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Abstract 
The development and design of energy materials are essential for improving the efficiency, 
sustainability, and durability of energy systems to address climate change issues. However, 
optimizing and developing energy materials can be challenging due to large and complex search 
spaces. With the advancements in computational power and algorithms over the past decade, 
machine learning (ML) techniques are being widely applied in various industrial and research areas 
for different purposes. The energy material community has increasingly leveraged ML to 
accelerate property predictions and design processes. This article aims to provide a comprehensive 
review of research in different energy material fields that employ ML techniques. It begins with 
foundational concepts and a broad overview of ML applications in energy material research, 
followed by examples of successful ML applications in energy material design. We also discuss 
the current challenges of ML in energy material design and our perspectives. Our viewpoint is that 
ML will be an integral component of energy materials research, but data scarcity, lack of tailored 
ML algorithms, and challenges in experimentally realizing ML-predicted candidates are major 
barriers that still need to be overcome.  
 
Keywords: machine learning, energy material, optimization, material design, property prediction 
 
1. Introduction 
With challenges brought by climate change and the need for decarbonization, there are significant 
efforts globally to cut down reliance on conventional energy [1]. International commitments (e.g., 
the 2016 Paris Accord) exemplify this effort, where countries worldwide are coming together to 
address these global issues [2-5].  Energy materials are substances or materials that generate, 
release, convert, or store energy, which can be used in applications like energy storage devices, 
energy conversion systems, and energy generators. For instance, any materials used in batteries, 
conductors, photovoltaics, thermoelectric, fuel cells, and hydrogen production are considered 
energy materials. Such materials are indispensably used in our modern lives, but they potentially 
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 2 

contribute to global warming by emitting or producing environmental-damaging materials or CO2 
during their operations or fabrications [6-10]. In response to these challenges, the ongoing 
evolution and development of energy materials over the past few decades have significantly 
enhanced their energy conversion efficiency, resulting in less dependence on fossil fuels and their 
derivatives [11-15]. Therefore, designing and optimizing energy materials become an important 
part of addressing global environmental issues [16]. 
 
The performance of energy materials is dependent on many design factors, such as geometrical 
features, composition, processing conditions, and environmental factors, leading to large design 
spaces, which means that there are numerous possible configurations for their optimization [17-
19]. Conducting experiments to comprehensively search these large design spaces for finding 
optimal material states is usually too costly and time-consuming. Hence, researchers have been 
using simulation tools, such as numerical methods, first-principles calculations, and atomistic 
simulations, to design materials and calculate their properties [20-27]. Nevertheless, exploring 
such large spaces with different design parameters using conventional simulation methods can still 
lead to high computational costs and time. Furthermore, these simulation methods rely on high-
fidelity models to accurately mimic the dynamics of materials [28]. However, models constructed 
for the simulations may not fully capture the complexity of real systems, and simulations may be 
difficult or impossible in certain fields where established theories are lacking or physical models 
are too complicated [29-32].  
 
Data-driven approaches, especially machine learning (ML) [24, 33-37], can establish efficient 
surrogate models, which describe design spaces by approximating the relationship between 
material states and their performance, [38-45] by learning hidden patterns with data. These 
surrogate models can be used to predict material properties for given material features (e.g., 
chemistry, composition, and geometry), and can be leveraged to help design materials with 
desirable performance (figure 1) [46-48]. Over the past decade, ML algorithms have been actively 
explored to accelerate material designs. For example, Wan et al. identified optimal electrode 
structures for redox flow batteries using a framework that couples an ML regression model with a 
genetic algorithm for multi-objective optimization [49]. Dave et al. [50] used an experimental 
design scheme that includes Bayesian optimization and robotics to optimize non-aqueous Li-ion 
battery electrolytes. Li et al. [51] designed high-performance perovskite solar cells using ML 
techniques (e.g., artificial neural networks) with data collected from the literature. Wu et al. [52] 
used ML algorithms (linear regression, multinomial logistic regression and boosted regression 
trees) to accelerate discovering donor/acceptor combinations for high-performance organic solar 
cell applications. Feng et al. [53] used ML techniques (random forest, support vector machine and 
neural networks) to design polymer nanocomposites for energy storage applications. These 
examples demonstrate the potential of ML in designing high-performance energy materials.  
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In this article, we provide a comprehensive overview of research in energy fields using ML 
techniques. First, we introduce basic knowledge of ML, including commonly used ML-based 
design algorithms, aiming to inspire the community to consider applying ML techniques in their 
material design works. Next, we survey recent successful examples of using ML algorithms in 
different energy material fields, demonstrating the potential of ML techniques in high-performance 
energy material design. At last, we close the review by discussing the current challenges of ML 
and our perspectives. 
 

 
Figure 1. The schematic of a typical workflow to design high-performance energy materials using 
ML. Researchers need to prepare datasets to train ML models that can learn the underlying 
knowledge in data. The trained ML models can be used to identify high-performance energy 
materials in large design spaces with the help of optimization algorithms. 
 
2. Introduction to ML 
2.1. ML techniques  
ML, which is a subset of artificial intelligence, aims at learning knowledge with data and 
algorithms to emulate the human learning process, steadily enhancing its accuracy. ML algorithms 
generate surrogates through training processes to make predictions without explicit physics-based 
simulations or calculations. Generally, ML algorithms require data to learn knowledge, but 
physics-informed ML can leverage both data and physical principles, which can be beneficial 
when collecting data is difficult and expensive [54-58]. With the enhanced surrogate prediction 
capability, handling a large number of material candidates becomes possible, allowing us to design 
energy materials with complex characteristics [59-61]. ML may be divided into three categories: 
supervised learning, unsupervised learning, and semi-supervised learning (figure 2) [60, 62].  
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 4 

 
Figure 2. Three main categories of ML algorithms (supervised learning, unsupervised learning, 
and semi-supervised learning). Examples of supervised learning: random forest (RF), linear 
regression, neural network (NN), convolutional neural network (CNN), and support vector 
machine (SVM). Examples of unsupervised learning: k-means clustering, generative adversarial 
network (GAN), autoencoder, and principal component analysis (PCA).  
 
2.1.1. Supervised learning 
Supervised learning algorithms are trained with labeled data, where each piece of data is paired 
with a known output value, which allows the algorithms to learn the correlation between inputs 
and their corresponding outputs. The supervised ML models are usually used as surrogates to 
efficiently calculate the output values of new, unseen input data without the need to perform 
expensive experiments or physics-based simulations. Such models have been seen in a wide range 
of applications, such as image recognition, natural language processing, material designs, property 
prediction, and fraud detection [60]. Some examples of widely used supervised learning algorithms 
are RF, linear regression, NN, CNN, and SVM. In the materials design domain, such supervised 
ML models are commonly used to describe the structure-property relationship to quickly evaluate 
new materials.  
 
Some ML models, such as decision trees and linear regression, are transparent, interpretable, and 
explainable, offering clear insights into their decision-making processes. For example, Weng et al. 
[63] used ML regression models to discover new perovskite catalysts that have enhanced oxygen 
evolution reaction activities, which play important roles in renewable energy production and 
storage.  They used a symbolic regression model to identify a key material descriptor, which 
enabled them to predict the oxygen evolution reaction activities and discover new catalysts.  
However, for some complex ML models, the rationale behind the outputs is not readily 
interpretable and explainable, making such models a “black box”.  Despite their non-transparent 
properties, black box models remain highly useful for predicting labels once properly trained. 
Many complex ML models, such as NN, can be considered black-box models, and they are used 
for property predictions, material designs, classifications, and recognitions [64, 65]. Strategy like 
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SHapley Additive exPlanations (SHAP) values, which provide interpretable means to understand 
the importance of features, can be used as post-analysis to interpret and explain the predictions 
made by black-box models. Fu et al. [66] employed the SHAP analysis to extract synthetic 
parameters of catalysts by interpreting the impact of the descriptors of the trained ML model (e.g., 
k-nearest neighbors, eXtreme gradient boosting, and adaptive boosting). 
 
