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in polymer blends through active learning
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Polymers play an integral role in various applications, from everyday use to advanced technologies. In
the era of machine learning (ML), polymer informatics has become a vital field for efficiently designing
and developing polymeric materials. However, the focus of polymer informatics has predominantly
centered on single-component polymers, leaving the vast chemical space of polymer blends relatively
unexplored. This study employs a high-throughput molecular dynamics (MD) simulation combined
with active learning (AL) to uncover polymer blends with enhanced thermal conductivity (TC)
compared to the constituent single-component polymers. Initially, the TC of about 600 amorphous
single-component polymers and 200 amorphous polymer blends with varying blending ratios are
determined through MD simulations. The optimal representation method for polymer blends is
identified, which involves a weighted sum approach that extends existing polymer representation from
single-component polymers to polymer blends. An AL framework, combining MD simulation and ML,
is employed to explore the TC of approximately 550,000 unlabeled polymer blends. The AL framework
proves highly effective in accelerating the discovery of high-performance polymer blends for thermal
transport. Additionally, we delve into the relationship between TC, radius of gyration (Rg), and
hydrogen bonding, highlighting the roles of inter- and intra-chain interactions in thermal transport in
amorphous polymer blends. A significant positive association between TC and Ry improvement and
an indirect contribution from H-bond interaction to TC enhancement are revealed through a log-linear
model and an odds ratio calculation, emphasizing the impact of increasing Ry and H-bond interactions

on enhancing polymer blend TC.

The global energy crisis has continued to escalate due to the conflict between
the limited availability of fossil energy and the ever-increasing demand for it.
Approximately 50% of the world’s final energy consumption in 2021 was
related to thermal energy, including industrial processes, buildings, and
agriculture'. Therefore, the efficient use of thermal energy is essential to
overcome the global energy crisis. Moreover, inefficient heat dissipation in
applications like high-power electronics, solar photovoltaics, and semi-
conductor lasers can significantly degrade the efficiency and lifespan of these
devices”. Thus, research on thermal transport in relevant materials is
crucial in tackling the global energy crisis and improving existing
technologies.

As a widely used constituent in thermal applications, polymers have
advantages like low costs, high electrical resistivity, lightweight, excellent
mechanical flexibility, and corrosion resistance®’. However, the thermal
conductivity (TC) of most amorphous polymers is low, on the order of

0.1-0.5 W m™' K ' due to the disordered atomic arrangement’. Higher TC
fillers, such as aluminum oxide, boron nitride, graphite, and carbon nano-
tubes are often introduced into the polymer matrix for industrial
applications*”™'*. However, increasing the intrinsic TC of the polymer
matrix remains a crucial factor as it significantly affects the TC of the
composite and enables the composite to retain the benefits of polymer
materials, such as low cost and lightweight. Effective medium theory cal-
culations have shown that polymer composites with a TC exceeding
20Wm 'K will require the TC of the polymer matrix to increase to
IWm' K™,

In amorphous polymer, the total TC can be divided into contributions
from primarily two parts, bonded intramolecular (e.g., covalent bonding
force along the polymer chain) and non-bonded inter-molecular (e.g., van
der Waals (vdW), hydrogen bond, and electrostatic) interactions. The
bonded interactions are reported to dominate the effective heat transfer over
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other contributions from non-bonded interactions*'**". Thus, one effective
route to change the intrinsic TC of amorphous polymers is through mod-
ifying the heat transfer path through bonded interactions, e.g., polymer
chain alignment through stretching” >, template-assisted growth™, etc.,
which enhances the heat flow along the bonded backbone. For instance,
Shen et al. fabricated ultra-drawn polyethylene nanofibers with a high TC of
~104 W m™" K", Later, Xu et al. produced drawn polyethylene films with
TC of 62W m ™ K%, scaling up from individual nanofibers to more
macroscopic thin films. However, the high values of TC resulting from the
alignment of polymer chains are restricted to the chain orientation direc-
tion, and it necessitates specialized manufacturing techniques (e.g.,
mechanical stretching) that are usually not suitable for conventional pro-
cessing methods (e.g., solution casting). Another strategy to modify the TC
of existing polymers is to engineer the non-bonded inter-chain interactions,
e.g. T — T stacking”, electrostatic interaction enhanced by ionization™, and
blending polymers with strong inter-molecular interactions'**’. Among
them, polymer blend provides higher tunability and larger design space,
potentially allowing a higher possibility of finding high TC polymers.

Polymer blend refers to a mixture of two or more different polymers
and allows for combining the properties of different materials into a new
material with targeted performance”'. Normally, the TC of a binary polymer
blend will change monotonically as the proportion of one component varies,
and this simple rule of mixtures has been demonstrated in various
studies””*. However, there are several notable exceptions where the TC of
polymer blends exceeds the bounds predicted by the simple rule of mixtures.
For instance, in 2014, Guo et al.” found that the TC of a binary polymer
blend of bulk-heterojunction films is lower than the pure phase when the
volumetric fraction of the added polymer is below 35%, which is potentially
related to phase segregation when the added polymers are minor phases. In
2015, Kim et al.” reported a sharp increase in TC of a blend of poly(N-
acryloyl piperidine) (PAP) and poly(acrylic acid) (PAA), reaching over
1.5Wm 'K, much higher than those of the individual components, when
the molar ratio of PAP:PAA was 30:70, and they also observed a non-
monotonic relation in TC when mixing two other polymer blends. The
authors attributed this improvement of PAP-PAA blend to the homo-
genous thermal transport network created by the inter-chain hydrogen
bonds between the two polymers. However, later in 2016, this large
enhancement cannot be reproduced by Xie et al.”’, where the TC of the
polymer blends simply followed the rule of mixtures, and near the 30:70
mixing ratio of PAP and PAA, the blends were found to be phase-separated.
Nevertheless, among single-component polymers, those with capacities to
form intra- and inter-chain hydrogen bonds were still discovered to have
higher TC compared to those without”. The TC enhancement from
hydrogen bond network formation was further verified by Mehra et al.” in
2017 by inserting water molecules. In addition to experiments, molecular
dynamics (MD) simulations are another powerful tool for uncovering the
physics of thermal transport in polymer blends. For example, in Wei et al."”
tuned the inter- and intra-chain interaction strengths in a polymer blend
model in MD simulation and found that the increase of inter-chain inter-
actions could lead to an increase of TC because of the stretched polymer
chain conformation of the major phase. In 2019, the simulation results from
Bruns et al.”” showed that PAP-PAA blends were always phase-separated
and TC-invariance over the whole range of mixing ratios. However, they
also reported the improved TC of poly(acrylamide)(PAM)-PAA blends due
to the stronger H-bonded contact (compared with PAP-PAA blends),
which further resulted in the formation of short PAM bridges cross-linking
PAA monomers.

