global specifications simultaneously, and configurations
are often massive in practice. In fact, we believe that code
explanations and subspecifications are synergistic. Code ex-
planations can assist network administrators in validating
the concrete configuration lines against the subspecifications,
which is a more feasible task than directly validating against
the global specifications.

Challenges. Generating and validating subspecifications
is inherently difficult [3, 19, 23]. Real-world networks in-
volve complex interactions between numerous components
and protocols, making it challenging to ensure that synthe-
sized configurations meet the specified global intents. The
sheer volume of configurations can be overwhelming, mak-
ing it difficult for network operators to maintain consistency
and coherence. Additionally, determining what constitutes
a useful explanation for network operators is complex and
requires careful validation to ensure it effectively aids in
network management tasks.

Contributions. We propose a framework for generating
localized subspecifications to enhance the interpretability of
network synthesis. The subspecification form provides a new
way to describe the behavior requirements of individual net-
work components in relation to global intents. Our approach
is based on constraint-based configuration synthesizers, and
uses constraint simplification techniques to create manage-
able subspecifications that offer clear insights into how the
synthesized configurations meet high-level requirements.
We highlight the need for interpretable network synthesis
through three motivating examples, showing how subspeci-
fications help pinpoint misconfigurations, clarify intended

Localized Explanations for Automatically Synthesized Network Configurations

behaviors, and isolate relevant configuration lines to simplify
large-scale network management.

We validate our approach with a prototype implementa-
tion and a case study. Preliminary results show that it is pos-
sible to simplify constraints to a manageable size, facilitating
easier inspection and validation of synthesized configura-
tions. However, generating high-level subspecifications that
fully capture the connection between individual components
and the global specification remains a challenge for future
research.

This work emphasizes the importance of interpretable de-
signs in network synthesis tools, aiming to bridge the gap
between complex automated systems and human operators.
By focusing on modularized approaches and exposing in-
ternal reasoning, we hope to foster trust and improve the
manageability of network infrastructures.

2 MOTIVATING EXAMPLES

We motivate the need for explainable network synthesis
through three scenarios where understanding the synthesis
output is critical for identifying potential issues in the specifi-
cation or configuration. These scenarios further demonstrate
how subspecifications can facilitate the understanding of
network configurations. We follow the formulation of Net-
Complete [13] for routing policy specification, which uses a
domain-specific language to describe path preferences and
certain prohibited path.

Scenario 1: identifying underspecified paths. Consider
the network in Figure 1b, which connects a customer Au-
tonomous System (AS) with two provider ASes.

Suppose initially the network only needs to prevent transit
traffic and maintain regular connectivity for the rest of the
nodes. This goal is specified in Figure 1a: all paths between
Provider 1 (P1) and Provider 2 (P2) are prohibited. The !P
syntax means forbidding the following path P.

With these specifications and the network topology, a
synthesizer generates concrete network configurations that
fulfill these requirements. Figure 1c shows part of the gener-
ated configurations for router R1.

At first it may be puzzling to the network administrator
why the configuration lines are blocking routes from R1 to
Provider1 with IP prefix 128.0.1.0/24 and reset the next-hop
attribute for these matched routes.

In order to understand what R1 does to prevent transit
traffic, the network administrator asks: "I know there is no
transit traffic between the two peering providers. This is
good. I like this. Now if I want to make changes to R1, what
should I keep in mind?" The answer is: "Make sure to block
all routes going to Provider1.

Figure 2 shows the subspecification for R1. In essence, the
generated configuration in Figure 1c prevents the R1 from

54

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

exporting any routes to Provider1, and the set next-hop line
is redundant. It is generated because a template is provided.

Here, the network administrator realizes that the config-
uration lines prevents transit traffic by simply blocking all
routes to Provider 1. Although this satisfies the no transit
traffic requirement, and is very simple and effective, it is
clearly not the behavior the network administrator intended,
as it effectively blocks all traffic from Provider 1 to the lo-
cal network. In order to resolve this issue, the network ad-
ministrator adds another specification to allow routes from
Provider 1 to the customer network.

Scenario 2: resolving ambiguous specifications. Continu-
ing with the network in Figure 1b, the network administrator
wants to further specify the preference for routes to a desti-
nation network D1. Specifically, the administrator wants to
ensure that the path through P1 is preferred over the path
through P2, as shown in Figure 3.