2.1.2. Unsupervised learning 
Unsupervised learning algorithms learn knowledge from unlabeled data that does not have explicit 
output value. These algorithms discover hidden patterns, structures, or relationships within the 
given dataset, enabling clustering of similar data points or simplification of datasets to reveal their 
inherent structures. These ML models are generally used for data exploration, pattern recognition, 
and feature extraction [62]. Examples of unsupervised learning algorithms are K-means clustering, 
generative adversarial network (GAN), autoencoder-decoder, and principal component analysis 
(PCA). Unsupervised learning has also been used in studying energy materials. Liu et al. [67] used 
an unsupervised classification model to classify whether a given compound has a phonon band 
gap before conducting transfer learning. Jia et. al. [68] designed high-performing thermoelectric 
materials by grouping half-Heusler compounds using an iterative unsupervised learning algorithm. 
Unsupervised learning, however, lacks the ability to predict properties, although it can sometimes 
be combined with supervised learning to narrow down the candidate space [67]. 
 
2.1.3. Semi-supervised learning 
Annotating properties for various energy materials can prove to be costly and time-consuming, 
leading to limitations in collecting sufficient labeled training data for accurate screening. This is 
especially true for many materials used in energy applications. For example, designing polymers, 
characterized by their high complexity, remains challenging due to limited datasets. This data 
insufficiency in energy materials is usually in contrast to other domains where ML has been more 
active and effective. For instance, datasets such as PubChem [69] and the Open Quantum Materials 
Database (OQMD) [70] boast large volumes (~million scale) for drug discovery and inorganic 
compounds, respectively, but polymers suffer from notable data sparsity (~hundred to thousand 
scale) [71, 72]. This substantial difference in data size poses a significant hurdle for training 
generalizable ML models. Moreover, properties of interest, such as gas permeabilities of polymeric 
membranes, are often observed less frequently above satisfactory performance thresholds [72], 
creating an imbalanced nature in data labels. This imbalance often leads to a false-negative 
problem in virtual screening, potentially biasing ML models toward materials of lower interest and 
causing researchers to overlook promising candidates for targeted performance. To address the 
challenges, semi-supervised learning becomes a promising approach [73], especially given the 
expense of producing labeled data for energy materials. Semi-supervised learning deals with 
situations where there are few labeled training data but a large number of unlabeled data, which 
aligns with the constraints of annotating energy materials. We categorize semi-supervised learning 
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 6 

methods into data-centric and model-centric methods. Data-centric methods focus on improving 
data quantity and quality, while model-centric methods refine the learning of model parameters. 
 
A notable data-centric method is pseudo-labeling [74], a semi-supervised learning approach that 
assigns pseudo-labels to unlabeled data and incorporates them into the labeled training set. Liu et 
al. [75] utilized pseudo-labeling in a semi-supervised graph imbalanced regression (SGIR) 
framework to address sparsity and imbalance issues in polymer permeability data by utilizing the 
large unlabeled polymer dataset to augment the limited labeled training data. SGIR achieved 
significant prediction error reduction compared to the conventional vanilla graph neural network 
(GNN). Challenges in pseudo-labeling include defining confidence scores and improving 
uncertainty estimation. Future work may explore integrating active learning as a complementary 
approach and developing sampling strategies for pseudo-labels to balance imbalanced label 
distributions. 
 
In model-centric methods, self-supervised learning for example, involves fine-tuning learned data 
representations from unlabeled data with a labeled dataset to solve supervised learning problems 
[76]. Self-supervised learning transfers knowledge from unlabeled data to labeled data through 
model parameters. Methods for self-supervised representation learning include predictive tasks 
and contrastive tasks on unlabeled data, such as masked atom attribute prediction and masked 
subgraph prediction in graph ML for polymers. Kuenneth et al. [77] introduced polyBERT, a 
polymer embedding tool inspired by natural language processing concepts, trained through 
predictive self-supervised learning. The polyBERT model outperformed existing fingerprint 
schemes in terms of speed and accuracy. However, self-supervised learning methods encounter 
challenges in cross-domain knowledge transfer, mainly due to differences between unlabeled and 
labeled data and between self-supervised learning tasks and downstream tasks. Effective leverage 
of recent self-supervised learning advancements for energy material screening requires specific, 
larger-scale, high-quality datasets and self-supervised learning tasks relevant to material properties, 
along with careful examination of potential model bias in labeled datasets. 
 
Over the past decade, these ML techniques have seen increasing use in designing materials and 
predicting their properties. To statistically analyze trends in ML application within the materials 
field, we extracted the number of relevant publications from the Web of Science using specific 
keywords in the ‘Topic’ search term. The keywords include ‘Material’, ‘Design’, ‘Property 
prediction’, ‘Machine learning’, ‘Supervised learning’, ‘Unsupervised learning’, and 
‘Semisupervised (or semi-supervised) learning’. We opted for the keyword ‘Material’ instead of 
‘Energy material’ to avoid overly narrowing the search index, as many researchers use the broader 
term. Figures 3a and 3b illustrate the growing number of publications applying ML to material 
design and property prediction, indicating an active adoption of ML techniques in material 
research fields. 
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 7 

 
Figure 3. Annual number of publications in the research field of ML for material science. 
Keywords include ‘Material’, (a) ‘Design’, or (b) ‘Property prediction’, and those in the figure 
legend. 
 
2.2. ML-facilitated material optimization and inverse design 
The forward inferences of ML models can be used to predict the properties of candidate materials 
using surrogates. However, in many cases, it is required to optimize or inversely design new 
materials with desirable target properties. Therefore, ML models are also used with different 
optimization schemes to optimize or design new materials.  
 
Inverse design refers to the process of identifying material structures or compositions that exhibit 
desired properties or performance characteristics. In traditional design processes, researchers 
iteratively design and test until they achieve their goals, which might take a long time. In contrast, 
the inverse design starts with desired outputs (i.e., characteristics, functionalities, or properties), 
and then works backward to determine the optimal structures that satisfy the predefined objectives 
(figure 4(a)). In energy materials, ML techniques can be beneficial to constructing reliable inverse 
design models using various optimization techniques, such as genetic algorithms, Bayesian 
optimization, and reinforcement learning. These methods explore the vast design space efficiently, 
guiding the search towards optimal solutions that meet specific property requirements. 
 
Various design models have been used to integrate with ML algorithms, such as active learning, 
inverse design, and black box models [64]. Collecting a lot of training data to build solid models 
by training ML algorithms can be costly and challenging, and a lack of training data often leads to 
suboptimal predictions or classifications. These challenges (i.e., sparsity and imbalance issues in 
the dataset) generally come from the limited availability of experimental/computational data 
(compared to the oftentimes large design space). The disproportionate representation of different 
classes or ranges of values can lead to biased models, resulting in inaccurate predictions. To 
overcome this challenge, ML-aided active learning algorithms have gained popularity in materials 
design and optimization. These active learning algorithms iteratively select the most informative 
samples during an optimization cycle. Hence, the algorithms gradually update their models by 
selectively incorporating informative data points labeled by an oracle, which is an entity that 
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 8 

provides expertise in labeling or evaluating data. The updated dataset is used for the next iteration, 
guiding further data collection. Active learning enables the iterative improvement of the model’s 
performance with a minimal number of training data; thus, it can reduce optimization costs. Hence, 
active learning is widely used for the purpose of optimal designs, such as material design and 
system optimizations [78-81].  
 
Force fields are mathematical models used to estimate the potential energy of a system of atoms 
or molecules, essential for molecular dynamics simulations and materials modeling [82]. 
Developing accurate force fields involves parameterizing the model to capture the interactions 
between atoms accurately [83]. ML techniques have been increasingly applied to force field 
development, where models are trained on high-quality data from quantum mechanical 
calculations (figure 4(b)) [84, 85]. This approach enhances the accuracy and transferability of force 
fields, enabling more reliable simulations of complex material systems [84, 85]. 
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 9 

Figure 4. (a) The schematic of inverse design, where inverse design starts with the desired 
properties to find the optimal design. (b) The schematic of ML force field, reproduced from [84]. 
CC BY-NC-ND 4.0. 
 
