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Abstract

The development and design of energy materials are, essential for improving the efficiency,
sustainability, and durability of energy systems to address climate change issues. However,
optimizing and developing energy materials can be'challenging due to large and complex search
spaces. With the advancements in computational power and algorithms over the past decade,
machine learning (ML) techniques are being widely applied in various industrial and research areas
for different purposes. The energy material\, community has increasingly leveraged ML to
accelerate property predictions and designiprocesses. This article aims to provide a comprehensive
review of research in different energy material fields that employ ML techniques. It begins with
foundational concepts and a broad overviewiof ML applications in energy material research,
followed by examples of successful ML applications in energy material design. We also discuss
the current challenges of ML in energy material design and our perspectives. Our viewpoint is that
ML will be an integral component.of energy materials research, but data scarcity, lack of tailored
ML algorithms, and challenges in, experimentally realizing ML-predicted candidates are major
barriers that still need to be'‘evercome.

Keywords: machine learning;.energy material, optimization, material design, property prediction

1. Introduction

With challenges brought by climate change and the need for decarbonization, there are significant
efforts globallyto cut down'reliance on conventional energy [1]. International commitments (e.g.,
the 2016 Paris Accord) exemplify this effort, where countries worldwide are coming together to
address these global issues [2-5]. Energy materials are substances or materials that generate,
releasey convert, or store energy, which can be used in applications like energy storage devices,
enetgy conyersion systems, and energy generators. For instance, any materials used in batteries,
conductors, photovoltaics, thermoelectric, fuel cells, and hydrogen production are considered
energy materials. Such materials are indispensably used in our modern lives, but they potentially
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contribute to global warming by emitting or producing environmental-damaging materials or CO»
during their operations or fabrications [6-10]. In response to these challenges, therongoing
evolution and development of energy materials over the past few decades have, significantly
enhanced their energy conversion efficiency, resulting in less dependence on‘fossil fuels,and their
derivatives [11-15]. Therefore, designing and optimizing energy materials become,an important
part of addressing global environmental issues [16].

The performance of energy materials is dependent on many design factors, such as geometrical
features, composition, processing conditions, and environmental factors, leading to large design
spaces, which means that there are numerous possible configurations for their optimization [17-
19]. Conducting experiments to comprehensively search these large design spaces for finding
optimal material states is usually too costly and time-consuming. Hence, researchers have been
using simulation tools, such as numerical methods, first-prineiples calculations, and atomistic
simulations, to design materials and calculate their properties [20=27]. Nevertheless, exploring
such large spaces with different design parameters using,conventional simulation methods can still
lead to high computational costs and time. Furthermore, these simulation methods rely on high-
fidelity models to accurately mimic the dynamics of materials/[28]. However, models constructed
for the simulations may not fully capture the complexity of real systems, and simulations may be
difficult or impossible in certain fields where established theories are lacking or physical models
are too complicated [29-32].

Data-driven approaches, especially machine learning (ML) [24, 33-37], can establish efficient
surrogate models, which describe design spaces by approximating the relationship between
material states and their performance, [38-45] by learning hidden patterns with data. These
surrogate models can be used t0 predict, material properties for given material features (e.g.,
chemistry, composition, and geometry), and can be leveraged to help design materials with
desirable performance (figure 1) [46-48]. Over the past decade, ML algorithms have been actively
explored to accelerate material designs. For example, Wan et al. identified optimal electrode
structures for redox flow batteries using a framework that couples an ML regression model with a
genetic algorithm for.multi-ebjective optimization [49]. Dave et al. [50] used an experimental
design scheme thatincludes Bayesian optimization and robotics to optimize non-aqueous Li-ion
battery electrolytes. ki et al. [51] designed high-performance perovskite solar cells using ML
techniques (e.g., artificial neural networks) with data collected from the literature. Wu et al. [52]
used ML algorithms /(linear regression, multinomial logistic regression and boosted regression
trees) to aceelerate discovering donor/acceptor combinations for high-performance organic solar
cell applications. Feng et al. [53] used ML techniques (random forest, support vector machine and
neuralinetworks) to design polymer nanocomposites for energy storage applications. These
examples demonstrate the potential of ML in designing high-performance energy materials.
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In this article, we provide a comprehensive overview of research in energy fields using ML
techniques. First, we introduce basic knowledge of ML, including commonly used-MIL-based
design algorithms, aiming to inspire the community to consider applying ML techniques in their
material design works. Next, we survey recent successful examples of using ML algorithms in
different energy material fields, demonstrating the potential of ML techniques in high-performance
energy material design. At last, we close the review by discussing the current challenges of ML
and our perspectives.
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Figure 1. The schematic of a typical workflow:to design high-performance energy materials using
ML. Researchers need to prepare datasets to train,ML models that can learn the underlying
knowledge in data. The trained ML medels can'be used to identify high-performance energy
materials in large design spaces with the helprof optimization algorithms.

2. Introduction to ML

2.1. ML techniques

ML, which is a subset of artificialvintelligence, aims at learning knowledge with data and
algorithms to emulate the human learning process, steadily enhancing its accuracy. ML algorithms
generate surrogates through training processes to make predictions without explicit physics-based
simulations or calculations:, Generally, ML algorithms require data to learn knowledge, but
physics-informed ML can leverage both data and physical principles, which can be beneficial
when collecting data. is difficult and expensive [54-58]. With the enhanced surrogate prediction
capability, handling a large number of material candidates becomes possible, allowing us to design
energy materials'with complex characteristics [59-61]. ML may be divided into three categories:
superviseddearning; unsupervised learning, and semi-supervised learning (figure 2) [60, 62].
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Figure 2. Three main categories of ML algorithms (supervised learning, unsupervised learning,
and semi-supervised learning). Examples of supervised léarning: random forest (RF), linear
regression, neural network (NN), convolutional neuralsmietwork (CNN), and support vector
machine (SVM). Examples of unsupervised learning: ksmeans ¢lustering, generative adversarial
network (GAN), autoencoder, and principal component analysis (PCA).

2.1.1. Supervised learning

Supervised learning algorithms are trained with labeled data, where each piece of data is paired
with a known output value, which allows the algorithms to learn the correlation between inputs
and their corresponding outputs. The supervised ML models are usually used as surrogates to
efficiently calculate the output values of'mew, unseen input data without the need to perform
expensive experiments or physies-based simulations. Such models have been seen in a wide range
of applications, such as image recognition, natural language processing, material designs, property
prediction, and fraud detection [60]. Someexamples of widely used supervised learning algorithms
are RF, linear regression, NN, CNN, and SVM. In the materials design domain, such supervised
ML models are commonly used to describe the structure-property relationship to quickly evaluate
new materials.

Some ML models, suchsas decision trees and linear regression, are transparent, interpretable, and
explainable, offering clearinsights into their decision-making processes. For example, Weng et al.
[63] used ML regression models to discover new perovskite catalysts that have enhanced oxygen
evolution reaction activities,»which play important roles in renewable energy production and
storage. They/used.a symbolic regression model to identify a key material descriptor, which
enabled them to predict the oxygen evolution reaction activities and discover new catalysts.
However,, for some complex ML models, the rationale behind the outputs is not readily
integpretable and explainable, making such models a “black box”. Despite their non-transparent
properties, black box models remain highly useful for predicting labels once properly trained.
Many complex ML models, such as NN, can be considered black-box models, and they are used
forproperty predictions, material designs, classifications, and recognitions [64, 65]. Strategy like

Page 4 of 45



Page 5 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PRGE-100213.R1

SHapley Additive exPlanations (SHAP) values, which provide interpretable means to understand
the importance of features, can be used as post-analysis to interpret and explain the predictions
made by black-box models. Fu et al. [66] employed the SHAP analysis to extract synthetic
parameters of catalysts by interpreting the impact of the descriptors of the trained ML model/(e.g.,
k-nearest neighbors, eXtreme gradient boosting, and adaptive boosting).

