
Optimal Flow Collector Placement In Experimental Networks

Ganesh Chennimalai Sankaran
USC-ISI

Los Angeles, USA

gsankara@isi.edu

Mukund Raghothaman
USC

Los Angeles, USA

raghotha@usc.edu

M. Patrick Collins
USC-ISI

Los Angeles, USA

mcollins@isi.edu

Abstract—For operational security personnel, network based

data collection requires balancing the need for complete

collection against the risks of drowning in redundant data.

We have developed a formulation of this problem of redun-

dant collection which converts the problem into a maxflow

problem, enabling us to determine optimal sensor placement

assuming complete collection. We discuss the formulation

and how it can accommodate multiple security requirements

and demonstrate its implementation on multiple candidate

networks.

1. Introduction

This paper describes a formulation and optimization
technique to identify the best placement of network mon-
itors for forensic NetFlow. We define forensic Netflow as
NetFlow data collected for the purposes of security, event
reconstruction and incident response. NetFlow, originally
developed for billing purposes, has evolved into a standard
tool for information security analysis [4], [5].

Forensic NetFlow challenges the traditional concept
of NetFlow and derived technologies such as sketch [2],
[11], which we call measurement flow. Measurement flow
collects data on network hardware, competes with other
processes on the device, and relies on sampling to man-
age load balancing and data reduction. Forensic flow, by
contrast, is focused on finding low-volume high-impact
security events, as important hostile traffic often involves
a small number of packets. Forensic flow, consequently,
cannot rely on sampling for data reduction and load man-
agement, leading to the development of ”off-box” netflow
generators such as YAF [8] or industrial tools such as
NetQuest1, QRadar2, and Endace3, all of which generate
unsampled NetFlow for security analysis.

Given that the security community requires complete
visibility, as demonstrated by the development of hardware
and software to process unsampled NetFlow, the challenge
faced is managing complete and minimizing redundant

data collection. We can briefly define completeness as
the requirement that for any two nodes on a network, if
they communicate with each other, then that flow must
be recorded. Redundancy refers to the likelihood that,
for any two nodes on the network, multiple copies of
the same flow will be recorded due to satisfying com-
pleteness constraints. Figure 1 shows how completeness

1. https://www.netquestcorp.com

2. https://www.ibm.com/qradar

3. https://www.endace.com

B

A

C D

(i) Minimal Instrumentation (ii) Redundant Instrumentation

Figure 1. The C–D link complicates instrumentation and results in
redundant collection.

and redundancy interrelate; in this figure, a black circle
indicates that the network node in question is collecting
data. Figure 1(i) shows an example of the network with
incomplete instrumentation: in this figure, the central node
(B) is monitored, but the endpoints aren’t, meaning that
C – D traffic is not visible to the monitor. Figure 1(ii)
shows an example of the same network with redundant
monitoring: in this figure, each flow passes through at least
one monitoring point, but in the majority of cases, each
flow is recorded twice. Redundant monitoring increases
the amount of data that an analyst has to process, reduc-
ing query times, or requires expensive postprocessing to
remove the redundant records.

As Figure 1 shows, complete instrumentation guaran-
tees redundancy. If, for example, we remove the monitor
at point A in Figure 1(ii), we need a monitor in place at
point B to record A – B traffic, at the cost of redundantly
recording C – B traffic at points C and B. Removing
point B’s monitoring results in the same problem. This
is a simple network, but the need to monitor C – D
traffic specifically introduces a significant overhead. We
therefore consider two problems:

• What is the minimum redundancy needed in order
to ensure complete collection?

• How to process data at the point of instrumentation
to reduce redundancy?

All this work assumes that complete instrumentation is a
hard requirement.

The primary technical contribution of this paper is
a problem formulation which treats monitor placement
as a maxflow problem using multiple redundant paths.

