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Planar network statistics for two-dimensional rupturing foams
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We conduct experiments on a class of two-dimensional semiwet foams generated through compressing a

three-dimensional soap foam between two glass plates. To induce a spatially uniform rupturing process on foam

boundaries, an additional plate is heated and placed on top of the unheated plates. For 30 separate foam samples,

we record network statistics related to cell side numbers and areas as the foam coarsens over a half-minute. We

find that the Aboav law and a quadratic Lewis Law, two commonly used relations between network topology

and geometry, hold well for preheated foams. To track how well these laws are maintained as the foam ages,

we introduce metrics for measuring a foam’s disorder over time and build simple autonomous models for these

metrics. While the quadratic Lewis Law is found to hold well throughout the rupture process, the Aboav law

breaks down rapidly when the Gini coefficient, used for measuring disparity of cell areas, is approximately 0.8.
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I. INTRODUCTION

A common topic in materials science is the study of
microstructure and its evolution under various coarsening
methods. For planar network microstructure appearing in
polycrystalline metals, porcelains, and foams, the most widely
researched coarsening process occurs through the continu-
ous evolution of grain boundaries [1–6]. The coarsening of
metals is induced by annealing, and has a direct relation to
its tensile strength [7,8]. For foams, coarsening is driven by
the transfer of gas between cells with unequal pressures [9].
In two-dimensional planar networks, topological changes are
triggered through two event types. From the von Neumann–
Mullins n − 6 rule, cells with fewer than six sides will shrink
at constant rates proportional to their number of sides minus
six, eventually shrinking to a point [10,11]. When this occurs,
the network maintains its trivalent structure through introduc-
ing edges in neighboring cells, known as a T2 move. An indi-
vidual edge can also shrink to a point and trigger a T1 move
which induces topological changes to its four neighbors [12].

In this study, we study the coarsening process driven exclu-
sively by the rupture of cell boundaries. This process occurs
on a much faster scale than gas diffusion, and is typically
encountered in day to day encounters with foams. Ruptures
produce topological reactions which are markedly different
from those found in T1 and T2 moves. Denoting Cn for a cell
with n sides, the reaction for the change of topology of the
four neighboring cells (Ci,C j,Ck,Cl ) bordering a rupturing
edge is (typically) given by the three subreactions

Ci + C j ⇀ Ci+ j−4 (Face-merging),

Ck ⇀ Ck−1, Cl ⇀ Cl−1 (Edge-merging). (1)

See Fig. 1 for a schematic of possible transitions in a foam.

*Contact author: joseph.klobusicky@scranton.edu

The merging of the i- and j-sided cells into a single cell is

an example of a second-order reaction in which two reactants

combine to form a single product, with similarities to the

sticky particle models of Smoluchowski [13]. Here, clusters Ai

and A j with sizes i and j observe the reaction Ai + A j ⇀ Ai+ j .

The topological reaction Eq. (1) was the basis for graph and

mean-field models of foam rupturing in Ref. [14]. In these

models, the reaction rate for face merging resembled the

Smoluchowski equation with a multiplicative kernel, which

is well known to produce gelation behavior, or the generation

of a massive, infinite-sized cluster [15].

Several previous experimental studies for foams focused

on the evolution of network statistics driven through gas dif-

fusion [1,16–19]. The dynamics of rupturing two-dimensional

foams, however, is less studied. An introductory study was

undertaken by Burnett et al. [20] in which bulbs used in a

light box served as a natural way to heat the foam. For this

study, the chamber between two plates is filled with a soap

solution, sealed, and then vigorously shaken to produce a wet

foam. The liquid is allowed to drain to produce a foam of

desired wetness. In our study, which is detailed in Sec. II,

a three-dimensional foam sample is placed on top of a plate

and compressed with another identical plate. This produces

a foam which is immediately ready for heating, which we

refer to as “semiwet.” We use this term because boundaries

are thin enough for bubbles to be approximately polygonal,

as opposed to wet foams which have circular cells. However,

the foam is not subjected to draining, which is necessary for

producing a dry foam with a low liquid fraction.

After compressing the foam, another heated plate is placed

atop the two plates to produce a rupturing process which

typically stabilizes within thirty seconds. This streamlined

process allowed us to obtain multiple samples, a total of 30

experiments with 30 snapshots, taken once per second, pro-

ducing a dataset of 900 foam snapshots. With these samples
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FIG. 1. Example of a T1 move, T2 move, and edge rupture. The quantities i, j, k, l , and 4 in a cell denote its number of sides.

we can now produce standard errors and confidence bands

for the multiple statistics used to analyze foam properties. To

account for open regions near the foam’s border, we impose

an artificial circular boundary which serves as a wall for

bordering cells.

In Sec. III A, we report on general observations produced

from the experiments. The 30 preheated foam samples have

variable initial conditions, both in total number of cells and

distribution of cell areas. This is in contrast to studies such as

Ref. [21], which is able to design foams with prescribed lattice

structures through an intricate system of vacuums. We also

observe that rupturing produces massive, irregularly shaped

regions, a phenomenon both observed by Burnett [20] and

produced in the computational study of one of the authors

[14]. See Fig. 2 for snapshots of a single foam in the rupturing

process with circular boundaries overlaid. In Sec. III B, we

conduct a more detailed analysis of foams before heating.