2.3. Data preparation  
Data preparation is an important step for ML [86]. Training data used for ML can be collected 
from experiments, reported results, computations, and databases. Using reported data can 
minimize costs for generating training data, but it is essential to consider many factors besides the 
target property of interest in material designs (i.e., experimental conditions, measurement 
techniques, or design baseline). There often can be large deviations between data from different 
literature even for the same material. Hence, researchers are increasingly using computational 
simulations where users can have more control of the data production procedure. Although 
computations are usually more efficient than experiments, they can still be time-consuming. To 
address this limitation, researchers have shared data from their experiments and computations in 
publicly accessible databases, aiming to assist other users with their ML tasks. This is becoming 
more common with many journals mandating data sharing. However, these data usually have 
different formats and are not easy to mass download. There are some databases that are for general 
use or more specialized (e.g., for gas permeability) for material designs. These include: Materials 
Project (MP), Open Quantum Materials Database (OQMD), Materials Cloud, National Renewable 
Energy Laboratory Materials, Inorganic Crystal Structure Database (ICSD), superconducting 
critical temperatures (SuperCon), Harvard Clean Energy Project (HCEP), Materials Commons, 
Cambridge Structural Databases, Materials Data Facility, Nano-HUB, Pearson Crystal Data, 
AiiDA, novel materials discovery (NOMAD), AFLOWLIB, computational materials repository, 
Crystal Open Database, PubChem, Protein Data Bank (PDB), CRYSTMET, Fireworks, PoLyInfo, 
and MatWeb [29, 87-91]. 
 
As ML techniques have been more frequently applied in material science, the importance of data 
preparation has increased. To statistically analyze trends in data preparation, we retrieved the 
number of publications from the Web of Science using the keywords ‘Material’, ‘Machine 
learning’, ‘Experiments’, ‘Simulation’, ‘Database’, ‘Materials Project’, ‘Inorganic crystal 
structure database’, and ‘Materials Commons’. Figure 5(a) shows that ‘Experiments’, ‘Simulation’, 
and ‘Database’ have been increasingly utilized to prepare data, highlighting an increasing use of 
representative databases in figure 5(b). 
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 10 

 
Figure 5. Annual number of publications to prepare data for ML in the material field. Keywords 
include (a) ‘Material’, ‘Machine learning’, and (b) ‘Material’, ‘Machine learning’, ‘Database’, and 
those in the figure legend. 
 
Both data quality and quantity are critical to the performance of the trained ML models. Although 
these databases can support the training of many good ML models, there may be a lack of specific 
properties of particular interest to certain users. Hence, additional data may be required to further 
improve the quality and quantity of training data for these cases. If it is challenging to collect a 
large number of training data because of difficulties in experiments or computations, data 
augmentation strategies may be applied, which however are more popular for image data [90, 92, 
93]. Recently for graph-type data, which can be described by graphs such as molecules [94], 
polymers [95] and crystals [96], techniques like node feature masking, edge dropping, and 
subgraph replacement are also emerging for data augmentation [76, 97, 98].  
 
2.4. Training and evaluating ML models 
With the data prepared, ML models of choice can be trained. Available datasets are usually split 
in a certain ratio into training, validation, and testing sets. Training stays largely as an art, which 
involves experience in hyperparameters (e.g., epoch, batch size, learning rate, momentum, cost 
function, hidden unit, regularization parameter and iteration) tuning using different techniques 
(e.g., grid search, random search, or advanced optimization methods) to optimize the model quality 
[99]. After training, the built models are usually evaluated using a validation set to ensure 
performance by mitigating underfitting or overfitting problems. Here, hyperparameters can be 
finely adjusted to further enhance the model performance. Afterward, a test set is employed to test 
the ML model’s accuracy, estimating the performance of the trained ML model with new and 
unseen data. The performance can be evaluated by comparing known values with predicted results 
from the ML model. Several metrics are used to measure the accuracy of the ML models, for 
instance, accuracy, receiver operating characteristic - area under the curve (ROC-AUC), root mean 
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) [100]. 
Typically, accuracy and ROC-AUC are used for classification tasks: 

Accuracy = C/N (1) 
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where C is the number of correct predictions and N is the total number of predictions. The ROC is 
a graphical curve that illustrates the performance of a classification model by plotting true positive 
rate against false positive rate at classification threshold settings. The AUC quantifies the two-
dimensional area under the ROC curve, serving as an indicator of the model performance. 
 
On the other hand, MAE, RMSE, and R2 are widely used to evaluate the performance of regression 
models. 

!"# = 1
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|)!* − )"|
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#
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∑ ()2 − )")&#
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where n is the total number of data, )" presents true value for ith data point, )!*  presents the predicted 
value for ith data point, and )2	represents the mean of true values. Lower values for MAE and RMSE 
(closer to 0) are preferable, indicating better performance of ML models. In contrast, a higher R2 
score (closer to 1) indicates that the ML model fits well. 
 
2.5. ML-aided design models used for energy materials 
In this section, we highlight three optimization algorithms that have been used for energy material 
optimization and design.  
 
2.5.1. Neural network  
NNs also known as artificial neural networks (ANNs), are a class of ML algorithms inspired by 
the structure and functioning of organismic neural networks. The basic unit of ANNs is the 
artificial neuron and information flows through the network as the weights of connections between 
neurons are adjusted during a training process. NN can have various architectures and can be 
generally classified into several categories, which are multi-layer perceptron (MLP), convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and 
attention-based network networks.  
 
In the domain of energy material studies, MLP stands out as a prevalent NN structure, due to the 
simplicity of the model structure and limited dataset sizes of energy materials. MLP is constructed 
from perceptron, which is the basic unit that processes the weighted sum of inputs through a chosen 
activation function to generate an output. Comprising an input layer, one or more hidden layers, 
and an output layer, the MLP's interconnected neurons allow for customization in terms of the 
number of hidden layers and neurons, with the activation function determining the linearity or 
nonlinearity of its operations. Common nonlinear activation functions, such as Sigmoid, 
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Hyperbolic Tangent, and Rectified Linear Unit (ReLU), are widely used, enabling the model's 
universality [101, 102]. Various loss functions, including cross-entropy (for classification task) 
and RMSE (for regression task), are used to quantify the disparities between predictions and actual 
values [103]. The optimization of MLP weights regarding the loss function utilizes various 
techniques, with gradient descent recognized for its stability and efficiency [104].  
 
Deep neural networks (DNNs) are multi-layer MLPs capable of learning intricate data 
representations through various levels of abstraction [105]. DNNs have demonstrated diverse 
capabilities in various domains and can be generally categorized into CNNs for grid-like data, 
RNNs for sequential information, GNNs for graph-like structures, and attention-based networks 
for the selective focus on different parts of the data. CNNs utilize convolutional and pooling layers 
to automatically extract hierarchical features from grid-like data, commonly applied in image-
related tasks like classification and recognition [106]. RNNs are designed for processing data 
points sequentially related across time or space. It incorporates information from previous time 
steps to capture temporal dependencies. This makes RNNs suitable for handling time-dependent 
phenomena as well as text-based data [107]. GNNs specialize in analyzing graph-like data by 
considering the inherent structural relationships between nodes and edges, frequently employed in 
chemistry, biology, and social network analysis [108]. For example, graph data can represent 
molecules’ structural information where atoms are nodes and bonds are edges, providing a natural 
and intuitive way to model the complex relationships in molecular and crystalline structures. Here, 
graph data allows for the identification of functional groups, the detection of cycles and rings, and 
the analysis of molecular stability and reactivity, showing better predictive performance than 
traditional fingerprinting methods. Furthermore, in crystalline structures, GNNs help model and 
predict properties such as conductivity, thermal stability, and heat capacity [109-111]. GNNs 
generally operate by iteratively updating the representation of each node based on its neighbors' 
features and the edges connecting them (figure 6). This process allows the network to learn 
complex interactions within the material structures, making it suitable for predicting the properties 
and behaviors of materials. Attention-based networks introduce a dynamic and adaptive 
mechanism that sets them apart from other DNN architectures. Unlike conventional models that 
process the entire input uniformly, attention-based networks selectively focus on specific elements 
of the input, assigning varying levels of importance based on their relevance to the task [112]. This 
makes attention-based networks particularly powerful in scenarios where nuanced attention and 
context-aware processing are crucial, such as machine translation, sentiment analysis, image 
captioning, and material science [113-115]. 
 