2.1.2. Unsupervised learning

Unsupervised learning algorithms learn knowledge from unlabeled data that does not have explicit
output value. These algorithms discover hidden patterns, structures, or relationships within the
given dataset, enabling clustering of similar data points or simplification of datasets to reveal their
inherent structures. These ML models are generally used for data exploration, pattern recognition,
and feature extraction [62]. Examples of unsupervised learning algorithms'are K-means clustering,
generative adversarial network (GAN), autoencoder-decoder, and principal component analysis
(PCA). Unsupervised learning has also been used in studying energy'materials. Liu et al. [67] used
an unsupervised classification model to classify whether a given.compound has a phonon band
gap before conducting transfer learning. Jia et. al. [68] designed high-performing thermoelectric
materials by grouping half-Heusler compounds using an iterative unsupervised learning algorithm.
Unsupervised learning, however, lacks the ability to predict properties, although it can sometimes
be combined with supervised learning to narrow down the candidate space [67].

2.1.3. Semi-supervised learning

Annotating properties for various energy'materials can prove to be costly and time-consuming,
leading to limitations in collecting sufficient labeled training data for accurate screening. This is
especially true for many materialsiused in energy applications. For example, designing polymers,
characterized by their high complexity; remains challenging due to limited datasets. This data
insufficiency in energy materials'is usually in contrast to other domains where ML has been more
active and effective. For instance, datasets such as PubChem [69] and the Open Quantum Materials
Database (OQMD) [70] boast large volumes (~million scale) for drug discovery and inorganic
compounds, respectively, but polymers suffer from notable data sparsity (~hundred to thousand
scale) [71, 72]. This_substantial difference in data size poses a significant hurdle for training
generalizable ML models. Moreover, properties of interest, such as gas permeabilities of polymeric
membranes, are often,observed less frequently above satisfactory performance thresholds [72],
creating an imbalanced nature in data labels. This imbalance often leads to a false-negative
problem in virtual screening, potentially biasing ML models toward materials of lower interest and
causing researchers to overlook promising candidates for targeted performance. To address the
challenges, semi-supervised learning becomes a promising approach [73], especially given the
expense of producing labeled data for energy materials. Semi-supervised learning deals with
situations where there are few labeled training data but a large number of unlabeled data, which
aligns with the constraints of annotating energy materials. We categorize semi-supervised learning
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methods into data-centric and model-centric methods. Data-centric methods focus on improving
data quantity and quality, while model-centric methods refine the learning of model parameters:

A notable data-centric method is pseudo-labeling [74], a semi-supervised learning approach that
assigns pseudo-labels to unlabeled data and incorporates them into the labeled training set. Liw et
al. [75] utilized pseudo-labeling in a semi-supervised graph imbalanced, regression (SGIR)
framework to address sparsity and imbalance issues in polymer permeability data by, utilizing the
large unlabeled polymer dataset to augment the limited labeled training data. SGIR achieved
significant prediction error reduction compared to the conventional vanilla graph neural network
(GNN). Challenges in pseudo-labeling include defining confidence scores and improving
uncertainty estimation. Future work may explore integrating active learning as a complementary
approach and developing sampling strategies for pseudo-labelsito balance imbalanced label
distributions.

In model-centric methods, self-supervised learning for example,involves fine-tuning learned data
representations from unlabeled data with a labeled dataset to,solve supervised learning problems
[76]. Self-supervised learning transfers knowledge’ from,unlabeled data to labeled data through
model parameters. Methods for self-supervised representation learning include predictive tasks
and contrastive tasks on unlabeled data, such asymasked atom attribute prediction and masked
subgraph prediction in graph ML for polymets. Kuenneth et al. [77] introduced polyBERT, a
polymer embedding tool inspired by natural langtiage processing concepts, trained through
predictive self-supervised learning. ThewpolyBERT model outperformed existing fingerprint
schemes in terms of speed and accuracy. However, self-supervised learning methods encounter
challenges in cross-domain knowledge transfer, mainly due to differences between unlabeled and
labeled data and between self-supervised learning tasks and downstream tasks. Effective leverage
of recent self-supervised learning.advancements for energy material screening requires specific,
larger-scale, high-quality datasets and self-supervised learning tasks relevant to material properties,
along with careful examination of potential model bias in labeled datasets.

Over the past decade,.these ML techniques have seen increasing use in designing materials and
predicting their properties. To statistically analyze trends in ML application within the materials
field, we extracted the number of relevant publications from the Web of Science using specific
keywords in the ‘Topic’isearch term. The keywords include ‘Material’, ‘Design’, ‘Property
prediction’, “Machine learning’, ‘Supervised learning’, ‘Unsupervised learning’, and
‘Semisupervised (or semi-supervised) learning’. We opted for the keyword ‘Material’ instead of
‘Energy material’ to avoid overly narrowing the search index, as many researchers use the broader
term.«Figuresi3a and 3b illustrate the growing number of publications applying ML to material
design and) property prediction, indicating an active adoption of ML techniques in material
research:fields.
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Figure 3. Annual number of publications in the research field ‘of ML for material science.
Keywords include ‘Material’, (a) ‘Design’, or (b) ‘Property prediction’yyand those in the figure
legend.

2.2. ML-facilitated material optimization and inverse design

The forward inferences of ML models can be used to prediet the properties of candidate materials
using surrogates. However, in many cases, it is required to, optimize or inversely design new
materials with desirable target properties. Therefore,, ML 'models are also used with different
optimization schemes to optimize or design new materials.

Inverse design refers to the process of identifying material structures or compositions that exhibit
desired properties or performance characteristics: In traditional design processes, researchers
iteratively design and test until they achieve their goals, which might take a long time. In contrast,
the inverse design starts with desired outputs (i.e., characteristics, functionalities, or properties),
and then works backward to determineithe optimal structures that satisfy the predefined objectives
(figure 4(a)). In energy materials, ML techniques can be beneficial to constructing reliable inverse
design models using varioustoptimization techniques, such as genetic algorithms, Bayesian
optimization, and reinforcement learning. These methods explore the vast design space efficiently,
guiding the search towards optimal solutions that meet specific property requirements.

Various design models have been used to integrate with ML algorithms, such as active learning,
inverse design, and black box models [64]. Collecting a lot of training data to build solid models
by training MLsalgorithms, can be costly and challenging, and a lack of training data often leads to
suboptimal predictions or classifications. These challenges (i.e., sparsity and imbalance issues in
the dataset)pgenerally come from the limited availability of experimental/computational data
(compared to the oftentimes large design space). The disproportionate representation of different
classes,or ranges of values can lead to biased models, resulting in inaccurate predictions. To
overcome this challenge, ML-aided active learning algorithms have gained popularity in materials
design,and optimization. These active learning algorithms iteratively select the most informative
samples during an optimization cycle. Hence, the algorithms gradually update their models by
selectively incorporating informative data points labeled by an oracle, which is an entity that
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provides expertise in labeling or evaluating data. The updated dataset is used for the next/iteration,
guiding further data collection. Active learning enables the iterative improvement of the.model’s
performance with a minimal number of training data; thus, it can reduce optimization.costs. Hence,
active learning is widely used for the purpose of optimal designs, such as‘material design and
system optimizations [78-81].

Force fields are mathematical models used to estimate the potential energy ‘of a'system of atoms
or molecules, essential for molecular dynamics simulations and materials modeling [82].
Developing accurate force fields involves parameterizing the model to capture the interactions
between atoms accurately [83]. ML techniques have been increasingly applied to force field
development, where models are trained on high-quality data from quantum mechanical
calculations (figure 4(b)) [84, 85]. This approach enhances the accuracy and transferability of force
fields, enabling more reliable simulations of complex material systems [84, 85].