In this formulation, we assume that we have complete
knowledge of the network and can identify all potential
paths between the nodes; this work was originally de-
veloped for instrumenting complex networks on Merge4

testbeds where we have such knowledge. Within those
constraints, we can then optimize for the rate assigned
to each path within that node, and within the constraint
of complete coverage, reduce the replicated paths and
consequently redundant data. This solution, once created,
can be communicated to a monitor network as a set
of path specifications describing what source/destination
pairs an individual monitor should collect. This problem
is effectively a specialized case of VNF (Virtual Network
Function) placement, and by formulating it as a resource
allocation problem, we open up other options for optimal
instrumentation. In particular, security instrumentation is
often dynamic and adversarial, it is often the case that
a high-value internal asset requires more extensive and
computationally expensive resources which can be split
across multiple nodes in order to reduce computational
load.

The remainder of this paper is structured as follows:
§2 discusses the issue of forensic flow instrumentation
and other solutions for monitor placement, §3 discusses
the problem formulation and the proposed solution, §4
discusses the results of evaluating our system on test
networks on a Merge testbed, and §5 concludes the work.

2. Related Work

NetFlow reporting standards, particularly IPFIX [1]
recognize the need for multipoint monitoring by spec-
ifying observation points and the idea of observation
domains [6]. However, as discussed earlier, optimal flow
monitoring has often been secondary due to performance
issues with on-switch monitoring [10], [15], leading to a
preference for sampling and sketch [2], [11], [12]. This
preference for sampling approaches, along with the diffi-
culties involved in network mapping, leads to a broad class
of what we term topology-agnostic collection techniques,
these include systems such as coordinated sampling [13]
and OmniMon [7]. These systems use a flow’s addressing
information to distribute processing across one or more
monitors without needing to know how the traffic is
routed.

The problem of optimal flow monitor placement is
related to the question of ideal NFV placement within
SDN, and there exists an extensive literature on SDN-
based solutions for monitoring. Linet al. [9] develop a
vertex cover based mechanism which exploits architec-
tural features of datacenters, while Thakoor et al. [16]
develop a FastMap-based mechanism for general place-
ment. Many of the SDN mechanisms, such as Bohatei [3]
and NETSECVISOR [14] rely on SDN to reroute traffic to
specific locations, whereas our approach assumes routing
and instrumentation are separate, an issue in particular
when in practice, security personnel have limited control
over routing infrastructure.

4. https://mergetb.org

3. System Description

In this section, we present a formal description of
the redundant collection problem. Recall from §1 that the
goal of monitoring is to achieve complete collection with
minimal redundancy.

We assume that the network is described as a graph,
whose vertices are devices and edges are connections
between these devices. We define a monitor as a process
or system which is resident at the same vertex as a device.
Monitors may be implemented either as processes on the
device, or through sampling tools such as SPAN ports or
vampire taps. These monitors can then observe traffic at
their corresponding vertices, meaning that they can collect
and summarize any traffic which the vertex would process
either by virtue of being the endpoint for that traffic or by
serving as a middlebox to forward that traffic elsewhere in
the network. We also assume that monitors are capable of
filtering traffic, meaning that based on packet attributes,
they can opt to observe or not observe a particular flow.
Monitoring is entirely vertex based, there is no edge based
monitoring.

3.1. Problem Formalization

Consider a network, G = (V, E), where V is the set
of its devices (e.g., middleboxes, end user devices and
routers) and where E is the set of its connections. Within
this network, a monitor is a system present at a device
v ∈ V which is capable of collecting any packet observed
by v. Each monitor can additionally be configured to
record some specified subset of packets passing through
the device (e.g., based on source and destination devices).
The monitor set, M is a set of devices {m1, . . .mk}
where k = |V| and describes all possible monitors within
G. Each monitor ml is associated with an observation
capacity capl.

A path pij is a sequence of adjacent vertices in V
between source and destination vertices, vi, vj ∈ V . We
write P(i, j) for the set of all paths between vi and vj ,
and use subscript notation to differentiate paths within
P . For example, pija and pijb describe two different
paths between vi and vj in P(i, j) For any path pijk,
we associate a rate rijk, which describes the traffic rate
mapped to the corresponding path.