The path preference requirement in Figure 3 may be am-
biguous. It states that for the destination prefix, the path
through P1 is preferred over the path through P2. However,
the preference for other available paths, such as Customer —
R3 — R2 — R1 — P1, is not specified. There are two possi-
ble interpretations:

(1) All unspecified paths are blocked.
(2) All unspecified paths can be chosen when none of the
specified paths are available.

One of the authors encountered this issue while using
the NetComplete [13] synthesizer. The author intended for
the second interpretation, but the tool interpreted the path
preference specification according to the first interpretation.
As a result, the synthesized configurations had less path
redundancy than the user expected.

Such ambiguity could have gone unnoticed because the
synthesized configuration is too large to validate easily.

The subspecification shown in Figure 4 clarifies what R3
should do to meet the path preference requirement in Figure 3:
(1) prefer routes through P1 over the ones through from P2;
(2) at import interface to R1, drop route R1— > R2— > P2— >
D1; (3) at import interface to R2, drop route R2— > R1—- >
P1- > D1;

Upon seeing this subspecification, the network adminis-
trator realizes that the the network configuration is actually
trying to block path that are not explicitly specified, contra-
dicting the original intend. And therefore adds additional
specifications to allow other available paths as the last resort
when none of the specified paths are available.

Note that subspecification here is different from just ex-
plaining the configuration lines, as it uses a more general
constraint language to describe the behavior of the router.
In other words, there can be multiple ways to configure the
router to meet the subspecification. For instance, to drop

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

JXYNle] Provider 1 ASSOO

R1 R2

// No transit traffic
Req1

'(P1->...->P2)
1(P2->...->P1)
3 \

N
\
V
i
H
i
i
H
i
H
i
i
H
i

Synthesis
AS100 /

.......................

AS600

(a) Specification (b) Topology

Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

route-map R1_to_P1 deny 1

route-map R1_to_P1 deny 100

[] I know transit traffic is
ip prefix-list ip_list_R1_1 = impossible. I like that.
seq 10 permit
123.0.1.0/20 . (] | want to make some
! the customer prefix P
| changes to R1. What

should | keep in mind?
match ip address prefix-
list ip_list_R1_1 .J I

set next-hop 10.0.0.1 Make sure to drop all

routes to Providerl.

(c) Configuration (partial) (d) Explanation

Figure 1: Overview. Given (a) global specifications, (b) network topology, and (c) synthesized configurations, we
generate (d) subspecifications to help network admins interpret the synthesized configurations.

R1 {
1 (R1->P1)
}

Figure 2: Subspecification at R1 for no-transit require-
ment.

// For D1, prefer routes through P1 over routes
through P2

Req2 {
(C->R3->R1->P1->...->D1)
>> (C->R3->R2->P2->...->D1)

3
Figure 3: Path preference for customer to D1.
R3 {
preference {
(R3->R1->P1->...->D1)
>> (R3->R2->P2->...->D1)
3
'(R3->R1->R2->P2->...->D1)
' (R3->R2->R1->P1->...->D1)
}

Figure 4: Subspecification at R3 for path preference
requirement.

the route R1— > R2— > P2— > D1 at the import interface
R1 — R3, R3 can either: (1) match the destination prefix D1;
or (2) match the community tag 100 : 2. And many other
possible implementations. The subspecification captures all
these possibilities, and summarizes the local behavior of the
router in a concise way that is easier to understand.

This scenario highlights the importance of clear and un-
ambiguous specifications to ensure that the synthesized con-
figurations meet user expectations.

55

R2 to P2 {
1 (P1->R1->R2->P2)
1 (P1->R1->R3->R2->P2)

Figure 5: Subspecification at R2 for no-transit require-
ment.

Scenario 3: taming complexity. Continuing with the pre-
vious scenarios, the network administrator adds a few ad-
ditional requirements to the network. With the help of the
synthesizer, a set of configurations is generated that meets
all the requirements. However, the volume of configurations
can easily overwhelm the network administrator.

To manage this complexity, the network administrator
can ask questions about each requirement individually. For
instance, when asked about the no transit traffic requirement,
the subspecifications reveal that R3 can do anything to meet
this requirement (empty subspecification).