In general, NN excels in capturing intricate patterns in data, making them well-suited for predicting 
complex material properties and optimizing material structures. They can automatically learn 
relevant features from the input data, eliminating the need for manual feature engineering. This is 
advantageous when dealing with high-dimensional and unstructured materials data, thus it has 
been increasingly utilized in energy material research. For example, Li et al. [116] designed battery 
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thermal management systems using ANN models. Kaya et al. [117] optimized ultra-thin organic 
solar cells using an NN-based surrogate model. These examples show that NN is useful for energy 
material design. However, NN also has limitations, for example, it usually requires large amounts 
of labeled data for training mainly because of the complexity of the model structure, and the quality 
of predictions heavily depends on the diversity and representativeness of the training dataset. 
Moreover, the complex, non-linear nature of NN often results in models that are challenging to 
interpret. 
 

 
Figure 6. The schematic of GNNs, illustrating how to update the representation of nodes based on 
the features of its neighboring nodes and the edges connecting them. 
 
2.5.2. Genetic algorithm 
Genetic algorithms (GAs) are stochastic search techniques inspired by evolutionary biology, 
encapsulating procedures such as inheritance, mutation, selection, and crossover to explore the 
broad regions of the solution space and avoid local minima. After determining the fitness values 
for all chromosomes, the algorithm selects two elite chromosomes, which exhibit the highest 
fitness values. These are then subjected to a single-point crossover operation, executed with a 
crossover probability, to produce offspring. This newly formed offspring subsequently undergoes 
a uniform mutation, with a mutation probability, resulting in the creation of a modified offspring, 
which is then incorporated into the new population. The entire process, encompassing selection, 
crossover, and mutation, is methodically repeated for the current population until the composition 
of the new population is fully realized. Chromosomes in GAs for energy material design are the 
objectives in the GA evolutions, which represent key parameters of material structures, such as 
atomic composition, crystal structure, or structural configuration. The encoding of material 
structural features usually involves transforming the parameters into a genetic format (i.e., binary 
encoding, or integer encoding). This encoding process ensures that GAs can effectively manipulate 
and optimize the material structures through mutation, crossover, and selection. At the end of the 
optimization, the optimized chromosomes are decoded into corresponding material structures, 
providing a pathway to discover materials with enhanced energy-related properties. 
 
Benefiting from the outstanding performance in problem domains characterized by complex 
fitness landscapes, GAs have been widely applied for design problems, which also include the 
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designing of energy materials. Mayer et al. [118] employed GAs to optimize the geometric 
parameters of flat-plate solar thermal collectors, which led to the maximized solar absorption rate 
and minimized thermal emissivity with a much lower computational cost. The adaptability of GAs 
was also shown by Lin et al., who utilized GAs for optimizations of random diffraction gratings 
in thin-film solar cells [119]. Their findings enhanced the light coupling and trapping effects for a 
broad range of the solar spectrum, where a 29% improvement over flat cells and 9% improvement 
over the best periodic gratings were observed. With the development of computational science, 
researchers have explored the integration of GAs with other advanced techniques to facilitate 
material design. Patra et al. introduced a novel approach combining NN with GAs [120]. This 
strategy harnessed the learning capability of NN to guide the evolutionary search of GAs, leading 
to accelerated material discovery by allowing the algorithms to search as well as learn from the 
search process. Such a combination was later widely applied to design high-temperature energy 
capacitors [121], desiccant cooling systems [122], and multilayer microwave radar absorbing 
material [123]. Zhou et al. [124] developed a molecular-dynamics (MD) based GA to design 
polyethylene–polypropylene copolymers with high thermal conductivity, indicating the potential 
of the MD-GA computational framework for accelerating the design of co-polymeric materials. A 
noteworthy contribution to this domain was the development of the GAMaterial software [125]. 
This software provides a convenient platform for researchers to apply GAs for material design and 
discovery. 
 
Generally, GAs are prized for their robustness and ability to handle complex, nonlinear problems, 
but they also have limitations. Binary representations can lead to intractable string lengths and 
precision issues, while continuous problems may require specialized crossover and mutation 
operators to maintain genetic diversity. Moreover, the risk of converging to local optima and the 
computational cost of simulating many generations can be significant, especially for high-
dimensional problems where the time complexity can become prohibitively high. 
 
2.5.3. Bayesian optimization 
Gradient-based optimization strategies, suitable for continuous variables and smooth landscapes, 
can be ineffective in cases involving discrete variables. This is a prevalent issue in material science, 
where aspects like chemical composition, processing methods, and structural configurations are 
inherently discrete or categorical. In this context, Bayesian optimization (BO) emerges as a robust 
and efficient method for navigating these complex and multidimensional spaces. BO is considered 
a non-derivative algorithm, which uses mechanisms (Bayes’ theorem) rather than relying on 
gradient information to explore solution spaces. Non-derivative algorithms are particularly 
advantageous for objective functions that are discontinuous, noisy, or have multiple local minima, 
where gradient information is either unavailable or unreliable. BO, which is a non-derivate and 
iterative algorithm, uses Bayes' theorem to formulate the parametric space, and employs an 
acquisition function (e.g., expected improvement) to estimate the best input parameters for the 
next optimization cycles [126]. The process begins with defining objective functions and decision 
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variables, followed by initiating preliminary experiments using space-filling samples like Latin 
hypercube designs. The core of BO is updating a Gaussian process (GP) surrogate model, 

4(5)	~789:(5), <(5, 5')=, with experimental [127] or computational data [128], which then 

informs the optimization of an acquisition function, such as Expected Improvement (EI), for 
selecting the next sampling point. This iterative method continues with experiments and data 
enhancement until achieving objectives or resource depletion. BO hinges on a probabilistic 
surrogate model and an acquisition function [129], where the surrogate model encapsulates initial 
beliefs about an unknown function and data generation, evolving through iterative queries into a 
more informative posterior. This approach efficiently navigates the multidimensional design 
spaces (see figure 7 as an example). 
 

 
Figure 7. Illustration of BO. BO with EI acquisition function is applied to minimize the test 
problem 4(5) 	= 	>?&(55) ∗ (1 − BC&ℎ(5)&) over three iterations. The left column of the plots 
illustrates the mean and confidence intervals as predicted by the GP model for the objective 
function. While these plots also display the actual objective function, it is important to note that 
this function is typically unknown in real-world scenarios. In the right column, the acquisition 
functions are depicted as green curves. These functions attain high values in regions where the 
model anticipates a high objective function value, indicating opportunities for exploitation. It is 
noteworthy that the far-left region remains unexplored in the sampling. This is because, despite its 
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high uncertainty, the model accurately forecasts minimal improvement in this area compared to 
the highest observed value so far. 
 
In recent years, BO has emerged as a pivotal tool in the field of energy materials, revolutionizing 
the way researchers approach optimization and discovery [130, 131]. Shang et al. [127] employed 
Bayesian Optimization with a hybrid dataset of literature-reported and experimental data to 
enhance the power factor of AgSe-based thermoelectric materials, achieving double the power 
factor with approximately ten experimental iterations. Saeidi-Javash and colleagues [132] applied 
BO to optimize flash sintering parameters for silver-selenide thermoelectric films, considering 
both continuous variables like voltage and pulse duration, and discrete variables like the number 
of pulses. Zhang et al. [133] integrated a latent variable GP model with BO, tackling both 
qualitative and quantitative variables in material design. This approach enhanced optimization in 
complex material design challenges, such as Hybrid Organic-Inorganic Perovskite design. Each of 
these studies underscores the diverse and potent applications of BO in energy material science. 
 
These representative design models have been widely employed in material research. Figure 8 
shows the growing trend of utilizing these models in material design. Notably, NN has seen rapid 
growth in use in recent years due to enhanced computational power, which enables the effective 
handling of large datasets for training. 
 

 
Figure 8. Annual number of publications using ML-aided design models in the material field. 
Keywords include ‘Material’, ‘Design’, and those in the figure legend. 
 