For polymer blends, despite various and occasionally conflicting out-
comes that have been reported, the strengthening of intra- and inter-
molecular bonding is still considered an effective means of improving
thermal transport, either through directly increasing the inter-chain thermal
transport or indirectly impacting the chain configuration (e.g., increased
radius of gyration). However, there are still considerable unknowns sur-
rounding the physics of thermal transport in polymer blends. For example,
how can blending alter the interactions both within and between polymer

chains? How do the interaction variations lead to changes in the con-
formation of the chains and, subsequently the TC? What are the mechan-
isms behind the improvement of thermal transport in polymer blends when
the simple rule of mixtures does not apply?

To answer these questions and identify high TC polymer blends, tra-
ditional experimental trial-and-error methods, and case-by-case studies are
both time-consuming and expensive. MD simulations offer an accelerated
alternative for investigating thermal transport in polymer blends, but due to
the enormous chemical space of such blends—for instance, even con-
sidering only 500 single-component polymers, there are 124,750 distinct
binary blends possible without taking into account the full range of blending
ratios between 0 and 1—these simulations still require considerable com-
putational resources. The application of machine learning (ML) has proven
to be a promising means of efficiently scanning large target spaces through
data-driven approaches, with successful recent examples in the realm of
polymer research and property predictions™*, which gives rise to the
emerging field of polymer informatics (PI). However, due to the limitation
of data and polymer representation methods, most of the research in P has
focused on single-component homopolymers*™ and copolymers**™,
leaving the chemical space of polymer blends largely unexplored™. Recently,
Liang et al.”* built up a polymer blend compatibility database using extracted
experimental literature data and presented an ML method to predict
polymer blend compatibility as a classification task, which is the only known
research on polymer blend informatics, as of yet, relying solely on repeating
units and composition information of polymer blends. While this work is
undoubtedly a great start, there is still much research to be done in the field
of polymer blend informatics, especially concerning physical properties.
One significant challenge is the lack of labeled data on polymer blends.
Fortunately, a combination of MD simulation and active learning (AL)
presents a promising solution. AL is an ML framework that enables the
algorithm to identify the most informative samples for the task at hand and
utilize them to update the ML model™. This approach reduces the number
of data samples required to train the model, making it much more efficient
and cost-effective, especially in material optimization and design processes
where the data acquisition process is very expensive™ . By combining MD
simulations with AL, researchers can obtain high-quality data from stan-
dardized simulation protocols to train their models while also reducing
computational costs to find target materials.

In this work, we employ a high-throughput MD simulation technique
in conjunction with AL, as shown in Fig. 1, to unearth polymer blends
exhibiting higher TC when compared to individual single-component
polymers. In the initial phase, TC values are computed for selected amor-
phous single-component polymers and polymer blends through MD
simulations. Different methods for representing polymer blends are also
compared using this initial labeled dataset. Additionally, an AL framework,
combining MD simulation with an ML classifier, is applied to explore an
unlabeled virtual dataset containing roughly 550,000 potential polymer
blends for which TC values are unknown. This AL approach significantly
expedites the discovery of high-performance polymer blends concerning
TC. Furthermore, a statistical investigation into the relationship between
TC, the radius of gyration, and hydrogen bonding underscores the critical
roles played by inter- and intra-chain interactions in the thermal transport
mechanisms of amorphous polymer blends.

Results and discussions

Dataset

In this work, five datasets are leveraged to explore the TC of amorphous
single-component homopolymers and binary polymer blends. Relation-
ships between the five datasets are shown in Fig. 2a. Dataset 1 encompasses
TC values calculated through MD simulations performed on 608 randomly
chosen amorphous single-component homopolymers. This dataset serves
as the foundation for understanding the TC in a broad range of polymer
chemical space. Dataset 2 is a subset of Dataset 1 using stratified sampling.
Building upon our prior research on high TC single-component
homopolymers™, Dataset 2 is intentionally designed into two balanced
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Fig. 1 | The scheme of active learning (AL) combined with high-throughput
molecular dynamics (MD) simulation to identify thermally conductive polymer
blends. First, thermal conductivities (TC) are calculated for a selection of amor-
phous single-component polymers and polymer blends from a large dataset of
unlabeled polymers. These calculations are performed using MD simulations, which
are considered the oracle in the context of AL. Starting with these initial labeled
training data, the objective is to tackle a binary classification problem of identifying
polymer blends in the unlabeled pool that exhibit higher TC values compared to
their individual single-component polymers, denoted as TC, 4> max{TC, , TC,}.

TC of the polymer blend is denoted as TCy,,,4 and TC of the single-component
polymer is denoted as TC, or TC,. Then a pool-based AL framework that utilizes a
random forest machine learning classifier in conjunction with a certainty-based
acquisition function is employed to iteratively select high-performance polymer
blends from the unlabeled pool. This AL approach, combined with MD simulation
greatly accelerates the process of identifying high-performance polymer blends in
terms of TC. The specific methods for carrying out MD simulations and TC cal-
culations are described in the Methods section, while details regarding the labeled
data and the unlabeled polymer dataset are provided in the Dataset section.
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Fig. 2 | Summary of datasets in this work. a Datasets relationship and data distribution of b Dataset 1 to 3 and ¢ Dataset 4 in the target TC space.

parts. Half of the entries (17) are randomly selected from the single-
component polymers in Dataset 1 that display comparatively low TC values
(<04 W m ™' K™"), while the remaining half of entries (18) are randomly
chosen from those with higher TC values (0.4 W m ™" K™"). This selection

strategy ensures a balanced dataset comprising both high and low TC values.
Dataset 3 comprises 216 TC values of binary polymer blends, with the
constituent polymers from Dataset 2. These blends have three different
blending ratios (1:5, 1:1,and 5:1) and constitute the initial dataset to facilitate
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an investigation into the polymer TC variation induced by blending. Dataset
4 is a combination of Dataset 1 and Dataset 3, specifically used to train a
regression model aiming to identify the most effective representation
method for polymer blends. The data distributions of Datasets 1 to 4
regarding TC are shown in Fig. 2b, c. Lastly, Dataset 5 comprises an
extensive database of ~550,000 polymer blends, generated by considering all
possible combinations of two different polymers from the single-
component polymer dataset (Dataset 1) with the three different blending
ratios. This large dataset serves the purpose of virtual screening in our study.
Notably, to address the specific problem defined in our work, which focuses
on determining whether a blend exhibits a higher TC compared to its
constituents, blends in Dataset 5 exclusively consider single-component
polymers with known TC values (Dataset 1). Details of TC calculation using
MD simulation for both single-component polymers and polymer blends
can be found in the Methods section. Besides, the data distribution in the
chemical space of Dataset 1, 2, 3, and 5 can be found in the next section on
polymer blend representation.