Forward prediction
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Figure 4. (a) The schematic of inverse design, where inverse design starts with the desired
properties to find the optimal design. (b) The schematic of ML force field, reproducedfrom [84].
CC BY-NC-ND 4.0.

2.3. Data preparation

Data preparation is an important step for ML [86]. Training data used for ML can be collected
from experiments, reported results, computations, and databases. Using reported data can
minimize costs for generating training data, but it is essential to consider/many factors besides the
target property of interest in material designs (i.e., experimental conditions, measurement
techniques, or design baseline). There often can be large deviations between data from different
literature even for the same material. Hence, researchers are increasingly using computational
simulations where users can have more control of the data’production procedure. Although
computations are usually more efficient than experiments, they can still be time-consuming. To
address this limitation, researchers have shared data from.their experiments and computations in
publicly accessible databases, aiming to assist other users with their ML tasks. This is becoming
more common with many journals mandating data sharing. However, these data usually have
different formats and are not easy to mass download. There are some databases that are for general
use or more specialized (e.g., for gas permeability) for material designs. These include: Materials
Project (MP), Open Quantum Materials Database (OQMD), Materials Cloud, National Renewable
Energy Laboratory Materials, Inorganic Crystal Structure Database (ICSD), superconducting
critical temperatures (SuperCon), Harvard €lean Energy Project (HCEP), Materials Commons,
Cambridge Structural Databases, Materials Data Facility, Nano-HUB, Pearson Crystal Data,
AiiDA, novel materials discovery (NOMAD),;;AFLOWLIB, computational materials repository,
Crystal Open Database, PubChem, Protein Data Bank (PDB), CRYSTMET, Fireworks, PoLyInfo,
and MatWeb [29, 87-91].

As ML techniques have been more, frequently applied in material science, the importance of data
preparation has increased. To statistically analyze trends in data preparation, we retrieved the
number of publications from the Web of Science using the keywords ‘Material’, ‘Machine
learning’, ‘Experiments’, ‘Simulation’, ‘Database’, ‘Materials Project’, ‘Inorganic crystal
structure database’, and “Materials Commons’. Figure 5(a) shows that ‘Experiments’, ‘Simulation’,
and ‘Database’ have been increasingly utilized to prepare data, highlighting an increasing use of
representativedatabases in.figure 5(b).
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Figure 5. Annual number of publications to prepare data for ML in'the material field. Keywords
include (a) ‘Material’, ‘Machine learning’, and (b) ‘Material’, ‘Machine learning’, ‘Database’, and
those in the figure legend.

Both data quality and quantity are critical to the performance of'the trained ML models. Although
these databases can support the training of many good ML models, there may be a lack of specific
properties of particular interest to certain users. Hence, additional data may be required to further
improve the quality and quantity of training'data for these cases. If it is challenging to collect a
large number of training data because of' difficulties'in experiments or computations, data
augmentation strategies may be applied, which,however are more popular for image data [90, 92,
93]. Recently for graph-type data, which.can be described by graphs such as molecules [94],
polymers [95] and crystals [96], techniques like node feature masking, edge dropping, and
subgraph replacement are also emerging for data’augmentation [76, 97, 98].

2.4. Training and evaluating ML models

With the data prepared, ML models of choice can be trained. Available datasets are usually split
in a certain ratio into training; validation, and testing sets. Training stays largely as an art, which
involves experience in hyperparameters (e.g., epoch, batch size, learning rate, momentum, cost
function, hidden unit, tégularization parameter and iteration) tuning using different techniques
(e.g., grid search, random search, or advanced optimization methods) to optimize the model quality
[99]. After training, the built models are usually evaluated using a validation set to ensure
performance by mitigating underfitting or overfitting problems. Here, hyperparameters can be
finely adjustedsto further enhance the model performance. Afterward, a test set is employed to test
the ML model’s accuracy, estimating the performance of the trained ML model with new and
unseen datar The performance can be evaluated by comparing known values with predicted results
from the ML model. Several metrics are used to measure the accuracy of the ML models, for
instanee, aceuracy, receiver operating characteristic - area under the curve (ROC-AUC), root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R?) [100].
Typicallysaccuracy and ROC-AUC are used for classification tasks:

Accuracy = C/N (1)

10
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where C is the number of correct predictions and N is the total number of predictions. The ROC is
a graphical curve that illustrates the performance of a classification model by plotting true,positive
rate against false positive rate at classification threshold settings. The AUC quantifies the two-
dimensional area under the ROC curve, serving as an indicator of the model performance.

On the other hand, MAE, RMSE, and R? are widely used to evaluate the performance of regression

models.
13 19— il
MAE = _ZM ()
ni=1 Vi
1 n
RMSE = |- (5, - y? 3
i=1
n(5 —y.)2
RZ =1 _fl({l—yl)z (4)
i-1 (7 — i)

where n is the total number of data, y; presents true value for i'data point, §, presents the predicted
value for /" data point, and ¥ represents the mean of true valués. Lower values for MAE and RMSE
(closer to 0) are preferable, indicating better performance/of ML models. In contrast, a higher R?
score (closer to 1) indicates that the ML model fits well,

2.5. ML-aided design models used/for.energy materials
In this section, we highlight three optimization algorithms that have been used for energy material
optimization and design.

2.5.1. Neural network

NN also known as artificial neurabmetworks (ANNs), are a class of ML algorithms inspired by
the structure and functioning,of organismic neural networks. The basic unit of ANNSs is the
artificial neuron and informatien flows through the network as the weights of connections between
neurons are adjusted during a training process. NN can have various architectures and can be
generally classified inito several categories, which are multi-layer perceptron (MLP), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and
attention-based networkinétworks.

In the domain of enetrgy material studies, MLP stands out as a prevalent NN structure, due to the
simplicity of theymodel structure and limited dataset sizes of energy materials. MLP is constructed
from perceptron, which is the basic unit that processes the weighted sum of inputs through a chosen
actiyation function to generate an output. Comprising an input layer, one or more hidden layers,
and'an output layer, the MLP's interconnected neurons allow for customization in terms of the
number of hidden layers and neurons, with the activation function determining the linearity or
nonlinearity of its operations. Common nonlinear activation functions, such as Sigmoid,

11
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Hyperbolic Tangent, and Rectified Linear Unit (ReLU), are widely used, enabling the model's
universality [101, 102]. Various loss functions, including cross-entropy (for classification task)
and RMSE (for regression task), are used to quantify the disparities between predictions and actual
values [103]. The optimization of MLP weights regarding the loss function utilizes various
techniques, with gradient descent recognized for its stability and efficiency [104].

Deep neural networks (DNNs) are multi-layer MLPs capable of learning, intricate data
representations through various levels of abstraction [105]. DNNs have demonstrated diverse
capabilities in various domains and can be generally categorized into CNNs for grid-like data,
RNNSs for sequential information, GNNs for graph-like structures,/and attention-based networks
for the selective focus on different parts of the data. CNNs utilize convelutional and pooling layers
to automatically extract hierarchical features from grid-like data,»,commonly applied in image-
related tasks like classification and recognition [106]. RNNshare designed for processing data
points sequentially related across time or space. It incorperates information from previous time
steps to capture temporal dependencies. This makes RINNs suitable for handling time-dependent
phenomena as well as text-based data [107]. GNNs specialize ‘in analyzing graph-like data by
considering the inherent structural relationships betweenmodes and edges, frequently employed in
chemistry, biology, and social network analysis [108]. For example, graph data can represent
molecules’ structural information where atoms are.nodes and bonds are edges, providing a natural
and intuitive way to model the complex relationships inmolecular and crystalline structures. Here,
graph data allows for the identificatiofn of functional groups, the detection of cycles and rings, and
the analysis of molecular stability and reactivity, showing better predictive performance than
traditional fingerprinting methods. Furthermorte; in crystalline structures, GNNs help model and
predict properties such as conductivity, thermal stability, and heat capacity [109-111]. GNNs
generally operate by iteratively updating the representation of each node based on its neighbors'
features and the edges connecting them (figure 6). This process allows the network to learn
complex interactions within the material structures, making it suitable for predicting the properties
and behaviors of materials/ Attention-based networks introduce a dynamic and adaptive
mechanism that sets them apart from other DNN architectures. Unlike conventional models that
process the entire input.uniformly, attention-based networks selectively focus on specific elements
of the input, assigning varying levels of importance based on their relevance to the task [112]. This
makes attention-based networks particularly powerful in scenarios where nuanced attention and
context-aware/processingrare crucial, such as machine translation, sentiment analysis, image
captioning, and/material science [113-115].