2.6. Quantum annealing-aided active learning for material design 
In many energy material design tasks, binary optimization can be an efficient strategy as material 
states can be described using discrete variables. For example, in the design of optical materials, 
planar multilayered geometry can be represented as a binary vector by assigning a binary number 
to each layer according to the corresponding material. Similarly, metasurfaces or stratified gratings 
geometries can be represented as a binary vector by discretizing the unit cell into pixels and 
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assigning a binary label to each pixel depending on the material. As the material configuration 
directly determines the material performance, the design task can be transformed into binary 
optimization (i.e., combinatorial optimization problems). However, increasing the number of 
variables (e.g., the number of layers or pixels in the material structures) will exponentially increase 
the total possible combinations, resulting in an explosion of the combinatorial design space. For 
example, the design space size is 220 (=1,048,576) if there are 20 binary variables for the input 
vector (assuming each layer or pixel has two options in material choice), while the design space 
size is 230 (=1,073,741,824) for 30 binary variables. Exploring such large design spaces to find the 
best input state is extremely challenging or impossible because of computational limitations. To 
overcome this limitation, one can transform material design tasks into quadratic unconstrained 
binary optimization (QUBO) problems, where QUBO can be efficiently solved by a quantum 
computer [134, 135]. In particular, a quantum annealer, which is specially designed for solving 
combinatorial optimization problems by providing quantum speedup against classical counterparts 
by taking advantage of quantum physics (quantum tunneling), can efficiently be used to solve 
QUBO problems [136]. Then, the quantum annealer can find the ground state and the 
corresponding binary state of the given QUBO within a fraction of a second, even if the problem 
size is large [137]. A key to leveraging quantum annealing for material optimization is to formulate 
QUBO models as surrogates to describe the relationship between material states and their 
corresponding performance metrics since quantum computing is compatible with the QUBO 
model.  
 
Factorization machine (FM) is a model that can be directly used to formulate the QUBO model 
(E) by employing the model parameters after training FM [79]. FM was proposed by Rendle, and 
can be used as a supervised learning algorithm [138], which is designed to handle sparse and high 
dimensional data for classification and regression tasks. FM includes linear and factorization 
models, allowing the capture of the relationships between individual features and target variables 
(i.e., linear model) as well as interactions between features (i.e., factorization model). FM can learn 
feature interactions efficiently without explicitly enumerating all possible combinations and can 
be trained with gradient descent methods, enabling relatively short training times. Owing to these 
advantages, FM can be widely applicable to real-world problems that have sparse data, enabling 
us to design energy materials efficiently [138, 139]. Since input vector 5 is discretized into & 
variables, FM is suitable for combinatorial optimization problems. Individual features and 
interactions of FM can be trained with linear and quadratic models as the following equations: 

)F(5) = 	G( +'G"5"
#

"$%
+' ' < J" , J) > 5"5)

#

)$"*%

#

"$%
 (5) 

where n is the number of variables of 5, G(  is global bias, G is linear coefficients presenting 
individual features and < J" , J) > models the interactions between 5" and 5) of size <. Factorizing 

the quadratic model < J" , J) > can significantly reduce computational complexity (from L(<&&) 
to L(<&)) by reformulating complex interaction models into linear ones: 
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In a QUBO matrix (E), diagonal elements are formulated from linear coefficients (G), and off-
diagonal elements are formulated from quadratic coefficients (J) of the FM model. Then, quantum 
computers can be leveraged to find the ground state and corresponding binary state of the given 
QUBO problem: 

)F(5) = 	5.E5 (7) 
where 5 is the input binary vector, E is a given QUBO, and )F(5) is the objective function. 
 
Active learning algorithms that integrate FM with quantum annealing have recently been utilized 
to design energy materials, such as multi-layered photonic structures, metamaterials for thermal 
management, and metamaterials for thermophotovoltaic applications [79, 134, 140-142]. These 
algorithms demonstrate potential in designing complex structures that pose large optimization 
spaces. 
 
3. Design of energy materials using ML 
In the previous section, we have discussed different ML schemes used in energy materials design 
with examples for each of them. In this section, we discuss several types of energy materials that 
have seen most ML activities.  
 
3.1. Radiative cooling materials and structures 
Passive radiative cooling, emitting thermal radiation into cold space (~3 K) through an atmospheric 
window (AW; wavelength: 8 to 13 μm), has attracted enormous attention as an efficient solution 
to reduce cooling energy consumption in response to climate change [143-145]. However, optimal 
design of radiative cooling materials is challenging as there are multiple design parameters such 
as dimensions and material composition. ML has been introduced to enable the optimization of 
such design parameters to achieve high-performance radiative cooling materials. Li et al. [146] 
optimized material compositions and layer thicknesses for daytime radiative cooler using ML 
(light gradient boosting machine) and genetic algorithm (figure 9(a)). They demonstrated that time 
consumption for the optimization could be significantly reduced from 7783.37 s to 115.81 s (~67 
times acceleration) by using ML instead of using an analytical method (transfer matrix method). 
The optimized structure showed high reflectivity in the solar spectrum range and high emissivity 
in the AW (figure 9(b)), allowing to emit thermal radiation efficiently, leading to high cooling 
power (~140.38 W/m2) and daytime temperature reduction (~9.08 °C) compared to the ambient 
temperature. Guan et al. [147] designed a transmissive colored radiative cooling film by optimizing 
film structures (layer configuration and thicknesses) with ML techniques (mixed-integer memetic 
algorithm and tandem NN, figure 9(c)). ML substituted the time-consuming 3D optics simulations, 
which led to significant acceleration for the optimization. The optimized film presented better 
visible light transmissivity compared to other colored radiative cooling films. Furthermore, the 
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film showed a high emissivity in the AW (figure 9(d)), yielding a good cooling performance with 
a cooling power density of 126.6 W/m2.  
 
ML-aided optimization is getting more challenging as the design space is getting larger. To 
overcome this computational limitation, Kiati et al. [134] proposed a structural optimization 
method (called FMQA, figure 9(e)), which incorporates FM and QA. They designed metamaterial 
to achieve high radiative cooling performance using the FMQA scheme where FM was used to 
build a QUBO, and QA (D-Wave quantum annealer) was employed to solve the QUBO. They 
demonstrated a great performance of the proposed FMQA method compared to other optimization 
methods (GP, random search, and exhaustive search). Moreover, they could successfully design 
complex metamaterials with large design spaces (total possible configuration: ~250) thanks to the 
advantages from QA, and the optimized metamaterial presented near-ideal emissivity in the AW 
(figure 9(f)). Existing radiative cooling materials are generally reflective to reduce solar absorption 
and transmission [148]. Although radiative coolers that are transparent in the solar spectrum have 
been proposed, transmitted ultraviolet (UV) and near-infrared (NIR) lights can still significantly 
contribute to optical heating, which adversely affects cooling performance [149, 150]. Kim et al. 
[79] designed planar-multilayered photonic structures for transparent radiative coolers that have 
selective transmissivity to reduce solar heating by reflecting UV and NIR light while allowing 
visible light transmission. For multilayered structures, there can be lots of possible configurations 
(424), which may be beyond the limits of the computational capability. Hence, they used the FMQA 
to enable the optimization, and were able to successfully optimize a multi-layered structure within 
58 hours, which might take ~89 million years with an exhaustive enumeration (figure 9(g)). The 
optimized structure showed the best-in-class performance compared to other transparent radiative 
coolers or energy-saving glasses. Furthermore, they experimentally demonstrated the unique 
optical characteristics (i.e., selective transmissivity in the visible regime, figure 9(h)) and cooling 
performance (temperature reduction of 6.1°C and potential cooling energy saving of 86.3 MJ/m2 
compared to normal glass window). This represents the first example of the practical realization 
of quantum computing designed energy material.  
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Figure 9. ML design of radiative cooling materials and structures. (a) A ML workflow to design 
a high-performance radiative cooler, developed in [146]. (b) Optical characteristics of the 
optimally designed radiative cooler using ML. The designed cooler has high emissivity in the AW 
to have high cooling performance. Reprinted with permission from [146] © Optical Society of 
America. (c) ML-assisted inverse design strategy for the design of transmissive colored radiative 
cooling films in [147]. (d) Optical characteristics of the optimally designed film. This film has 
high transmissivity in the solar spectrum and high emissivity in the AW, showing visible 
transparency with high cooling capability. Reproduced from [147]. CC BY 4.0. (e) A workflow of 
FMQA for automated designs, suggested in [134]. (f) Emissive power of the designed 
metamaterial in the AW, enabling high cooling performance. Reproduced from [134]. CC BY 4.0. 
(g) Computational time required for the optimization of a complex system with exhaustive 
enumeration and FMQA method, studied in [79]. (h) Transmitted irradiance through the designed 
transparent radiative cooler (TRC). This transparent radiative cooler has high transmissivity in the 
visible range while having low transmissivity in the ultraviolet and near-infrared ranges, resulting 
in minimized optical heating from sunlight while keeping visible transparency. Reprinted with 
permission from [79] © American Chemical Society. 
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3.2. Batteries 
As new technologies, such as electric vehicles, portable electronics (smartphones), and renewable 
energies, become an integral part of our daily lives, developing high-performance batteries is 
crucial for providing and storing the energy for them [151]. However, it is also challenging to 
optimize batteries because of the large design space that comes from many parameters such as 
material composition, mixing ratio, stoichiometry, mechanical properties, shapes, and sizes. Hence, 
researchers have utilized ML techniques for the optimization of batteries. Using solid electrolytes 
to suppress dendrite growth has emerged as a promising strategy for next-generation batteries 
based on lithium metal anodes. Ahmad et al. [152] employed data-driven ML algorithms (graph 
convolutional NN, gradient boosting regressor, and kernel ridge regression) to predict the 
mechanical properties of inorganic solid electrolytes (e.g., shear modulus, Poisson’s ratio, and 
molar volume ratio of solid electrolytes), which are important to determine the stability of the 
interface by estimating dendrite initiation. They trained their ML algorithms with data in the 
Material Project database (figure 10(a)) [153], and they were able to find some electrolytes 
expected to suppress dendrite initiation and growth (e.g., Li2WS4, LiAuI4, Ba38Na58Li26N). Joshi 
et al. [154] developed a ML-based algorithm (DNN, SVM, and kernel ridge regression) to predict 
electrode voltages for metal-ion batteries (figure 10(b)). They also used the Material Project 
database [153] to train their ML algorithms. Their data-driven ML approach enabled them to 
overcome computational difficulties to explore large design spaces and provided a fast estimation 
of the voltages as an alternative to DFT calculations. Their ML models showed high accuracy 
(figure 10(c)) in predicting voltages of electrode materials (e.g., Li-, Na-, K-, Mg-, Ca-, Zn-, Al-, 
and Y-ion batteries), thus it could guide the exploration of many different combinations of 
electrode materials.  
 