We find uniformity in certain statistics such as the statistical

topology of cells. We also show strong fits with the Aboav

linear law [22] and a quadratic version of the Lewis law [23],

which are empirical laws used for summarizing the topology

and geometry of a planar network.

In Sec. III C we model the evolution of a foam’s disorder

through autonomous differential equations. The time scale

used in these models is internal, using the rupture fraction,

or the ratio of remaining cell number over initial cell number.

A similar approach is also taken in Ref. [20]. For measuring

disparity in cell areas, we use the Gini coefficient [24], a

quantity typically used in measuring income and other eco-

nomic disparities. We also present a measure for topological

defect through the second moment of foam’s side number

distribution minus six. We find that the Gini coefficient has

more desirable properties at measuring network disorder, and

it is against this measure that we compare how the Aboav and

Lewis laws hold as a foam ages.

In Ref. [14], phase transitions of mean-field models can

be readily identified by simply tracking the side number of

the largest cell. For the experiments discussed in this paper,

multiple large cells grow in a continuous manner, and it is

difficult to distinguish if and in what sense a phase transition

occurs. In Sec. III C 3, we observe a rapid decay of the corre-

lation coefficient for the Aboav law when the Gini coefficient

is approximately 0.8. This cutoff value can be interpreted as

a critical value for a phase transition between ordered and

disordered foams. The Lewis law, on the other hand, holds

well throughout the rupturing process. In Sec. IV, we discuss

the implications of these results for modeling foams com-

putationally and measuring the disorder for foams found in

manufacturing and industry.

II. EXPERIMENTAL METHODS

A soap solution is created using 1 teaspoon (∼4.93 ml) of

Palmolive brand liquid dish detergent and 500 ml of water in

a 1 liter container. A lid is placed on the container and shaken

vigorously to create a three-dimensional soap foam which sits

atop the liquid solution. A foam sample of approximately 30

cubic centimeters is scooped from the container and placed

upon a glass plate with dimensions of 20 × 25 × 0.24 cm3,

which is laid on top of a Cricut LED light box. Spacers of

height 0.5 mm are then added to the corners of the plate,

and a second plate (with same dimensions as the first) is

then slowly placed on top of the first plate. We note that the

height of the spacers are critical to producing foams amenable

to analysis. Spacers which are too tall produce foams with

more than a single layer of cells, and those too short cause

FIG. 2. Snapshots and Gini coefficients for a foam sample with artificial circular boundary overlaid. (a) Initial conditions before heating

with 5512 total cells. (b) The foam in its intermediate stage after 8 seconds with 4965 total cells. (c) The aged foam after 29 seconds, with

3222 total cells remaining.
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issues with overly thin Plateau borders which rupture imme-

diately when heated. Adding a second plate compresses the

three-dimensional foam to form a single-cell, or quasi-two-

dimensional, structure. When compressed, the foam sample

spreads to form a structure which is approximately circular.

At locations where the foam meets the upper and lower plates,

cell boundaries thicken slightly, but individual cells can still

be clearly distinguished when viewed from above. The foam

sample in this state has a radius of about 15 cm, and there

are typically around 5000 total cells in the network before any

heating is applied.

The foam at this point has a liquid fraction of approxi-

mately 15%. It is also quite stable, with an occasional rupture

occurring every few seconds. No heat is emitted from the LED

light box, so we instead choose to heat from above by using

a heated third plate. This plate is heated uniformly with a

heating pad to 45 ◦C, and is then slowly placed on top of the

two plates enclosing the foam. Recall that spacers are placed

between the plates, so adding the third plate does not further

compress the foam. The chamber is not sealed from the sides,

but samples are small enough so that no foam escapes from the

plates after compression. The foam, however, does change in

size, at first shrinking when heated, and then slowly expanding

as the plate cools. This is due to the changing thickness of

cell walls which can be explained through surface tension. For

an isotropic soap foam, surface tension is proportional to the

total perimeter of cell boundaries. As temperature increases,

surface tension decreases by thickening cell boundaries and

subsequently reducing total perimeter, resulting in a uniform

shrinking of the foam.

During the heating of the foam, cells shrink but few rup-

tures occur. Once the foam reaches its smallest size, cells

walls become weak enough from the heating for the rupture

process to begin. The process begins slowly, and then quickly

speeds up to several hundred ruptures per second. For all

foams, after 30 seconds has elapsed, the occurrence of rup-

tures again becomes infrequent. Snapshots of the process are

taken with a Sony Alpha 7 II camera with pixel resolution

4000 × 6000 pixels for an image of size 16.8 × 25.2 cm2.

The camera is placed above the foam at a distance of 80 cm.

Using an intervalometer, a snapshot is taken at t = 0, . . . , 29

seconds to give 30 snapshots for the rupturing process, with

the first snapshot taken after the initial shrinking of the foam.

This experiment is repeated for 30 different foam samples, for

a total of 900 foam snapshots.

A. Image processing

In the analysis of cell areas in Ref. [20], large empty spaces

between cells are not considered. For the metrics used in

Sec. III C, large gaps between cells are definitive in measuring

a foam’s disorder, so we will consider all regions as individual

cells. With a free boundary, however, an issue arises when

trying to quantify the size of large, sometimes labyrinthine,

regions created from ruptures, but which are technically part

of the foam’s exterior. Our approach for including these re-

gions is to create an artificial circular boundary. Choosing a

circle as a boundary shape is a natural choice, as the foam

maintains a roughly circular shape throughout the rupturing

process. The algorithm of creating the foam boundary is as

follows:

(i) Compute the centroid (x̄, ȳ) of cell-boundary pixels in

the image.