Polymer blend representation

The numerical representation of polymers holds paramount importance in
PI, as ML models rely on numerical inputs to quantify the relationships
between structures and properties. Thus, prior to training the ML model, it is
essential to establish a numerical representation for polymer blends.
However, it is worth noting that the majority of PI research has primarily
focused on single-component homopolymers, leaving the chemical space of
polymer blends largely unexplored. For the representation of single-
component polymers, two well-established methods exist: Morgan finger-
prints (MF)** and polymer embeddings (PE)". Both approaches have
demonstrated excellent performance in representing single-component
homopolymer structures’***. Details of the two representation methods
are introduced in the Methods section. In this study, we propose two
blending methods as variations of these conventional single-component
polymer representations for describing polymer blends (Fig. 3): weighted
summation (Fig. 3a) and weighted concatenation (Fig. 3b). The weight used
in these variations corresponds to the mixing ratio. Weighted summation
involves element-wise summation of the weighted vectors of the two con-
stituent polymers’ descriptors, while weighted concatenation entails con-
catenating the two weighted vectors. In this way, four methods are available
to represent polymer blends, each involving different combinations of
single-component polymer representations (MF and PE) and blending
methods (weighted summation and concatenation). For simplicity, we will

refer to them as MF-WS (MF with Weighted Summation), ME-WC (MF
with Weighted Concatenation), PE-WS (PE with Weighted Summation),
and PE-WC (PE with Weighted Concatenation).

To determine the optimal method for representing polymer blends,
a random forest (RF) regression model is trained on the combined
dataset (Dataset 4). Based on the coefficient of determination (R*) and
mean square error (MSE) on the test set, as reported in Table 1, PE-WS
demonstrates the highest performance among the four methods inves-
tigated. The prediction parity plot in Fig. 4 also revealed a strong
agreement between the model’s predictions and the ground truth values
using PE-WS as the representation method. In general, PE outperforms
MF in both blending methods, suggesting the superiority of PE in
polymer representation, as also demonstrated in ref. 59. No significant
difference is observed between different blending methods. Addition-
ally, these high-dimensional polymer blend fingerprints were visualized
in a 2D space using the t-SNE method in Fig. 5. These points were color-
coded based on their TC values. Notably, the PE-WS method, shown in
Fig. 5a, exhibited a clearer structure-property relationship than the other
three methods, where polymers with similar structures tended to exhibit
similar properties. However, the t-SNE plots can only provide qualitative
analysis and comparison of different representations. To qualitatively
verify the superiority of PE-WS in capturing the structure-property
relationship, we calculate Spearman’s rank correlation coefficient
between the pairwise Euclidean distances of polymer representations in
the chemical space and the corresponding pairwise absolute differences
in TC values. As shown in Supplementary Fig. 1, PE-WS exhibits the
highest Spearman’s rank correlation coefficient of 0.546 among the four
representations, and the coefficients of PE-WC, MF-WS, and MF-WC
are only 0.463, 0.331, and 0.348, respectively. This indicates that PE-WS
can capture a stronger monotonic relationship between chemical
structure similarity and TC variation.

Table 1 | Prediction performance of RF regressor using four
different polymer blend representation methods
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PE-WS PE-WC MF-WS MF-wC
Test R 0.850 0.842 0.816 0.818
Test MSE 0.00142 0.00150 0.00174 0.00172
Train R? 0.819 0.805 0.781 0.773
The best performance on the test dataset is highlighted in bold.
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Fig. 4 | Model performance on the combined
dataset using four different polymer blend
representation methods. a PE-WS, b PE-WC,

¢ MF-WS, and d MF-WC. All the x-axes represent
the predicted TC in units of W m™' K" and all the
y-axes represent the ground-truth (MD-calculated)
TC in units of Wm™" K.
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Detailed analysis, as illustrated in Fig. 4c, d, reveals the difficulty of MF
to accurately distinguish polymers with TC values ranging from 0.3 to
0.5W m ' K™, consistently leading to over- or under-estimations. This
limitation is not isolated but further corroborated by observations in Sup-
plementary Fig. 1 and Fig. 5, where MF’s challenges in distinguishing certain
chemical structures are highlighted. Specifically, Supplementary Fig. 1c, d
showcase distinct peaks at lower normalized pairwise distances, with a
notable sharp peak near 0 and multiple peaks between 0 and 0.2. These
peaks suggest a significant limitation of MF in differentiating between
chemical structures that result in a wide range of TCs. This issue is further
visualized in Fig. 5¢, d, which depicts circular clusters where polymers,
despite having varied TC values (represented by different colors), are
aggregated closely in the chemical space. Such clustering indicates a defi-
ciency in MF’s ability to discriminate among diverse chemical structures
effectively. The root of this deficiency in MF is identified as its multiplicity—
a condition where a single fingerprint feature may represent multiple dif-
ferent substructures, thereby limiting the capacity of MF to accurately
represent and differentiate complex chemical structures of polymers®. This
contrasts sharply with the performance of PE, which is inspired by the
word2vec concept”". PE has shown a superior ability to capture and dis-
tinguish the subtle chemical structures that influence variations in TC,
providing a more nuanced and reliable prediction of polymer properties.
This comparison not only highlights the limitations inherent in the use of
MEF for predicting polymer TC but also emphasizes the promise of alter-
native embedding techniques like PE for enhancing the precision and
reliability of such predictions, which is consistent with our previous finding
for polymer representations”””. Therefore, after careful comparison, PE-
WS was selected as the preferred approach for representing polymer blends
for the remainder of this study. Under PE-WS, the data distribution in the
chemical space of Dataset 1, 2, 3, and 5 is shown in Supplementary Fig. 2,
revealing that Dataset 5 complements Dataset 1 well within the chemical
space and Dataset 2 encompasses a diverse range as a stratified sampled
subset of Dataset 1.

