

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

Although synthesis outputs are generally veri�ed against
user-speci�ed intents, they are not without issues. The inher-
ent complexity of network systems and their protocols means
that both veri�ers and synthesizers can contain bugs [7, 9].
Additionally, intent speci�cations themselves can sometimes
be ambiguous [9, 21]. Existing tools aimed at identifying
veri�er bugs operate in a black-box mode, leaving users
without insight into why the generated con�guration ful�lls
the speci�ed policies.

NetComplete [13] enhances understandability by allowing
users to work with familiar templates. However, it assumes
users have a comprehensive understanding of the original
network con�guration and can accurately identify which
parts need changes to support new policies. This approach
does not address the fundamental interpretability problem of
network synthesis output, leaving a gap in making synthe-
sized con�gurations easily understandable and trustworthy
for network operators.
In contrast to the end-to-end speci�cation and synthesis

�ow, when network operators manually con�gure the net-
work, they typically con�gure network devices one by one.
This method naturally breaks down the global policy into
smaller, local functionalities, allowing operators to reason
about how each local setting contributes to the overall policy.

Modular network veri�cation research [3, 23] has formal-
ized this concept into a semi-automatic process. In this pro-
cess, operators explicitly de�ne local invariants for di�er-
ent network components. Similar to modular reasoning in
software engineering, this modularization greatly improves
veri�cation e�ciency and simpli�es bug localization when
veri�cation fails. These studies highlight the potential for
decomposing global intent speci�cations into localized spec-
i�cations for individual network devices or components.

Interpretability to foster trust. Inspired by these ideas,
we aim to utilize subspeci�cations to foster trust in network
synthesis. Given a high-level network intent and the syn-
thesized network con�guration, our goal is to generate sub-
speci�cations for each con�guration component. These sub-
speci�cations collectively establish the validity of the global
speci�cations. Similar to function comments that improve
software readability, subspeci�cations establish connections
between each part of the network con�gurations and the
global intents, revealing insights on why the generated con-
�gurations can ful�ll the global intents.

Faster speci�cation re�nement iteration. Network syn-
thesis, like many program synthesis tasks, is an iterative
process where network operators re�ne the speci�cations
based on the synthesizer output. Network speci�cations in
general are hard to write correctly and completely at the �rst
time [8, 9], as there are many corner cases in the network,
and the precise semantics of the speci�cation language can

be hard for the network operators to grasp, especially for
ones who are new to formal methods. Therefore, the inter-
pretability of the synthesizer output is crucial for network
operators to e�ciently identify and re�ne problematic parts
of the speci�cation in an interactive manner.

Localized subspeci�cations.We propose and investigate
the use of localized subspeci�cations to interpret network
synthesis outputs. Subspeci�cations are local speci�cations
that describe the behavior requirements of individual net-
work components. In contrast to code explanation, which
primarily focus on clarifying the code logic or structure given
a concrete implementation [17, 22], subspeci�cations man-
date the minimal conditions for a device to satisfy the global
speci�cations, which is more general and �exible.
In addition, subspeci�cations are tailored to the global

intents in question. Essentially, they project all device con-
�gurations onto the speci�c global intent, isolating the lo-
cal behaviors irrelevant to the global speci�cations. This
is crucial because networks typically have to satisfy multi-
ple global speci�cations simultaneously, and con�gurations
are often massive in practice. In fact, we believe that code
explanations and subspeci�cations are synergistic. Code ex-
planations can assist network administrators in validating
the concrete con�guration lines against the subspeci�cations,
which is a more feasible task than directly validating against
the global speci�cations.

Challenges. Generating and validating subspeci�cations
is inherently di�cult [3, 19, 23]. Real-world networks in-
volve complex interactions between numerous components
and protocols, making it challenging to ensure that synthe-
sized con�gurations meet the speci�ed global intents. The
sheer volume of con�gurations can be overwhelming, mak-
ing it di�cult for network operators to maintain consistency
and coherence. Additionally, determining what constitutes
a useful explanation for network operators is complex and
requires careful validation to ensure it e�ectively aids in
network management tasks.

