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ABSTRACT

Polymeric membranes have become essential for energy-efficient gas separations such as natural gas sweetening, hydrogen separation, and
carbon dioxide capture. Polymeric membranes face challenges like permeability-selectivity tradeoffs, plasticization, and physical aging, limit-
ing their broader applicability. Machine learning (ML) techniques are increasingly used to address these challenges. This review covers cur-
rent ML applications in polymeric gas separation membrane design, focusing on three key components: polymer data, representation
methods, and ML algorithms. Exploring diverse polymer datasets related to gas separation, encompassing experimental, computational, and
synthetic data, forms the foundation of ML applications. Various polymer representation methods are discussed, ranging from traditional
descriptors and fingerprints to deep learning-based embeddings. Furthermore, we examine diverse ML algorithms applied to gas separation
polymers. It provides insights into fundamental concepts such as supervised and unsupervised learning, emphasizing their applications in the
context of polymer membranes. The review also extends to advanced ML techniques, including data-centric and model-centric methods,
aimed at addressing challenges unique to polymer membranes, focusing on accurate screening and inverse design.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0205433
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I. INTRODUCTION
Membrane-based gas separation has received significant attention

in industrial applications, including natural gas sweetening, hydrogen
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separation, and direct carbon dioxide capture.1–4 This interest stems
from its advantages over conventional thermal separation processes,
such as a smaller carbon footprint, reduced spatial requirements, and
significantly lower thermal demands due to the absence of phase
change.3,5,6 These inherent features distinguish membrane-based pro-
cesses from established yet thermally intensive gas separation methods
like cryogenic distillation and pressure swing absorption.3,7–10 The
membrane material is one of the core components of the entire mem-
brane separation process.4 Critical factors influencing a membrane’s
gas separation properties include permeability, selectivity, resistance to
harsh chemical environments, and mechanical and thermal properties,
as well as configuration (such as hollow fiber, spiral wound, or plate
and frame) and the overall system design. These diverse elements
underscore the complex nature of membrane-based gas separa-
tion.1,3,4,11–13 There are two main gas separation membrane material
categories: inorganic and organic. Inorganic materials have limited
applications due to the difficulty in making continuous and defect-free
membranes, inherent brittleness causing mechanical issues, and high
production costs.14 Among organic membrane materials, polymer
membranes are preferred, dominating membrane-based gas separa-
tions in industry due to their lower cost, greater robustness, and ease
of fabrication and scalability.3,12,14–18

The gas transport mechanism in a membrane mainly depends on
its material and the microscopic morphology, whether porous or
dense. As shown in Fig. 1(a), three common gas transport mechanisms
are facilitated transport, molecular-sieving, and solution-diffusion
mechanisms. Facilitated transport is the primary mechanism in
facilitated-transport membranes, which offer high selectivity by incor-
porating a carrier agent into the membrane.19,20 Molecular sieving is
dominant in porous inorganic membranes, such as zeolites, carbon
molecular sieves (CMS), zeolitic imidazolate frameworks (ZIFs), and
metal-organic frameworks (MOFs).12,13,21,22 In this case, the mem-
brane’s pore size is similar to the gas molecule size, allowing smaller

molecules to diffuse at higher rates. Finally, gas transport through
dense polymer membranes mostly follows the solution-diffusion
mechanism.23 This entails the dissolution of permeants at the surface
of the nonporous membrane under high upstream pressure, followed
by diffusion driven by a concentration gradient, and ends with desorp-
tion at the membrane surface on the low-pressure downstream side.

Polymer membrane materials exhibit different physical and
chemical properties that align them with specific gas pairs for effective
separation. The fundamental properties of permeability (P) and selec-
tivity (a) are essential. P measures how fast the gas will pass through
the membrane, and a indicates the membrane’s capacity to discrimi-
nate between different gases. However, these two properties are
inversely interconnected at most times. The P of a gas is the product of
the sorption (S) and diffusion (D) coefficients, as follows:

P ¼ S" D; (1)

S depends on the type of gas and its interface with the polymer matrix,
while D relies on the migration of the gas molecules between the free
volumes in the polymer. Free volume is an intrinsic property of a poly-
mer matrix, which is an estimate of the unoccupied space within the
polymer.18,24,25

Membrane-based gas separations pose unique challenges com-
pared to other membrane applications like reverse osmosis, ultrafiltra-
tion, and pervaporation. This complexity arises from the minimal
difference in kinetic diameters between molecules of the gases targeted
for separation, which typically falls within the narrow range of 0.015–
0.020nm, as shown in Fig. 1(b).27 An illustration of this challenge is
the air separation process, where the size difference between the kinetic
diameters of O2 (0.346nm) and N2 (0.364 nm) is a mere 0.018nm, i.e.,
approximately a 5.20% difference. Achieving effective separation under
these conditions demands the precise and accurate design and synthe-
sis of the molecular structure of polymer membranes.23 Moreover, to
further establish membranes in the gas separation industry, developing

FIG. 1. (a) Three common gas transport mechanisms in membranes: facilitated transport, molecular-sieving, and solution-diffusion. (b) Kinetic diameters of common gas mole-
cules in separation. (c) Schematics of plasticization and physical aging of polymer membranes. (d) Permeability-selectivity trade-off of O2/N2 data from the MSA database.26 X-
axis is the permeability of O2 [P(O2)], in a unit of log Barrer, and the y-axis is the selectivity of O2 over N2 [a O2=N2ð Þ¼P(O2)/P(N2)]. Each dot represents one polymer. The
blue dashed line is the 2008 upper bound, and the red dashed line is the 2015 upper bound.
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tougher and higher-performance materials capable of withstanding
harsh chemical environments is needed.8 While polymer membranes
have gained applications in gas separation, they still face three major
challenges—permeability-selectivity trade-off, plasticization, and phys-
ical aging—that hinder broader applications [Figs. 1(c) and 1(d)].

The trade-off between permeability and selectivity, often
restrained by the “upper bound,” limits the performance of polymeric
membranes. It was first reported by Robeson in 199128 and later theo-
retically validated by Freeman.29,30 As shown in Fig. 1(d), this upper
bound (see dashed lines), represented by a log–log plot of selectivity
against permeability, has seen shifts over the years (2008, 2015, and
201931,32), reflecting advancements in material discovery. However,
these upper bound curves are derived based on pure gas permeation
data and do not account for factors like plasticization and competitive
sorption33 under certain feed conditions, which can significantly influ-
ence permeability and selectivity.

Plasticization is another common issue when polymer mem-
branes come into contact with highly soluble gases.34–37 This leads to
increased chain mobility and free volume due to the swelling of poly-
mers, thus improving the diffusion coefficient and reducing the selec-
tivity [Fig. 1(c)]. Among the gases of interest in gas separations, highly
condensable gases like CO2, H2S, and C3H6, known for their high solu-
bility, are frequently studied in relation to plasticization.10,37,38 Other
non-CO2 causes of plasticization include impurities in the feed, condi-
tioning effects, highly polymer-soluble penetrants.39–41 A promising
solution to this issue involves refining the microstructure of the poly-
mer through methods like cross-linking, thermal rearrangement, car-
bonization, and functionalization.42–44

Physical aging occurs as the nonequilibrium polymer chains relax
toward equilibrium, resulting in reduced free volume and lower perme-
ability [Fig. 1(c)].45 Most of the polymers currently used in gas separa-
tions are glassy polymers,46 which have surplus free volume because of
their non-equilibrium status.45 The microstructure rearrangement
toward equilibrium due to local segment motions decreases their free
volume over time and increases their density. It also modifies the specific
volume, enthalpy, entropy, and other physical properties of polymers.47

Ultimately, physical aging causes a decrease in permeability and, in turn,
an increase in selectivity. The loss in permeability and increase in density
resulting from physical aging can be reversed by elevating the tempera-
ture of the polymer above its glass transition temperature (Tg).

31,48

Various approaches, including polymer blends,49 thermal meth-
ods,50 UV cross-linking,51,52 introduction of nanoparticles,38,53 and the
manipulation of macromolecular design,7,31,54 are employed to control
the free volume in polymers to address these challenges. For example,
incorporating triptycene and pentiptycene into the backbone of the pol-
yimides and polysulfones is useful to control the free volume in glassy
polymers.31,54 Other emerging polymers, such as the thermally rear-
ranged (TR) polymers and polymers of intrinsic microporosity (PIMs),
have also been studied extensively for gas separation because of their
excellent performance.55,56 However, PIMs exhibit a rapid performance
loss due to physical aging, while TR polymers suffer from poor mechani-
cal properties.3,57 Mixed-matrix membranes (MMMs) represent another
thriving field for gas separation within the polymer domain. These
hybrid materials integrate high-performing inorganic materials, such as
metals, zeolites, and MOFs, into polymers and can capitalize on the pro-
cessability of polymeric membranes while addressing challenges linked
to the selectivity-permeability trade-off, concurrently addressing the

processing and fabrication difficulties associated with high-performing
inorganic materials. Outperforming pristine polymers, MMMs owe their
enhanced performance to the precise pore sizes and exact shape and
geometry of the inorganic fillers, making them exceptional molecular
sieves.8 However, MMMs are yet to find commercial applications in gas
separations due to persistent issues such as interfacial imperfections and
the complexity of preparing thin, defect-free MMMs.58

Despite these progresses in polymeric membranes, meeting the
demand for energy-efficient and sustainable gas separation requires
continued innovation. This entails the precise design of polymers with
exceptional separation performance. Traditional approaches, relying
heavily on trial-and-error experiments, have time, cost, and efficiency
limitations. Incorporating theoretical and empirical models can expe-
dite the discovery and design of novel membrane materials.
Researchers increasingly rely on sophisticated modeling techniques
rooted in theoretical physics to gain insights into the underlying princi-
ples governing membrane performance, such as the group contribution-
based methods and the graph theoretical approach.17,59–66 These models
allow for a deeper understanding of the intricate interplay of different
factors influencing separation processes, guiding the design of mem-
branes with improved selectivity and efficiency while saving develop-
ment time. The amount of data accumulated from traditional
experiments and computational and theoretical models has given rise to
the adoption of machine learning (ML) techniques. The rapid develop-
ment of ML has transformed various industries and scientific disci-
plines,67,68 including materials science, where it is used to speed up the
discovery and optimization of new materials.69,70

Within the dynamic landscape of materials science and ML, the
emergence of polymer informatics stands out as a thriving field.
Polymer informatics, using ML to uncover structure-property relation-
ships, has grown rapidly with advances in polymer datasets and ML
algorithms.71–81 While ML can significantly speed up the exploration
of vast chemical and structural spaces, its potential in designing and
optimizing polymeric materials for specific applications, such as gas
separation polymeric membranes, is still in its early stages. This review
delves into different aspects of ML applications in polymer membranes
for gas separation. We focus on three crucial components: polymer
data, representation methods, and ML algorithms. By providing a
comprehensive overview of the current landscape, challenges, and
opportunities, this review seeks to advance polymer informatics for gas
separation membranes and related domains.