AL for high-performance polymer blends

In our study, we address a binary classification problem where the objective
is to identify polymer blends with TC higher than their constituent single-
component homopolymers from a large unlabeled pool of polymer blends
(see Fig. 2, Dataset 5). In this binary classification task, we assign a label of ‘1’
to the high-performance polymer blends that show higher TC than their
constituent single-component polymers, while assigning a label of ‘0" to
those with TC lower than or equal to their constituent single-component
polymers. To efficiently identify higher-performance polymer blends, we
adopt a pool-based AL framework, as shown in Fig. 1, which naturally fits
our iterative approach. AL is an ML approach that strategically selects
informative data points from an unlabeled pool to query for labels™**.
Pool-based AL is a specific variant of AL, where the unlabeled data is
organized into a pool, and the model selectively samples data points from
this pool for labeling based on certain acquisition functions, enabling more
efficient and targeted data selection for training™. In the pool-based AL
framework of our binary classification task, the initial step involves training
a classifier using the available labeled training data (Dataset 4). This classifier
is then utilized to screen the vast pool of unlabeled candidate polymer blends
(Dataset 5) using different acquisition functions. In this study, the goal is to
efficiently identify targeted candidates from the pool with fewer runs of MD
simulations for labeling, which is the most time-consuming step. Thus, we
emphasized prediction precision over general accuracy—aiming to max-
imize the identification of true positive candidates and thereby reduce false
positive instances that would lead to unnecessary MD simulations. To
achieve this objective, we utilize an acquisition function that prioritizes those
with the highest predicted scores, which is a predicted probability assigned
to each candidate by the binary classifier, ranging from 0 to 1, indicating the
likelihood of being a polymer blend of label ‘1’. This certainty-based
(exploitation) acquisition strategy is complemented by random acquisition
for comparative purposes. By employing a batch querying process, we also

Table 2 | Iterative expansion of Dataset 4 using a pool-based
active-learning framework

Vo Vi V2 V3

Total 23/824(2.79%) 34/ 38/ 50/
919 (3.70%) 943 (4.03%) 992 (5.04%)

Certainty- \ 5/ 3/ 11/

based sampling 16 (31.25%)

6/82 (7.32%)

11 (27.27%)
1/13 (7.69%)

35 (31.43%)
1/14 (7.14%)

Random \
sampling

Dataset 4 undergoes iterative expansion, progressing from version 0 (VO) to version 4 (V4) through
both certainty-based sampling and random sampling. In each version of Dataset 4, the number of
high-performance polymer blends (referred to as x) out of the total number of candidates in Dataset 4
(referred to as y) is indicated as x/y in each cell in the ‘Total’ row, along with the corresponding
percentage value displayed in parentheses. In the last two rows, for each expanded version of
Dataset 4, the number and percentage of high-performance polymer blends among the sampled
candidates added through certainty-based sampling and random sampling are represented in the
same way and the percentage in the parenthesis is also the success rate of the corresponding
acquisition strategy.

effectively mix certainty-based sampling with random sampling in each
iteration. This hybrid approach is designed not merely to contrast certainty-
based with random acquisition but to establish a refined balance, enabling us
to explore the broader chemical space while focusing on candidates with the
greatest potential. The selected batch candidates are then presented to an
oracle, in this case, the MD simulation, which provides the labels for these
candidates, i.e., the corresponding TC values. The labeled data is then added
to the existing dataset, and this process iteratively continues until we achieve
a satisfactory proportion of high-performance polymer blends in the
combined dataset (Dataset 4), which is set to be 5%.

Table 2 shows the iterative results of the AL process. We start with
Dataset 4 version 0 (V0), comprising 824 polymer blends, among which 23
are identified as high-performance blends (labeled as ‘1’). Utilizing the
classifier trained on V0, we select 16 candidate blends from the pool (Dataset
5) based on the highest prediction scores from the binary classifier. The
score indicates the model’s certainty that the given polymer blend belongs to
the class of label ‘1. Five of these selected candidates are confirmed to be
high-performance polymer blends through verification using the MD
simulation oracle, suggesting a success rate of 31.25%. In contrast, we
conducted a random selection of 82 candidates to demonstrate the efficacy
of the classifier, and only six of them are indeed high-performance blends
based on the MD simulation result, corresponding to a success rate of 7.31%.
These results suggest the effectiveness of our initial dataset-trained model in
identifying desired candidates. With three iterations of data expansion, we
observe a gradual increase in the proportion of high-performance polymer
blends, ultimately reaching almost twice the proportion found in the initial
dataset (from 2.79% in VO to 5.04% in V3). The statistics of the iterative data
expansion process are presented in Table 2. Notably, certainty-based sam-
pling consistently achieves a success rate of around 30%, in contrast to
random sampling, which attains only around 7%. Details of the model
training are described in the Methods section.

To further validate the efficiency of the AL approach and to compare
different acquisition strategies within our pool-based AL framework, we
conduct a virtual experiment using Dataset 4-V3, which contains a total of
992 data points. This dataset represents the largest collection of polymer
blends we have after iterative data expansion through the previous AL. The
primary objective of this virtual experiment is to find an acquisition strategy
that can find a specific number of high-performance polymer blends within
the shortest time (smallest number of MD simulations). To initiate the
experiment, we randomly select 10 polymers from Dataset 4-V3. We pre-
tend to have knowledge of the labels (0’ or ‘I’) for only these 10 polymer
blends. Subsequently, we train an RF classifier on these 10 data points. Next,
we employ one of the acquisition methods to iteratively select the next top 4
candidates as recommended by the RF classifier among the remaining 982
candidates. The labels of the recommended candidates are then revealed and
added to the training set, and a new classifier is trained on the expanded
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Fig. 6 | The average number of experiments needed to cumulatively identify 1 to
20 polymer blends with higher TC than the constituent single-component
polymers, beginning with an initial dataset comprising 10 polymers. This average
is computed across 10 different runs, and the standard deviation is represented by
the error bars, which is the mean # standard deviation. Four different acquisition
functions are compared: uncertainty (dark blue), certainty (green), balanced (light
blue), and random (red) sampling.

training dataset. Predictions are subsequently made on the remaining 978
data points. This iterative process continues until we successfully identify a
total of 20 candidates labeled as ‘1’. The model training and prediction
procedure in this virtual experiment mirrors that of the actual AL experi-
ments conducted on Datasets 4 and 5. To account for the effects of random
variability, for each acquisition method, the experiment is repeated 10
independent times. In each run, different randomly selected initial datasets
are used to reduce the impact of randomness in initial dataset selection on
model performance. Further details about the model can be found in the
Methods section.