Contributions. We propose a framework for generating
localized subspeci�cations to enhance the interpretability of
network synthesis. The subspeci�cation form provides a new
way to describe the behavior requirements of individual net-
work components in relation to global intents. Our approach
is based on constraint-based con�guration synthesizers, and
uses constraint simpli�cation techniques to create manage-
able subspeci�cations that o�er clear insights into how the
synthesized con�gurations meet high-level requirements.

We highlight the need for interpretable network synthesis
through three motivating examples, showing how subspeci-
�cations help pinpoint miscon�gurations, clarify intended

53

Localized Explanations for Automatically Synthesized Network Configurations HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

behaviors, and isolate relevant con�guration lines to simplify
large-scale network management.
We validate our approach with a prototype implementa-

tion and a case study. Preliminary results show that it is pos-
sible to simplify constraints to a manageable size, facilitating
easier inspection and validation of synthesized con�gura-
tions. However, generating high-level subspeci�cations that
fully capture the connection between individual components
and the global speci�cation remains a challenge for future
research.

This work emphasizes the importance of interpretable de-
signs in network synthesis tools, aiming to bridge the gap
between complex automated systems and human operators.
By focusing on modularized approaches and exposing in-
ternal reasoning, we hope to foster trust and improve the
manageability of network infrastructures.

2 MOTIVATING EXAMPLES

We motivate the need for explainable network synthesis
through three scenarios where understanding the synthesis
output is critical for identifying potential issues in the speci�-
cation or con�guration. These scenarios further demonstrate
how subspeci�cations can facilitate the understanding of
network con�gurations. We follow the formulation of Net-
Complete [13] for routing policy speci�cation, which uses a
domain-speci�c language to describe path preferences and
certain prohibited path.

Scenario 1: identifying underspeci�ed paths. Consider
the network in Figure 1b, which connects a customer Au-
tonomous System (AS) with two provider ASes.

Suppose initially the network only needs to prevent transit
tra�c and maintain regular connectivity for the rest of the
nodes. This goal is speci�ed in Figure 1a: all paths between
Provider 1 (P1) and Provider 2 (P2) are prohibited. The !P
syntax means forbidding the following path P.
With these speci�cations and the network topology, a

synthesizer generates concrete network con�gurations that
ful�ll these requirements. Figure 1c shows part of the gener-
ated con�gurations for router R1.
At �rst it may be puzzling to the network administrator

why the con�guration lines are blocking routes from R1 to
Provider1 with IP pre�x 128.0.1.0/24 and reset the next-hop
attribute for these matched routes.
In order to understand what R1 does to prevent transit

tra�c, the network administrator asks: "I know there is no
transit tra�c between the two peering providers. This is
good. I like this. Now if I want to make changes to R1, what
should I keep in mind?" The answer is: "Make sure to block
all routes going to Provider1."

Figure 2 shows the subspeci�cation for R1. In essence, the
generated con�guration in Figure 1c prevents the R1 from

exporting any routes to Provider1, and the set next-hop line
is redundant. It is generated because a template is provided.
Here, the network administrator realizes that the con�g-

uration lines prevents transit tra�c by simply blocking all
routes to Provider 1. Although this satis�es the no transit
tra�c requirement, and is very simple and e�ective, it is
clearly not the behavior the network administrator intended,
as it e�ectively blocks all tra�c from Provider 1 to the lo-
cal network. In order to resolve this issue, the network ad-
ministrator adds another speci�cation to allow routes from
Provider 1 to the customer network.