II. MACHINE LEARNING FOR POLYMERIC GAS
SEPARATION MEMBRANE DESIGN AND DISCOVERY

This section summarizes ML application for polymeric gas sepa-
ration membranes based on the three primary components: data, rep-
resentation, and algorithms. As illustrated in Fig. 2, these elements
form a cohesive framework for applying ML to material design. Data
are the foundational input, essential for training and validating the ML
models. Polymer representations encapsulate intrinsic structural,
chemical, and additional information into high-dimensional vectors,
enabling ML to map them to the target properties (e.g., permeability).
ML algorithms serve as the computational engine, uncovering hidden
patterns and insights in polymer data to accelerate membrane design
and discovery, and can further boost the acquisition of new data, creat-
ing an iterative process to enhance model accuracy and generalizability
or reach certain design targets.
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A. Data
The bedrock of ML lies in the quality and quantity of the data it

is trained on. In this subsection, we will discuss open-source or pub-
lished datasets relevant to polymers, specifically related to gas separa-
tion. The data can be broadly categorized into experimental,
computational, and synthetic datasets, depending on the annotation
methods and how polymers are created. These datasets typically con-
sist of labeled data (usually experimental and computational), which
supports supervised learning, as well as unlabeled data (usually experi-
mental and synthetic), which is valuable for unsupervised learning.
Unlabeled data include synthesized polymers that are untested for gas
permeability and synthetic polymer structures not yet verified. A sum-
mary of the databases covered in this section is listed in Table I.

1. Experimental datasets

PoLyInfo, a major polymer database,82 offers diverse data for
polymer properties. It includes around 29000 polymers, including
homopolymers (%18 700), copolymers (%7700), and polymer blends
(%2500), with the primary data source being experiments documented
in the academic literature. It covers information such as properties,
chemical structures, processing methods, measurement conditions,
monomers, and polymerization methods. It includes about 100 differ-
ent kinds of properties, spanning from thermal and electrical to
mechanical properties. Gas separation properties, such as permeability,
solubility, and diffusivity coefficients for major industrial gases, are
provided for %1300 polymers (%800 are homopolymers, %400 are
copolymers, and %100 are polymer blends). While PoLyInfo serves as
a valuable resource for both labeled and unlabeled data in gas separa-
tion ML tasks and other polymer informatics applications, accessibility
of the data remains a challenge due to its restrictions on data acquisi-
tion, limiting users to only web-based inquiries. Moreover, meticulous
data cleaning is necessary for information obtained from PoLyInfo,
including aggregating data for polymers with multiple entries from dif-
ferent sources, which can have significant variations.

Specifically for gas separation polymer applications, the
Membrane Society of Australasia (MSA) provides a dataset, which can
be used for ML tasks, known as the Polymer Gas Separation
Membrane Database.26 This database offers experimental data for
%1500 polymers spanning the years 1950 to 2018. Each major gas cat-
egory (e.g., He, H2, O2, N2, CH4, and CO2) has around 400–800 poly-
mers with permeability coefficient records, though many have missing
values. Additionally, other gases (e.g., C2H4, C2H6, C3H6, C3H8, C4H8,
n-C4H10, CF4, C2F6, and C3F8) are also represented. The dataset covers
diverse membrane materials, including rubber and glassy polymers,

CMS, and zeolites. Accessibility is facilitated through a directly down-
loadable table format, making it a good source of labeled data for
model training.91 However, it has several drawbacks. First, it has not
been updated since 2018, excluding many high-performance polymers
for gas separation developed in recent years, especially ladder poly-
mers.54,55,92,93 Second, polymer structural information is missing,
requiring manual effort to obtain the structures for each polymer.
Finally, data cleaning is needed, as homopolymers, copolymers, and
composite materials are intermixed, and some polymers have multiple
entries due to variations in synthesis and testing procedures (e.g., ther-
mal treatment temperatures and aging times) across different data
sources and labs. Unfortunately, these differences are not well-
documented, posing a challenge for researchers in ensuring the accu-
racy and consistency of the dataset. Some works have expanded the
MSA database by adding SMILES and additional polymer permeability
data, enhancing its suitability for direct use in ML applications.94,95

In addition to the PoLyInfo and MSA, we introduce several other
databases that offer extensive information on polymers and their prop-
erties. Like PoLyInfo, CHEMnetBASE96 provides a database of detailed
scientific and commercial information on over 1100 polymers, includ-
ing transport properties like gas permeabilities. The Polymer Property
Predictor and Database97 offers predictions and experimental data on
polymer properties such as Flory-Huggins Chi (v), glass transition
temperature (Tg), and binary polymer solution cloud point, which are
useful for exploring polymer–polymer and polymer–solvent systems.
The Materials Data Facility98 is a platform for hosting and sharing
materials data, including polymers. The Polymer Genome76 is an ML-
based platform for predicting polymer properties and retrosynthesis
planning. However, the experimental and computational data used to
train the models are inaccessible through the Polymer Genome
website.

2. Computational datasets

While experimental datasets are invaluable, their limitations,
such as relatively small volumes (e.g., the MSA database collected
%1500 polymers’ permeability information spanning around 70 years
of effort in the literature) and uncertainties from varied experimental
conditions, highlight the need for more standardized datasets. High-
throughput computational simulation, such as molecular dynamics
(MD) simulations, offers a reliable alternative to experimental data, as
demonstrated in recent polymer informatics studies.83,86,99–101

A general workflow for calculating polymer properties using MD
simulations is shown in Fig. 3(a). Using linear homopolymer as an
example, the process starts by extracting structural information from a
database to obtain the monomer structure, which serves as the building
block of the polymer. Subsequently, the monomer is polymerized to
the desired chain length, ensuring a sufficiently long polymer chain for
simulation. The polymer chain is then replicated to generate an amor-
phous system, followed by optimization to obtain a more realistic poly-
mer conformation, often verified by reproducing known properties
such as density. In the final step, the optimized system undergoes a
production run to calculate the target properties. The calculated prop-
erties are fed back into the database, gradually building a standardized
resource for ML applications. However, this general workflow requires
adjustments for other specific types of polymers. For instance,
some glassy polymers like PIMs may need additional equilibration,
such as the 21-step compression/relaxation scheme described by

FIG. 2. Workflow of ML for polymeric gas separation membrane design and discov-
ery, which is also used for materials in general.
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TABLE I. Summary of datasets related to polymer membranes for gas separation.

Source

Properties Data type
With

SMILES
No.

polymers Note ReferenceSolubility Diffusivity Permeability FFV Experimental Computational Hypothetical
PoLyInfo %29 000 %1300 polymers

are related to
gas separation

82

MSA %1500 Many missing
values 26

Wang et al. 1683 Not openly
available 83

Tao et al. %7900 6500 homopoly-
mers and 1400
polyamides

84

PI1M %1m Trained on
PoLyInfo
database

85

Yang et al. %8m Include 1100
ladder polymers 86

OMG %12m 17 polymeriza-
tion rules 87

SMiPoly 169 347 19 monomer
classes and 22
polymerization

rules

88

Tiwari et al. %14.5m Seven types of
polymer back-
bones and two
small organic
molecule
datasets

89

Polymer
expert

NA Integrated in
MedeA software 90
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Larsen et al.102 For ladder polymers, the polymerization step must
account for the double-stranded backbone. For copolymers, the poly-
merization step needs to include multiple monomer types in a speci-
fied sequence or ratio, such as random, block, or alternating. For
polymer blends, an additional step is required to mix different polymer
chains at the appropriate ratios, followed by optimization to ensure
proper mixing and interaction between the different species.