Improvements in battery performance include costly and time-consuming work due to the 
difficulty in accurately formulating the relationships between inputs and outputs of the 
optimization problem. Dave et al. [155] used BO to autonomously discover novel battery materials 
(aqueous electrolytes). They demonstrated that the optimized electrolytes increased stability at a 
low leakage current (24 mV higher in the blend) and suppressed current density (~58% at 2 V, 
compared to NaClO4 feeder solution). Accurate prediction of battery life is challenging since it 
requires a comprehensive understanding of battery systems and involves high costs for testing. 
Kim et al. [156] used ML methods (deep learning with simulation and predictive curve fitting) for 
early battery life prediction. ML algorithms were well trained with 2-3 weeks of data for the life 
prediction, and predictions were accurate with errors below 10%, enabling the reduction of costs 
associated with the prediction of battery performance (figure 10(d)). Although voltage profile 
images contain lots of information to determine battery performance, capturing subtle changes in 
images by human eyes is difficult. Chen et al. used a ML algorithm (CNN) pre-trained on 
ImageNet [157] to predict battery performance by using voltage profile images [158]. They further 
trained the algorithm on experimental data collected at different experimental conditions, and the 
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resulting ML model showed high accuracy. Battery performance is dependent on historical 
information, and their ML model trained on historical data could be used to predict future 
performance such as remaining useful lifetime and general stability.  
 
 

 
Figure 10. ML design of battery materials. (a) An ML workflow to design high-performance 
batteries. (b) Architecture of the ML to predict output voltage of metal-ion batteries, developed in 
[154]. (c) Accuracy of the developed ML model, enabling the prediction of output voltage of 
batteries. Reprinted with permission from [154] © American Chemical Society. (d) Battery life 
predictions using early-life data by utilizing ML models, developed in [156]. Reproduced from 
[156]. CC BY-NC-ND 4.0. 
 
3.3. Photovoltaics 
Perovskite materials are promising candidates that can be used in photovoltaics [159-162], which 
have attracted extremely extensive interest in the scientific community in recent years. However, 
improving the performance of photovoltaics, such as energy conversion efficiency, durability, and 
lifespans, poses challenges due to the complexity of optimizations [163, 164]. To overcome those 
challenges, Yu et al. [165] built ML models to predict relations between chemical-physical 
properties of amines and their reactivities to organic-inorganic hybrid perovskite (MAPbI3) film 
(figure 11(a)). They tested various ML algorithms such as logistic regression, SVM, K-nearest 
neighbors and decision trees, and they achieved the highest score of 86% accuracy (accurate 

Page 22 of 45AUTHOR SUBMITTED MANUSCRIPT - PRGE-100213.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



 23 

prediction / total prediction) on test data using the SVM with a radial basis function kernel. With 
the trained ML model, they could predict reactivities of un-trained amines to the hybrid perovskite. 
Moreover, they could learn chemical insights and knowledge by screening coefficients of the 
model, guiding new experimental conditions. To enable the rapid discovery of functional materials 
for ferroelectric photovoltaic perovskites, Lu et al. [166] developed a multistep screening scheme 
by combining DFT calculations and ML techniques. They successfully trained ML algorithms with 
collected data from high-throughput first-principles calculations. The trained models could 
achieve high accuracy (ROC-AUC of ~0.89 for the classification model and R2 score of ~0.921 
for the gradient boosting regression model) and showed accurate prediction for both perovskites 
and non-perovskites.  Using the models, they found some mixed halide perovskites (e.g., CsGeBr2I, 
RbGeBr2I, CsGeI2Br, RbSnCl2I, and RbSnI2Cl), which were close to the optimal value of single-
junction solar cells.  
 
Prediction of material properties is important to design perovskite materials. To predict key 
properties of perovskite materials, Stanley et al. [167] employed a ML approach (kernel ridge 
regression) for learning complex relations between material compositions and corresponding 
properties from a limited number of data. They calculated 344 mixed perovskites using DFT, and 
used them to train their ML algorithm, resulting in a good model for the prediction (figure 11(b)). 
Thus, they could rapidly predict several important properties of photovoltaics in the composition 
space, enabling the suggestion of the rational design of new perovskites (figure 11(c)). She et al. 
[168] utilized a two-step ML approach with classification and regression models to find highly 
efficient perovskite solar cells by exploring a vast design space. They used experimental data 
extracted from the published literature to train the ML algorithm. With the model showing high 
accuracy, they could successfully extract general underlying knowledge of perovskite solar cells 
by analyzing important features. In addition, they could discover high-performance perovskite 
solar cells with doped electron transport layers (e.g., Cs-doped TiO2 electron transport layers, and 
S-doped SnO2 electron transport layers) having high power conversion efficiency of up to 30.47%. 
Inherent ionic defects in perovskites can lead to damage to their stability, impeding their practical 
applications, but high computational costs associated with DFT calculations and inaccurate 
predictions pose challenges to improving the stability of perovskite materials. Yang et al. [169] 
developed an interatomic potential model by employing a ML algorithm (deep learning) to analyze 
the ionic defect effects. The model performance was improved by iteratively exploring design 
space similar to active learning, leading to an efficient model with high-level accuracy close to 
classical MD calculations (figure 11(d,e)). With their model, they revealed the factors affecting 
ionic defects.   
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Figure 11. ML for perovskite photovoltaic materials. (a) A workflow of ML-assisted exploration 
to study the compatibility of organic-inorganic hybrid perovskite film with amines, developed in 
[165]. Reprinted with permission from [165] © American Chemical Society. (b) Comparison 
between actual and predicted value of the ML model, showing high accuracy in [167]. (c)  ML 
model can be used to predict characteristics of perovskites. Reproduced from [167]. CC BY 4.0. 
(d) Comparison between the predicted values from the ML-assisted model and DFT-calculated 
energy values, studied in [169]. (e) Comparison of time for calculations using the developed model 
and ab initio molecular dynamics, demonstrating the efficiency of the developed ML-assisted 
model. Reprinted with permission from [169] © John Wiley & Sons. 
 