Therefore, the network administrator can focus on vali-
dating the configurations for R1 and R2, the routers relevant
to the no transit traffic requirement. As shown in Figure 5,
the subspecification for R2 is to drop all routes from P1 to
P2. Similarly, the subspecification for R1 is to drop all routes
from P2 to P1.

As demonstrated in this scenario, subspecifications can
isolate relevant configuration lines, helping administrators
understand the synthesized configurations. This approach
simplifies validation by breaking down complex configu-
rations into manageable parts aligned with specific global
requirements.

3 GENERATING SUBSPECIFICATION

The synthesis problem. We formulate the synthesis prob-
lem based on NetComplete [13], where the specification is a
set of path requirements. Specifically, in this case study we
only concern two kinds of requirements: (1) Path preference:

Localized Explanations for Automatically Synthesized Network Configurations

R1 R2 R1_export_to_Provider1

match Var_Attr Var_Val
Var_Action Var_Param

Encode
R3

(a) Concrete
configs.

(b) Partially symbolic config
for router R;.

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

((Var_Attr = Next_Hop

Seed Simplify AVar_Val =10.0.0.2) Synthesis
A Var_Action = deny

(c) Simplified constraint.

Figure 6: The subspecification generation flow

traffic from source to destination should follow the most pre-
ferred and available path; (2) Forbidden path: certain paths
cannot be taken by any traffic (e.g., no-transit traffic rule).

Given the specification, network topology, and an optional
network configuration sketch, the synthesis problem is to
generate a concrete network configuration that satisfies the
specification.

The Explanation Problem. We use the same language for
subspecifications as for the global specification. The differ-
ence is that subspecifications concern only the local behavior
of a particular router. The rationale for choosing the same
specification language is twofold. First, the explanation prob-
lem can be viewed as a reverse engineering problem, where
the goal is to derive the specification for individual devices
from the concrete configuration. Thus, it is natural to use
the same language as the global specification. Second, using
the same language as the global specification, rather than de-
veloping a new explanation language, reduces the cognitive
load on network administrators.

The explanation problem, therefore, is to generate a sub-
specification for each individual device, given the input and
output of the synthesis problem. The subspecification should
be in the same language as the global specification and should
be validated against the concrete configuration.

Generating subspecification. The basic idea is to search
within the explanation language space, which is the same as
the global specification language, and find a subspecification
consistent with the local configuration and the rest of the
network configuration encoding. However, this approach
is computationally expensive due to the complexity of the
explanation space and the network configuration.

The key insight is that, although the encoding of network
configurations and routing policies is typically complex, con-
sisting of more than 1000 constraints even in the simple
scenario in Section 2, these constraints can be significantly
reduced when the configurations for most devices are given
concrete values and only a few variables in the device in
question are left symbolic. In our experimental scenario, this
reduction resulted in only a few constraints.

Based on this insight, we propose a solution to the ex-
plainable network synthesis problem that utilizes constraint

56

simplification techniques. Figure 6 illustrates this process.
We start by constructing a specification as constraints on
variables in the configuration to be explained, as the “seed
specification”. These constraints are then simplified through
a set of rewrite rules [19]. The simplified constraints are
typically small, making it tractable for a synthesizer to find
a subspecification in the explanation language space that is
consistent with the simplified constraints.

Note that this approach relies on the assumption that the
underlying synthesizer is constraint-based. The constraint
simplification technique requires a "seed specification” that
encodes the global requirements. It is essential to use the
same encoding process as the synthesizer to generate a "seed
specification” consistent with the synthesizer’s interpreta-
tion. Notably, many existing network synthesizers fall within
this category [1, 6, 12, 13, 24].

Continuing with scenario 3, we walk through the subspec-
ification generation process. (1) For the device in question
(R1), it replaces the concrete configuration lines with sym-
bolic variables, resulting in a partially symbolic configura-
tion. As shown in Figure 6b, concrete configuration lines are
replaced by symbolic variables representing the matching
attribute (Var_Attr), action (Var_Action), and the corre-
sponding parameters (Var_Val, Var_Param).

(2) The partially symbolic configuration is then encoded
with the concrete configurations of the other devices, the
network topology, and the protocol mechanics, into a set of
constraints on the symbolic variables in the configuration
lines. The encoding process follow the same process as the
NetComplete [13] synthesizer. The encoding is referred to
as the "seed specification” as it will be used to generate the
subspecification.