Scenario 2: resolving ambiguous speci�cations. Continu-
ing with the network in Figure 1b, the network administrator
wants to further specify the preference for routes to a desti-
nation network �1. Speci�cally, the administrator wants to
ensure that the path through P1 is preferred over the path
through P2, as shown in Figure 3.
The path preference requirement in Figure 3 may be am-

biguous. It states that for the destination pre�x, the path
through P1 is preferred over the path through P2. However,
the preference for other available paths, such as�DBC><4A →

'3 → '2 → '1 → %1, is not speci�ed. There are two possi-
ble interpretations:

(1) All unspeci�ed paths are blocked.
(2) All unspeci�ed paths can be chosen when none of the

speci�ed paths are available.

One of the authors encountered this issue while using
the NetComplete [13] synthesizer. The author intended for
the second interpretation, but the tool interpreted the path
preference speci�cation according to the �rst interpretation.
As a result, the synthesized con�gurations had less path
redundancy than the user expected.
Such ambiguity could have gone unnoticed because the

synthesized con�guration is too large to validate easily.
The subspeci�cation shown in Figure 4 clari�es what '3

should do tomeet the path preference requirement in Figure 3:
(1) prefer routes through %1 over the ones through from %2;
(2) at import interface to '1, drop route '1− > '2− > %2− >

�1; (3) at import interface to '2, drop route '2− > '1− >

%1− > �1;
Upon seeing this subspeci�cation, the network adminis-

trator realizes that the the network con�guration is actually
trying to block path that are not explicitly speci�ed, contra-
dicting the original intend. And therefore adds additional
speci�cations to allow other available paths as the last resort
when none of the speci�ed paths are available.

Note that subspeci�cation here is di�erent from just ex-
plaining the con�guration lines, as it uses a more general
constraint language to describe the behavior of the router.
In other words, there can be multiple ways to con�gure the
router to meet the subspeci�cation. For instance, to drop

54

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

// No transit traffic

Req1

{

!(P1 ->...->P2)

!(P2 ->...->P1)

}

...

(a) Speci�cation (b) Topology

ip prefix -list ip_list_R1_1

seq 10 permit

128.0.1.0/24

! the customer prefix

!

route -map R1_to_P1 deny 1

match ip address prefix -

list ip_list_R1_1

set next -hop 10.0.0.1

route -map R1_to_P1 deny 100

(c) Con�guration (partial) (d) Explanation

Figure 1: Overview. Given (a) global speci�cations, (b) network topology, and (c) synthesized con�gurations, we

generate (d) subspeci�cations to help network admins interpret the synthesized con�gurations.

R1 {

!(R1->P1)

}

Figure 2: Subspeci�cation at '1 for no-transit require-

ment.

...

// For D1, prefer routes through P1 over routes

through P2

Req2 {

(C->R3->R1->P1 ->...->D1)

>> (C->R3->R2->P2 ->...->D1)

}

Figure 3: Path preference for customer to �1.

R3 {

preference {

(R3->R1->P1 ->...->D1)

>> (R3->R2->P2 ->...->D1)

}

!(R3->R1->R2->P2 ->...->D1)

!(R3->R2->R1->P1 ->...->D1)

}

Figure 4: Subspeci�cation at '3 for path preference

requirement.

the route '1− > '2− > %2− > �1 at the import interface
'1 − '3, '3 can either: (1) match the destination pre�x �1;
or (2) match the community tag 100 : 2. And many other
possible implementations. The subspeci�cation captures all
these possibilities, and summarizes the local behavior of the
router in a concise way that is easier to understand.
This scenario highlights the importance of clear and un-

ambiguous speci�cations to ensure that the synthesized con-
�gurations meet user expectations.

R2 to P2 {

!(P1->R1->R2->P2)

!(P1->R1->R3->R2->P2)

}

Figure 5: Subspeci�cation at '2 for no-transit require-

ment.