The three different acquisition functions tested are certainty-based
acquisition, uncertainty-based acquisition, and balanced acquisition. The
certainty-based acquisition involves choosing the next four experiments
based on the highest predicted probability. This approach tends to favor
candidates that exhibit chemical similarity to the top performers within the
training dataset and emphasizes exploitation in the chemical space covered
by the training data. In comparison, the uncertainty-based acquisition
selects the next four experiments that demonstrate the greatest uncertainty.
In our binary classification problem, we measure uncertainty by looking at
how close the predicted probability (ranging from 0 to 1) is to the threshold
value of 0.5. If the predicted probability is ~0.5, the model is more uncertain,
and the uncertainty-based acquisition prioritizes that data point. This
strategy emphasizes the exploration of chemical space beyond that covered
by the training dataset. As a compromise between exploitation and
exploration, a balanced acquisition strategy that mixes certainty-based and
uncertainty-based acquisition is employed. At every iteration, this strategy
involves the selection of two candidates using the certainty-based acquisi-
tion method to exploit the model’s current knowledge, and simultaneously,
two candidates are chosen based on uncertainty-based acquisition to
explore less certain regions of the dataset™. Apart from these three strategies,
random acquisition is also conducted as the baseline, randomly selecting
four new candidates at each iteration.

The result in Fig. 6 shows the average number of experiments needed to
identify 1 to 20 polymer blends with higher TC than the constituent single-
component polymers (i.e., label ‘1°). Certainty-based and balanced sampling
strategies display similarly high efficacy, outperforming both uncertainty-
based sampling and random sampling. Notably, the initial phase of the
experiment reveals a sharper increase for both certainty-based and balanced

B Polymer Blend
E= Homopolymer 1
mmm Homopolymer 2

Thermal Conductivity (W/mK)

5 6
Polymer Blends index

Fig. 7 | MD simulation validation results for top-10 predicted polymer blend
candidates and their constituent single-component polymers. The simulations
were performed using three distinct initial structures for each candidate. The mean
TC value is displayed, accompanied by error bars, which is the mean # standard
deviation.

methods, indicative of the model’s quick identification of regions rich in
high-performance polymer blends from the training dataset. However, as
the model exhausts the chemical space covered by the initial training set in
later iterations, the pace of discovery for certainty-based sampling slows. In
contrast, while the discovery rate for balanced sampling also decelerates, it
does so to a lesser extent, highlighting the benefits of incorporating
exploratory elements to mitigate the limitations inherent in purely exploi-
tative strategies in AL. Nonetheless, within the context of this virtual
experiment, integrating exploration does increase the likelihood of
encountering iterations without success, culminating in a performance for
balanced sampling that is either on par with or slightly inferior to certainty-
based sampling over time. The trajectory for uncertainty-based sampling
initially mirrors that of random sampling, implying that early explorations
beyond the limitations of the training data are somewhat akin to a random
search, yielding minimal success. This trend shifts with an uptick in success
rates following several rounds of data acquisition, eventually plateauing.
This suggests that while uncertainty-based sampling initially thrives on
navigating a diverse chemical space, the necessity for such broad exploration
diminishes as the model develops a more comprehensive understanding of
the chemical space. Interestingly, balanced sampling exhibits the greatest
variability in performance, particularly as the search extends towards
identifying larger numbers of high-performance polymer blends (e.g., from
15-20), as indicated by the error bars in Fig. 6. This variability underscores
the potential of balanced sampling not only to match but occasionally
surpass the success rates of certainty-based sampling, albeit with a higher
degree of stochasticity. This reflects the nuanced trade-offs between
exploration and exploitation strategies in AL, underscoring the complex
interplay between achieving average success rates and the possibility of
exceptional outcomes in specific instances.

However, within the context of this AL framework, a consideration
arises concerning the inherent uncertainty associated with our oracle, the
MD simulation. Notably, different initial structures can lead to slight var-
iations in the calculated TC of the simulated amorphous polymers™. To
mitigate this uncertainty, we conduct an ensemble of MD simulations on the
top-10 predicted polymer blend candidates (based on the predictions from
the classifier trained on the Dataset 4-V3 data) and their respective con-
stituent single-component polymers. Three different initial structures are
generated for simulation for all the single-component polymers and poly-
mer blends. The validation outcome, as shown in Fig. 7, underscores the
effectiveness of the ML model, as eight out of these ten candidates indeed
exhibit the desired high-performance TC characteristics, with only candi-
dates #1 and #9 being the exceptions. Detailed information on the 10
polymer blend candidates and the TC values can be found in Supplementary
Tables 1 and 2.
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Table 3| Comparison among the 10 validation cases regarding
Ry, H-bond strength, and TC of the polymer blends concerning
their constituent single-component polymers

Table 4 | Three-way contingency table of the polymer blend
data regarding three binary variables: A: TC improvement, B:
R4 improvement, and C: H-bond improvement

Index TChoiend Ryg blend H-bondyena Ry improvement (B)

#1 0 4 { No (0) Yes (1)

#2 T 4 T H-bond improvement (C) No (0) Yes (1) No (0) Yes (1)

#3 T T T TC improvement (A) No (0) 30 69 84 154

#4 i i i Yes(1) 3 5 10 32

#5 T T { Marginal counts 33 74 94 186

#6 T T 1 Each cell represents the observed frequency count. The marginal counts combine counts across the
#7 1 1 1 dimension of variable A.

#8 ) 0 1

#9 1 J | . . . .

P : ; : to their constituent single-component polymers. The arrows in Table 3

The symbol ‘|’ denotes a decrease, while ‘1’ denotes an increase in these parameters. Notably, for
TCplena @and H-bondyeng, @n increase means values surpassing those of both constituent single-
component polymers, whereas for Ry pieng, @n increase corresponds to cases where the Rq value is
greater than at least one of the constituent single-component polymers.

Molecular-level origin of blend TC enhancement

This validation result motivates a deeper inquiry into the underlying factors
influencing polymer blend TC enhancement. As stated earlier in the
Introduction section, polymer TC can be decomposed into two primary
contributors: intra-chain covalent bond interactions, which dictate heat
transfer within polymer chains, and inter-chain non-bonding interactions,
such as hydrogen bonds®“*'. The former can be related to the chain con-
formation change, which can be characterized by the radius of gyration (Ry).
In light of this, we pinpoint two specific features for detailed examination of
the trajectory from the MD simulations: (1) the radius of gyration (Rg) and
(2) the hydrogen bond.