In general, NN excels in capturing intricate patterns in data, making them well-suited for predicting
complex material properties and optimizing material structures. They can automatically learn
relevant features from the input data, eliminating the need for manual feature engineering. This is
advantageous when dealing with high-dimensional and unstructured materials data, thus it has
been increasingly utilized in energy material research. For example, Li et al. [116] designed battery
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thermal management systems using ANN models. Kaya et al. [117] optimized ultra-thin organic
solar cells using an NN-based surrogate model. These examples show that NN is usefulfor energy
material design. However, NN also has limitations, for example, it usually requires large amounts
of labeled data for training mainly because of the complexity of the model structure, and the quality
of predictions heavily depends on the diversity and representativeness of the training dataset.
Moreover, the complex, non-linear nature of NN often results in models that are challenging to
interpret.

frif o

Graph Message passing Graph embedding

» -

Downstream task

[T T4 W [

Figure 6. The schematic of GNNs, illustrating how to update the representation of nodes based on
the features of its neighboring nodes and the edges connecting them.

2.5.2. Genetic algorithm

Genetic algorithms (GAs) are stochastic search techniques inspired by evolutionary biology,
encapsulating procedures such as inheritanee, mutation, selection, and crossover to explore the
broad regions of the solution space and avoid local minima. After determining the fitness values
for all chromosomes, the algorithmyselects two elite chromosomes, which exhibit the highest
fitness values. These are then subjected to a single-point crossover operation, executed with a
crossover probability, to produce offspring. This newly formed offspring subsequently undergoes
a uniform mutation, with a mutation probability, resulting in the creation of a modified offspring,
which is then incorporated 1ito the new population. The entire process, encompassing selection,
crossover, and mutation, is;methodically repeated for the current population until the composition
of the new population‘is.fully realized. Chromosomes in GAs for energy material design are the
objectives in the GA evolutions, which represent key parameters of material structures, such as
atomic composition, €rystal structure, or structural configuration. The encoding of material
structural features ustally involves transforming the parameters into a genetic format (i.e., binary
encoding, or integer encoding). This encoding process ensures that GAs can effectively manipulate
and optimize the material structures through mutation, crossover, and selection. At the end of the
optimization, the optimized chromosomes are decoded into corresponding material structures,
providing a pathway to discover materials with enhanced energy-related properties.

Benefiting from the outstanding performance in problem domains characterized by complex
fitnessslandscapes, GAs have been widely applied for design problems, which also include the
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designing of energy materials. Mayer et al. [118] employed GAs to optimize the geometric
parameters of flat-plate solar thermal collectors, which led to the maximized solar abserption rate
and minimized thermal emissivity with a much lower computational cost. The adaptability of GAs
was also shown by Lin et al., who utilized GAs for optimizations of random diffraction, gratings
in thin-film solar cells [119]. Their findings enhanced the light coupling and trapping effects:for a
broad range of the solar spectrum, where a 29% improvement over flat cells and 9% improvement
over the best periodic gratings were observed. With the development of computational science,
researchers have explored the integration of GAs with other advanced techniques to facilitate
material design. Patra et al. introduced a novel approach combining NN with' GAs [120]. This
strategy harnessed the learning capability of NN to guide the evolutionary search of GAs, leading
to accelerated material discovery by allowing the algorithms to search as well as learn from the
search process. Such a combination was later widely applied to design high-temperature energy
capacitors [121], desiccant cooling systems [122], and multilayer microwave radar absorbing
material [123]. Zhou et al. [124] developed a molecular-dynamics (MD) based GA to design
polyethylene—polypropylene copolymers with high thermal conductivity, indicating the potential
of the MD-GA computational framework for accelerating the.design of co-polymeric materials. A
noteworthy contribution to this domain was the development of the GAMaterial software [125].
This software provides a convenient platform for researchers to apply GAs for material design and
discovery.

Generally, GAs are prized for their robustness.and ability to handle complex, nonlinear problems,
but they also have limitations. Binary representations can lead to intractable string lengths and
precision issues, while continuous problemsimay require specialized crossover and mutation
operators to maintain genetic divetsity. Moreover, the risk of converging to local optima and the
computational cost of simulating many,generations can be significant, especially for high-
dimensional problems where the time complexity can become prohibitively high.

2.5.3. Bayesian optimization

Gradient-based optimization strategies, suitable for continuous variables and smooth landscapes,
can be ineffective in cases invelving discrete variables. This is a prevalent issue in material science,
where aspects like chemical composition, processing methods, and structural configurations are
inherently discrete or'eategorical. In this context, Bayesian optimization (BO) emerges as a robust
and efficient method for navigating these complex and multidimensional spaces. BO is considered
a non-derivative algorithm, which uses mechanisms (Bayes’ theorem) rather than relying on
gradient ifformation to explore solution spaces. Non-derivative algorithms are particularly
advantageous for objective functions that are discontinuous, noisy, or have multiple local minima,
wherergradient information is either unavailable or unreliable. BO, which is a non-derivate and
iterative algorithm, uses Bayes' theorem to formulate the parametric space, and employs an
acquisition function (e.g., expected improvement) to estimate the best input parameters for the
next optimization cycles [126]. The process begins with defining objective functions and decision
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variables, followed by initiating preliminary experiments using space-filling samples like Latin
hypercube designs. The core of BO is updating a Gaussian process (GP) surrogate, model,
f(x) ~GP(m(x),k(x,x’)), with experimental [127] or computational data [128], which then
informs the optimization of an acquisition function, such as Expected Improvement (EJ), for
selecting the next sampling point. This iterative method continues with experiments and data
enhancement until achieving objectives or resource depletion. BO hinges on a probabilistic
surrogate model and an acquisition function [129], where the surrogate model encapsulates initial
beliefs about an unknown function and data generation, evolving through iterative queries into a
more informative posterior. This approach efficiently navigates the multidimensional design
spaces (see figure 7 as an example).
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Figure 7. Illustration of BO. BO with EI acquisition function is applied to minimize the test
problem fi(x) =wsin(5x) * (1 — tanh(x)?) over three iterations. The left column of the plots
illustrates the mean and confidence intervals as predicted by the GP model for the objective
function. While these plots also display the actual objective function, it is important to note that
this/function is typically unknown in real-world scenarios. In the right column, the acquisition
functiens_are depicted as green curves. These functions attain high values in regions where the
model anticipates a high objective function value, indicating opportunities for exploitation. It is
noteworthy that the far-left region remains unexplored in the sampling. This is because, despite its
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high uncertainty, the model accurately forecasts minimal improvement in this area compared to
the highest observed value so far.

In recent years, BO has emerged as a pivotal tool in the field of energy matetials, revolutionizing
the way researchers approach optimization and discovery [130, 131]. Shang et al. [127] employed
Bayesian Optimization with a hybrid dataset of literature-reported and experimental data to
enhance the power factor of AgSe-based thermoelectric materials, achieving deuble the power
factor with approximately ten experimental iterations. Saeidi-Javash and/colleagues [132] applied
BO to optimize flash sintering parameters for silver-selenide thermoelectric films, considering
both continuous variables like voltage and pulse duration, and discrete variables like the number
of pulses. Zhang et al. [133] integrated a latent variable GP model with BO, tackling both
qualitative and quantitative variables in material design. This approach énhanced optimization in
complex material design challenges, such as Hybrid Organic-Inerganic Perovskite design. Each of
these studies underscores the diverse and potent applications,.of BOvin energy material science.