(ii) Determine a minimal radius R such that at least 90%

of all pixels are contained in the disk centered at (x̄, ȳ).

(iii) Crop the image by inserting an artificial circular

boundary centered at (x̄, ȳ) with radius R and removing all

pixels outside of this circle.

The regions sharing a border with the boundary are now

considered as distinct cells. The circular arcs on the boundary

are counted as cell edges. We have selected to include 90%

of cells since the intersection between the outer boundary of

the foam and the circle is minimal, avoiding the creation of

abnormally large cells which wrap around the boundary.

Several image processing and morphology packages from

the Open CV Library [25] were employed in Python to

process image data from the cropped images. Adaptive thresh-

olding is applied to the image to account for any imbalances in

lighting. The image is then binarized, followed by an opening

(erosion followed by dilation) operation to remove spurious

pixels, and then dilated again to thicken the boundaries be-

tween cells. This prevents the identification of two cells as

a single connected component. Dilation also prevents the

counting of Plateau border regions found at the foam’s triple

junctions. For the semiwet foams we consider, the Plateau bor-

ders sometimes contain small, Apollonian-like cells, which

are also coarsened out from dilation. We mention that stud-

ies have begun to consider these "inner cells" in wet foams

[26–28]. Dilating boundaries increases edge thickness, and

subsequently decreases cell areas, but since the perimeter of

the entire foam is uniformly enlarged, this operation has no

discernible effect when comparing relative areas of cells.

Edge detection algorithms then determine connected com-

ponents of the binarized image, from which areas can be

found readily by a simple pixel count (with a conversion

factor of 1 pixel = 42 × 42 µm2). A typical cell boundary has

a thickness of about 5 pixels, or 200 µm, and on average there

are approximately 400 pixels per total cell boundary. For each

cell, the number of neighbors (or sides) were found by deter-

mining connected components (faces) of the planar network,

and constructing an adjacency matrix between the cells. This

enables us to determine first-order topological correlations

used in finding fits for the Aboav law.

III. RESULTS

A. General observations and an internal timescale

In Fig. 2, we show a sample foam at three stages in its

evolution, with and without the artificially imposed circu-

lar boundary. In its initial conditions, the foam is somewhat

uniform in its area and side distributions, although we still

observe several large cells with over fifty neighbors. While

gelation behavior, which we define for this study as the for-

mation of massive cells with many sides, occurs at different

times for each foam, we note for this sample foam that by

the middle of the experiment, at 8 seconds, a multitude of

large cells have formed. At this point, the Gini coefficient,

a measure for coarsening that we examine in Sec. III A, is
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approximately 0.8. As shown in Sec. III C 3, at this value the

Aboav linear law begins to break down. Merging of both large

and small cells continues until the end of the experiment at 29

seconds, where the interiors of the 20 largest cells comprise

most of the enclosed disk. Over all samples, the most evident

observation for rupturing foams is the rapid generation of

multiple large regions. As mentioned in Sec. II A, we consider

these regions as proper cells. As time progresses, these regions

grow and are, in general, irregularly shaped and nonconvex.

Surrounding these large regions are smaller, convex cells,

with thickening Plateau boundaries as the liquid content of

the foam is distributed to a smaller amount of cells. These

smaller cells often form thin, bridgelike structures between

the massive cells.

The rupture rate for foams varies across samples. Some

foams begin rupturing almost immediately after their shrink-

ing period, and generate massive cells within five seconds.

Others take several seconds before beginning a slow rupturing

process producing multiple large cells. The timing for rup-

tures, in general, has been found to be erratic [29], generally

occurring in cascades with nontrivial spatial correlations. This

is in contrast to coarsening under gas diffusion, where numer-

ical and physical experiments demonstrate the annihilation

of cells at a linear rate which occurs uniformly across the

foam [30]. A spatial correlation of ruptures in our experiments

also appears to exist, although for foams with a large number

of ruptures, massive cells are approximately uniformly dis-

tributed across the circular domain by the end of the rupturing

process.

To use a time scale which is more amenable to dynamic

modeling, we will work with an “internal clock” of the foam,

in which we track total cell numbers relative to initial con-

ditions. In nearly all ruptures, a single rupture follows the

reaction Eq. (1), and decreases the total cell count by one.

We will call this time scale the rupture fraction as the total

number of ruptures is approximately the total reduction in

cells (see Ref. [14] for some counterexamples where ruptures

can remove more than one cell). For a planar network Gt and

|Gt | denoting the total number of cells after t seconds, we

define the rupture fraction as

s(t ) = 1 −
|Gt |

|G0|
. (2)

In Fig. 3, we plot s(t ) for t = 1, . . . , 29 for each of the 30

foam samples. Note that in some slower-rupturing foams, we

observe a ‘time reversal’ near the beginning where movement

of smaller cells near the artificial circular boundary causes

a slight increase in the total number of cells in the circular

region. For the purposes of this study, in which we are more

interested in the behavior for highly aged foams, this effect is

minor in terms of modeling considerations.