However, MD simulations are computationally expensive for
large polymer systems and gas permeability calculations, limiting their
scalability for large gas permeability datasets. From a computational
cost perspective, the workflow indicates that the calculation of perme-
ability using MD simulation involves two key steps: (i) constructing
and optimizing an amorphous polymer system and (ii) running prop-
erty calculation, including solubility and diffusivity [Eq. (1)]. The com-
putational burden arises from the need for a large polymer system,
with sufficient atoms (considering chain length and the number of
chains) to ensure an adequate representation of the real polymer, and
the extended time required for optimization and property calculations.
Furthermore, the accuracy of gas permeability calculated through sim-
ulations remains a challenge. Substantial uncertainties are inherent in
simulations due to the randomness involved in the calculation process,
such as initialization, polymerization process, gas molecule insertion
procedures, and other parameters (e.g., molecular interaction poten-
tial) in the simulation setup. These factors, together with the propaga-
tion of uncertainty in Eq. (1), collectively contribute to the difficulty
of accurately calculating gas permeabilities through computations.
Figure 3(b) illustrates the absolute percentage error distribution across
polymer permeability simulation.86,103–107 Notably, over 86% of the

simulations exhibit an absolute percentage error exceeding 10%, with
more than 25% surpassing 100%. This underscores substantial compu-
tational uncertainties in comparison with experimental measurements.
In addition to MD simulation, Monte Carlo simulations and transition-
state theory are also utilized in the calculation of diffusivity, solubility,
and permeability based on their effectiveness with different polymer and
gas characteristics. The choice of forcefield, like PCFF (Polymer
Consistent Force Field),108 GAFF (General Amber Force Field),109 and
COMPASS (Condensed-phase Optimized Molecular Potentials for
Atomistic Simulation Studies),110 is also crucial to reasonably reflect the
specific properties of the polymers under investigation.

In addition to permeability coefficients, fractional free volume
(FFV) is an important feature that characterizes polymer microstruc-
ture and influences separation properties. The free volumes in polymer
membranes are considered chain cavities resulting from chain packing,
serving as diffusion paths for gas transport through the membrane.
The FFV is used to quantify the ratio of free volume in polymer and is
defined as

FFV ¼ V & Vo

V
; (2)

where V is the specific volume of the polymer and Vo is the volume
occupied by the polymer chains.111–113 Determining FFV is more com-
putationally feasible than permeability due to the absence of steps for
calculating solubility and diffusivity, as well as considering interactions
between gas molecules and the polymer matrix. This enables the devel-
opment of relatively large simulation datasets for FFV of polymers. For
example, Wang et al.83 gathered 66 FFV data points from the literature

FIG. 3. A general workflow for calculating polymer properties using MD simulations and related works on gas separation polymer membranes. (a) The general workflow of
building computational database of amorphous polymer properties using MD simulations. (b) Histogram of the absolute percentage error ( Psimulation & Pexperiment

!! !!=
Pexperiment " 100%) collected and calculated from various studies on computational simulation of polymer permeabilities of different gases.86,103–107 Psimulation is the calculated
permeabilities using MD simulation from different works, and Pexperiment is experimentally measured permeabilities compared in these works. (c) MD simulation results of
polymer FFV from Tao et al. benchmarked against literature data points. Reproduced with permission from Tao et al., J. Membr. Sci. 665, 121131 (2023). Copyright 2023
Elsevier B.V.
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calculated using a combination of experimental data and Bondi’s group
contribution methods.114 They then employed MD simulations to cal-
culate the FFV of 1683 polymers, with verified MD protocols based on
the 66 literature data. While the 66 data are accessible in their paper,
the 1683 MD data are not openly available. After that, Tao et al.84 uti-
lized MD simulations, benchmarked against ten literature data points
[as shown in Fig. 3(c)], to simulate over 6500 homopolymers and cal-
culate the FFV. Additionally, they simulated over 1400 cross-linked
polyamide systems using a multi-step cross-linking strategy.115 Both
the datasets of homopolymers and polyamides are openly accessible,
providing a valuable supplementary source for ML models in the dis-
covery of polymer membranes with high separation performance.

3. Synthetic datasets

In addition to already synthesized polymers, synthetic polymer
structures are also valuable for ML screening in gas separation. Five
representative works on synthetic polymer generation are illustrated in
Figs. 4(a)–4(c). Ma et al.85 introduced the PI1M database [Fig. 4(a)], a
synthetic polymer dataset of approximately 1 " 106 entries. Learned
from the SMILES (see Sec. II B Representation for more details on
SMILES) of existing polymers in PoLyInfo82 using a recurrent neural
networks (RNN),116 PI1M covers a chemical space similar to PoLyInfo
but significantly populates the regions where the PoLyInfo data are
sparse. However, the synthesizability of the synthetic polymers is not
ensured, limiting their practical applicability in real-world applications.

Yang et al.86 crafted two synthetic datasets tailored for membrane sep-
aration [Fig. 4(b)]. One dataset comprises around 8 " 106 synthetic
polyimides, formed through the polycondensation of known dianhy-
dride and diamine/diisocyanate pairs from PubChem.117 The other
one contains about 1100 synthetic ladder polymers by combining
components from existing ladder polymers. There are also other rule-
based generated polymers to address the difficulty of identifying syn-
thetic routes for generated polymers, e.g., the Open Macromolecular
Genome (OMG) dataset [Fig. 4(d)]87 and the SmiPoly dataset
[Fig. 4(c)].88 Both predefine a set of polymerization reaction rules to
generate potentially synthesizable polymers. Similarly, Tiwari et al.89

developed a simple backbone-fragment combination method to com-
putationally construct polymers [Fig. 4(c)], generating 14 datasets
from seven types of predefined polymer backbones and two small
organic molecule datasets (the MOSES and the QM9 datasets).
Polymer Expert90 is another tool that is developed to generate novel
polymers by starting with an initial set of existing polymer units and
expanding the design space through systematic substitution of hydro-
gen with other fragments. This module is integrated into the MedeA
software suite by Materials Design, Inc., to facilitate computational
simulations. However, it is not open source.

B. Representation
Polymer representation is another critical aspect of ML-enabled

polymer discovery and design, transforming intricate polymer

FIG. 4. Various methods for synthetic polymer generation for gas separation. (a) Creation of PI1M database, which consists of 1 " 106 synthetic polymers generated by an
RNN trained on PoLyInfo polymer data. Reprinted with permission from Ma and Lo, J. Chem. Inf. Model. 60, 4684–4690 (2020). Copyright 2020 American Chemical Society.
(b) Synthetic polyimides and ladder polymers datasets tailored for membrane separation purposes. Polyimides are formed through the polycondensation of known dianhydride
and diamine/diisocyanate pairs and ladder polymers are constructed by combining components from existing ladder polymers. Reprinted with permission from Yang et al., Sci.
Adv. 8, eabn9545 (2022). Copyright 2022 Authors, licensed under a CC BY-NC 4.0 License/AAAS. (c) SmiPoly dataset creation which is based on 19 preselected monomer
classes and 22 predefined polymerization rules. Reprinted with permission from Ohno et al., J. Chem. Inf. Model. 63, 5539–5548 (2023). Copyright 2023 Authors, licensed
under a Creative Commons Attribution (CC BY) License. (d) Open Macromolecular Genome (OMG) dataset creation, which is based on four predefined polymerization rules
(17 sub-rules). Reprinted (adapted) with permission from Kim et al., ACS Polym. Au 3, 318–330 (2023). Copyright 2023 American Chemical Society. (e) Synthetic polymer gen-
eration based on backbone-fragment combination using seven types of predefined polymer backbones and two small organic molecule datasets. Reprinted with permission
from Tiwari et al., J. Chem. Inf. Model. 63, 5539–5548 (2024). Copyright 2024 American Chemical Society.
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structures and other determining factors of polymer properties into
simplified descriptors or high-dimensional vectors for tasks such as
property prediction, similarity searching, and inverse design. The general
workflow of polymer representation is summarized in Fig. 5. Here, we
broadly classify polymer representation into two levels: chemistry-level
and processing-level. The former focuses on the chemical structural
information of the individual repeating units, while the latter typically
includes parameters during processing, fabrication, and testing.

1. Chemistry-level polymer representation

The evolution of chemistry-level representation has seen a transi-
tion from traditional descriptors and fingerprints, typically predefined
and offering a static representation of polymer chemistry, to techni-
ques such as graph-based and language-based embeddings, which
often dynamically learn to represent polymer chemistry in a supervised
or self-supervised manner. This evolution signifies a shift in how poly-
mers are analyzed and understood as ML techniques continue to pro-
gress. In this article, “representation” refers broadly to numerical
vectors describing structural and/or compositional information of pol-
ymers. Representations are further categorized as “descriptor,” “finger-
print,” and “embedding.” The former two are derived from static
methods, while the latter is from dynamic learning.

Before generating representations of polymer structures, it is
important to note that, for storage, retrieval, and identification, poly-
mer structures are commonly represented as string notations. SMILES
(Simplified Molecular Input Line Entry System) is the most popular
method, as shown in Figs. 5(a) and 5(b), utilizing a simplified molecu-
lar string-line notation based on the principles of a molecular graph.

SMILES represents a molecule as a sequence of characters, including
letters, numbers, and symbols, each denoting specific atoms, bonds,
and structures.118 For polymers, SMILES often uses asterisks (') to
mark the connection points of repeat units, adapting the notation to
represent the repeating nature of polymers. In the meantime, alterna-
tive string-based representation methods have been proposed to
address some of its limitations. For instance, SELFIES (Self-referencing
Embedded Strings)119 is developed to overcome the issue of invalid or
physically impossible molecule representation in SMILES [Fig. 5(a)].
Every SELFIES string can be converted into a valid molecular graph by
utilizing a context-free grammar, providing a robust molecular repre-
sentation. Another variant is BigSMILES,120 specifically designed to
represent larger and more complex polymers and macromolecules
[Fig. 5(b)]. It introduces additional syntax elements to handle repeat-
ing units, copolymers, and other features typical of large molecules
that are not addressed in the standard SMILES notation. Despite these
advancements, SMILES remains widely used due to its simplicity and
compatibility with open-source ML tools like RDKit.121 The subse-
quent discussion in this section is based on the SMILES notation for
polymers.