These representative design models have been widely employed in material research. Figure 8
shows the growing trend of utilizing these models in material design. Notably, NN has seen rapid
growth in use in recent years due to enhanced computational power, which enables the effective
handling of large datasets for training.
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Figure 8. Annual number/ of publications using ML-aided design models in the material field.
Keywords include ‘Material’,*Design’, and those in the figure legend.

2.6. Quantum annealing-aided active learning for material design

In many energy material design tasks, binary optimization can be an efficient strategy as material
states“can be described using discrete variables. For example, in the design of optical materials,
planar multilayered geometry can be represented as a binary vector by assigning a binary number
to eachilayer according to the corresponding material. Similarly, metasurfaces or stratified gratings
geometries can be represented as a binary vector by discretizing the unit cell into pixels and
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assigning a binary label to each pixel depending on the material. As the material configuration
directly determines the material performance, the design task can be transformed inte, binary
optimization (i.e., combinatorial optimization problems). However, increasing theé number of
variables (e.g., the number of layers or pixels in the material structures) will exponentially.increase
the total possible combinations, resulting in an explosion of the combinatorial design space: For
example, the design space size is 22° (=1,048,576) if there are 20 binary variables for the input
vector (assuming each layer or pixel has two options in material choice), while'the design space
size is 2°° (=1,073,741,824) for 30 binary variables. Exploring such large/design,spaces to find the
best input state is extremely challenging or impossible because of computational limitations. To
overcome this limitation, one can transform material design tasks/into_quadratic unconstrained
binary optimization (QUBO) problems, where QUBO can be efficiently solved by a quantum
computer [134, 135]. In particular, a quantum annealer, which'is specially designed for solving
combinatorial optimization problems by providing quantum speedup against classical counterparts
by taking advantage of quantum physics (quantum tunneling), can efficiently be used to solve
QUBO problems [136]. Then, the quantum annealer can find the ground state and the
corresponding binary state of the given QUBO within a fraction ‘of a second, even if the problem
size is large [137]. A key to leveraging quantum anne€aling for material optimization is to formulate
QUBO models as surrogates to describe she relationship between material states and their
corresponding performance metrics since quantum computing is compatible with the QUBO
model.

Factorization machine (FM) is a model that can be directly used to formulate the QUBO model
(Q) by employing the model parameters after training FM [79]. FM was proposed by Rendle, and
can be used as a supervised learning algorithm [138], which is designed to handle sparse and high
dimensional data for classification and,regression tasks. FM includes linear and factorization
models, allowing the capture of the relationships between individual features and target variables
(i.e., linear model) as well asdnteractions between features (i.e., factorization model). FM can learn
feature interactions efficiently without explicitly enumerating all possible combinations and can
be trained with gradient descent methods, enabling relatively short training times. Owing to these
advantages, FM can be widely applicable to real-world problems that have sparse data, enabling
us to design energy materials efficiently [138, 139]. Since input vector x is discretized into n
variables, FM is' suitable for combinatorial optimization problems. Individual features and
interactions of FM can be trained with linear and quadratic models as the following equations:

n n n
y(X) = Wy + Z W;X; + Z Z < v, Uj > xix]' (5)
i=1

i=1 j=i+1
where.n isithe‘number of variables of x, wy is global bias, w is linear coefficients presenting
individual features and < v;, v > models the interactions between x; and Xj of'size k. Factorizing
the quadratic model < v;, v; > can significantly reduce computational complexity (from 0 (kn?)
to.0.(kn)) by reformulating complex interaction models into linear ones:
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n n 1 k n 2 n
z z <V, v > XXy = EZ((Z vi’jxl-) — z vipxf) (6)
=1

i=1 j=i+1 i=1 i=1
In a QUBO matrix (Q), diagonal elements are formulated from linear coefficients (w), and oftf-
diagonal elements are formulated from quadratic coefficients (v) of the FM model. Then, quantum
computers can be leveraged to find the ground state and corresponding binary state of'the given
QUBO problem:
y(x) = x"Qx ()
where x is the input binary vector, Q is a given QUBO, and y(x) is the objective function.

Active learning algorithms that integrate FM with quantum annealing have recently been utilized
to design energy materials, such as multi-layered photonic structures, metamaterials for thermal
management, and metamaterials for thermophotovoltaic applieations [79, 134, 140-142]. These
algorithms demonstrate potential in designing complex structures:that pose large optimization
spaces.

3. Design of energy materials using ML

In the previous section, we have discussed different ML schemes used in energy materials design
with examples for each of them. In this section, we discuss several types of energy materials that
have seen most ML activities.

3.1. Radiative cooling materials and structures

Passive radiative cooling, emitting thermal radiation into cold space (~3 K) through an atmospheric
window (AW; wavelength: 8 to 13,um), has attracted enormous attention as an efficient solution
to reduce cooling energy consumption in.response to climate change [143-145]. However, optimal
design of radiative cooling materials is challenging as there are multiple design parameters such
as dimensions and material f#omposition. ML has been introduced to enable the optimization of
such design parameters to achieve high-performance radiative cooling materials. Li et al. [146]
optimized material compositions and layer thicknesses for daytime radiative cooler using ML
(light gradient boosting machine) and genetic algorithm (figure 9(a)). They demonstrated that time
consumption for the optimization could be significantly reduced from 7783.37 s to 115.81 s (~67
times acceleration) by, using ML instead of using an analytical method (transfer matrix method).
The optimizedsstructure showed high reflectivity in the solar spectrum range and high emissivity
in the AW (figure 9(b)), allowing to emit thermal radiation efficiently, leading to high cooling
power (~140.38 W/m?) and daytime temperature reduction (~9.08 °C) compared to the ambient
temperature. Guan et al. [ 147] designed a transmissive colored radiative cooling film by optimizing
film structures’(layer configuration and thicknesses) with ML techniques (mixed-integer memetic
algorithm and tandem NN, figure 9(c)). ML substituted the time-consuming 3D optics simulations,
whichuiled to significant acceleration for the optimization. The optimized film presented better
visible light transmissivity compared to other colored radiative cooling films. Furthermore, the

18

Page 18 of 45



Page 19 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PRGE-100213.R1

film showed a high emissivity in the AW (figure 9(d)), yielding a good cooling performanee with
a cooling power density of 126.6 W/m?.