Scenario 3: taming complexity. Continuing with the pre-
vious scenarios, the network administrator adds a few ad-
ditional requirements to the network. With the help of the
synthesizer, a set of con�gurations is generated that meets
all the requirements. However, the volume of con�gurations
can easily overwhelm the network administrator.
To manage this complexity, the network administrator

can ask questions about each requirement individually. For
instance, when asked about the no transit tra�c requirement,
the subspeci�cations reveal that '3 can do anything to meet
this requirement (empty subspeci�cation).
Therefore, the network administrator can focus on vali-

dating the con�gurations for '1 and '2, the routers relevant
to the no transit tra�c requirement. As shown in Figure 5,
the subspeci�cation for '2 is to drop all routes from P1 to
P2. Similarly, the subspeci�cation for '1 is to drop all routes
from P2 to P1.
As demonstrated in this scenario, subspeci�cations can

isolate relevant con�guration lines, helping administrators
understand the synthesized con�gurations. This approach
simpli�es validation by breaking down complex con�gu-
rations into manageable parts aligned with speci�c global
requirements.

3 GENERATING SUBSPECIFICATION

The synthesis problem. We formulate the synthesis prob-
lem based on NetComplete [13], where the speci�cation is a
set of path requirements. Speci�cally, in this case study we
only concern two kinds of requirements: (1) Path preference:

55

Localized Explanations for Automatically Synthesized Network Configurations HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

(a) Concrete

con�gs.

R1_export_to_Provider1

match Var_Attr Var_Val

Var_Action Var_Param

...

(b) Partially symbolic con�g

for router '1.

Encode Seed

spec

Simplify

((Var_Attr = Next_Hop

∧Var_Val = 10.0.0.2)

∨...)

∧ Var_Action = deny

(c) Simpli�ed constraint.

Synthesis

subspec

Figure 6: The subspeci�cation generation �ow

tra�c from source to destination should follow the most pre-
ferred and available path; (2) Forbidden path: certain paths
cannot be taken by any tra�c (e.g., no-transit tra�c rule).

Given the speci�cation, network topology, and an optional
network con�guration sketch, the synthesis problem is to
generate a concrete network con�guration that satis�es the
speci�cation.

The Explanation Problem. We use the same language for
subspeci�cations as for the global speci�cation. The di�er-
ence is that subspeci�cations concern only the local behavior
of a particular router. The rationale for choosing the same
speci�cation language is twofold. First, the explanation prob-
lem can be viewed as a reverse engineering problem, where
the goal is to derive the speci�cation for individual devices
from the concrete con�guration. Thus, it is natural to use
the same language as the global speci�cation. Second, using
the same language as the global speci�cation, rather than de-
veloping a new explanation language, reduces the cognitive
load on network administrators.
The explanation problem, therefore, is to generate a sub-

speci�cation for each individual device, given the input and
output of the synthesis problem. The subspeci�cation should
be in the same language as the global speci�cation and should
be validated against the concrete con�guration.

Generating subspeci�cation. The basic idea is to search
within the explanation language space, which is the same as
the global speci�cation language, and �nd a subspeci�cation
consistent with the local con�guration and the rest of the
network con�guration encoding. However, this approach
is computationally expensive due to the complexity of the
explanation space and the network con�guration.

The key insight is that, although the encoding of network
con�gurations and routing policies is typically complex, con-
sisting of more than 1000 constraints even in the simple
scenario in Section 2, these constraints can be signi�cantly
reduced when the con�gurations for most devices are given
concrete values and only a few variables in the device in
question are left symbolic. In our experimental scenario, this
reduction resulted in only a few constraints.
Based on this insight, we propose a solution to the ex-

plainable network synthesis problem that utilizes constraint

simpli�cation techniques. Figure 6 illustrates this process.
We start by constructing a speci�cation as constraints on
variables in the con�guration to be explained, as the “seed
speci�cation”. These constraints are then simpli�ed through
a set of rewrite rules [19]. The simpli�ed constraints are
typically small, making it tractable for a synthesizer to �nd
a subspeci�cation in the explanation language space that is
consistent with the simpli�ed constraints.