Once represented by SMILES—whether as monomers, single
repeated units, or n-mers122—various techniques can translate
SMILES into polymer representations, using either traditional descrip-
tors and fingerprints [Fig. 5(c)] or learned embeddings [Fig. 5(d)]. It
should be noted that ML model accuracy shows a convergence pattern
as a function of n, where n is the number of monomers used.89,122

a. Descriptors and fingerprints. Traditional polymer descriptors
and fingerprints play an important role in characterizing and

FIG. 5. General workflow of polymer representation. (a) Comparison between SMILES and SELFIES notations for expressing molecule structural information. Reproduced with
permission from Krenn et al., Mach. Learn. Sci. Technol. 1, 045024 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution 4.0 license. (b) BigSMILES
illustration for representing larger and more complex polymer and macromolecular systems. (c) Examples of descriptors and fingerprints (MACCS and ECFP) to vectorize
chemistry-level polymer information. Reprinted with permission from D. Rogers and M. Hahn, J. Chem. Inf. Model. 50, 742–754 (2010). Copyright 2010 American Chemical
Society. (d) Examples of graph-based and language-based (Mol2vec) embeddings to vectorize chemistry-level molecular information. Reproduced with permission from Jiang
et al., J. Cheminform 13, 12 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution 4.0 International License. Reprinted with permission from Jaeger
et al., J. Chem. Inf. Model. 58, 27–35 (2018). Copyright 2018 American Chemical Society.
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representing the chemical structures in cheminformatics and compu-
tational chemistry.123,124 These methods reduce complex molecular
structures into numerical or binary representations. Descriptors
encompass a diverse set of quantitative parameters that capture the
structural, topological, electronic, or thermodynamic properties of a
polymer. Examples include molecular weight, logP (partition coeffi-
cient), polar surface area, and various connectivity indices.123,125 On
the other hand, molecular fingerprints are numerical or binary strings
encoding the presence or absence of specific substructures. Each bit in
a fingerprint corresponds to a predefined fragment or pattern, enabling
efficient comparison and screening of large datasets. Commonly used
fingerprints, as illustrated in Fig. 5(c), include the Molecular Access
System (MACCS) keys,126 the Morgan fingerprints (also known as
Extended Connectivity Fingerprints, ECFP),127 Daylight Fingerprints,128

Topological Torsion Fingerprints,129 etc.

b. Embeddings. These traditional approaches reply on predefined
chemical rules to calculate descriptors or fingerprints. However, with
the advancement of ML, particularly deep learning, there is a shift
toward dynamically learning polymer representations directly from
data, known as embeddings. Two prevalent methods for learning poly-
mer embeddings are graph-based and language-based approaches
[Fig. 5(d)].

Graph-based representations leverage the inherent structure of
polymers, treating them as graphs where atoms serve as nodes and
bonds as edges. This intuitive representation aligns well with graph
ML techniques, like Graph Neural Networks (GNNs),130 including
Graph Convolutional Networks (GCN)131 and Graph Isomorphism
Networks (GIN).132 By adopting this graph-centric perspective, power-
ful tools from network theory can be harnessed to learn embeddings
that prove useful in predicting polymer properties133–138 and generat-
ing novel polymer graph structures.139

On the other hand, language-based representations capitalize on
the fact that polymers are initially stored in a SMILES format, which
can be regarded as a “chemical language.” The SMILES notation, with
its encoded chemical rules or grammars, naturally lends itself to learn-
ing representations through Natural Language Processing (NLP)-based
algorithms. In this approach, the chemical structure of polymers is
treated as a “sentence,” and functional groups or substructures are
analogous to “words.” NLP techniques, including sequence-to-
sequence models140 and transformers,141 demonstrate proficiency in
capturing sequential and contextual information in polymer structures,
exemplified by the Polymer Embedding (PE),85 which is based on
Mol2Vec [Fig. 5(d)], an unsupervised learning approach to learn the
representations of molecular substructures.142 Moreover, they are also
proven to be ideal for polymer generative tasks,85 similar to graph-
based representations. This linguistic analogy opens new avenues in
polymer informatics, providing an effective tool for the analysis of
large datasets of polymers using advanced language models.

However, the current chemistry-level representations of polymers
still face challenges. First, using only the single repeating unit as input,
they omit the degree of polymerization, which is a crucial factor affect-
ing polymer properties. For example, polymers with identical composi-
tion usually exhibit higher melting temperatures when the degree of
polymerization increases.143 Second, there is no information describing
polymer synthesis, fabrication, and measurement, which can influence
the conformation and, hence, the properties of polymer materials.

Interested readers are referred to Refs. 85, 122, and 144 for a detailed
comparison between different polymer representation methods in
polymer informatics tasks like density, glass transition temperature,
and melting temperature.

2. Processing-level representation

Beyond chemistry-level representations, research also examines
processing parameters like measurement and fabrication factors and
their impact on membrane gas separation performance.
Measurement-level parameters consider factors like temperature, pres-
sures (on the feed side, permeate side, partial pressure for mixed gas
tests), and feed gas flux. It typically focuses on a specific polymer, dis-
regarding variations in polymer chemistry, and is crucial in membrane
process design and control, as the membrane with the same chemistry
and fabrication process can have different measured permeabilities
under varying measurement conditions.145,146 As for fabrication-level
parameters, they primarily aim to optimize the membrane preparation
step to achieve maximum performance for a given polymer, predomi-
nantly concentrating on polymer-based composite membrane materi-
als. Key parameters include filler type and loading, type of solvent or
boiling point of the solvent, concentration of the membrane casting
solution, crosslinker concentration, catalyst concentration, membrane
thickness, stirring time, synthesis time, and temperature.147–152

Interested readers looking for more on processing-level representations
of polymer membranes in gas separation are encouraged to refer to the
review by Ricci et al.81

Nevertheless, establishing an extensive database of processing-
level representations for polymer membranes is challenging, limiting
these features to narrow datasets focused on one or a few polymers.
This difficulty arises from the inconsistencies in experimental data due
to varying fabrication techniques and measurement conditions across
laboratories. The absence of a standardized protocol for recording
information on polymer membrane fabrication and measurement is
the primary cause of variations, complicating the integration of
processing-level and chemistry-level representations. This hinders the
enhancement of polymer membrane representation and subsequently
limits the accuracy of ML predictions.

C. Machine learning algorithms
ML has revolutionized data analysis, prediction, and automated

decision-making, becoming a powerful tool for the design and discovery
of polymer materials for gas separation. In this subsection, as outlined in
Fig. 6, we first briefly review fundamental ML concepts, including super-
vised and unsupervised learning, along with representative algorithms.
Additionally, we summarize their applications in gas-separation polymer
membranes. Given the scope of this review, for a more detailed intro-
duction to fundamental ML techniques and their broader applications
in materials and polymers, readers are encouraged to explore compre-
hensive reviews on polymer informatics, such as Refs. 69 and 153–155.
Subsequently, we discuss advanced ML techniques and concepts tailored
to specific challenges in polymer membranes for gas separation, i.e.,
accurate screening and inverse design. We focus on improving the
model screening accuracy from data, model, and interpretability aspects.
We also provide a summary of works (in Table II) that employ these
techniques to navigate the extensive chemical and structural landscape
of polymer membranes for gas separation.
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1. Traditional machine learning and applications

Traditional ML algorithms are usually categorized into supervised
and unsupervised learning. Supervised learning entails mapping inputs
to outputs based on labeled input-output pairs, commonly known as
labeled data.156 The model is trained to minimize a loss function, align-
ing the accuracy of predicted values with ground-truth values.
Classification and regression are two key approaches in supervised
learning. Classification predicts categorical values of the output,
employing algorithms like logistic regression, decision trees, random
forest (RF), neural networks (NN), and support vector machines.157

Regression predicts continuous output quantities using algorithms
such as Gaussian processes (GP), RF, and NN.158 Due to the typical
target output in gas separation being the permeability—a continuous
variable—regression is the convention for ML in this context.

One of the pioneering works in this domain dates back to 1994.
Wessling et al.159 utilized an NN to model CO2 permeability in 33
glassy polymers, using the infrared spectra of polymers as the input
feature. Despite the limited data size, they achieved accurate predic-
tions, highlighting the potential of ML in the QSPR analysis for poly-
meric membrane gas separation materials. Subsequent research
endeavors have incorporated more labeled data, advanced polymer
representations, and sophisticated ML algorithms to achieve enhanced
prediction performance. For instance, Hasnaoui et al.160 employed an
NN to predict O2, N2, CO2, and CH4 permeability in 149 polymers,
using 20 group contribution descriptors from Yampolskii et al.170 and
temperature as inputs. Zhu et al.161 employed GP regression to predict
permeability for He, H2, O2, N2, CO2, and CH4, along with ideal selec-
tivity for a dataset of 315 polymers. They used a hierarchical finger-
printing method, requiring only knowledge of the chemical structure
of the polymer repeating unit (e.g., SMILES), as input features. Testing
the model on a holdout dataset of 31 polymers revealed good perfor-
mance on the major polymer classes and larger deviations for poly-
mers from underrepresented classes. Following a similar procedure as
Zhu et al.161 Barnett et al.162 utilized GP regression to create a gas per-
meability ML model, incorporating a topological, path-based finger-
print of the polymer repeating unit as the input feature. The model,
trained on data for six gases and around 700 polymers, was used to
predict the permeability values of around 11000 unlabeled polymers.