ML-aided optimization is getting more challenging as the design space is getting larger. To
overcome this computational limitation, Kiati et al. [134] proposed a structural,optimization
method (called FMQA, figure 9(e)), which incorporates FM and QA. They designed metamaterial
to achieve high radiative cooling performance using the FMQA scheme where' FM, was used to
build a QUBO, and QA (D-Wave quantum annealer) was employed to solve the QUBO. They
demonstrated a great performance of the proposed FMQA method compated to other optimization
methods (GP, random search, and exhaustive search). Moreover, they could successfully design
complex metamaterials with large design spaces (total possible configuration: ~2°) thanks to the
advantages from QA, and the optimized metamaterial presented near-idéal emissivity in the AW
(figure 9(f)). Existing radiative cooling materials are generally teflective to reduce solar absorption
and transmission [148]. Although radiative coolers that are.ttansparént in the solar spectrum have
been proposed, transmitted ultraviolet (UV) and near-infrared (NIR) lights can still significantly
contribute to optical heating, which adversely affects cooling performance [149, 150]. Kim et al.
[79] designed planar-multilayered photonic structufes for transparent radiative coolers that have
selective transmissivity to reduce solar heating by treflecting UV and NIR light while allowing
visible light transmission. For multilayered structures, there can be lots of possible configurations
(4**), which may be beyond the limits of the computational capability. Hence, they used the FMQA
to enable the optimization, and were able torsuccessfully optimize a multi-layered structure within
58 hours, which might take ~89 million years with an exhaustive enumeration (figure 9(g)). The
optimized structure showed the best-in-class performance compared to other transparent radiative
coolers or energy-saving glasses.»Furthermore, they experimentally demonstrated the unique
optical characteristics (i.e., selective transmissivity in the visible regime, figure 9(h)) and cooling
performance (temperature reduction of 6.1°C and potential cooling energy saving of 86.3 MJ/m?
compared to normal glass window). This represents the first example of the practical realization
of quantum computing designed energy material.
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Figure 9. ML design of radiative coolingimaterials and structures. (a) A ML workflow to design
a high-performance radiative cooler, developed in [146]. (b) Optical characteristics of the
optimally designed radiative coolerusing ML. The designed cooler has high emissivity in the AW
to have high cooling performance:s Reprinted with permission from [146] © Optical Society of
America. (c) ML-assistediinverse design strategy for the design of transmissive colored radiative
cooling films in [147]a(d) Optical characteristics of the optimally designed film. This film has
high transmissivity in the solar spectrum and high emissivity in the AW, showing visible
transparency with high.cooling capability. Reproduced from [147]. CC BY 4.0. (e) A workflow of
FMQA for automated designs, suggested in [134]. (f) Emissive power of the designed
metamaterial in‘the AW, enabling high cooling performance. Reproduced from [134]. CC BY 4.0.
(g) Computational time required for the optimization of a complex system with exhaustive
enumeration and FMQA method, studied in [79]. (h) Transmitted irradiance through the designed
transparent radiative cooler (TRC). This transparent radiative cooler has high transmissivity in the
visible range while having low transmissivity in the ultraviolet and near-infrared ranges, resulting
in minimized optical heating from sunlight while keeping visible transparency. Reprinted with
permission from [79] © American Chemical Society.
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3.2. Batteries

As new technologies, such as electric vehicles, portable electronics (smartphones), and renewable
energies, become an integral part of our daily lives, developing high-performance batteries is
crucial for providing and storing the energy for them [151]. However, it is also ¢hallenging to
optimize batteries because of the large design space that comes from many, parameters such as
material composition, mixing ratio, stoichiometry, mechanical properties, shapes,and sizes. Hence,
researchers have utilized ML techniques for the optimization of batteries. Using solid electrolytes
to suppress dendrite growth has emerged as a promising strategy for next-generation batteries
based on lithium metal anodes. Ahmad et al. [152] employed datazdriven ML algorithms (graph
convolutional NN, gradient boosting regressor, and kernel ridge regression) to predict the
mechanical properties of inorganic solid electrolytes (e.g., shéar modulus, Poisson’s ratio, and
molar volume ratio of solid electrolytes), which are important.to determine the stability of the
interface by estimating dendrite initiation. They trained_ their MIralgorithms with data in the
Material Project database (figure 10(a)) [153], and they were,able to find some electrolytes
expected to suppress dendrite initiation and growth (e.g., LiaWS4, LiAuls, BazgNassLizN). Joshi
et al. [154] developed a ML-based algorithm (DNN; SVM, and kernel ridge regression) to predict
electrode voltages for metal-ion batteries (figure 10(b)), They also used the Material Project
database [153] to train their ML algorithms. Their data-driven ML approach enabled them to
overcome computational difficulties to explore large design spaces and provided a fast estimation
of the voltages as an alternative to DET 'caleulations. Their ML models showed high accuracy
(figure 10(c)) in predicting voltages of electrode materials (e.g., Li-, Na-, K-, Mg-, Ca-, Zn-, Al-,
and Y-ion batteries), thus it could guide therexploration of many different combinations of
electrode materials.

Improvements in battery performance. include costly and time-consuming work due to the
difficulty in accurately formulating the relationships between inputs and outputs of the
optimization problem. Dave et al. [155] used BO to autonomously discover novel battery materials
(aqueous electrolytes). They demonstrated that the optimized electrolytes increased stability at a
low leakage current (24 mVohigher in the blend) and suppressed current density (~58% at 2 V,
compared to NaClQ4 feeder solution). Accurate prediction of battery life is challenging since it
requires a comprehensive understanding of battery systems and involves high costs for testing.
Kim et al. [1567used ML methods (deep learning with simulation and predictive curve fitting) for
early battery lifé prediction, ML algorithms were well trained with 2-3 weeks of data for the life
prediction; and predictions were accurate with errors below 10%, enabling the reduction of costs
associated with the prediction of battery performance (figure 10(d)). Although voltage profile
imagesicontain lots of information to determine battery performance, capturing subtle changes in
images by human eyes is difficult. Chen et al. used a ML algorithm (CNN) pre-trained on
ImageNet[157] to predict battery performance by using voltage profile images [158]. They further
trained the algorithm on experimental data collected at different experimental conditions, and the
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resulting ML model showed high accuracy. Battery performance is dependent on historical
information, and their ML model trained on historical data could be used to prediet future
performance such as remaining useful lifetime and general stability.
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Figure 10. ML design of battery materials. (a) An ML workflow to design high-performance
batteries. (b) Architecture of the MIutopredict output voltage of metal-ion batteries, developed in
[154]. (c¢) Accuracy of the/developed ML model, enabling the prediction of output voltage of
batteries. Reprinted withspermission from [154] © American Chemical Society. (d) Battery life
predictions using early-life data by utilizing ML models, developed in [156]. Reproduced from
[156]. CC BY-NC-ND 4:0.

3.3. Photovoltaics

Perovskite materals are promising candidates that can be used in photovoltaics [159-162], which
have attracted extremely extensive interest in the scientific community in recent years. However,
improving the performance of photovoltaics, such as energy conversion efficiency, durability, and
lifespans, poses.challenges due to the complexity of optimizations [163, 164]. To overcome those
challenges,, Yu et al. [165] built ML models to predict relations between chemical-physical
properties of amines and their reactivities to organic-inorganic hybrid perovskite (MAPbI3) film
(figure 11(a)). They tested various ML algorithms such as logistic regression, SVM, K-nearest
neighbots and decision trees, and they achieved the highest score of 86% accuracy (accurate
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prediction / total prediction) on test data using the SVM with a radial basis function kernel., With
the trained ML model, they could predict reactivities of un-trained amines to the hybrid perovskite.

Moreover, they could learn chemical insights and knowledge by screening coefficients of the
model, guiding new experimental conditions. To enable the rapid discovery of functionalmaterials

for ferroelectric photovoltaic perovskites, Lu et al. [166] developed a multistep screening scheme
by combining DFT calculations and ML techniques. They successfully trained ML algorithms with
collected data from high-throughput first-principles calculations. The trained. models could
achieve high accuracy (ROC-AUC of ~0.89 for the classification model and R? score of ~0.921

for the gradient boosting regression model) and showed accurate prediction for both perovskites

and non-perovskites. Using the models, they found some mixed halide perovskites (e.g., CsGeBral,
RbGeBrl, CsGelbBr, RbSnCL1, and RbSnl>Cl), which were close to the optimal value of single-

junction solar cells.