B. Statistics of initial conditions

The three-dimensional foams created from shaking a foam

solution vary in wetness and average cell size. Foam sam-

ples are taken from near the liquid/foam interface, where

cell boundaries are thicker and bubble volumes are smaller.

The number of initial cells ranges from 3381 to 10 743. A

histogram of total initial cell numbers is given in Fig. 4, and

FIG. 3. The rupture fraction for 30 foam samples, with snapshots

taken at t = 0, . . . , 29 seconds.

the variation of wetness produces differing rates of rupture as

shown in Fig. 3. While we find variation among the samples

in terms for total initial cell numbers and wetness, we show in

this section we will find that these foams have several similar

network statistics.

1. Side number and area distributions

The side number distribution, also called the statistical

topology, gives proportions pk of k sided cells for k � 1.

A key observation in coarsening by diffusion is that under

a wide range of ordered and disordered initial conditions,

the statistical topology distribution converges to a universal

attractor, even though the network continues to coarsen with

average cell area increasing at a constant rate [30]. In Fig. 5,

we plot the side distribution for the 30 foam samples before

the rupture process begins. As expected with a cubic planar

graph (having all vertices of degree three), the mean number

of neighbors 〈n〉 =
∑

n�1 pnn is approximately 6, with 〈n〉 =

5.9 ± 0.1 (we report this and all future confidence intervals

with plus or minus one standard error). Despite the range of

total numbers of foams, the side distribution for all of the

foams are similar, with the mode of almost all foams occurring

FIG. 4. A histogram of total cells taken before the heating pro-

cess for 30 foam samples.
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FIG. 5. Side distributions of foams before heating. In both figures, transparent lines correspond to distributions of individual samples, and

the averages of these distributions are plotted with a bold dashed line. Connecting lines between integer values of neighbors serve as a visual

aid. Left: Proportion of cells with k neighbors for k = 1, . . . , 15. Also shown for comparison is the stationary distribution for coarsening

through mean curvature found in Ref. [30]. Right: Area-weighted proportion of cells with k neighbors for k = 1, . . . , 30.

at 4 sides. We contrast this distribution to the universal attrac-

tor distribution from numerical studies of coarsening driven

by mean curvature flow in Ref. [30]. This distribution (also

plotted in Fig. 5) is more concentrated near its mode of 6 sides,

and rarely has cells with more than 10 sides.

We also plot the area-weighted side number distribution

in Fig. 5, where p̂k for k � 1 gives the probability that a

randomly selected interior point in a foam is inside of a

k-gon. This weighted distribution is used in finding the av-

erage coarsening rate from gas diffusion in Ref. [1]. As cells

with more sides tend to be larger (an immediate consequence

of the Lewis law), we should expect, and indeed find, that

using area-weighted distributions increase both the mode and

tail probabilities. Denoting the mean area-weighted number

of sides as 〈〈n〉〉 =
∑

n�1 p̂nn, we find 〈〈n〉〉 = 10.2 ± 0.9. Dis-

tributions across different samples are also more erratic than

unweighted distributions. In particular, “spikes” with propor-

tions of several percent frequently arise from a few large cells

all having the same side number.

We also plot the distribution of cell areas in Fig. 6. To better

visualize the relation between cell sizes, we scale cells areas to

FIG. 6. Density of log-relative areas of foams before heating.

Individual densities are plotted with transparency, and the mean

density over all foams are shown with a dashed line.

have a mean of 1, and plot the base ten log of these areas. Even

before heating, we find that cell areas exhibit a multiscale

behavior, with large cells with many sides surrounded by

smaller 3- and 4-gons with areas differing by several orders

of magnitude. Cell areas appear to vary more than statistical

topologies when considered across different foam samples.

However, we find that most distributions have roughly the

same shape—generally left skewed, with a mode occurring

near the mean cell area.

2. Aboav and Lewis Laws

For a cell with n � 2 sides, Aboav’s law [22] is an em-

pirical observation that the average number of sides mn for

neighboring cells can be approximated by

mn = a +
b

n
⇒ Mn := nmn = an + b. (3)

Typically, Mn is plotted instead of mn, and the model’s fit

is then measured with linear regression. Computing Mn is a

straightforward exercise when equipped with the adjacency

matrix from the dual graph of the foam.

With all 30 samples and considering cells with n =

2, . . . , 12 sides, we compute linear regression parameters for

Mn. We find a strong correlation, with the average coeffi-

cient of determination r2 = 0.98 ± 0.01. The coefficients of

Aboav’s law have values a = 5.4 ± 0.5 and b = 23 ± 4.

Another empirical law related to cellular microstructure

is the Lewis law [23], which proposes a linear relationship

between side number n and the average area An of n-sided

cells. For a linear fit An = cn + d of relative areas, we find

an average coefficient of determination r2 = 0.909 ± 0.003,

but plots for An appear to be convex, with a residual analysis

suggesting that linear regression is not an appropriate model.

Instead, we consider a quadratic fit An = β2n2 + β1n + β0.

See Fig. 7 for An plotted across all samples and the av-

erage linear and quadratic Lewis laws. The coefficient of

determination for the quadratic model for each foam sample

is R2 > 0.999 with coefficient values β0 = 0.0116 ± 0.0005,

β1 = −0.060 ± 0.003, and β2 = 0.080 ± 0.007.
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FIG. 7. Average relative areas An of n-sided cells for n =

2, . . . , 12 over all foam samples plotted with transparency. The linear

and quadratic Lewis law fits use-average values of model parameters

across all 30 samples.