Experimental validation of two promising candidates for CO2-related
separation substantiated the alignment between the ML model predic-
tions and real-world outcomes, demonstrating the great potential of
ML to guide and inform experimental efforts in polymer research.
Zhao et al.163 developed a model for predicting gas separation perfor-
mance with a specific focus on polyimide membranes using NN and
the repeat unit structure. The dataset included 125 polyimides, and 20
descriptors were calculated using Yampolskii’s group contribution
fragments.170 The model showed promising results on CO2 permeabil-
ity prediction, demonstrating applicability to polyimides and copolyi-
mides. The model’s simplicity makes it a valuable tool for guiding
polyimide synthesis and structure screening. Meanwhile, selectivity is
another important target variable defining membrane performance. A
common practice is to derive selectivity from predicted permeabilities.
However, Tiwari et al.89 found that directly predicting selectivity yields
greater accuracy by avoiding issues with uncertainty propagation.

In addition to using fingerprints or descriptors for polymer repre-
sentation, more recently, researchers utilized representation learning
from deep neural networks to learn the embeddings of polymers. For
example, Wilson et al.166 treated polymer structures as graphs and
developed a multioutput GNN named PolyID to facilitate the efficient
identification of high-performance bio-based polymers. PolyID
enabled the discovery of bio-based poly(ethylene terephthalate) (PET)
analogs with enhanced thermal and gas separation performance
through the screening of over 22 000 polyester candidates. While one
of the PET replacements was experimentally synthesized to validate
the model performance, the validation focused solely on Tg prediction,
with no validation for gas permeability prediction.

Unlike supervised learning, unsupervised learning deals with the
input features without corresponding labels, also known as unlabeled
data, making it suitable for clustering, dimensionality reduction, and
associative rule mining.171 Algorithms, such as K-means clustering,
principal component analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), uniform manifold approximation and projection
(UMAP), and autoencoders, are commonly used on unlabeled data. In
polymeric gas separation membranes, these techniques are often used
to visualize polymer representations.171,172 For instance, Yang et al.86

used UMAP and Wilson et al.166 used PCA to visualize the chemical
space (representation space) of their labeled and/or unlabeled polymer

FIG. 6. An overview of fundamental
machine learning (ML) concepts, encom-
passing supervised and unsupervised
learning, alongside advanced ML techni-
ques tailored to address specific chal-
lenges in polymer membranes for gas
separation, including accurate screening
and inverse design. Three critical aspects
for accurate screening are highlighted:
data-centric methods, model-centric meth-
ods, and model interpretability.
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TABLE II. Summary of chemistry-level ML works on polymer membranes for gas separation.

Work

Data

Generative
No. training

data Representation ML model Note ReferenceHe H2 O2 N2 CO2 CH4

Wessling et al. 33 Infrared spectra NN 159

Hasnaoui et al. 149 Group contribution
descriptors, temperature NN 160

Zhu et al. 315 Hierarchical fingerprint GP 161

Barnett et al. %700
Topological, path-based

fingerprint GP
Successful experimental
validation of two promis-

ing candidates
162

Zhao et al. 125 Group contribution
descriptors

NN Focus on polyimides 163

Yuan et al. 1378 N/A MICE Missing value imputation 164

Yang et al. 778
Morgan fingerprint with

frequency MICE, NN, RF 86

Liu et al. 595 Graph-based embedding GNN
Data augmentation
through rationale
identification

138

Liu et al. 595 Graph-based embedding GNN, Diffusion Data augmentation
through generative model 139

Liu et al. 595 Graph-based embedding GNN Pseudo-labeling 165

Wilson et al. %250 Graph-based embedding GNN Focus on biobased
polymers 166

Kuenneth et al. %300–600
Language-based
embedding DeBERTa

Self-supervised learning,
including co-polymers 167

Giro et al. 1169 Topological, geometrical
and structural fingerprint RF, SVM, etc. MD calculated

permeability 99

Basdogan et al. 780 ECFP4, MACCS RF, GA 168

Xu et al. %500–800 Graph-based embedding,
ECFP4, MACCS GNN Data augmentation and

pseudo-labeling 169
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datasets for gas separation, revealing the relationship between different
datasets. These algorithms play a crucial role in deducing patterns and
structures from unlabeled data, especially in polymers, where
application-specific labels are usually limited.72,155

2. Beyond supervised and unsupervised learning

a. Accurate screening—the sparsity and imbalance in polymer
membrane data. ML proves effective for material screening. However,
annotating properties like gas permeability for polymers is costly and
time-consuming,71–73,85 limiting the size of available training data for
accurate screening. While scaling up deep learning models has shown
promise in discovering inorganic materials173,174 and small mole-
cules,175 replicating similar success in polymers, especially for gas sepa-
ration, is challenging due to limited data. This limitation arises from
the typically higher complexity of polymer systems compared to small
molecules and inorganic materials. To illustrate, PubChem117 is a data-
set hosting various molecular properties for drug discovery. For bioac-
tivity and toxicity information, it has around 305 " 106 records. The
Open QuantumMaterials Database (OQMD)174 consists of more than
1 " 106 density functional theory (DFT)-calculated thermodynamic
and structural properties of inorganic compounds from the Inorganic
Crystal Structure Database (ICSD).176 On the contrary, datasets for gas
separation polymers are notably smaller, as indicated in Table II, with
only a few hundred entries. This substantial data size disparity poses a
significant hurdle in training a generalizable ML model to accurately
screen the large chemical space of gas separation membrane polymers.

Additionally, ML models for predicting gas permeability are gen-
erally fitted using log10 values, which can lead to larger prediction
errors. Moreover, other properties of interest, such as the relative posi-
tion of a polymer in the log–log plot of selectivity against permeability
for a certain gas pair, are often observed less frequently above the satis-
factory upper-bound threshold [Fig. 1(d)], creating an imbalanced
nature in polymer data labels.32 This imbalance tends to lead to a false
negative problem (i.e., misclassifying upper-bound polymers as below
the bound) in the virtual screening process, potentially biasing ML
models toward polymers of lower interest [below the upper bound in
Fig. 1(d)] and causing them to overlook promising candidates of excel-
lent gas separation performance.

In this subsection, we review the methods developed in the ML
community for addressing data sparsity and imbalance issues related
to gas separation polymers and discuss their potential for enhancing
virtual screening to identify high-performance materials. Following the
three elements in the ML workflow in Fig. 2 (data, representation, and
ML algorithm), we categorize the methods into two types: data-centric
and model-centric methods. Data-centric methods prioritize enhanc-
ing both the quantity and quality of the data to improve the model per-
formance, whereas model-centric methods focus on refining the
learning of model parameters. Notably, the second element (polymer
representation) can be integrated into the third element (the ML
model) in advanced ML frameworks.

Data-centric methods. Data-centric methods, summarized in
Fig. 7, concentrate on improving the training data quantity and quality
to enhance model performance and screening accuracy. By integrating
with model training, these methods allow for dynamical updates to the
training set, continuously refining model performance. We categorize
data-centric methods into three types: data augmentation (DA) (pri-
marily using labeled data), pseudo-labeling (primarily using unlabeled

data), and active learning (strategically selecting and labeling the most
informative unlabeled data).

Data augmentation
To help MLmodel training, data augmentation (DA) approaches,

inspired by techniques from fields like image augmentation,177 focus
on expanding training datasets by generating useful, albeit not neces-
sarily realistic, examples. Common DA techniques can be categorized
into perturbation-based and learning-based methods. Perturbation-
based DA methods for polymers involve introducing small perturba-
tions to the graph structure of polymers, as shown in Fig. 7(a), such as
node feature masking,178 edge dropping,179 and subgraph replace-
ment.180 Sun et al.180 introduced the concept of bioisosteres (sub-
graphs) replacement to ensure the chemical validity of augmented
molecular graph, addressing concerns related to chemical integrity
(some perturbation methods may make the augmented data chemi-
cally invalid) from some DA approaches like edge dropping.

Meanwhile, learning-based DA methods have emerged to avoid
the heuristic search for optimal augmentation methods. For instance,
as illustrated in Fig. 7(b), Liu et al. introduced a graph-based frame-
work (Graph Rationalization enhanced by Environment-based
Augmentations, GREA). This approach partitions the polymer graph
into two parts: rationale (task-relevant subgraph) and environment
(task-irrelevant subgraph). It then combines the rationale from one
polymer with the environment of another in the latent space, thereby
augmenting the limited training data.138 Using GREA, an O2 perme-
ability dataset of 595 polymer membranes, primarily sourced from the
MSA database, was augmented, achieving an average R2 of 0.941 on
the test set.

In addition to relying solely on the limited labeled data of poly-
mer gas permeability prediction, leveraging large sets of unlabeled mol-
ecule or polymer data (e.g., from ZINC, QM9, and PoLyInfo
databases) present a valuable resource to extract useful chemical
knowledge (i.e., data distribution) to augment the labeled data.
Building on this concept, as depicted in Fig. 7(c), Liu et al. developed a
data-centric transfer framework (DCT) utilizing a generative diffusion
model trained on a comprehensive unlabeled dataset to iteratively gen-
erate task-specific polymer examples, into which minimal sufficient
knowledge from the unlabeled data was transferred. The generated
data were used to augment the labeled dataset for training a more
accurate polymer O2 permeability prediction model. The results indi-
cate a 17.7% decrease in prediction error on the test dataset compared
to a vanilla GNN with no data augmentation and 14.6% compared to
GREA, which relies solely on the training data for augmentation.139

Interested readers are referred to Refs. 181 and 182 for a more
comprehensive introduction to graph DA. However, current
approaches in DA primarily focus on augmenting the training set
without directly addressing data sparsity and imbalance issues in poly-
mer datasets. Future work in polymer tasks, e.g., prediction of gas per-
meability, should tailor DA approaches to generate training data
points based on the specific data and label distribution within the task.