Note that this approach relies on the assumption that the
underlying synthesizer is constraint-based. The constraint
simpli�cation technique requires a "seed speci�cation" that
encodes the global requirements. It is essential to use the
same encoding process as the synthesizer to generate a "seed
speci�cation" consistent with the synthesizer’s interpreta-
tion. Notably, many existing network synthesizers fall within
this category [1, 6, 12, 13, 24].

Continuing with scenario 3, we walk through the subspec-
i�cation generation process. (1) For the device in question
(R1), it replaces the concrete con�guration lines with sym-
bolic variables, resulting in a partially symbolic con�gura-
tion. As shown in Figure 6b, concrete con�guration lines are
replaced by symbolic variables representing the matching
attribute (Var_Attr), action (Var_Action), and the corre-
sponding parameters (Var_Val, Var_Param).
(2) The partially symbolic con�guration is then encoded

with the concrete con�gurations of the other devices, the
network topology, and the protocol mechanics, into a set of
constraints on the symbolic variables in the con�guration
lines. The encoding process follow the same process as the
NetComplete [13] synthesizer. The encoding is referred to
as the "seed speci�cation" as it will be used to generate the
subspeci�cation.
(3) Given the seed speci�cation, we then simplify it by

applying simpli�cation procedures in prior work [19], where
a set of rewriting rules are applied to the seed subspeci�ca-
tion iteratively to achieve the minimal form. There are 15
simli�cation rules, and here are two examples:

�0;B4 → 0 =)AD4

0 ∨ !0 =)AD4

Part of the simpli�ed constraints are shown in Figure 6c,
which represents the minimal requirement for the device in

56

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

question (R1) in order to make the whole network satisfy
the global speci�cation.

(4) Finally, we search for a subspeci�cation in the speci�-
cation language space that is consistent with the simpli�ed
constraints, as shown in Figure 2. Although we have outlined
the basic steps for this approach, the speci�c methods for
e�ciently searching the speci�cation language space remain
an open question. Developing e�ective techniques for this
search process will be a key focus of our future work.

4 PRELIMINARY RESULTS

To test the feasibility of our approach, we implemented a
prototype to simplify the extracted seed speci�cations, leav-
ing the generation of sub-speci�cations for future work. Our
�ndings show that even examining the simpli�ed seed speci-
�cations aids in understanding the network synthesis output
and helps uncover unintended behaviors or miscon�gura-
tions. However, further lifting the results to the original spec-
i�cation language is essential for enhancing interpretability.

Using NetComplete [13] as the con�guration synthesizer,
we generated con�gurations for the topology shown in Fig-
ure 1b based on a con�guration sketch and speci�cations for
three scenarios. Seed speci�cations for router R1 were cre-
ated by replacing certain parameters with symbolic variables,
resulting in a partially symbolic con�guration.
We then used NetComplete to generate veri�cation con-

straints from three inputs: (1) the partially symbolic con�gu-
ration for R1, (2) the concrete con�guration for the rest of
the network, and (3) the global routing speci�cation required
by NetComplete. The resulting constraints form our seed
speci�cation.
Starting from this seed speci�cation, we iteratively ap-

plied the rewrite rules to simplify it, continuing until no
further rules could be applied. The �nal output is the sub-
speci�cation for the relevant con�guration lines of R1. Our
observations are as follows:

(1) Sub-speci�cations are insightful. By examining the
simpli�ed constraints, we uncovered unintended behaviors
in the network synthesis, as illustrated in Section 2. For
instance, in scenario 1, while the generated con�guration at
the R1 - P1 interface involved multiple lines and attribute
matches, the sub-speci�cation for all but the �rst blocking
rule was empty. This overly simple sub-speci�cation revealed
that the actual intent of the synthesized con�guration was
to simply block all tra�c from R1 to P1, revealing an under-
speci�ed case.