C. Dynamic statistics of gelation

As shown in Fig. 2, we find that the second-order re-

action Eq. (1) induced by edge ruptures creates increasing

disparities between massive cells bordering hundreds of cells

and small, mostly unaffected three- and four-sided cells. The

reassignments of side number are related to those associated

with the Smoluchowski equation for sticky particle clusters

with a multiplicative reaction kernel. For this model, at a

positive finite time a single cluster experiences an explosive

growth producing a massive, infinite-sized cluster called the

gel. Borrowing terminology for our study, we will refer to

the creation of massive cells with many sides as gelation. In

creating kinetic models for both cluster models [31,32] and

those for coarsening behavior of foams [14,33–37], all-to-all

connectivity is typically assumed. This assumption leads to

gelation behavior which is concentrated in a single cluster or

cell. However, Fig. 2 reveals that gelation in rupturing foams

is often shared between several cells, necessitating metrics

which gives similar results for when a large area is shared

by either one or a small number of massive cells. We develop

metrics in this section for measuring gelation from the per-

spective of area and topology.

1. Gelation of area

An effective measure for measuring disparities in cell ar-

eas is given by the Gini coefficient, originally formulated to

compute the income and other economic disparities among

populations [24]. We will use this measure to measure dis-

parities among cell areas in a foam. Specifically, let A =

(a1, . . . , aN ) be a nondecreasing sorted list of cell areas. For

q ∈ [0, 1], define g(q) by letting g(k/N ) =
∑k

i=1 ai/
∑N

i=1 ai

for k = 1, . . . , N and defining other points in [0, 1] through

linear interpolation. The Gini coefficient for cell areas is then

G = 1 − 2

∫ 1

0

g(q)dq. (4)

For a hexagonal lattice on a fixed circular boundary, G ap-

proaches zero as the number of cells becomes large. At the

other extreme, a single massive cell encompassing almost the

entire domain border by many small cells can produce a Gini

coefficient arbitrarily close to 1.

Under the assumption that the growth of the Gini coeffi-

cient G only depends on its value, we can model G(s) as an

autonomous differential equation, written as

d

ds
G(s) = �[G(s)], G(0) = g0, (5)

where the rupture fraction s ∈ [0, 1] in Eq. (2) is used as a

time variable. In most cases, we find that the Gini coefficient

increases in time, so in general we should require that �(g) is

a continuous, positive function for g ∈ [0, g∗) with g∗ � 1.

We will now examine one approach for modeling �

through regression, using a dataset of central differences to

estimate derivatives of G(s). In particular, we compute (s
j

i ,G
j

i )

denoting, respectively, the rupture fraction and Gini coef-

ficient for the ith foam taken after j seconds, where i =

1, . . . , 30 and j = 1, . . . , 29. Derivatives at rupture fractions

ŝ
j

i = (s
j+1
i + s

j

i )/2 are then approximated by

G ′
(
ŝ

j

i

)
≈

G
j+1
i − G

j

i

s
j+1
i − s

j

i

. (6)

Figure 8 shows that the central differences can be reasonably

approximated with a linear function �(g) = ag + b. Under

such a linear fit, this produces, for initial conditions G(0) =

g0, the solution curve

G(s) = eas

(
g0 +

b

a

)
−

b

a
. (7)

Using a linear regression, we find a fit of a = −3.02 and b =

2.77. From Eq. (7), we use the regression parameters of �̂

with g0 = 0.6 (chosen to be smaller than the Gini coefficient

for all foams) to obtain the fit Ĝ(s).

Under the time scale of rupture fraction, each of the foams

we have observed start at different initial times. However, we

can use the autonomous property of our model Eq. (5) to

align times so that the initial conditions of Gini cofficients

all lie on the same solution curve Ĝ(s) with predetermined

initial condition g0. Specifically, given the initial condition

Gi(0) = gi
0 > g0, we predict

Ĝi(s) = Ĝ
(
s + Ĝ−1

(
gi

0

))
. (8)

To visualize how the solution curve Ĝ(s) compares against

each of the empirical graphs of Gini coefficient Gi(s), we

plot Ĝ(s) against the translated curves Gi(s − Ĝ−1(gi
0)) so

that initial conditions for empirical curves lie on the solution

curve. We find a reasonable fit between the empirical curves

and the model, although for two foams with smaller initial

Gini coefficients we observe a considerable lag in growth

compared to the model.

2. Gelation of topology

We can also measure gelation of a foam from a topological

perspective by computing a distance to an ordered foam con-

taining only hexagons. To define this measure, we consider the

random variable S of the side number of a random cell selected

with uniform probability. For the probability mass function
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FIG. 8. Curve fitting for Ĝ(s). Left: Linear regression of �̂(g) = ag + b, with a = −3.02 and b = 2.77. Right: The solution curve Ĝ(s)

with initial condition g0 = 0.6. For each foam sample we also overlay, with transparency, the translated gelation curves Gi(s − Ĝ−1(Gi(0))) for

i = 1 . . . , 30.