3.4. Gas separation materials  
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The application of membrane technology, especially utilizing polymers for gas separation, has 
become critical for processes like carbon dioxide capture, hydrogen separation, and natural gas 
sweetening [170, 171]. While polymeric membranes find widespread use, they encounter 
challenges such as permeability-selectivity trade-offs, physical aging, and plasticization, limiting 
their broader utility. To overcome these multi-objective design challenges, the integration of ML 
techniques has gained some momentum in expediting the screening and design of high-
performance polymeric gas separation materials. An early effort in this field traces back to 1994 
when Wessling et al. [172] pioneered the use of a NN to model the CO2 permeability of polymers, 
utilizing infrared spectra as input features. Despite a limited database size (only 33 polymers), 
relatively accurate predictions highlighted the substantial potential of ML in quantitative structure-
property relationship (QSPR) analysis for polymeric membrane gas separation materials. 
Subsequent research endeavors have expanded on this foundation, with the accumulation of gas 
separation data and the advancement in ML algorithms. Zhu et al. [173] utilized GP regression to 
predict permeability for various gases in a dataset of 315 polymers, employing a hierarchical 
fingerprinting method based on the chemical structure of the polymer repeating unit. Barnett et al. 
[174] followed a similar approach, utilizing GP regression and a topological, path-based 
fingerprint for around 700 polymers, demonstrating the model's ability to predict permeability 
values for ~ 10,000 unlabeled polymers. In addition to using handcrafted fingerprints or descriptors 
to represent polymer structural information, recent approaches involve representation learning 
from deep neural networks. Wilson et al. [175] treated polymer structures as graphs, developing a 
GNN named PolyID for efficient identification of high-performance biobased polymers. PolyID 
facilitated the discovery of biobased poly(ethylene terephthalate) analogs with enhanced thermal 
and gas separation performance.  
 
3.5. Thermoelectric materials 
Thermoelectric materials, which can convert thermal energy into electricity, can be a solution to 
global energy challenges by converting waste heat into useful energy. Due to the large 
stoichiometry and processing space, physics intuition-based optimization has been slow for 
thermoelectric materials design and process optimization. To overcome these challenges, 
researchers have applied ML techniques for the efficient development of thermoelectric materials 
and the prediction of their properties [176, 177]. Figure of merit (zT) is an important indication for 
the performance of thermoelectric materials. Hence, researchers have tried to efficiently predict 
zT and develop thermoelectric materials with high zT. zT is related to a few intercorrelated transport 
properties as the following equation [178]: 

PQ = 	-&R/%S/%Q  (8) 
where -, R, S, and Q respectively represent the Seebeck coefficient, electrical resistivity, thermal 
conductivity, and absolute temperature. As can be seen from the zT expression, thermoelectric 
materials usually benefit from low thermal conductivity which can in turn improve their efficiency. 
However, prediction of the thermal conductivity of inorganic materials is challenging since only a 
few portions (5% among 105 synthesized inorganic materials) have a low thermal conductivity that 
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is effective for thermoelectric materials. To tackle this challenge, Zhu et al. [179] employed ML 
techniques (crystal graph convolutional network and RF) for the prediction of the thermal 
conductivity of all known inorganic materials for thermoelectric applications (figure 12(a,b)). The 
trained models after including the transfer learning exhibited good accuracy, allowing for accurate 
predictions of thermal conductivity. Furthermore, they could identify a promising material system 
for thermoelectrics.  
 
Li et al. [180] used a data-driven light gradient boosting (LGB) model to directly predict the 
performance (zT) of thermoelectric materials. They trained the model with selected data from the 
database by the University of California Santa Barbara (UCSB) [181]. The trained model showed 
a high accuracy (high R2 value of ~0.96 and low RMSE of ~0.09), resulting in accurate zT value 
predictions (figure 12(c)). As a result, they could discover some potential materials that have high 
zT among a large candidate pool (1 million). Furthermore, they could extract feature importance 
by analyzing the frequency of a feature used as a node (figure 12(d)). Zhan et al. [182] leveraged 
an ML method to predict thermal boundary resistance, which is one of the keys for the thermal 
conductivity of thermoelectric materials. They collected data from the literature, and trained their 
ML models (generalized linear regression, least-absolute shrinkage and selection operator 
regularization, GP regression, and support vector regression), resulting in some reliable models. 
They successfully predicted thermal boundary resistance with a model, and they could find the 
important descriptor (film thickness) to predict the thermal property. Jia et al. [68] used an 
unsupervised learning method to discover promising materials for thermoelectrics. They trained 
several unsupervised algorithms (e.g., K-means clustering, Gaussian Mixture, Mean Shift) with 
data in the Materials Project database [183] for clustering promising materials. They successfully 
discovered some materials with high performance using their trained ML model. 
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Figure 12. ML for thermoelectric materials. (a) The schematic of the ML models (crystal graph 
convolutional network (CGCNN) and RF), developed in [179]. (b) Accuracy of the models. kc and 
k’c respectively represent the calculated and predicted thermal conductivity. Reproduced from 
[179]. CC BY-NC 3.0. (c) Accuracy of the trained ML model used, used in [180]. (d) Extracted 
feature importance from the ML model. Reprinted with permission from [180] © American 
Chemical Society. 
 
3.6. Supercapacitors  
Designing high-performance supercapacitors, which are energy storage devices, has drawn great 
attention over the past few decades due to their potential high power density, high specific capacity, 
and rapid charging/discharging rate [184, 185]. Predicting specific capacity and cyclic stability is 
important for evaluating the performance of supercapacitors, but it is challenging with first-
principles strategies. To address this issue, Ghosh et al. [186] utilized RF and MLP models for the 
prediction of the capacitance and cyclic stability of supercapacitors. Their ML models successfully 
predicted these important properties for supercapacitors composed of cerium oxynitride, a 
promising electrode material. Aqueous supercapacitors have emerged as promising energy storage 
devices since they exhibit excellent power density and long lifetime cycles. Here, porous carbon 
materials, which possess large surface area and rich porous structures, can enhance the overall 
performance of supercapacitors [187]. However, designing these porous structures is difficult and 
time-intensive [188]. Wang et al. [189] employed an ANN model to identify the critical features 
of carbon materials by predicting the specific capacitance of hyperporous carbons. They revealed 
that the ANN model achieved high accuracy when employing Bayesian regularization (figure 
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13(a)), which led to the successful prediction of the capacitance and cyclic stability. This enabled 
the discovery of high-performance carbon materials for supercapacitors (figure 13(b)). 
 
3.7. Polymers 
Polymers are widely used in energy materials, such as energy storage devices, batteries, and solar 
cells, making the optimal design of polymers important [190-192].  However, the limited data on 
polymeric properties and their structural complexity hinder the identification of high-performance 
polymers. To tackle these challenges, Wu et al. [193] used ML models that combine the Bayesian 
molecular design framework and transfer learning to predict polymeric properties. They trained 
the ML model using the database from PoLyInfo, and the trained model achieved high accuracy, 
as can be seen in figure 13(c). As a result, they could discover promising polymers yielding high 
thermal conductivities (figure 13(d)). The dielectric constant of polymers is a key parameter for 
determining the performance of energy materials, but predicting this property using conventional 
methods, such as density functional perturbation theory or MD simulations, involves time-
intensive work with low reliability. To address this challenge, Chen et al. [194] developed an ML-
based model that includes a polymer fingerprinting scheme and Gaussian process regression 
algorithm. They trained their model with data collected from the literature, achieving acceptable 
prediction accuracy. This led to the successful prediction of the dielectric constant of synthesizable 
candidate polymers.  
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Figure 13. ML for supercapacitors and polymers. (a) Accuracy of the ANN model for predicting 
capacitance, used in [189]. (b) Comparison of capacitances between previously reported values 
and those identified in this work, demonstrating potential in discovering high-performance 
supercapacitors. Reproduced from [189]. CC BY 4.0. (c) Accuracy of the ML model, used in [193]. 
(d) Predicted thermal conductivity as a function of SA score that indicates synthesizability, 
demonstrating the capability to the identification of synthesizable polymers with high thermal 
conductivity. Reproduced from [193]. CC BY 4.0. 
 