(2) Sub-speci�cation sizes are manageable. In our case
studies, the size of the sub-speci�cations was linear in rela-
tion to the con�guration variables in question. We found that
generating and inspecting sub-speci�cations one variable at
a time was an e�ective strategy. By asking questions such

as why a particular �eld must be matched or why it must
match a speci�c value, we kept the sub-speci�cations small
and easily interpretable, while still uncovering the intent
behind local device con�gurations.
However, the scalability of this approach for large-scale

network con�gurations remains untested and is an important
area for future research.

(3) Sub-speci�cations are still low-level. Although the
size of the sub-speci�cations is manageable by controlling
the number of con�guration variables being explained, inter-
preting them remains a non-trivial task. The primary chal-
lenge is that they contain many low-level encoding variables
produced by the network synthesizer. Understanding these
sub-speci�cations requires a deep knowledge of the synthe-
sizer’s encoding strategy, which is undesirable for users. This
limitation highlights the need for a �nal step in our approach:
lifting the sub-speci�cation to the original high-level speci�-
cation language so that users can interpret it directly without
needing to understand the underlying encoding details.

5 DISCUSSION

Limitations of generic explainable program synthesis

approaches. As we demonstrate in Section 4, Directly ap-
plying current explainable program synthesis tools [19] to
network synthesis problems does not adequately address
these challenges. While these tools can simplify SMT con-
straints, the resulting subspeci�cations remain expressed in
terms of low-level variables and constraints that are di�cult
for network administrators to interpret.

The fundamental issue with these generic tools is the lack
of the contextual understanding needed to map these con-
straints to meaningful network speci�cations. Nevertheless,
having the simpli�ed low-level constraints are still useful
as it reduces the amount of work in the following subspeci-
�ation generation process. The next interesting research
question then is how to lift the low-level speci�cations to
the high-level speci�cation language.

High-level summary of the global behaviors. Similar to
the modular veri�cation approach [3, 23], reasoning about
local network behaviors requires assumptions about global
behaviors. For instance, in the no-transit speci�cation in Sec-
tion 2, when inspecting the local subspeci�cation for router
'1, which denies routes with community 100 : 2 from '1 to
P1, it is essential to ensure a route is tagged with community
100 : 2 if received from P2. A possible solution is to view the
rest of the network as a single component and determine
the necessary actions of other devices to ful�ll the global
speci�cation, given the concrete con�gurations of a particu-
lar router. Techniques for learning procedure summaries in
interprocedural program veri�cation [11, 15, 20] may o�er

57

Localized Explanations for Automatically Synthesized Network Configurations HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

a promising approach for mining sub-speci�cations in this
context.

User study. A comprehensive user study is needed to vali-
date whether the proposed subspeci�cations can assist net-
work administrators in understanding synthesized con�gura-
tions. The study would involve network administrators with
varying experience levels, providing them with synthesized
con�gurations with and without localized subspeci�cations.
Participants would perform tasks such as identifying miscon-
�gurations, validating policy compliance, and making adjust-
ments. This goal is to assess the e�ectiveness and usability
of localized subspeci�cations, and provide recommendations
for their integration into network management work�ows.

Explanation beyond constraint-based synthesizers. Fu-
ture research should focus on developing methodologies that
extend beyond constraint-based techniques to accommodate
various synthesis approaches. In this work, we assume the
underlying synthesizer uses constraint-based synthesis tech-
niques. However, there are synthesizers that use custom algo-
rithms [5, 21] and other general techniques like LLMs (Large
Language Models) [18]. A more general solutions is needed
to ensure that the generated explanations are comprehensi-
ble and relevant across di�erent contexts and methodologies,
enhancing the versatility and applicability of explainable
network synthesis tools.