The R, of a molecule offers a measure of its spatial extension. Speci-
fically, the squared R characterizes the average squared distance between
any point within the polymer coil and its center of mass. The R, holds
significance in quantifying the spatial extension of the polymer coil and is
found to be closely intertwined with TC'®". The hydrogen bond is pre-
viously shown to exert an important influence on TC'"****. The distance
between atoms participating in a hydrogen bond can be employed to assign
the hydrogen bond strength®, which can be characterized by the radial pair
distribution function (RDF) analysis. Therefore, for the leading 10 candi-
dates alongside their corresponding constituent single-component poly-
mers, we compute the values of R; and the RDF of atoms participating in the
hydrogen bond, aiming to explore the TC characteristics within various
polymer blend configurations. The average R, is computed for both polymer
blends and corresponding single-component polymers for all three different
initial structures, as outlined in Supplementary Table 2. For the quantifi-
cation of hydrogen bond strength, we analyze the position and magnitude of
the first primary peak in the RDF near radius = 2A, which is a common
checkpoint of the hydrogen bond presence”. Both the occurrence of a peak
at the smaller radius and larger RDF intensity, indicate a stronger hydrogen
bond. A detailed comparison of RDF is shown in Supplementary Fig. 3.
Notably, the forcefield utilized in this study (GAFF2) does not explicitly
model hydrogen bonds as separate entities. The electrostatic component
effectively captures the essence of hydrogen bonding through the attraction
between the donor and acceptor atoms. This, combined with torsional angle
parameters that account for polarization and charge transfer effects, pro-
vides a robust framework for understanding hydrogen bond dynamics**®".
The integration of force fields like GAFF2 with RDF analysis has been
validated in numerous studies for its efficacy in conformational and
hydrogen bond analysis, making it an optimal choice for this work®**®,

Table 3 presents a comparative analysis of the ten validation cases,
outlining the changes in TC, Ry and H-bond strength of the blends relative

indicate that the direction (either increase or decrease) of R, or H-bond

change aligns with the direction of TC change. As a result, eight out of ten Ry

values exhibit changes in the same direction as TC, while seven out of ten

H-bond interaction changes show the same direction as TC. Only the TC

change of one candidate (#8) out of 10 is not captured by either R; change or

H-bond interaction change. Therefore, both strategies, enhancing R, and

improving H-bond interactions, have the potential to result in increased TC

in polymer blends.

However, it's important to note that drawing statistically significant
conclusions about the relationships between Ry, H-bond strength, and TC
only based on the ten selected candidates could be limiting. To address this
potential limitation, our study extends the analysis to encompass a broader
dataset. This expanded dataset comprises all 387 polymer blends for which
TC was calculated after the AL iterations, along with the 109 associated single-
component polymers. By calculating R, values and RDF on this larger dataset,
we aim to establish a more data-driven and statistically robust observation of
these complex relationships between R,, H-bond strength, and TC.

Expanding our analysis to encompass the entire set of 387 polymer
blends, we derive three binary parameters, building on the observation from
Table 3:

(1) TC Improvement (denoted as ‘A’): This parameter assesses whether
the TC of a given polymer blend surpasses that of both its constituent
single-component polymers. This binary parameter is assigned ‘1’ to
denote a positive improvement and “0” otherwise.

(2) R, Improvement (denoted as ‘B’): This parameter evaluates whether
the R, of the polymer blend exceeds that of any of its constituent single-
component polymers. A value of ‘I’ means an R, improvement, while
‘0’ denotes the absence of such enhancement.

(3) H-bond Improvement (denoted as ‘C’): The H-bond improvement
parameter offers two different scenarios:

* H-bond Strength Improvement: This case is indicated by the presence
of an H-bond-related peak in the RDF at a smaller radius within the
blend, compared with the same H-bond in the single-component
polymers. Here, ‘the same H-bond’ means an H-bond formed between
the same H-bond acceptor and donor. A complete list of such acceptors
and donors and the corresponding chemical structures considered in
this work are shown in Supplementary Table 3. An ‘1’ is assigned if this
peak appears at a smaller radius within the blend, implying an
improvement in H-bond strength; otherwise, a ‘0’ is assigned.

* H-bond Formation: We consider an H-bond between a proton
acceptor and proton donator as newly formed within the blending
system if a peak emerges in the RDF of the blend within the radius of
2.72 A, whereas there is no such peak in the corresponding single-
component polymers systems. 2.72 A is the criterion employed to
determine the formation of H-bonds®. A ‘1’ is allocated to indicate the
formation of a new H-bond and a ‘0’ if no such bond emerges.

Notably, either an H-bond strength improvement or the formation of a
new H-bond leads to an overall H-bond improvement (C=1).
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A three-way contingency table (see Table 4) is used to summarize the
387 polymer blend data and show the cross-classification of these data by the
levels of three categorical variables. To explore the complex relationships
among the three binary parameters, we employ the log-linear model, which
is a statistical technique used to analyze the relationships between categorical
variables within a multi-dimensional contingency table”. The log-linear
model offers an advantage over other statistical techniques, such as the
logistic model, standing out for its capacity to estimate relationships among
any of the variables without designating a single variable as the response’.
This flexibility allows us to investigate interactions involving any of the
derived binary parameters—TC improvement, R, improvement, and
H-bond improvement. The log-linear model works by examining the
expected cell frequencies in a contingency table and comparing them with
the observed frequencies. This comparison helps us identify whether the
observed frequencies deviate significantly from what would be expected if
the variables were independent. In our case, we use the log-linear model and
hierarchical model selection method to assess whether the improvements in
TC, Ry, and H-bond strength are independent or if there are statistically
significant interactions between them.

We use a likelihood ratio test to measure the reduction in fit of smaller
models (null hypothesis, Hy) relative to the larger models (alternative
hypothesis, H,). The degrees of freedom (df) for residual, deviance, log-
likelihood, and p value columns in Supplementary Table 4 correspond to the
goodness-of-fit test for each model compared with the saturated model
(Eq. 1). As is shown in Supplementary Table 4, all the reduced models are
not significantly worse fit than the saturated model, since all the p values
>0.05. Thus, all the reduced models are preferred relative to the saturated
one because they have fewer parameters.

log<yijk> D T L R V) R LR Yl ¢

We continue to test further reductions with the likelihood ratio test fol-
lowing the hierarchical model selection method. As demonstrated in Sup-
plementary Table 5, the initial assumption considers homogeneous
associations (AB, AC, BC) as the alternative hypothesis (H,), while all three
scenarios of conditional independence (one-step reduced models of the
homogeneous association model) are regarded as the null hypothesis (Hp). If
H is not rejected (p value > 0.05), it is subsequently treated as H, and tested
against its one-step reduced models. As a result, the reduced model (C, AB)
is ultimately preferred, which indicates that C is jointly independent of A
and B. The model structure is shown in Eq. 2.

log () = A+ A+ AP+ ¢ + 45" @)

This result indicates that, based on the current observed data, variable
Cisindependent of both A and B, but variables A and B are not independent
of each other. In other words, there is no significant association between
H-bond improvement and either TC or R, improvement according to the
387 polymer blend data. However, a significant association between TC and
R, improvement is observed from the data. This emphasizes the substantial
impact of increasing R, on enhancing polymer blend TC, while the role of
H-bond interactions requires further discussion.