{ps}s�1 denoting probabilities of selecting s-sided cells, we

define the topological gelation which measures the second

moment of the topological defect S − 6, given by

T = E[(S − 6)2] =
∑

s�1

ps(s − 6)2. (9)

Like the Gini coefficient, T is nearly 0 for a perfect hexago-

nal lattice on a circular boundary. However, unlike the Gini

coefficient, topological gelation can be arbitrarily large. In

particular, a foam consisting of a single interior cell of n

sides adjacent to a band of n 4-sided boundary cells gives a

topological defect that is asymptotic to n as n → ∞.

Topological gelation appears to grow faster than a linear

rate, and so to check for power-law growth we compute linear

fits for log data �̂i := log10(T̂i(s)) = as + b for each observed

gelation curve Ti(s). The average of these coefficients is com-

puted to give a fit �̂(s)) = as + b with a = 2.22 and b = 1.14.

We plot this regression line in Fig. 9. Similar to shifting

gelation curves for the Gini coefficient, we assume the model

is autonomous and plot �i(s − �̂−1(�i(0))) against the model

FIG. 9. The linear fit �̂(s) = as + b with a = 2.22 and b = 1.14

for the log of topological gelation. For each foam sample we also

overlay, with transparency, the translated gelation curves �i(s −

�̂−1(�i(0))) for i = 1 . . . , 30.

�̂(s). It appears, however, that the growth rate in topological

defect increases more highly aged foams. For foams with

T < 100, growth scales at approximately O(s2), while for

T > 100, we find a growth closer to O(s4). We also note

that a few highly aged foams sometimes decrease in T . This

can be an effect of several artifacts, including the movement

of foam pockets into the artificial boundary, and the fusing

of two regions of bubbles to reduce total variance of cell

neighbors.

3. Decay of fit for Aboav and Lewis laws

In Sec. III B 2, for unheated foams we found a strong co-

efficient of determination value for both the linear Aboav law

and quadratic Lewis law. As the foam ages, it is not clear if the

parameters in these models remain constant, or even if these

models keep their high values of R2. From Sec. III C, we find

that the growth of the Gini coefficient is smoother and more

predictable than topological gelation, so this will be the metric

we will compare against the Aboav Law. In Fig. 10, we plot G

against the correlation coefficient over all snapshots. We also

plot G against the fitted parameter values a and b in the Aboav

fit Mn = an + b. To create smoothed estimates we use locally-

weighted scatterplot-smoothing (LOWESS) regression [38].

To create a 95% confidence band, we generate 100 bootstrap

samples of LOWESS curves, each derived from randomly

selecting half of the data.

We find that the linear Aboav fit holds quite well when

G < 0.8, with r = 0.975 ± 0.001. Fitted parameter values

are also stable in the regime, with a = 5.28 ± 0.03 and b =

28.4 ± 0.5. When G � 0.8 the Aboav fit begins to quickly de-

cay, with the average correlation reducing to r = 0.35 ± 0.03.

The slope parameter a = 4.9 ± 0.4 decreases somewhat but

becomes more variable as G increases, while the intercept

b = 270 ± 20 grows rapidly, due to the high probability of

low-sided grains neighboring massive cells.

Recall that the Lewis law does not consider area or side

correlations for neighboring cells, but rather simply provides

average relative areas of n-gons. The generation of massive

cells appears to have little effect on the average relative areas

on neighboring smaller cells. This is observed in Fig. 11,
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FIG. 10. Scatterplots and LOWESS regression curves for Aboav’s Law Mn = an + b over all foam snapshots, comparing the Gini

coefficient G with (a) correlation coefficient, (b) value for intercept parameter b, and (c) value for slope parameter a. For each image, the

95% bootstrap confidence band is shown in light grey.

where we consider relative area data in aggregate for each n-

sided cell for n = 2, . . . , 12. Variance of relative areas grows

between samples as the number of sides increases, with the

largest standard error of 0.03 occurring for 12-sided cells.

For each n = 2, . . . , 12, we aggregate relative areas across

all images, and then compute mean relative areas. The re-

sulting graph fits well against the quadratic Lewis law An =

β2n2 + β1n + β0, with coefficient of determination R2 = 0.99

and fitted values β2 = 0.011, β1 = −0.063, and β0 = 0.094.

FIG. 11. Average relative areas An of n-sided cells for n =

2, . . . , 12 over all foam samples, plotted with standard errors. The

quadratic Lewis law fit An = 0.011n2 − 0.063n + 0.094 using all

data points is shown in the dashed line.

IV. DISCUSSION

In this study, we have gathered statistics for a class of

two-dimensional rupturing soap foams. The method for gen-

erating and rupturing foams is simple to reproduce. However,

given the stochastic nature of the rupturing process we find

variation in area and side number statistics among both heated

and unheated foams. Because we were able to replicate the

experiment for 30 different foam samples, we provided error

estimates for our statistics. The foams in this study were

restricted to soap foams, but the gelation measures introduced

in this work could be applied to any dynamic two-dimensional

planar network. It would be interesting to investigate if ex-

perimental parameters such as viscosity could affect spatial

correlations of ruptures and, subsequently, statistics such as

the Aboav law.