Pseudo-labeling
Pseudo-labeling, also known as self-training, is a semi-supervised

learning approach that iteratively assigns pseudo-labels to unlabeled
data and incorporates them into the labeled training set for model
training.183 The generalized workflow of pseudo-labeling is shown in
Fig. 7(d). Liu et al.165 utilized pseudo-labeling alongside DA techni-
ques, proposing a Semi-supervised Graph Imbalanced Regression
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(SGIR) framework to address the training data sparsity and imbalance
issue in the polymer permeability data. By enhancing the training data
in the under-represented label areas, SGIR reduced average prediction
error by 17.8% compared to vanilla GNN and 17.3% compared to
GREA. Combining data augmentation (GREA) and pseudo-labeling
(SGIR) techniques, Xu et al.169 improved ML prediction accuracy on
the small and imbalanced dataset of polymer gas permeability and vali-
dated their prediction by experimentally synthesizing two polymers
with superior gas separation performance.

Missing value imputation can also be considered a form of
pseudo-labeling in polymer permeability datasets, given that these
datasets often include missing values. In many instances, a given poly-
mer entry may possess limited gas permeability records, with some
gases lacking recorded values. Yuan et al.164 addressed this challenge
by developing an ML model for imputing missing values in the data-
sets. They employed the multivariate imputation by chained equations
(MICE) algorithm, incorporating Bayesian linear regression (BLR) and
extremely randomized trees (ERT) for inference, to predict missing
permeabilities for six common industrial gases. Building on this, Yang
et al.86 proposed an ensemble ML strategy for membrane materials
discovery. They employed MICE to complete missing entries, then
trained an ensemble of NN and RF models, and tested molecular
descriptors and Morgan fingerprint with frequency as input features.
Conducting high-throughput screening of over nine " 106 synthetic
polymers, they identified ultra-permeable polymers validated through

MD simulations. However, a potential issue of data leakage exists
when training and testing with imputed data. Researchers need to be
cautious when evaluating model in scenarios involving data
imputation.

A key challenge in pseudo-labeling is defining a confidence score
to assign pseudo-labels to confidently predictable labels.183 Many stud-
ies have explored improving uncertainty estimation to aid the model
in filtering out noise for reliable pseudo-labels.184–186 However, this
restricts pseudo-labeling to high-confidence labels, potentially over-
looking a substantial number of high-uncertainty labels. Future work
might consider integrating active learning (see next session) as a com-
plementary approach to pseudo-labeling for handling high-
uncertainty data. Moreover, like DA approaches, a sampling strategy
for pseudo-labels is crucial to balance label distribution, rather than
blindly adding examples to the training data. Without a thoughtful
sampling strategy, there is a risk of exacerbating model bias using
pseudo-labeling.

Active learning
Similar to pseudo-labeling, active learning [Fig. 7(e)] tries to

improve model accuracy and generalizability by adding labeled data
into the ML loop leveraging uncertainty estimation.187–189 The key dif-
ference is that active learning focuses on selecting the most informative
data, involving the trade-off between exploration and exploitation, and
assigning real labels to them using oracle knowledge—an information
source that provides accurate labels to the selected data. Although

FIG. 7. Data-centric methods to enhance model performance and screening accuracy. (a) Small perturbations added to the structure of polymers to augment the data. (b) A
graph rationalization enhanced by environment-based augmentation framework (GREA). It partitions the polymer graph into two parts: rationale (task-relevant subgraph) and
environment (task-irrelevant subgraph) and then combines the rationale from one polymer graph with the environment from another in the latent representation space, thereby
augmenting the limited training data. (c) A data-centric transfer (DCT) framework utilizing a generative diffusion model trained on a comprehensive unlabeled dataset to itera-
tively generate task-specific polymer examples for the labeled dataset. (d) The generalized workflow of pseudo-labeling. It iteratively assigns confident pseudo labels to the
unlabeled data and incorporates them into the labeled training set for model training. (e) The general workflow of active learning, which mitigates model uncertainty by adding
additional labeled data in the ML loop leveraging uncertainty estimation.
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active learning has not been employed to discover high-performance
gas separation polymer membranes, its effectiveness has been demon-
strated in other polymer discovery tasks, including polymers with high
Tg, polymer blends with high thermal conductivity, peptide-binding
polymers, among others.190–194 Combining active learning with
pseudo-labeling could be promising to harness the knowledge embed-
ded in unlabeled polymer data and enhance the model prediction
accuracy for gas separation performance.

Model-centric methods. In contrast to data-centric methods that
prioritize improving the training data quantity and quality, model-
centric methods concentrate on effective learning of model parameters
(or data representation) through model structure design. There are
two mains types: transfer learning (TL) and self-supervised learning
(SSL). In TL, a training set usually comprises only labeled data for dif-
ferent tasks. As for SSL, the training set typically contains both labeled
data and unlabeled data. Model-centric methods aim to create data-
efficient models for tasks like representation learning and knowledge
transfer. Typically, the labeled (and unlabeled) training data are
assumed high-quality to solve the data imbalance and sparsity
problems.

Transfer learning
TL is a promising framework for addressing data sparsity, which

can leverage the information from a distinct but related “source” task
to inform a model on a “target” task by transferring model parameters,
as illustrated in Fig. 8(a).195,196 It avoids the model parameter learning
from scratch (i.e., a cold start) and reduces the amount of labeled data
needed for a new task. In data-driven material research, TL has gained
preliminary achievements. For instance, the transferability of metal-
organic frameworks gas adsorption capacity is tested across different
gas species and conditions, showing the great promise of TL when
source and target tasks share common knowledge.197 As for polymer

research, Wu et al.198 utilized features from well-populated proxy
properties (Tg) to build a deep neural network on the thermal conduc-
tivity of polymers (R2¼ 0.73) with only 28 data points.

To assess the effectiveness of TL in predicting polymer gas per-
meability, we conduct a demonstrative cross-gas TL study using the
N2 and O2 permeability data from the MSA database. Given the lim-
ited size of labeled data for both gases (%600) and recognizing poten-
tial relationships among different gas permeabilities of polymers, we
hypothesize the existence of transferability between different gas per-
meabilities. Therefore, TL could enhance model performance, such as
leveraging O2 permeability as a source task to transfer knowledge and
improve the accuracy of predicting N2 permeability.

Herein, PE85 is employed to map SMILES of polymers into a
300-dimensional continuous vector. A multilayer perceptron (MLP)
with three hidden layers is constructed for the two data sets predicting
the N2 and O2 permeabilities of polymers. These models, referred to as
the proxy model if trained on O2 data or the direct learning (DL)
model if trained on N2 data, do not involve knowledge transferred.
Weights and bias for each hidden layer of the O2 proxy model are
saved after training on the corresponding whole dataset for subsequent
cross-gas TL studies. Then, the proxy model trained on the O2 data is
further trained in the TL scheme for the N2 dataset on the whole data-
set (denoted as TL-whole, while DL models trained on the correspond-
ing whole dataset are denoted as DL-whole). Prediction performance
on N2 permeability is evaluated in a fivefold cross-validation manner
using mean squared error (MSE). To simulate common situations in
polymer informatics where only very limited property data are avail-
able and to test the efficiency of TL under these circumstances, we
train the O2 proxy models using the TL scheme for N2 data on 20 dif-
ferent sets (to eliminate overfitting) of 100 randomly selected N2 data
points, denoted as TL-100-full, and use the remaining N2 data that are

FIG. 8. Model-centric methods to enhance model performance and screening accuracy. (a) The framework of transfer learning. It leverages the information obtained from a
“source” task to inform a model on a “target” task through the transfer of model parameters. Both the source and target tasks use labeled data. (b) Transfer learning perfor-
mance on N2 permeability prediction using O2 permeability data to train a proxy model. All permeability values are in units of log10 Barrer. Prediction performance is evaluated
in a fivefold cross-validation manner using mean squared error (MSE) and is visualized in box plot. The orange line in each box denotes the mean of MSE. “DL-whole” denotes
the direct learning (DL) case using the whole N2 data; “TL-whole” denotes the transfer learning (TL) case where we first use the whole O2 data as the source task and then use
the whole N2 data to fine-tune the model parameters (three hidden layers); “DL-100” denotes the DL case only using 100 randomly sampled N2 data to simulate the limited
training data scenario; “TL-100-full” denotes the same TL case as “TL-whole,” however only utilizing 100 randomly sampled N2 data to fine-tune; “TL-100-1st” and “TL-100-2nd”
denote the same TL case as “TL-100-full,” however only transferring the 1st or 2nd hidden layer parameters from the source task. (c) The framework of self-supervised learn-
ing. It transfers knowledge from unlabeled data (self-supervised task training) to labeled data (downstream task or target task training) through model parameters.
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not for training to test the model performance. MLP models directly
trained on the same 100N2 data with the identical architecture as the
O2 proxy models are also constructed for comparison, denoted as DL-
100. Moreover, to further validate the application of TL from O2 per-
meability to N2, an additional experiment is conducted. We only use
the pre-trained parameters (weights and bias) in the first or second
hidden layer and leave the rest randomly initialized, which are denoted
as TL-100-1st and TL-100-2nd, respectively, in Fig. 8(b). The MLP is
constructed using PyTorch with the rectified linear unit (ReLU) activa-
tion function and the Adam optimizer.199

As depicted in Fig. 8(b), the TL-whole model, transferred from
O2 to N2, exhibits a substantial decrease in the median of MSE by over
50%, dropping from 0.390 (DL-whole) to 0.177 (TL-whole). This
underscores the robustness of TL to enhance the prediction perfor-
mance of MLP for polymer membrane gas permeability. Even in sce-
narios with only 100 selected data points for training, the TL scheme
demonstrates a positive impact. The median of MSE decreases by
more than 14%, going from 0.571 (DL-100) to 0.490 (TL-100-full).
Therefore, TL proves effective in improving predictions when only
limited training data are available. Compared to all hidden layers
transferred case (TL-100-full), only transferring the information
learned from the first hidden layer (TL-100-1st, MSE¼ 0.516) is lightly
detrimental to the performance of TL, but still outperforms the DL
case (DL-100). In contrast, when only the pre-trained parameters from
the second hidden layer are transferred (TL-100-2nd), a similar or
even slightly worse MSE (0.582) is observed compared to the DL-100
case. This indicates that the first hidden layer contains most of the use-
ful knowledge learned from the proxy task, and the second hidden
layer primarily serves as a complex nonlinear mixture of outputs from
the first hidden layer, with little impact on the overall model
performance.