Prediction of material properties is important to designsperovskite materials. To predict key
properties of perovskite materials, Stanley et al. [167],employed a ML approach (kernel ridge
regression) for learning complex relations between matetial compositions and corresponding
properties from a limited number of data. They calculated 344 mixed perovskites using DFT, and
used them to train their ML algorithm, resulting in a'good model for the prediction (figure 11(b)).
Thus, they could rapidly predict several important properties of photovoltaics in the composition
space, enabling the suggestion of the rational design of new perovskites (figure 11(c)). She et al.
[168] utilized a two-step ML approach with.¢classification and regression models to find highly
efficient perovskite solar cells by exploring a vast design space. They used experimental data
extracted from the published literature to trainsthe ML algorithm. With the model showing high
accuracy, they could successfully extract general underlying knowledge of perovskite solar cells
by analyzing important features/ In addition, they could discover high-performance perovskite
solar cells with doped electron transport layers (e.g., Cs-doped TiO; electron transport layers, and
S-doped SnO; electron transportlayers) having high power conversion efficiency of up to 30.47%.
Inherent ionic defects in perovskites can lead to damage to their stability, impeding their practical
applications, but high computational costs associated with DFT calculations and inaccurate
predictions pose challenges te.dmproving the stability of perovskite materials. Yang et al. [169]
developed an interatomic potential model by employing a ML algorithm (deep learning) to analyze
the ionic defect effects. The model performance was improved by iteratively exploring design
space similar t0 active learning, leading to an efficient model with high-level accuracy close to
classical MD ‘ealculations (figure 11(d,e)). With their model, they revealed the factors affecting
ionic defeets.
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Figure 11. ML for perovskite photovoltaic materials. (a) A workflow of ML-assisted exploration
to study the compatibility,of organic-inorganic hybrid perovskite film with amines, developed in
[165]. Reprinted with permission from [165] © American Chemical Society. (b) Comparison
between actual.and predicted value of the ML model, showing high accuracy in [167]. (c) ML
model can belused to predict characteristics of perovskites. Reproduced from [167]. CC BY 4.0.
(d) Comparisonybetween the predicted values from the ML-assisted model and DFT-calculated
energy values, studied in [169]. (¢) Comparison of time for calculations using the developed model
and ab_initio_molecular dynamics, demonstrating the efficiency of the developed ML-assisted
model. Reprinted with permission from [169] © John Wiley & Sons.

3.4. Gas separation materials
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The application of membrane technology, especially utilizing polymers for gas separation, has
become critical for processes like carbon dioxide capture, hydrogen separation, and.natural gas
sweetening [170, 171]. While polymeric membranes find widespread use, they encounter
challenges such as permeability-selectivity trade-offs, physical aging, and plasticization, limiting
their broader utility. To overcome these multi-objective design challenges, the integration of ML
techniques has gained some momentum in expediting the screening and design of high-
performance polymeric gas separation materials. An early effort in this field traces back to 1994
when Wessling et al. [172] pioneered the use of a NN to model the CO permeability of polymers,
utilizing infrared spectra as input features. Despite a limited database size (only 33 polymers),
relatively accurate predictions highlighted the substantial potential of ML in quantitative structure-
property relationship (QSPR) analysis for polymeric membrane gas separation materials.
Subsequent research endeavors have expanded on this foundationywiththe accumulation of gas
separation data and the advancement in ML algorithms. Zhuetal. [173] utilized GP regression to
predict permeability for various gases in a dataset of 315,.polymers, employing a hierarchical
fingerprinting method based on the chemical structure of the polymer repeating unit. Barnett et al.
[174] followed a similar approach, utilizing GP regression and a topological, path-based
fingerprint for around 700 polymers, demonstrating the.model's ability to predict permeability
values for ~ 10,000 unlabeled polymers. In addition to using handcrafted fingerprints or descriptors
to represent polymer structural information, recent approaches involve representation learning
from deep neural networks. Wilson et al. [175] treatedpolymer structures as graphs, developing a
GNN named PolyID for efficient idefitification. of high-performance biobased polymers. PolyID
facilitated the discovery of biobased poly(ethylene terephthalate) analogs with enhanced thermal
and gas separation performance,

3.5. Thermoelectric materials

Thermoelectric materials, which'¢an convert thermal energy into electricity, can be a solution to
global energy challenges by converting waste heat into useful energy. Due to the large
stoichiometry and processing space, physics intuition-based optimization has been slow for
thermoelectric materials, design and process optimization. To overcome these challenges,
researchers have applied MLitechniques for the efficient development of thermoelectric materials
and the prediction of their properties [176, 177]. Figure of merit (z7) is an important indication for
the performance of thermoelectric materials. Hence, researchers have tried to efficiently predict
zT and developthermoelectric materials with high z7'. zT'is related to a few intercorrelated transport
properties as the following equation [178]:

zT = S?p~ k1T (8)

where S, p, k, and T respectively represent the Seebeck coefficient, electrical resistivity, thermal
conductivity, and absolute temperature. As can be seen from the z7 expression, thermoelectric
materials usually benefit from low thermal conductivity which can in turn improve their efficiency.
Howevery prediction of the thermal conductivity of inorganic materials is challenging since only a
few-portions (5% among 10> synthesized inorganic materials) have a low thermal conductivity that
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is effective for thermoelectric materials. To tackle this challenge, Zhu et al. [179] employed ML
techniques (crystal graph convolutional network and RF) for the prediction of the,thermal
conductivity of all known inorganic materials for thermoelectric applications (figure,12(a,b)). The
trained models after including the transfer learning exhibited good accuracy, allowing for.accurate
predictions of thermal conductivity. Furthermore, they could identify a promising material system
for thermoelectrics.

Li et al. [180] used a data-driven light gradient boosting (LGB) mod¢l to directly predict the
performance (z7) of thermoelectric materials. They trained the model with selected data from the
database by the University of California Santa Barbara (UCSB) [181]. The trained model showed
a high accuracy (high R? value of ~0.96 and low RMSE of ~0.09), resulting in accurate z7 value
predictions (figure 12(c)). As a result, they could discover some potential'materials that have high
zT among a large candidate pool (1 million). Furthermore, they. could extract feature importance
by analyzing the frequency of a feature used as a node (figure 12(d)). Zhan et al. [182] leveraged
an ML method to predict thermal boundary resistance, ,which'is.one of the keys for the thermal
conductivity of thermoelectric materials. They collected data from the literature, and trained their
ML models (generalized linear regression, least-absolute 'shrinkage and selection operator
regularization, GP regression, and support yector regression), resulting in some reliable models.
They successfully predicted thermal boundary resistance with a model, and they could find the
important descriptor (film thickness) to predict the thermal property. Jia et al. [68] used an
unsupervised learning method to dis¢over promising materials for thermoelectrics. They trained
several unsupervised algorithms (e.g., K-means clustering, Gaussian Mixture, Mean Shift) with
data in the Materials Project database [183] fot:clustering promising materials. They successfully
discovered some materials with high performance using their trained ML model.
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Figure 12. ML for thermoelectric materials. (a) The schematic of the ML models (crystal graph
convolutional network (CGCNN) and RF), developed in [179]. (b) Accuracy of the models. k. and
k’c respectively represent the calculated and predicted thermal conductivity. Reproduced from
[179]. CC BY-NC 3.0. (¢) Accuracy of thestrained ML model used, used in [180]. (d) Extracted
feature importance from the ML model. Reprinted with permission from [180] © American
Chemical Society.

3.6. Supercapacitors

Designing high-performance supercapacitors, which are energy storage devices, has drawn great
attention over the past few decades.due to their potential high power density, high specific capacity,
and rapid charging/discharging rate [184, 185]. Predicting specific capacity and cyclic stability is
important for evaluating, the ‘performance of supercapacitors, but it is challenging with first-
principles strategies. To address this issue, Ghosh et al. [186] utilized RF and MLP models for the
prediction of the capacitance and cyclic stability of supercapacitors. Their ML models successfully
predicted these important properties for supercapacitors composed of cerium oxynitride, a
promising electtode material. Aqueous supercapacitors have emerged as promising energy storage
devices since they exhibit excellent power density and long lifetime cycles. Here, porous carbon
materials, which possess large surface area and rich porous structures, can enhance the overall
performance of supercapacitors [187]. However, designing these porous structures is difficult and
time-intensive [188]. Wang et al. [189] employed an ANN model to identify the critical features
of carbon materials by predicting the specific capacitance of hyperporous carbons. They revealed
that:therANN model achieved high accuracy when employing Bayesian regularization (figure
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13(a)), which led to the successful prediction of the capacitance and cyclic stability. This enabled
the discovery of high-performance carbon materials for supercapacitors (figure 13(b)).