(3) Given the seed specification, we then simplify it by
applying simplification procedures in prior work [19], where
a set of rewriting rules are applied to the seed subspecifica-
tion iteratively to achieve the minimal form. There are 15
simlification rules, and here are two examples:

False — a = True

aV'la=True

Part of the simplified constraints are shown in Figure 6c,
which represents the minimal requirement for the device in

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

question (R1) in order to make the whole network satisfy
the global specification.

(4) Finally, we search for a subspecification in the specifi-
cation language space that is consistent with the simplified
constraints, as shown in Figure 2. Although we have outlined
the basic steps for this approach, the specific methods for
efficiently searching the specification language space remain
an open question. Developing effective techniques for this
search process will be a key focus of our future work.

4 PRELIMINARY RESULTS

To test the feasibility of our approach, we implemented a
prototype to simplify the extracted seed specifications, leav-
ing the generation of sub-specifications for future work. Our
findings show that even examining the simplified seed speci-
fications aids in understanding the network synthesis output
and helps uncover unintended behaviors or misconfigura-
tions. However, further lifting the results to the original spec-
ification language is essential for enhancing interpretability.

Using NetComplete [13] as the configuration synthesizer,
we generated configurations for the topology shown in Fig-
ure 1b based on a configuration sketch and specifications for
three scenarios. Seed specifications for router R1 were cre-
ated by replacing certain parameters with symbolic variables,
resulting in a partially symbolic configuration.

We then used NetComplete to generate verification con-
straints from three inputs: (1) the partially symbolic configu-
ration for R1, (2) the concrete configuration for the rest of
the network, and (3) the global routing specification required
by NetComplete. The resulting constraints form our seed
specification.

Starting from this seed specification, we iteratively ap-
plied the rewrite rules to simplify it, continuing until no
further rules could be applied. The final output is the sub-
specification for the relevant configuration lines of R1. Our
observations are as follows:

(1) Sub-specifications are insightful. By examining the
simplified constraints, we uncovered unintended behaviors
in the network synthesis, as illustrated in Section 2. For
instance, in scenario 1, while the generated configuration at
the R1 - P1 interface involved multiple lines and attribute
matches, the sub-specification for all but the first blocking
rule was empty. This overly simple sub-specification revealed
that the actual intent of the synthesized configuration was
to simply block all traffic from R1 to P1, revealing an under-
specified case.

(2) Sub-specification sizes are manageable. In our case
studies, the size of the sub-specifications was linear in rela-
tion to the configuration variables in question. We found that
generating and inspecting sub-specifications one variable at
a time was an effective strategy. By asking questions such

57

Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

as why a particular field must be matched or why it must
match a specific value, we kept the sub-specifications small
and easily interpretable, while still uncovering the intent
behind local device configurations.

However, the scalability of this approach for large-scale
network configurations remains untested and is an important
area for future research.

(3) Sub-specifications are still low-level. Although the
size of the sub-specifications is manageable by controlling
the number of configuration variables being explained, inter-
preting them remains a non-trivial task. The primary chal-
lenge is that they contain many low-level encoding variables
produced by the network synthesizer. Understanding these
sub-specifications requires a deep knowledge of the synthe-
sizer’s encoding strategy, which is undesirable for users. This
limitation highlights the need for a final step in our approach:
lifting the sub-specification to the original high-level specifi-
cation language so that users can interpret it directly without
needing to understand the underlying encoding details.

5 DISCUSSION

Limitations of generic explainable program synthesis
approaches. As we demonstrate in Section 4, Directly ap-
plying current explainable program synthesis tools [19] to
network synthesis problems does not adequately address
these challenges. While these tools can simplify SMT con-
straints, the resulting subspecifications remain expressed in
terms of low-level variables and constraints that are difficult
for network administrators to interpret.

The fundamental issue with these generic tools is the lack
of the contextual understanding needed to map these con-
straints to meaningful network specifications. Nevertheless,
having the simplified low-level constraints are still useful
as it reduces the amount of work in the following subspeci-
fiation generation process. The next interesting research
question then is how to lift the low-level specifications to
the high-level specification language.