However, the limited size of data in the source task may still
impede model generalization. Considering larger and more diverse
small molecule datasets, such as QM9,200 holds promise in this
endeavor,198 though it may introduce task-irrelevant noise for polymer
studies. Exploring further avenues, including empirical observations201

and theoretical analyses on the efficiency of transfer learning from
molecules to polymers, presents promising directions for future
research.

Self-supervised learning
SSL transfers knowledge from unlabeled data to labeled data

through model parameters, as shown in Fig. 8(c). SSL methods involve
manually constructed predictive and contrastive tasks on the unlabeled
data.178,202–204 In graph ML for polymers, predictive tasks include
masked atom attribute prediction178 and masked subgraph predic-
tion.202 In contrast, contrastive tasks203,204 entail perturbing polymer
graph structures to generate positive pairs and minimize the represen-
tation distance between these positive pairs while maximizing the dis-
tance between negative pairs from different polymers. It encourages
the model to learn a meaningful polymer representation where similar
instances (positive pairs) are clustered together, and dissimilar instan-
ces (negative pairs) are separated.

Kuenneth et al.167 introduced an end-to-end machine-driven
polymer informatics pipeline for predicting polymer membrane gas
permeabilities and various polymer properties, featuring polyBERT, a
polymer embedding tool inspired by NLP. The polyBERT model was
trained using a predictive manner of SSL, which predicts the masked

tokens of 100 " 106 synthetic SMILES of unlabeled polymers. The
trained polyBERT was then connected to downstream multitask prop-
erty predictors, mapping the embedding to various properties, includ-
ing gas permeability. The approach demonstrated a two-orders-of-
magnitude speed improvement over existing fingerprint methods
while maintaining accuracy.

However, most SSL methods encounter challenges in cross-
domain knowledge transfer.139,205 The first challenge is that the unla-
beled data for SSL are typically small molecules or synthetic polymers,
whereas the target tasks pertain to real polymers. Second, SSL tasks are
hand-crafted (e.g., the masked tokens prediction method in
polyBERT), usually differing from the downstream tasks of polymer
property predictions. These differences between the unlabeled and
labeled data as well as between the SSL tasks and downstream tasks
may lead to potential knowledge gap in the cross-domain transfer. A
third challenge is an underexplored question of whether the pre-
trained model from SSL still exhibits label imbalance bias when trans-
ferring model parameters to the target tasks. Therefore, to effectively
leverage SSL for polymer gas permeability screening, one should con-
sider collecting specific, larger-scale high-quality polymer datasets85,86

and designing SSL tasks relevant to polymer properties. Researchers
must also carefully examine potential model bias toward to majority
group in the labeled datasets.

Interpretable models. While accuracy is crucial in virtual screen-
ing, researchers also prioritize understanding the rationale behind
model predictions. The ability to interpret the result of the model not
only drives scientific discovery but also, in turn, helps improve overall
model performance. As a result, endeavors have been made to enhance
the transparency and interpretability of advanced ML techniques, facil-
itating their application in polymer gas separation as well as broader
polymer research. The model interpretability can be model-intrinsic if
it is inherently embedded within the model architecture or parameters,
or model-agnostic if it offers interpretability without relying on the
internal details of a particular model.

ML models, such as logistic regression, linear regression, and RF,
offer intrinsic interpretability compared to NN models,206 providing
nuanced physical insights alongside predictions. For instance, Fig. 9(a)
shows the intrinsic feature importance of RDKit descriptors for RF
models predicting Tg and Tm (melting temperature) of polymers.206

Though not exceptionally accurate in prediction because of the model
limitation, this type of feature importance analysis is straightforward
to implement and offers useful preliminary intuition on the global fea-
ture importance across the dataset.

In the meantime, recent efforts have seen an increased explora-
tion of intrinsic interpretable deep learning models, showcasing a
greater advantage in prediction accuracy and local interpretability (i.e.,
for individual datapoint). For example, Wilson et al.166 used a GNN
(PolyID) and bond contribution aggregation to predict properties for
biobased polymers, including gas permeabilities. The relative bond
contribution to the target property (using Tg as an example) prediction
learned through model training can be visualized and compared on
the specific polymers of interest, as shown in Fig. 9(b). The identified
important substructures are further validated by MD simulation.
Similarly, atom contributions can also be calculated and visualized.
Liu et al.138 utilized DA and rationale identification to identify rep-
resentative subgraphs supporting and explaining GNN predictions
on polymer gas permeabilities [Fig. 9(c)]. Atoms highlighted in
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FIG. 9. Interpretable models: model-intrinsic and model-agnostic interpretability. (a) Example of feature importance obtained from intrinsic explainable models, e.g., random for-
est (RF). The RF is trained on Tg and Tm data of polymers represented by RDKit fingerprints. Reproduced with permission from Lee et al., Polymers 13, 3653 (2021).
Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY) License. (b) Visualization of relative bond contributions to the target property (Tg) prediction
learned through model training. Reproduced from C. Kuenneth and R. Ramprasad et al., Nat. Commun. 14, 4099 (2023). Copyright 2023 Authors, licensed under a Creative
Commons Attribution (CC BY) License. (c) Visualization of rationale atoms based on GNN predictions on polymer gas permeabilities. Atoms highlighted in green indicate a
higher probability being classified as rationales, thus contributing more to gas permeability predictions. Reprinted with permission from Xu et al., Cell Rep. Phys. Sci. 5, 102067
(2024). Copyright 2024 Elsevier. (d) Feature importance analysis of gas permeability prediction models using the model-agnostic SHAP method. Reprinted with permission
from Yang et al., Sci. Adv. 8, eabn9545 (2022). Copyright 2022 Authors, licensed under a CC BY-NC 4.0 License.
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green indicate a higher probability of being classified as rationales,
thus contributing more to the model prediction. However, these
intrinsic interpretable deep learning models offer interpretability
only at an individual data level, lacking global insights across the
entire dataset.

In addition to the model-intrinsic interpretation, various
model-agnostic interpretation approaches can enhance the inter-
pretability of ML models, providing valuable insights at local and/
or global levels. Examples include visualizations like partial depen-
dence plots207 and individual conditional expectation,208 as well as
techniques like LIME (Local Interpretable Model-agnostic
Explanations)209 and SHAP (Shapley Additive exPlanations).210

These methods provide flexible tools for interpreting the decision-
making processes of ML models. In ML for polymer membrane gas
permeability prediction, Yang et al.86 used SHAP for feature impor-
tance analysis [Fig. 9(d)], yielding insights consistent with experi-
mental trends.

b. Inverse design. In addition to accurate screening, generative mod-
els also play a crucial role in achieving inverse design for gas separation
polymers. Generative models for polymers generally fall into two

categories: fragment-based and deep learning-based. Fragment-based
approaches create a database of polymer substructures and functional
groups, which are then combined in different ways to construct novel
polymer structures. On the other hand, deep learning-based methods
model the probabilistic distribution of polymer data, enabling inverse poly-
mer designs conditional on desirable properties.211 Generally, deep
learning-based methods encode the high-dimensional chemical space of
polymers into a continuous latent space, from which new polymers can be
decoded/generated.

For fragment-based generative models, genetic algorithm (GA) is
a prominent method for polymer inverse design in gas separation. It
operates through an iterative evolution process [Fig. 10(a)], starting
with a “gene pool” of polymer structural fragments to create the initial
parent polymers. Crossover and mutation operations on segments
then generate offspring polymers. Kim et al.,212 shown in Fig. 10(a),
utilized GA to design novel polymers with high bandgap and high Tg.
Similarly, Basdogan et al.168 employed an ML-driven GA to design
polymer membranes for CO2 separation from N2 and O2. They first
utilized an RF model to predict gas permeabilities and selectivities using
literature data for CO2, N2, and O2, together with polymer fingerprinting
methods (ECFP and MACCS). Then, GA was applied with the RF

FIG. 10. Examples of inverse design for gas separation polymer membranes. (a) An example of genetic algorithm (GA) for polymer inverse design. Reprinted with permission
from Kim et al., Comput. Mater. Sci. 186, 110067 (2021). Copyright 2020 Elsevier B.V. All rights reserved. (b) An example of graph generation algorithm through combination of
fragments for novel polymer generation and design. Reproduced with permission from Giro et al., npj Comput. Mater. 9, 133 (2023). Copyright 2023 Authors, licensed under a
Creative Commons Attribution (CC BY) License. (c) A multi-conditional diffusion guidance framework (Graph DiTs) designed for both polymers and small molecules generation
and optimization. Reproduced with permission from Liu et al., arXiv:2401.13858 (2024). Copyright 2024 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0
International License.
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model to design new polymers, optimizing for separation performance
under constraints. The approach identified promising polymers for
CO2/N2 and CO2/O2 separations, showcasing versatility in constrained
optimization for polymer design. However, it is noteworthy that no
experimental validation was conducted in this study and the synthesiz-
ability of proposed polymers has not been carefully considered.