Implication for explainable network veri�cation. We
observed signi�cant synergy between explaining network
con�guration synthesis outputs and network con�guration
veri�cation. Traditionally, both tasks have operated in a
black-box mode, providing users with only a yes or no an-
swer without revealing why the con�guration satis�es the
given property. We believe the idea of localized subspeci�ca-
tions can also be generalized to assist in explaining network
veri�cation.

6 RELATED WORK

Modularized network veri�cation. Lightyear [23] and Time-

piece [3] uses modularized approach to scale con�guration
veri�cation. Our work is inspired by this modularization
concept, but focus on using it for explaining con�guration
synthesis output.
Network con�guration synthesis. Existing work on network

con�guration synthesis [1, 5, 6, 12, 13, 21] typically operates
in a black-box mode. We aim to enhance transparency and
trust in network synthesis by addressing the explainable
con�guration synthesis problem.
Intent inference. Similar to our work, speci�cation mining

from existing network con�guration has been another promis-
ing approach for network explainability. Notably, Con�g2Spec [8]

and Anime [16] mine global intents from network con�gu-
rations. Unlike these work, we focus on generating localized
subspeci�cation such that the synthesis output con�guration
at each device can be validated easily.
Network provenance. Network provenance [10, 27, 28] pro-

vides positive explanations, i.e., elucidating why certain
events occur by showing the chain of derivations leading
to the observed events. In contrast, network con�guration
explanation requires counterfactual analysis, i.e., understand-
ing why certain tra�c is impossible. Such explanations can
be more e�ectively captured using a speci�cation language.
Explainable program synthesis. Zhang et al. [26] reveal the

internal workings of program synthesis to improve inter-
pretability. Nazari et al. [19] explain synthesis outputs by lo-
calizing speci�cations to each syntactic structure. As shown
in our case study, these tools need networking context to
provide useful explanations.

7 CONCLUSION

This paper highlights the importance of interpretability in
network synthesis, emphasizing its role in fostering trust,
identifying miscon�gurations and ambiguities, and accelerat-
ing the iteration process for network operators. We propose
a framework for generating localized subspeci�cations using
constraint simpli�cation techniques to assist administrators
in understanding and validating synthesized con�gurations.
Preliminary results demonstrate the feasibility of simplifying
constraints to a manageable size, and reveals useful insights
for understanding the synthesis output. However, generating
high-level subspeci�cations remains a challenge for future
research. By emphasizing the need for interpretable designs
in veri�cation and synthesis tools, we aim to enhance trans-
parency in intent-based networking.

8 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful feed-
back and suggestions. This work is supported by Shang-
haiTech Startup Fund, and U.S. National Science Founda-
tion under grants CCF #2124431, CCF #2107261, and CCF
#2146518.

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. Aed: Incrementally synthesizing policy-compliant and

manageable con�gurations. In Proceedings of the 16th International

Conference on emerging Networking EXperiments and Technologies. 482–

495.

[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. Tiramisu: Fast multilayer network veri�cation. In 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20). 201–219.

58

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Amirmohammad Nazari, Yongzheng Zhang, Mukund Raghothaman, and Haoxian Chen

[3] Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David

Walker. 2023. Modular control plane veri�cation via temporal invari-

ants. Proceedings of the ACM on Programming Languages 7, PLDI (2023),

50–75.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A

general approach to network con�guration veri�cation. In Proceedings

of the Conference of the ACM Special Interest Group on Data Communi-

cation. 155–168.

[5] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and

David Walker. 2016. Don’t mind the gap: Bridging network-wide

objectives and device-level con�gurations. In Proceedings of the 2016

ACM SIGCOMM Conference. 328–341.

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and

David Walker. 2017. Network con�guration synthesis with abstract

topologies. In Proceedings of the 38th ACM SIGPLAN conference on

programming language design and implementation. 437–451.

[7] Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever,

and Martin Vechev. 2021. Metha: Network veri�ers need to be correct

too!. In 18th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21). 99–113.

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, andMartin

Vechev. 2020. {Con�g2Spec}: Mining network speci�cations from

network con�gurations. In 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20). 969–984.