High-level summary of the global behaviors. Similar to
the modular verification approach [3, 23], reasoning about
local network behaviors requires assumptions about global
behaviors. For instance, in the no-transit specification in Sec-
tion 2, when inspecting the local subspecification for router
R1, which denies routes with community 100 : 2 from R1 to
P1, it is essential to ensure a route is tagged with community
100 : 2 if received from P2. A possible solution is to view the
rest of the network as a single component and determine
the necessary actions of other devices to fulfill the global
specification, given the concrete configurations of a particu-
lar router. Techniques for learning procedure summaries in
interprocedural program verification [11, 15, 20] may offer

Localized Explanations for Automatically Synthesized Network Configurations

a promising approach for mining sub-specifications in this
context.

User study. A comprehensive user study is needed to vali-
date whether the proposed subspecifications can assist net-
work administrators in understanding synthesized configura-
tions. The study would involve network administrators with
varying experience levels, providing them with synthesized
configurations with and without localized subspecifications.
Participants would perform tasks such as identifying miscon-
figurations, validating policy compliance, and making adjust-
ments. This goal is to assess the effectiveness and usability
of localized subspecifications, and provide recommendations
for their integration into network management workflows.

Explanation beyond constraint-based synthesizers. Fu-
ture research should focus on developing methodologies that
extend beyond constraint-based techniques to accommodate
various synthesis approaches. In this work, we assume the
underlying synthesizer uses constraint-based synthesis tech-
niques. However, there are synthesizers that use custom algo-
rithms [5, 21] and other general techniques like LLMs (Large
Language Models) [18]. A more general solutions is needed
to ensure that the generated explanations are comprehensi-
ble and relevant across different contexts and methodologies,
enhancing the versatility and applicability of explainable
network synthesis tools.

Implication for explainable network verification. We
observed significant synergy between explaining network
configuration synthesis outputs and network configuration
verification. Traditionally, both tasks have operated in a
black-box mode, providing users with only a yes or no an-
swer without revealing why the configuration satisfies the
given property. We believe the idea of localized subspecifica-
tions can also be generalized to assist in explaining network
verification.

6 RELATED WORK

Modularized network verification. Lightyear [23] and Time-
piece [3] uses modularized approach to scale configuration
verification. Our work is inspired by this modularization
concept, but focus on using it for explaining configuration
synthesis output.

Network configuration synthesis. Existing work on network
configuration synthesis [1, 5, 6, 12, 13, 21] typically operates
in a black-box mode. We aim to enhance transparency and
trust in network synthesis by addressing the explainable
configuration synthesis problem.

Intent inference. Similar to our work, specification mining
from existing network configuration has been another promis-
ing approach for network explainability. Notably, Config2Spec [8]

58

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

and Anime [16] mine global intents from network configu-
rations. Unlike these work, we focus on generating localized
subspecification such that the synthesis output configuration
at each device can be validated easily.

Network provenance. Network provenance [10, 27, 28] pro-
vides positive explanations, i.e., elucidating why certain
events occur by showing the chain of derivations leading
to the observed events. In contrast, network configuration
explanation requires counterfactual analysis, i.e., understand-
ing why certain traffic is impossible. Such explanations can
be more effectively captured using a specification language.
Explainable program synthesis. Zhang et al. [26] reveal the
internal workings of program synthesis to improve inter-
pretability. Nazari et al. [19] explain synthesis outputs by lo-
calizing specifications to each syntactic structure. As shown
in our case study, these tools need networking context to
provide useful explanations.

7 CONCLUSION

This paper highlights the importance of interpretability in
network synthesis, emphasizing its role in fostering trust,
identifying misconfigurations and ambiguities, and accelerat-
ing the iteration process for network operators. We propose
a framework for generating localized subspecifications using
constraint simplification techniques to assist administrators
in understanding and validating synthesized configurations.
Preliminary results demonstrate the feasibility of simplifying
constraints to a manageable size, and reveals useful insights
for understanding the synthesis output. However, generating
high-level subspecifications remains a challenge for future
research. By emphasizing the need for interpretable designs
in verification and synthesis tools, we aim to enhance trans-
parency in intent-based networking.

8 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful feed-
back and suggestions. This work is supported by Shang-
haiTech Startup Fund, and U.S. National Science Founda-
tion under grants CCF #2124431, CCF #2107261, and CCF
#2146518.