A monitor profile is a set of monitors locations
{V1, . . . , Vk} ⊆ V together with associated configuration
rules for each Vi. A monitor profile is complete if every
flow is recorded at at least one monitor, Vi. The redun-

dancy of a collection is the number of repeated records
it records because rules in ViandVj result in recording
the same flow. Given a topology G, our goal is to create
a monitor profile which ensures complete coverage and
with minimal redundancy. There are several optimization
problems that are of interest:
Minimizing the number of monitoring vertices. In
several cases, the analyst is interested in observing flows
between devices vi and vj at a specific monitor ml. We
therefore begin with a set of Boolean preselection vari-

ables, psijkl indicating whether the monitor ml has been
chosen to observe communication between vi and vj that
occurs along path pijk. The monitor placement algorithm,
in turn, derives a set of Boolean selector variables sijkl

indicating whether ml must also be activated to observe
vi–vj communications occurring along path pijk. These
variables must be chosen so that:

1) Capacity constraints are respected. For each mon-
itor ml, we require that:

∑

i,j,k

rijk1(psijkl ∨ sijkl) ≤ capl,

where 1(v) is the Boolean indicator function,
assuming value 1 if v = true and 0 otherwise.

2) Global coverage is achieved. For each pair of
distinct source and destination vertices, vi, vj ,
and for all paths pijk, we require:

∨

l

psijkl ∨ sijkl = true.

3) Flow collections are deduplicated. For each pair
of distinct source and destination vertices, vi, vj ,
and for all paths pijk, we require:

∑

l

(1(psijkl) + 1(sijkl)) = 1.

Observe that the strict form of the deduplication
constraint above, which requires the sum to be ex-
actly equal to 1 automatically implies the global
coverage constraint.

Subject to these constraints, we would like to minimize
the number of monitors activated for flow collection:

minimize:
∑

l

1(
∨

i,j,k

psijkl ∨ sijkl).

Accounting for inclusion constraints. Analysts may
sometimes wish to deliberately deactivate certain mon-
itors, ml, from flow collection. Accordingly, they may
switch on or switch off an associated Boolean variable,
incll. In order to account for this setting, we modify the
coverage and deduplication constraints as follows:

1) For each pair of distinct vi, vj , and for each pijk,
we require:

∨

l

incll ∧ (psijkl ∨ sijkl) = true.

2) For each pair of distinct vi, vj , and for all paths
pijk,

∑

l

1(incll)(1(psijkl) + 1(sijkl)) = 1.

Alternative optimization objectives. In order to accom-
modate monitor failures, compromise, or downtime, one
might instead wish to maximize residual capacity. In the
setting of absolute load balance:

minimize:max
l

∑

i,j,k

rijk1(psijkl ∨ sijkl).

In the setting of proportional load balance:

minimize:max
l

∑

i,j,k

rijk

capl
1(psijkl ∨ sijkl).

Formulation as a maxflow problem. The main disadvan-
tage in the above formulations is the high cost of invoking

an ILP solver. We therefore investigate the following
alternative formulation as a maxflow problem. The central
idea is to consider the 4-partite graph G = (V,E), where
V = {v0, vf} ∪ M ∪ P , and with edges v0 → ml

with capacity capl, edges from ml → pijk whenever
device ml can observe flow pijk, and with edges from
pijk → vf with capacity rijk. Of course, although this
version of the problem can be solved in polynomial time,
one shortcoming is the possibility of fractional monitoring
assignments, which may once again be resolved by using
an ILP solver.

In this approach, one may achieve proportional load
balance by iteratively adjusting the monitoring capacities
by a factor of 2, and employing binary search to find the
smallest residual capacities that preserve problem satis-
fiability. In certain circumstances, even faster techniques
may be available, such as in the case when at most two
monitoring locations are possible for each flow, in which
case, fast algorithms for 2-SAT could potentially be used
to determine monitor placement.