To further quantify the impact of R; and H-bond on TC, we calculate
the marginal and conditional odds ratio based on Table 4. Details of the
calculation can be found in Supplementary Equations (1) to (6). The only
statistically ~significant odds ratio is the conditional odds ratio
4p(c=1) = 2.87, as shown in Eq. $4. This indicates that, when variable C is
equal to 1, the odds of variable A being 1 are 2.87 times higher when variable
Bisalso 1 compared to when B is 0. Moreover, since the odds ratio is greater
than 1, it suggests a positive association between variables A and B when Cis
1. That is to say, given the existence of H-bond improvement (C = 1), the
odds that a polymer blend with the existence of R, improvement (B;=1)
exhibits TC improvement (A = 1) are estimated to be 2.87 times higher than

the odds that a polymer blend with no Ry improvement (B = 0) exhibits TC
improvement (A =1). This further confirms the significant role of R,
improvement in enhancing polymer blend TC and suggests that H-bond
improvement can also contribute to TC enhancement indirectly.

The observed correlation between increased R, and enhanced TC in
polymer blends highlights the role of extended polymer chain structures in
improving thermal transport through stronger bonding interactions. The
presence of H-bonding could also enhance R, or the spatial extension of the
polymer chains, thereby potentially enhancing thermal transport along the
chains. However, it is critical to underscore that, despite this strong corre-
lation, the thermal transport efficiency in polymer blend systems cannot be
exclusively linked to the presence of an increased Ry. The overall thermal
transport efficiency in amorphous polymer blends is influenced by a mul-
titude of factors, including but not limited to, the interfacial thermal resis-
tance between different polymer components, the distribution and
connectivity of polymer chains, and the inherent TC of the constituent
polymers. In this study, related topics like the miscibility of polymer blends
and cross-linking are not considered, and we focus only on the relative
change of TC compared to the constituent polymers. Further research is
needed to more thoroughly decipher the mechanisms that govern thermal
transport in polymer blend systems.

To summarize, in the realm of polymer materials, where versatility
meets practicality, our work studies the TC of polymer blends in the field of
polymer informatics. Through high-throughput MD simulations and AL, we
have shown that polymer blends for higher TC can be accelerated compared
to random search. By screening a large chemical space, we identified high-
performance polymer blends, with TC surpassing that of their constituent
single-component polymers. Furthermore, our investigation into the intricate
relationship between TC, Ry, and hydrogen bonding sheds light on the
mechanisms governing thermal transport in amorphous polymer blends. It is
found that improved R, has a strong correlation with the enhanced TC via
blending and H-bond improvement can also contribute to the enhanced TC.
In conclusion, the strategies and results from this work can be useful for
extending the chemical space of current polymer informatics research to
polymer blends and can contribute to the automated design of high-
performance polymer blends in thermal transport and other applications.

Methods
MD simulation—calculation of TC, Ry, and RDF
The overall process of generating TC data for amorphous polymer blends
through high-throughput MD simulation is illustrated in Fig. 1. This process
comprises two primary steps: the generation and optimization of amorphous
structures and the calculation of TC using non-equilibrium molecular
dynamics (NEMD). The procedure for calculating TC in amorphous single-
component polymers is identical to amorphous polymer blends, with the
exception that the blending ratio during chain mixing is set to 0:6 (or 6:0).
To initiate the process, we begin with the SMILES notation obtained
from PoLyInfo”" for the two constituent polymers. Using a Python pipeline
built on PYSIMM", we generate the initial structure of the amorphous
polymer blend. This involves creating a polymer chain for each of the con-
stituent polymers through a polymerization process, with a fixed number of
~600 atoms per chain. This number has been determined to be adequate for
TC calculations™. Subsequently, we replicate these chains based on the pre-
determined blending ratio (1:5, 3:3, and 5:1), resulting in a system comprising
six chains in total, contained within a simulation box. It's worth noting that
for single-component polymers, the blending ratio is effectively 0:6 or 6:0.
Additionally, we assign GAFF2 (General AMBER Force Field 2)* forcefield
parameters to the polymer system and generate an input script for MD
simulations using the large-scale atomic-molecular massively parallel simu-
lator (LAMMPS)"™. Periodic boundary conditions are applied in all spatial
directions. After the initialization, optimization of the system proceeds in
stages. Initially, we perform simulations with electrostatic interactions dis-
abled and Lennard-Jones interactions truncated at 0.300 nm. Under these
conditions, the system undergoes a simulation in the NPT ensemble at 100 K
for 2 ps, employing a time step of 0.1 fs. Subsequently, the system is heated
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from 100 K to 1000 K over 1 ns using the NVT ensemble and then simulated
in the NPT ensemble for an additional 50 ps at 0.1 atm and 1000 K. Following
this, the system experiences a 1 ns NPT simulation at 1000 K, allowing the
pressure to rise from 0.1 atm to 500 atm. During this 1 ns NPT simulation, a
time step of 1 fs is utilized, and SHAKE constraints™ are applied. The polymer
system, now optimized, undergoes an annealing process with electrostatic
interactions enabled. Electrostatic interactions are computed using the
Particle-Particle-Particle-Mesh-based Ewald sum method. For Lennard-
Jones interactions, a cutoff of 0.800 nm is applied. In the annealing process,
the system is initially simulated in an NPT ensemble at 1 atm and 1000 K for
2 ps, with a time step of 0.1 fs. Following this, the system is gradually cooled
from 1000 K to 300 K at a rate of 140 K(ns) ™' within an NPT ensemble at 1
atm. Subsequently, an additional NPT run at 300 K and 1 atm is conducted
for 8 ns to further relax the annealed system with a time step of 1 fs and the
application of SHAKE constraints. During this step, Ry is monitored for each
polymer chain, and the average R, value over the 8 ns duration is taken as the
definitive representation of the polymer chain’s Ry. The R, values of the same
single-component polymers in the blend are also averaged to determine the
final R, value of the constituent single-component polymers in the blend
system. These steps collectively lead to the attainment of the final amorphous
state of the polymer blend system, as shown in Fig. 1.