4. Summary and perspectives 
4.1. Summary 
In summary, by reviewing the literature, we have shown that ML approaches have been widely 
used for the design of energy materials for a wide variety of applications to overcome limitations 
caused by experimental or computational costs to obtain material properties. Recent progress in 
computational power and ML algorithms enables users to utilize ML more efficiently in energy 
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material fields to predict material properties, search vast design spaces, and discover optimal 
design parameters. We have concisely reviewed the basics of ML techniques and surveyed some 
ML-aided optimization schemes for energy materials. We have shown that the trained ML models 
can be applied in various research fields for property predictions or inverse design, which have 
been demonstrated with the examples. Overall, it has been demonstrated that ML techniques can 
play important roles in guiding the efficient design of high-performing energy materials, although 
challenges still exist. 
 
4.2. Challenges and Perspectives 
A number of major challenges are still present in using ML for energy materials design and 
optimization. These are discussed in this section.  
 
4.2.1. Low quality and low volume of data for ML  
ML training with small, imbalanced or low-quality data can make the models biased and cannot 
properly cover entire feature spaces, hindering learning complex relationships across the whole 
design spaces. Hence, the model can be under- or over-fitted, which leads to inaccurate predictions 
[195]. To mitigate these issues, data augment techniques, such as rotating [93], node feature 
masking [196], edge dropping [197], and subgraph replacement [198], can be applied. In addition, 
active learning strategies can allow the model to collect meaningful data, enhancing the model’s 
performance iteratively even starting with a limited amount of data [127, 132]. 
 
4.2.2. ML algorithms working with limited and imbalanced data 
Large materials databases based on high-accuracy simulations and experiments are the foundation 
for the applications of advanced ML algorithms, especially deep learning algorithms for material 
design, and catalyzed the development of materials informatics. However, for many of the 
properties that are not easy to measure or compute, the lack and imbalance of data remain huge 
obstacles for researchers to train accurate ML models. Recently, some techniques such as 
threshold-moving [199], transfer learning (leverages models trained on large datasets to build 
models on small datasets of different properties) [200-202], multi-fidelity modeling [203], and 
active learning [129] have been proposed to face the challenges of small and imbalanced data. 
These techniques allowed for material designs with limited and imbalanced data [204, 205]. 
 
4.2.3. Design of synthesizable materials using ML  
The synthesizability of materials designed using ML remains one of the greatest challenges for the 
further development of ML for energy materials and materials in general. Bridging the gap 
between algorithmically proposed materials and successful laboratory synthesis involves 
addressing critical factors like possible and optimal experimental conditions. To augment the 
synthesizability of generated materials, integrating ML-driven retrosynthesis planning with 
generative algorithms emerges as a promising solution. Retrosynthesis planning falls into 
template-based and template-free categories [206, 207]. Template-based approaches rely on 
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summarized reaction rules while template-free methods, often utilizing deep learning, predict 
reactants directly. An example of template-based retrosynthesis planning is presented by Chen et 
al. [208], who developed a data-assisted tool. However, it has limitations, including neglecting 
important design factors such as experimental conditions and potential ineffectiveness with new 
materials. Template-free methods, although potentially more versatile, may require substantial 
training data. Exploring the potential of large language models for polymer structure generation 
and optimization, considering retrosynthesis planning, represents an exciting avenue for future 
research [77, 209, 210]. 
 
4.2.4. Multi-objective optimization 
Multi-objective optimization in material design often faces conflicts in different properties to be 
optimized – improvement in one can lead to degradation in others. In this scenario, decision-
makers can identify preferred solutions from the Pareto front, which represents optimal trade-offs 
between conflicting objectives. Approaches to solving these problems fall into two categories: a 
posteriori and a priori [211]. Posteriori methods aim to discover the entire Pareto front, allowing 
decision-makers to understand achievable objective values and make decisions based on the trade-
offs between each objective. Recently, a noticeable number of works have been developed to 
reveal the Pareto optimal solutions [212, 213]. However, identifying the preferred solution on the 
Pareto front can be resource-intensive, particularly with a posteriori methods that require 
evaluating a large number of objective functions [214]. In a priori multi-objective optimization 
methods, decision-makers define their preferences upfront, streamlining the process towards 
specific goals and reducing the need for extensive objective evaluations. One common technique 
is the use of Achievement Scalarizing Functions, typically formulated as weighted sums of 
objectives based on the decision-maker's preferences and knowledge. While easy to implement, 
finding the right weight vectors to achieve Pareto optimal solutions remains a challenge. Another 
approach is optimizing a single objective subject to constraints on others [215]. Lexicographic 
methods are also used [211], prioritizing objectives according to an established hierarchy of 
importance. Each method offers distinct advantages and faces unique challenges, influenced by 
the optimization problem's complexity. For materials, additional challenges lie in the fact that 
different properties have various levels of difficulties to acquire computationally or experimentally. 
Therefore, removing the rate-limiting barrier for materials characterization is also key to ML-
assisted energy material design.  
 
4.2.5. Material design with properties outside the range of training data 
Designers frequently face situations where the collected data does not adequately represent the 
domain trends, or in some cases, there is insufficient data to train an optimization model. This is 
usually known as the out-of-distribution prediction/design problem. This may be partially 
addressed by leveraging a latent space using encoder/decoder architectures. This strategy allows 
for the exploration of new material compositions and properties by navigating a lower-dimensional 
latent space, which enhances computational efficiency. Additionally, interpolation in the latent 
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space may appear to be extrapolation when decoded into the real space, which has a much higher 
dimension. The latent space has enabled the discovery of novel materials exhibiting properties 
beyond those presented in the training data [216]. Also, the issue can be addressed through active 
learning and the utilization of surrogate models. Initially, the surrogate model is assumed to best 
represent the search space. New data points are actively acquired and integrated into the dataset 
for subsequent optimization rounds, gradually expanding the property boundaries. However, this 
approach, focusing only on the predictive mean of the surrogate model, may not effectively balance 
exploration and exploitation. Advanced methods involve applying BO to probabilistic surrogate 
models (e.g., GP), considering both uncertainty and predictive mean. This allows for tailored 
adjustments in the balance between exploration and exploitation, based on prior beliefs. Such an 
ML manner to data acquisition can help minimize the need for new data in reaching the design 
target [217, 218].  
 
4.2.6. Other thoughts 
Addressing these above challenges will enable ML techniques to be more effective and to yield 
reliable outcomes in energy material design, allowing for applying them in various research and 
industrial fields. However, many ML algorithms are black-box, meaning that it is hard to explain 
their mechanisms. Hence, future development of ML algorithms should focus on building 
transparent and interpretable models, which will be more broadly applicable for decision-making, 
predictions, and inverse designs. Opening up the box will also shed light on the fundamental 
physics governing the material behavior, understanding which will improve the knowledge base 
and is more generalizable than a dataset or a ML model.  
 
Hyperparameters, which are not learned from data, are crucial components to determining the 
performance of ML algorithms, but identifying optimal hyperparameters is challenging. 
Optimization spaces of hyperparameters may be complex, and interactions between 
hyperparameters may add complexity to the optimization process, making non-convexity of the 
objective function. This imposes an additional optimization problem on the ML materials 
optimization task. To tackle these difficulties, many approaches have been proposed to optimize 
hyperparameters using ML methods. With the optimal hyperparameters, ML can present higher 
performance for prediction and design in the energy material field.  
 
As can be seen in Kiati and Kim’s works [79, 134, 140], quantum computers exhibit notably 
enhanced computational capabilities to explore optimization spaces. Hence, the integration of ML 
algorithms and quantum computers will become important for the optimization of energy materials 
that have complex structures and characteristics. There are still current limitations on quantum 
computing hardware, such as the limited number of qubits, limited connections between the qubits, 
and the lack of capability to optimize effectively continuous variables.  
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Furthermore, in the future, it is expected that quantum ML, leveraging principles from quantum 
mechanics to address certain computational challenges much more efficiently, will enable us to 
build better models and identify optimal solutions much faster than classical ML approaches. 
While these are still limited by quantum computing hardware, these advancements, if realized, will 
open new avenues in energy material fields for highly complex properties and significantly large 
optimization spaces, which are difficult for now. 
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