4. Evaluation

To determine the efficacy of the placement algorithm,
we evaluated the redundancy ratio of random flow alloca-
tions under multiple topologies. We define the redundancy
ratio as a continuous value which represents the expected
number of flows that will be collected for a particular
monitoring configuration under a particular design and
load. We generate the redundancy ratio through a series of
Monte Carlo simulations where each individual simulation
involves a randomly selected monitoring configuration and
randomly generate flow configuration. In our tests, a run

as the calculation of the redundancy ratio under a specific
topology, monitoring configuration and flow configuration.
This summarizes each run with two independent variables
(topology and monitoring ratio), and one dependent vari-
able (redundancy ratio).

The network configuration is a categorical variable
comprised of the class and size of the testbed network. The
two network classes are described using the graphs shown
in Figure 2 and comprise the ring and ring with sites

topologies. These illustrations are simplifications; each
class uses a parameterized generator function enabling us
to create topologies of arbitrary size(limited to 25, 50 and
150 nodes for these experiments).

The ring class topology is an example of a nontrivial
network with multiple access points; it consists of an ex-
ternal ring of access points connected to a central mesh of
internal routers. This topology demonstrates the problem
of redundant data collection, as the internal mesh points
are the logical points of collection on the network, but
as additional routers are included, the risk of duplication
rises. The second topology, ring with sites, adds a col-
lection of endpoint subnetworks, these sites increase the
complexity of collection by requiring monitoring within
the site and consequently forcing redundant collection.

The second independent variable used in the tests is
the monitoring ratio. The monitoring ratio is the percent-
age of nodes within the test network which are activated

for monitoring. Activation means that the node is collect-
ing traffic data and that the node has been configured to
record a specific set of paths by the collection algorithm.

The monitoring ratio can vary between [0, 1] with 0 mean-
ing no nodes are activated and 1 meaning all nodes are
activated; analyses in this paper have monitoring ratios
between 0.3 and 0.95. For any run, the activated nodes
are selected randomly.

The dependent variable for the tests is the redundancy
ratio. The redundancy ratio is a continuous value between
0 and with no upper limit and is the ratio of flows collected
relative to the minimum number of flows for complete
collection. A redundancy ratio of 0 means that no flows
were collected, while a redundancy ratio of 1 indicates
complete collection. Higher redundancy ratios indicated
repeated collection, so a redundancy ratio of, for example
1.25, indicates that out of every four flows generated, five
were collected with one being a repeat.

Figure 3 shows the results of the experiments using
the ring (Figure 3(i)) and ring with sites (Figure 3(ii))
topologies. Each figure consist of three subplots which
show the range of observed redundancy ratios for 25, 50
and 150 node topologies. These results are summarized
as boxplots.

As Figure 3 shows, we can achieve complete cov-
erage by instrumenting a large number of nodes (a 1.0
redundancy ratio is usually an outlier case for the 0.33
monitoring ratio, but is a median case with 0.6 or above
monitoring ratio). However, the optimized and path-aware
collection results in a much lower redundancy ratio than
we would expect when instrumenting so many nodes.
For example, 50% instrumentation in the trivial network
shown in Figure 1 will result in a minimal redundancy
ratio of 1.5, which is far above any of our observed
ratios. We note that the need for complete collection
drives the choice of monitoring ratios. Many of these
monitors are final hops or edge networks and comprise
a relatively small volume of total traffic. The increase in
redundancy rate in Figure 3 is not a linear progression:
once a network is completely monitored, the add on effect
from additional monitoring is relatively small. The need
for extensive instrumentation also demonstrates the value
of the optimized path reduction. The results in Figure 3
show that by intelligently choosing the paths on a per-
monitor basis, a researcher can keep the overhead from
redundant collection manageable.

5. Conclusions

In this paper, we have examined the relationship be-
tween complete and non-redundant network monitoring.
We demonstrated that the forensic need for complete
instrumentation requires extensive monitor placement, pri-
marily due to the need to handle relatively rare point con-
nections. By intelligently assigning path-specific filtering
to individual monitors, we can keep the redundancy ratio
manageable and collect complete data.