Each obtained amorphous polymer blend system, initially confined
within a cubic box, is then replicated three times to create a cuboid shape, as
illustrated in Fig. 1. The dimensions vary slightly, ~9.900 x 3.300 x 3.300 nm’,
depending on the specific polymer blends due to density differences. This
extended system is used for TC calculations through NEMD simulations.
During the NEMD simulation, the system operates under an NVE ensemble
for 5 ns with a 0.25 fs time step. SHAKE constraints are omitted to preserve
atoms’ natural vibrations, which is vital for thermal transport analysis. Lan-
gevin thermostats are applied near the cuboid ends (Fig. 1), with the heat
source at 320 K and the heat sink at 280 K, each applied in a 0.500 nm thick
region. Fixed regions at both ends prevent system drift and heat flow across
boundaries. The measured heat flux is determined by tracking the heat added
to and removed from the Langevin heat baths and the temperature gradient is
derived by a linear fit on the temperature profile along the direction of heat
transport within the cuboid. TC is computed from the heat flux and tem-
perature gradient via Fourier’s law. Data from the last 4 ns is divided into 8
intervals, each yielding a TC value. The final TC output is the average of these
8 values. The accuracy and reliability of our NEMD calculations were further
affirmed through a comparative analysis with equilibrium molecular
dynamics (EMD) simulations and experimentally measured values for three
widely studied amorphous polymers, as depicted in Supplementary Fig. 4.
While minor differences are observed from Supplementary Fig. 4, they are
deemed acceptable given the inherent uncertainties of MD simulations (both
EMD and NEMD) and the potential variability in experiments (median is
used to represent experimental TCs)™. Importantly, our research primarily
focuses on the relative changes in TC due to polymer blending rather than the
absolute TC values. Therefore, as long as the relative trend in TC changes can
be accurately captured, these small variances do not impair the validity of our
findings concerning the effects of polymer blending.

To evaluate the hydrogen bond formation within the blend system, the
RDF of atoms related to hydrogen bonds is determined prior to the NEMD
step. Following the final NPT run before NEMD step, an additional NPT
run is performed, lasting 0.08 ns at 300 Kand 1 atm, with a time step of 1 fs,
and the RDF of hydrogen bond-related atoms is calculated. Involved atoms
are listed in Supplementary Table 3. This pipeline facilitates the high-
throughput generation of amorphous polymer blend structures and TC
calculation with minimal human intervention, resulting in expedited AL
iterations and high-performance polymer blend design.

Polymer representations

As a widely employed molecular representation in chemoinformatics and
computational chemistry, MF encodes structural information about che-
mical compounds. These fingerprints, generated using the Morgan
algorithm’, are binary bit vectors that denote the presence or absence of

specific substructural features within a molecule. A chemoinformatics
package RDK:it (https://www.rdkit.org/) is utilized to generate the MF of
polymers, where the radius is set as 2, and the number of bits of the gen-
erated MF is set as 1024. Compared with MF, PE has proved to be more
informative for quantifying structure-property relationships. It is a 300-
dimension continuous vector derived by following the mol2vec model”
framework. Specifically, a polymer is broken down into a sequential
arrangement of substructures. Then, a specific substructure from this
sequence is selected as the target, and a single-layer neural network is
employed to predict the surrounding context substructures associated with
it. Notably, each substructure within the sequence serves as the target
substructure once per training epoch. Upon completion of training, the
neural network’s weights are utilized as the PE. The PE generated in this
work follows the process described in ref. 47.

A RF regression model is trained on Dataset 4 to determine the optimal
representation method for polymer blends. Dataset 4 is first randomly split
into training and test sets with a ratio of 80%:20%. The RF regressor from the
scikit-learn library is utilized, and five-fold cross-validation is performed on
the training dataset to select the major hyperparameters of the model
‘n_estimators’ and ‘max_depth’. Variable ‘n_estimators’ is searched over a
range of 10 evenly spaced numbers within the interval [200, 2000], and
variable ‘max_depth’ is searched over a range of 11 evenly spaced numbers
within the interval [10, 110]. After the model is trained using the selected
best hyperparameters on the training dataset, the performance of the model
on the hold-out test dataset is used as the criteria to evaluate the repre-
sentation effectiveness.

Active learning

In the AL workflow, an RF classification model is iteratively trained on
Dataset 4, which contains all the labeled data. This iterative process involves
updating both Dataset 4 and Dataset 5 by transferring selected candidates
from Dataset 5 to Dataset 4. These candidates are labeled using MD
simulation before being added to Dataset 4 and subsequently removed from
Dataset 5. In each iteration, the RF classifier from the scikit-learn library is
utilized, and two-fold cross-validation is performed on Dataset 4 to select
the major hyperparameters of the model ‘n_estimators’ and ‘max_depth’.
Variable ‘n_estimators’ is searched over a range of 20 evenly spaced num-
bers within the interval [100, 1000], and variable ‘max_depth’ is searched
over a range of 11 evenly spaced numbers within the interval [10, 110]. After
training the classifier with the selected optimal hyperparameters on the
updated Dataset 4, it is employed to assess the candidates in the updated
Dataset 5. Each candidate is assigned a predicted probability, ranging from 0
to 1, indicating the likelihood of being a high-performance polymer blend.
Subsequently, the top k candidates with the highest predicted probabilities
are chosen for subsequent MD testing and labeling. The specific value of k
for each iteration is presented in Table 2. This is the so-called certainty-based
sampling. To assess and showcase the classifier’s prediction performance,
we also conduct a random sampling from Dataset 5 before the certainty-
based sampling during every iteration. Since a batch of data points (from
both certainty-based sampling and random sampling) is queried and added
to the training data pool in every iteration, the AL process involves a hybrid
acquisition method that is more balanced between exploration and
exploitation.

Data availability

The authors declare that the data supporting the findings of this study
are available within the article and its supplementary information files
or will be available for download from https://github.com/Jiaxin-Xu/
PolymerBlendTC-ActiveLearning upon publication.

Code availability

The code for the active-learning process will be available for download
from  https://github.com/Jiaxin-Xu/PolymerBlendTC- ActiveLearning
upon publication. Other codes can be available upon reasonable request
from the authors.
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