In Fig. 2(b) and in other foam samples, a Gini coefficient of

0.8 corresponds to when the foam is interspersed with multi-

ple large cells containing tens of neighbors, most of which are

convex or approximately convex. The merging of cells occurs

in a continuous manner, so by visual inspection it is difficult

to identify a particular Gini value which defines a clear phase

transition. However, Fig. 10 shows that a Gini coefficient of

0.8 serves as an approximate cutoff for when foams no longer

follow the linear Aboav law, which is also difficult to verify by

inspection alone. The findings in this paper are empirical, but

theoretical models and analytic tools might help explain why

such a phenomenon occurs. In particular, a deeper investiga-

tion into gelation behavior might elucidate why a breakdown

054609-8



PLANAR NETWORK STATISTICS FOR TWO-DIMENSIONAL … PHYSICAL REVIEW E 110, 054609 (2024)

of the Aboav Law appears when the Gini coefficient becomes

large, and whether this breakdown occurs simultaneously with

a gelation time in a kinetic model. In future work, we hope to

compare experimental data on side distributions against the

computational rupture model in Ref. [14] which focused only

on topological gelation. To incorporate areas in kinetic models

of foam evolution, we could generalize Eq. (1) to include

the merging of cell areas. However, there exists no known

analog of the n − 6 rule for area evolution in rupturing foams,

as the dynamics of comparing cells boundaries before and

after rupture is complicated. One simple approximation may

consider an additive model for areas, in which a rupture causes

two cells of areas A1 and A2 to merge into a single cell of area

A1 + A2, with all other cells maintaining their original areas.

For a foam comprised of cell sides and areas {(si, ai )}
N
i=1, the

reaction resulting from a rupture is then

(si, ai ) + (s j, a j ) + (sk, ak ) + (sl , al )

⇀ (si + s j − 4, ai + a j ) + (sk − 1, ak ) + (sl − 1, al ).

(10)

The limiting integrodifferential equation for the evolution of

area and side distributions would be unusual in that it would

combine a continuous merging for areas with discrete merging

for side numbers. A discrete-time stochastic particle system

following Eq. (10) can compare statistics against those found

in this study. The Gini coefficient is particularly amenable to

such a reduced model, as it only requires a sorted list of cell

areas to compute.

Assuming no memory effects, the evolution of cell areas

and topologies can be modeled as a homogeneous Markov

process. For a state space consisting of a list of cell sides and

areas, transitions would be determined by randomly selecting

four cells to undergo the reaction Eq. (10). In most mean

field models for grain coarsening, cells are chosen solely in

proportion to their number of sides [33,34,36] (for a notable

exception, Chae and Tabor [39] chose cells proportional to cell

length). In Ref. [37], for instance, it was shown that adding

first-order topological neighbor correlations in grain coars-

ening models produced significant differences in statistical

topologies. Incorporating other topological and geometrical

relations into transition probabilities may help produce more

accurate models of network statistics. The Aboav laws, which

in Sec. III C 3 were found to hold reasonably well for foams

with Gini coefficient less than 0.8, can perhaps be used, al-

though other models will likely be necessary after entering

into the non-Aboav, or gelation, regime.

We close by mentioning a class of related coagulation

equations which may be amenable to rigorous analysis. The

reaction Eq. (1) can be seen as an instance of a reaction

with dissipation, since six sides are lost with each rupture.

In Ref. [40], merging reactions for the Smoluchowski equa-

tion were paired with an additional annihilation reaction C j ⇀

∅ for clusters size j � 1, and several exact and approximate

formulas were found for distributions of Cn. An analytic study

of merging clusters

Ci + C j ⇀ Ci+ j−φ(i, j), i, j � 1

for some reaction cost φ(i, j) remains to be seen. As in Ref.

[40], a key question is whether the system completely dissi-

pates before producing a gel.

ACKNOWLEDGMENTS

The work of J.K. and E.O. is partially supported by NASA

under Grant No. 80NSSC20M0097. The work of J.K. is par-

tially supported by the National Science Foundation under

Grant No. 2316289.

[1] A. E. Roth, C. D. Jones, and D. J. Durian, Bubble statistics and

coarsening dynamics for quasi-two-dimensional foams with in-

creasing liquid content, Phys. Rev. E 87, 042304 (2013).

[2] A. Magni, C. Mantegazza, and M. Novaga, Motion by curvature

of planar networks II, arXiv:1301.3352.

[3] C. Guidolin, J. Mac Intyre, E. Rio, A. Puisto, and A. Salonen,

Viscoelastic coarsening of quasi-2D foam, Nat. Commun. 14,

1125 (2023).

[4] J. Fausty, N. Bozzolo, and M. Bernacki, A 2D level set fi-

nite element grain coarsening study with heterogeneous grain

boundary energies, Appl. Math. Model. 78, 505 (2020).

[5] L. Kim and Y. Tonegawa, On the mean curvature flow

of grain boundaries, in Annales de l’Institut Fourier (Uni-

versité Grenoble Alpes, Grenoble, France, 2017), Vol. 67,

pp. 43–142.

[6] N. Yanagisawa and R. Kurita, Cross over to collective re-

arrangements near the dry-wet transition in two-dimensional

foams, Sci. Rep. 13, 4939 (2023).

[7] N. J. Petch, The cleavage strength of polycrystals, J. Iron Steel

Inst. 174, 25 (1953).

[8] E. Hall, The deformation and ageing of mild steel: III discussion

of results, Proc. Phys. Soc. Sect. B 64, 747 (1951).

[9] D. L. Weaire and S. Hutzler, The Physics of Foams (Oxford

University Press, Oxford, England, 2001).