In addition to GA, graph generation algorithm through combination
of fragments (subgraphs) is another effective fragment-based approach
for novel gas separation polymer membrane design. This process involves
four steps: molecular feature encoding, target property prediction, feature
search and optimization, and graph structure generation.213 Giro et al.99

presented a fully automated computational discovery process for polymer
membranes in CO2 separation based on graph generation algorithm, as
illustrated in Fig. 10(b). The process couples graph generation polymer
design with MD simulation of post-combustion CO2 filtration, showing
quantitative agreement between CO2 permeability predictions from ML
models and MD simulations on the generated polymers. However, while
validated through MD simulation, no experimental validation was con-
ducted, and selectivity was not considered, only focusing on CO2 perme-
ability, which lacks practical influence.

Deep learning-based generative methods have initially found
application and validation in small molecules generation and design.214

Representative algorithms include RNN,85 variational autoencoders
(VAEs), generative adversarial networks (GANs), normalizing flows
(NFs),215 and diffusion models.216 Many successful examples of small
molecule design have been reported using deep learning. For instance,
GraphRNN with reinforcement learning,217 Markov molecular sam-
pling,218 junction tree variational autoencoder with Bayesian optimiza-
tion,219 and long short-term memory networks on SMILES with Hill
climbing.220 While most molecular inverse design and optimization
approaches can be adapted for polymers and gas separation because of
the similarity shared by small molecules and polymers, very limited
endeavors have been reported thus far.

Notably, Liu et al.221 introduced a multi-conditional diffusion
guidance framework (Graph DiTs) designed for both polymers and
small molecules. As illustrated in Fig. 10(c), the Graph DiT
employs a transformer-based architecture to encode numerical and
categorical conditions (such as permeabilities for different gases)
and to learn molecular representations. Leveraging a structure
decoder for denoising from the learned and conditioned molecular
representation, Graph DiT has shown success in an inverse poly-
mer design task for O2/N2 gas separation. The study demonstrates
the generation of polymers that meet multi-property constraints,
showcasing the potential of deep learning in designing polymer
membranes for gas separation.

However, conducting comprehensive studies to evaluate the per-
formance of different deep learning-based generative models on poly-
mers remains a crucial avenue for future research. One notable
challenge is the synthesizability of the generated polymers, a topic we
will discuss more thoroughly in Sec. III.

III. CHALLENGES AND PERSPECTIVES
A. Data

1. Automatic data extraction

The scarcity of experimental data for gas separation polymeric
membranes continues to pose significant challenges. Despite advance-
ments in ML frameworks, as discussed in Sec. II, there is ongoing need

for more training data to capture the vast chemical space of polymers.
While computational simulation methods, such as MD simulations,
offer valuable insights and the potential to augment data coverage,
accuracy issues persist. Integrating NLP techniques for data mining
from literature has shown promise in addressing this challenge. Recent
studies on polymer blends have effectively harnessed NLP techniques
to extract relevant data, showcasing its potential.222 Similarly, Shetty
et al.223 trained a language model, MaterialsBERT, to automatically
extract material property data from polymer literature abstracts, yield-
ing %300000 records from %130 000 abstracts. The data offered
insights into applications like fuel cells and polymer solar cells, demon-
strating the feasibility of an automated literature-to-data pipeline.

2. Data standardization and robustness

The variability in permeability data of polymer membranes
presents a challenge for the robust application of ML. Experimental
data frequently display inconsistencies stemming from different fabri-
cation techniques and measurement conditions across laboratories.
This variability, even among polymers with identical chemistry (e.g.,
PIM-1224), underscores the need for a standardized protocol in poly-
mer membrane fabrication and measurement. The introduction of
autonomous robotic labs for experiments225–228 could enhance stan-
dardization. However, it is crucial to carefully address potential chal-
lenges in autonomous membrane fabrication, such as ensuring
uniformity in coating thickness, maintaining consistent environmental
conditions, and optimizing the reproducibility of experiments.
Additionally, the effects of plasticization and physical aging on perme-
ability values further contribute to data variability. A given polymer
can exhibit different permeability measurements over time, complicat-
ing the assessment of data robustness. In addition to data variability,
ensuring the robustness or reliability of current databases is also cru-
cial. Issues like reverse selectivity in specific pure gas permeability data-
sets (e.g., MSA dataset26) underscore the importance of thorough data
cleaning and validation before feeding training data into ML models.

3. Possibility beyond linear homopolymers

Currently, ML research is predominantly centered on simple lin-
ear homopolymers, constrained by data availability and polymer
chemistry descriptions. However, there is a notable opportunity for
advancement by expanding this focus to include a wider variety of pol-
ymers, such as ladder polymers,92,224,229 polymer blends,230 copoly-
mers,135,231–233 and polymer-based composites like MMMs.8,14,58 This
holds the potential to unlock improved separation performance in
polymeric membranes once more data are available. Adopting
advanced chemical language of polymer chemistry, such as
BigSMILES,120 and integrating its capability into popular cheminfor-
matics software like RDKit could help capture and analyze the macro-
molecular details and complexities inherent in polymers.

B. ML algorithms

1. Generation of synthesizable polymer structures

Current generative algorithms, both fragment-based (e.g., GA
and graph generation algorithm) and deep learning-based (e.g., diffu-
sion model), hold promise for inverse designing of polymer structures.
However, synthesizability, a critical factor in the inverse design process,
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necessitates more sophisticated considerations in these models.
Introducing a comprehensive synthesizability score (e.g., SA score,234

SCScore,235 SYBA score,236 and RAScore237) could enhance the practi-
cal utility of generated structures. Still, it only provides limited infor-
mation on the synthesizability of polymers. Bridging the gap between
algorithmically proposed polymer structures and successful laboratory
synthesis requires addressing crucial factors such as potential polymer-
ization paths and optimal experimental conditions, including reac-
tants, solvents, and film formation.

One promising solution to enhance the synthesizability of gener-
ated polymers is to integrate ML-driven retrosynthesis planning with
generative algorithms. Retrosynthesis planning generally falls into two
categories: template-based and template-free. Template-based
approaches rely on summarized/extracted reaction rules defining atom
and bond changes during reactions.238,239 In contrast, template-free
methods, often utilizing deep learning such as sequence-to-sequence
models, directly predict reactants based on information like
SMILES.240–242

Chen et al. developed a data-assisted retrosynthesis planning tool
for polymer synthesis, demonstrating a template-based approach to
polymer retrosynthesis.243 This method extracts templates from a data-
set of 11448 polymerization paths (involving 9748 homopolymers and
8921 reactant monomers) and uses similarity-based predictions to
select optimal synthesis routes for new polymers. However, this
approach only considers reactants and products and is limited to three
polymerization types for homopolymer synthesis, neglecting crucial
factors such as solvents, catalysts, and experimental conditions as well
as broader polymer types (e.g., copolymers, ladder polymers) and other
polymerization classes. Additionally, it may only be applicable when
the extracted templates are effective for a new polymer, requiring con-
tinuous template updates.

Template-free methods, although potentially more versatile,
may require numerous reactions for training to identify meaning-
ful reaction patterns without templates.240–242 However, as of now,
no work has been reported on polymer retrosynthesis using
template-free methods. Exploring the potential of large language
models for polymer structure generation and optimization, while
considering retrosynthesis planning represents an intriguing direc-
tion for future research.244–246

2. Multi-objective inverse design

Beyond single-target optimization, the challenge of polymer
membrane design lies in incorporating multi-objective optimization
and considering the multifunctionality of polymeric materials. While
permeability is crucial for applying polymer membranes for gas sepa-
ration, other properties, such as mechanical and thermal characteris-
tics,1 are also critical in real-world applications. The exploration of
ML-driven multi-objective optimization can contribute to the holistic
design of polymer materials.

C. Other limitations—aging, plasticization, and
environmental considerations

Addressing aging and plasticization challenges is imperative for
the long-term performance of gas separation membranes. ML
approaches may offer insights into mitigating these issues, enhancing
membrane durability and stability. Ongoing research should explore

the role of ML in overcoming these limitations to ensure the continued
advancement of polymeric membranes. On the other hand, the need
for environmentally friendly polymer membranes is growing.
Presently, the most extensively researched polymers for gas separation
feature fluorine-containing moieties, which enhance processibility, free
volume, and thermal stability due to the strong C–F bond.247,248

However, concerns about the end-of-life impacts of fluorine-
containing polymers on health and the environment are driving
stricter regulatory standards.249–252 This highlights the urgency to
develop high-performance polymer membranes that not only address
drawbacks like permeability-selectivity trade-off, plasticization, and
physical aging, but also align with tightening environmental legislation.
How ML could accelerate the design of more environmentally friendly
high-performance polymer membranes remains to be explored.

IV. CONCLUSIONS
In conclusion, adopting ML in polymer informatics, especially for

gas separation membranes, is a promising avenue that can address the
pressing energy and environmental challenges. This review discussed
the critical role of three primary components: high-quality polymer
data, advanced representation methods, and robust ML algorithms.
We examined diverse datasets, representation techniques, and algo-
rithms employed in recent studies on polymer membranes for gas sep-
aration, providing a comprehensive review of the current research
landscape. Despite notable advancements, challenges and opportuni-
ties persist in applying ML to gas separation polymers. Key issues
include data sparsity, imbalance, reliability, polymer synthesizability,
and the multi-objective optimization of polymer structures, alongside
environmental considerations. As the field evolves, addressing these
challenges will facilitate more efficient and reliable ML applications in
the design and discovery of polymeric materials for gas separation, as
well as broader implications for polymer and material informatics.
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