[9] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Maha-

jan, and Todd Millstein. 2023. Lessons from the evolution of the Bat�sh

con�guration analysis tool. In Proceedings of the ACM SIGCOMM 2023

Conference. 122–135.

[10] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and

Boon Thau Loo. 2016. The good, the bad, and the di�erences: Better

network diagnostics with di�erential provenance. In Proceedings of

the 2016 ACM SIGCOMM Conference. 115–128.

[11] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco

Logozzo. 2013. Automatic inference of necessary preconditions. In

International Workshop on Veri�cation, Model Checking, and Abstract

Interpretation. Springer, 128–148.

[12] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin

Vechev. 2017. Network-wide con�guration synthesis. In Computer

Aided Veri�cation: 29th International Conference, CAV 2017, Heidelberg,

Germany, July 24-28, 2017, Proceedings, Part II 30. Springer, 261–281.

[13] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin

Vechev. 2018. {NetComplete}: Practical {Network-Wide} con�gura-

tion synthesis with autocompletion. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 18). 579–594.

[14] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh

Govindan, Ratul Mahajan, and Todd Millstein. 2015. A general ap-

proach to network con�guration analysis. In 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 15). 469–483.

[15] Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Permis-

sive interfaces. In Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international symposium

on Foundations of software engineering. 31–40.

[16] Ali Kheradmand. 2020. Automatic inference of high-level network

intents bymining forwarding patterns. In Proceedings of the Symposium

on SDN Research. 27–33.

[17] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa,

Paul Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences

from using code explanations generated by large language models in

a web software development e-book. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 1. 931–937.

[18] Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George

Varghese. 2023. What do LLMs need to Synthesize Correct Router

Con�gurations?. In Proceedings of the 22nd ACM Workshop on Hot

Topics in Networks. 189–195.

[19] Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Rad-

hakrishna, and Mukund Raghothaman. 2023. Explainable Program

Synthesis by Localizing Speci�cations. Proceedings of the ACM on

Programming Languages 7, OOPSLA2 (2023), 2171–2195.

[20] Lauren Pick. 2022. Scaling Automatic Modular Veri�cation. Princeton

University.

[21] Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh

Mundada, Zhaodong Wang, Sangki Yun, Eric Lippert, Walid Taha,

Minlan Yu, and Jelena Mirkovic. 2023. Practical intent-driven routing

con�guration synthesis. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23). 629–644.

[22] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Au-

tomatic generation of programming exercises and code explanations

using large languagemodels. In Proceedings of the 2022 ACMConference

on International Computing Education Research-Volume 1. 27–43.

[23] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Jayaraman, Tejas

Patil, Todd Millstein, and George Varghese. 2023. Lightyear: Using

modularity to scale bgp control plane veri�cation. In Proceedings of

the ACM SIGCOMM 2023 Conference. 94–107.

[24] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan

Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin,

et al. 2020. Accuracy, scalability, coverage: A practical con�guration

veri�er on a global wan. In Proceedings of the Annual conference of the

ACM Special Interest Group on Data Communication on the applications,

technologies, architectures, and protocols for computer communication.

599–614.

[25] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic

router execution. In Proceedings of the ACM SIGCOMM 2022 Conference.

336–349.

[26] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu

Wang, and Elena L Glassman. 2021. Interpretable program synthesis. In

Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems. 1–16.

[27] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen,

Boon Thau Loo, and Micah Sherr. 2011. Secure network provenance. In

Proceedings of the twenty-third ACM symposium on operating systems

principles. 295–310.

[28] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo,

and Yun Mao. 2010. E�cient querying and maintenance of network

provenance at internet-scale. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data. 615–626.

59

	Abstract
	1 Introduction
	2 Motivating examples
	3 Generating subspecification
	4 Preliminary results
	5 Discussion
	6 Related work
	7 Conclusion
	8 Acknowledgement
	References