The results in this paper were scoped specifically to
our experimental testbed work, where we have complete
visibility into the network under test. There are signifi-
cant challenges in future work that are related to partial
network knowledge. In future work we will build on the
ramifications to this problem, including the presence of
confounding middleboxes such as NATs or VPN con-
centrators, dynamic network reconfiguration such as due

to a link outages, and how complete the instrumenter’s
knowledge of the network is.

An interesting question for further analysis and op-
timization is the value of distinguishing instrumentation
on endpoints and edge networks as opposed to transit
networks. The need for the massive amount of instrumen-
tation comes from the need to monitor relatively lightly
used endpoint networks. NetFlow’s use in information
security is often as a supplement to ground truth tools,
particularly EDR – analysts use NetFlow to identify blind
spots in EDR instrumentation and to monitor assets for
which no EDR is available.

Data Availability

A repository of test topologies is available at https:
//gitlab.com/mcollins at isi/topoaquarium

References

[1] Paul Aitken, Benoı̂t Claise, and Brian Trammell. Specification of
the IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information. RFC 7011, September 2013.

[2] Peter Clifford and Ioana Cosma. A simple sketching algorithm for
entropy estimation over streaming data. In Carlos M. Carvalho
and Pradeep Ravikumar, editors, Proceedings of the Sixteenth

International Conference on Artificial Intelligence and Statistics,
volume 31 of Proceedings of Machine Learning Research, pages
196–206, Scottsdale, Arizona, USA, 29 Apr–01 May 2013. PMLR.

[3] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael
Bailey. Bohatei: flexible and elastic ddos defense. In Proceedings

of the 24th USENIX Conference on Security Symposium, SEC’15,
page 817–832, USA, 2015. USENIX Association.

[4] Mark Fullmer and Steve Romig. The OSU flow-tools package and
CISCO NetFlow logs. In 14th Systems Administration Conference

(LISA 2000), New Orleans, LA, December 2000. USENIX Asso-
ciation.

[5] Carrie Gates, Michael Collins, Michael Duggan, Andrew Kom-
panek, and Mark Thomas. More netflow tools for performance and
security. In Proceedings of the 18th USENIX Conference on System

Administration, LISA ’04, page 121–132, USA, 2004. USENIX
Association.

[6] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin
Sadre, Anna Sperotto, and Aiko Pras. Flow monitoring explained:
From packet capture to data analysis with netflow and ipfix. IEEE

Communications Surveys & Tutorials, 16(4):2037–2064, 2014.

[7] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu,
and Yungang Bao. Omnimon: Re-architecting network telemetry
with resource efficiency and full accuracy. In Proceedings of the

Annual Conference of the ACM Special Interest Group on Data

Communication on the Applications, Technologies, Architectures,

and Protocols for Computer Communication, SIGCOMM ’20, page
404–421, New York, NY, USA, 2020. Association for Computing
Machinery.

[8] Christopher M. Inacio and Brian Trammell. Yaf: yet another
flowmeter. In Proceedings of the 24th International Conference

on Large Installation System Administration, LISA’10, page 1–16,
USA, 2010. USENIX Association.

[9] Po-Ching Lin, Chia-Feng Wu, and Po-Hsien Shih. Optimal place-
ment of network security monitoring functions in nfv-enabled data
centers. In 2017 IEEE 7th International Symposium on Cloud and

Service Computing (SC2), pages 9–16, 2017.

[10] Wen-Hong Lin, Wai-Xi Liu, Gui-Feng Chen, Song Wu, Jin-Jiang
Fu, Xing Liang, Sen Ling, and Zhi-Tao Chen. Network telemetry
by observing and recording on programmable data plane. In 2021

IFIP Networking Conference (IFIP Networking), pages 1–6, 2021.

	Introduction
	Related Work
	System Description
	Problem Formalization

	Evaluation
	Conclusions
	References