REFERENCES

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. 2020. Aed: Incrementally synthesizing policy-compliant and
manageable configurations. In Proceedings of the 16th International
Conference on emerging Networking EXperiments and Technologies. 482~
495.

[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. 2020. Tiramisu: Fast multilayer network verification. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). 201-219.

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

[3] Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David

[10

[11

[12

(13

(14

(15

(16

[17

[18

]

—

—

[t

[l

=

=

—

=

Walker. 2023. Modular control plane verification via temporal invari-
ants. Proceedings of the ACM on Programming Languages 7, PLDI (2023),
50-75.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
general approach to network configuration verification. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communi-
cation. 155-168.

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2016. Don’t mind the gap: Bridging network-wide
objectives and device-level configurations. In Proceedings of the 2016
ACM SIGCOMM Conference. 328-341.

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2017. Network configuration synthesis with abstract
topologies. In Proceedings of the 38th ACM SIGPLAN conference on
programming language design and implementation. 437-451.

Riidiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. 2021. Metha: Network verifiers need to be correct
too!. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). 99-113.

Riidiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin
Vechev. 2020. {Config2Spec}: Mining network specifications from
network configurations. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 969-984.

Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Maha-
jan, and Todd Millstein. 2023. Lessons from the evolution of the Batfish
configuration analysis tool. In Proceedings of the ACM SIGCOMM 2023
Conference. 122-135.

Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. 2016. The good, the bad, and the differences: Better
network diagnostics with differential provenance. In Proceedings of
the 2016 ACM SIGCOMM Conference. 115-128.

Patrick Cousot, Radhia Cousot, Manuel Fihndrich, and Francesco
Logozzo. 2013. Automatic inference of necessary preconditions. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 128-148.

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2017. Network-wide configuration synthesis. In Computer
Aided Verification: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II 30. Springer, 261-281.
Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2018. {NetComplete}: Practical {Network-Wide} configura-
tion synthesis with autocompletion. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). 579-594.
Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A general ap-
proach to network configuration analysis. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). 469-483.
Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Permis-
sive interfaces. In Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering. 31-40.

Ali Kheradmand. 2020. Automatic inference of high-level network
intents by mining forwarding patterns. In Proceedings of the Symposium
on SDN Research. 27-33.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa,
Paul Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences
from using code explanations generated by large language models in
a web software development e-book. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1. 931-937.
Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George
Varghese. 2023. What do LLMs need to Synthesize Correct Router

59

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

Configurations?. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks. 189-195.

Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Rad-
hakrishna, and Mukund Raghothaman. 2023. Explainable Program
Synthesis by Localizing Specifications. Proceedings of the ACM on
Programming Languages 7, OOPSLA2 (2023), 2171-2195.

Lauren Pick. 2022. Scaling Automatic Modular Verification. Princeton
University.

Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh
Mundada, Zhaodong Wang, Sangki Yun, Eric Lippert, Walid Taha,
Minlan Yu, and Jelena Mirkovic. 2023. Practical intent-driven routing
configuration synthesis. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 629-644.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Au-
tomatic generation of programming exercises and code explanations
using large language models. In Proceedings of the 2022 ACM Conference
on International Computing Education Research-Volume 1. 27-43.
Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Jayaraman, Tejas
Patil, Todd Millstein, and George Varghese. 2023. Lightyear: Using
modularity to scale bgp control plane verification. In Proceedings of
the ACM SIGCOMM 2023 Conference. 94-107.

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin,
et al. 2020. Accuracy, scalability, coverage: A practical configuration
verifier on a global wan. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication.
599-614.

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic
router execution. In Proceedings of the ACM SIGCOMM 2022 Conference.
336-349.

Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu
Wang, and Elena L Glassman. 2021. Interpretable program synthesis. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 1-16.

Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen,
Boon Thau Loo, and Micah Sherr. 2011. Secure network provenance. In
Proceedings of the twenty-third ACM symposium on operating systems
principles. 295-310.

Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo,
and Yun Mao. 2010. Efficient querying and maintenance of network
provenance at internet-scale. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 615-626.

	Abstract
	1 Introduction
	2 Motivating examples
	3 Generating subspecification
	4 Preliminary results
	5 Discussion
	6 Related work
	7 Conclusion
	8 Acknowledgement
	References