[10] C. S. Smith, Grain Shapes and Other Metallurgical Applications

of Topology (American Society for Metals, Cleveland, OH,

1951).

[11] W. W. Mullins, Two-dimensional motion of idealized grain

boundaries, J. Appl. Phys. 27, 900 (1956).

[12] D. Weaire and N. Rivier, Soap, cells and statistics—random

patterns in two dimensions, Contemp. Phys. 25, 59 (1984).

[13] M. v. Smoluchowski, Drei vortrage uber diffusion, Brown-

sche Molekularbewegung und koagulation von kolloidteilchen,

Pisma Mariana Smoluchowskiego 2, 530 (1927).

[14] J. Klobusicky, Markov models of coarsening in two-

dimensional foams with edge rupture, J. Nonlinear Sci. 31, 42

(2021).

[15] D. J. Aldous, Deterministic and stochastic models for coales-

cence (aggregation and coagulation): a review of the mean-field

theory for probabilists, Bernoulli 5, 3 (1999).

[16] J. Duplat, B. Bossa, and E. Villermaux, On two-dimensional

foam ageing, J. Fluid Mech. 673, 147 (2011).

[17] J. Stavans, Temporal evolution of two-dimensional drained soap

froths, Phys. Rev. A 42, 5049 (1990).

054609-9



KLOBUSICKY, ONAT, AND KONSTANTINOU PHYSICAL REVIEW E 110, 054609 (2024)

[18] J. Stavans, Evolution of two-dimensional cellular structures:

The soap froth, Physica A 194, 307 (1993).

[19] A. T. Chieco and D. J. Durian, Experimentally testing

a generalized coarsening model for individual bubbles in

quasi-two-dimensional wet foams, Phys. Rev. E 103, 012610

(2021).

[20] G. D. Burnett, J. J. Chae, W. Y. Tam, R. M. C. de Almeida,

and M. Tabor, Structure and dynamics of breaking foams, Phys.

Rev. E 51, 5788 (1995).

[21] J. Bae, K. Lee, S. Seo, J. G. Park, Q. Zhou, and T. Kim,

Controlled open-cell two-dimensional liquid foam generation

for micro- and nanoscale patterning of materials, Nat. Commun.

10, 3209 (2019).

[22] D. Aboav, The arrangement of grains in a polycrystal,

Metallography 3, 383 (1970).

[23] F. T. Lewis, The effect of cell division on the shape and size of

hexagonal cells, Anat. Rec. 33, 331 (1926).

[24] C. Gini, On the measure of concentration with special refer-

ence to income and statistics, Colorado College Publication 208

(1936).

[25] Itseez, Open source computer vision library, https://github.com/

itseez/opencv (2015).

[26] N. Galvani, M. Pasquet, A. Mukherjee, A. Requier, S. Cohen-

Addad, O. Pitois, R. Höhler, E. Rio, A. Salonen, D. J. Durian

et al., Hierarchical bubble size distributions in coarsening wet

liquid foams, Proc. Natl. Acad. Sci. USA 120, e2306551120

(2023).

[27] S. Sauerbrei, E. Haß, and P. Plath, The Apollonian decay of beer

foam bubble size distribution and the lattices of young diagrams

and their correlated mixing functions, Discrete Dyn. Nat. Soc.

2006, 079717 (2006).

[28] S. Kwok, R. Botet, L. Sharpnack, and B. Cabane, Apollo-

nian packing in polydisperse emulsions, Soft Matter 16, 2426

(2020).

[29] N. Vandewalle and J. F. Lentz, Cascades of popping bubbles

along air/foam interfaces, Phys. Rev. E 64, 021507 (2001).

[30] M. Elsey, S. Esedoglu, and P. Smereka, Large-scale simulation

of normal grain growth via diffusion-generated motion, Proc. R.

Soc. A 467, 381 (2011).

[31] A. A. Lushnikov, Some new aspects of coagulation theory,

Izv. Akad. Nauk SSSR, Izvestiya, Atmospheric and Oceanic

Physics 14, 738 (1978).

[32] A. H. Marcus, Stochastic coalescence, Technometrics 10, 133

(1968).

[33] M. Marder, Soap-bubble growth, Phys. Rev. A 36, 438 (1987).

[34] H. Flyvbjerg, Model for coarsening froths and foams, Phys.

Rev. E 47, 4037 (1993).

[35] V. Fradkov, D. Udler, and R. Kris, Computer simulation of two-

dimensional normal grain growth (the ‘gas’ approximation),

Philos. Mag. Lett. 58, 277 (1988).

[36] V. Fradkov, A theoretical investigation of two-dimensional

grain growth in the ‘gas’ approximation, Philos. Mag. Lett. 58,

271 (1988).

[37] J. Klobusicky, G. Menon, and R. L. Pego, Two-dimensional

grain boundary networks: Stochastic particle models and kinetic

limits, Arch. Ration. Mech. Anal. 239, 301 (2020).

[38] W. S. Cleveland, Robust locally weighted regression and

smoothing scatterplots, J. Am. Stat. Assoc. 74, 829 (1979).

[39] J. J. Chae and M. Tabor, Dynamics of foams with and without

wall rupture, Phys. Rev. E 55, 598 (1997).

[40] J. A. Wattis, D. G. McCartney, and T. Gudmundsson, Coagu-

lation equations with mass loss, J. Eng. Math. 49, 113 (2004).

054609-10