3.7. Polymers

Polymers are widely used in energy materials, such as energy storage devices, batteries, and solar
cells, making the optimal design of polymers important [190-192]. However, the limited data on
polymeric properties and their structural complexity hinder the identification of high-performance
polymers. To tackle these challenges, Wu et al. [193] used ML models that combine the Bayesian
molecular design framework and transfer learning to predict polymeric properties. They trained
the ML model using the database from PoLyInfo, and the trained miodel achieved high accuracy,
as can be seen in figure 13(c). As a result, they could discover promising polymers yielding high
thermal conductivities (figure 13(d)). The dielectric constant of polymets is a key parameter for
determining the performance of energy materials, but predicting this property using conventional
methods, such as density functional perturbation theorysor MDrsimulations, involves time-
intensive work with low reliability. To address this challenge, Chen et al. [194] developed an ML-
based model that includes a polymer fingerprinting scheme and Gaussian process regression
algorithm. They trained their model with data collected from the literature, achieving acceptable
prediction accuracy. This led to the successful prediction of the dielectric constant of synthesizable
candidate polymers.
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Figure 13. ML for supercapacitors and polymers. (a) Accuracy of the ANN model for predicting
capacitance, used in [189].%(b) Comparison of capacitances between previously reported values
and those identified im this work, demonstrating potential in discovering high-performance
supercapacitors. Reproduced from [189]. CC BY 4.0. (¢) Accuracy of the ML model, used in [193].
(d) Predicted thermal conductivity as a function of SA score that indicates synthesizability,
demonstrating the capability to the identification of synthesizable polymers with high thermal
conductivity. Reproduced from [193]. CC BY 4.0.

4. Summary and perspectives

4.1. Summary

In summary, by reviewing the literature, we have shown that ML approaches have been widely
used for the design of energy materials for a wide variety of applications to overcome limitations
causediby experimental or computational costs to obtain material properties. Recent progress in
computational power and ML algorithms enables users to utilize ML more efficiently in energy
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material fields to predict material properties, search vast design spaces, and discover optimal
design parameters. We have concisely reviewed the basics of ML techniques and surveyed some
ML-aided optimization schemes for energy materials. We have shown that the trained ML models
can be applied in various research fields for property predictions or inversé design, which'have
been demonstrated with the examples. Overall, it has been demonstrated that ML techniques.can
play important roles in guiding the efficient design of high-performing energy materials, although
challenges still exist.

4.2. Challenges and Perspectives
A number of major challenges are still present in using ML for/energy materials design and
optimization. These are discussed in this section.

4.2.1. Low quality and low volume of data for ML

ML training with small, imbalanced or low-quality data can.make the models biased and cannot
properly cover entire feature spaces, hindering learning, complex.relationships across the whole
design spaces. Hence, the model can be under- or over-fitted;which leads to inaccurate predictions
[195]. To mitigate these issues, data augment techniques, such as rotating [93], node feature
masking [196], edge dropping [197], and subgraph replacement [198], can be applied. In addition,
active learning strategies can allow the model to eollect meaningful data, enhancing the model’s
performance iteratively even starting with a limited amount of data [127, 132].

4.2.2. ML algorithms working with limited.and imbalanced data

Large materials databases based on high-accuracy simulations and experiments are the foundation
for the applications of advanced ML algorithms, especially deep learning algorithms for material
design, and catalyzed the development of materials informatics. However, for many of the
properties that are not easy to measure or compute, the lack and imbalance of data remain huge
obstacles for researchers to”train accurate ML models. Recently, some techniques such as
threshold-moving [199], transfer learning (leverages models trained on large datasets to build
models on small datasets of different properties) [200-202], multi-fidelity modeling [203], and
active learning [129] have been proposed to face the challenges of small and imbalanced data.
These techniques allowed for material designs with limited and imbalanced data [204, 205].

4.2.3. Design of synthesizable. materials using ML

The synthesizability of materials designed using ML remains one of the greatest challenges for the
further development of ML for energy materials and materials in general. Bridging the gap
between | algorithmically proposed materials and successful laboratory synthesis involves
addressing ¢titical factors like possible and optimal experimental conditions. To augment the
synthesizability of generated materials, integrating ML-driven retrosynthesis planning with
generative algorithms emerges as a promising solution. Retrosynthesis planning falls into
template-based and template-free categories [206, 207]. Template-based approaches rely on
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summarized reaction rules while template-free methods, often utilizing deep learning, predict
reactants directly. An example of template-based retrosynthesis planning is presented-by.Chenet
al. [208], who developed a data-assisted tool. However, it has limitations, including neglecting
important design factors such as experimental conditions and potential ineffectivenessiwith new
materials. Template-free methods, although potentially more versatile, may require substantial
training data. Exploring the potential of large language models for polymer,structure generation
and optimization, considering retrosynthesis planning, represents an exciting avenue for future
research [77, 209, 210].

4.2.4. Multi-objective optimization

Multi-objective optimization in material design often faces conflicts'in different properties to be
optimized — improvement in one can lead to degradation in others. In“this scenario, decision-
makers can identify preferred solutions from the Pareto front{'which represents optimal trade-offs
between conflicting objectives. Approaches to solving these probleéms fall into two categories: a
posteriori and a priori [211]. Posteriori methods aim to discoverithe entire Pareto front, allowing
decision-makers to understand achievable objective valuesand make decisions based on the trade-
offs between each objective. Recently, a noticeable number of works have been developed to
reveal the Pareto optimal solutions [212, 213]. However, identifying the preferred solution on the
Pareto front can be resource-intensive, particularly with a posteriori methods that require
evaluating a large number of objective functions [214]. In a priori multi-objective optimization
methods, decision-makers define théir preferences ‘upfront, streamlining the process towards
specific goals and reducing the need for extensive objective evaluations. One common technique
is the use of Achievement Scalarizing Functions, typically formulated as weighted sums of
objectives based on the decision-maker's preferences and knowledge. While easy to implement,
finding the right weight vectors t0 achieve Pareto optimal solutions remains a challenge. Another
approach is optimizing a single ‘Objective subject to constraints on others [215]. Lexicographic
methods are also used [21J}], prioritizing objectives according to an established hierarchy of
importance. Each method offers distinct advantages and faces unique challenges, influenced by
the optimization problem's complexity. For materials, additional challenges lie in the fact that
different properties have various levels of difficulties to acquire computationally or experimentally.
Therefore, removing the rate-limiting barrier for materials characterization is also key to ML-
assisted energy matetial design.

4.2.5. Material design with properties outside the range of training data

Designers*frequently face situations where the collected data does not adequately represent the
domain trends, or in some cases, there is insufficient data to train an optimization model. This is
usually» known as the out-of-distribution prediction/design problem. This may be partially
addressed by leveraging a latent space using encoder/decoder architectures. This strategy allows
for the:exploration of new material compositions and properties by navigating a lower-dimensional
latent space, which enhances computational efficiency. Additionally, interpolation in the latent
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space may appear to be extrapolation when decoded into the real space, which has a muchrhigher
dimension. The latent space has enabled the discovery of novel materials exhibitingsproperties
beyond those presented in the training data [216]. Also, the issue can be addressed through active
learning and the utilization of surrogate models. Initially, the surrogate model is assumed to best
represent the search space. New data points are actively acquired and integrated into the dataset
for subsequent optimization rounds, gradually expanding the property boundaries. However; this
approach, focusing only on the predictive mean of the surrogate model, may not effectively balance
exploration and exploitation. Advanced methods involve applying BO to probabilistic surrogate
models (e.g., GP), considering both uncertainty and predictive mean. This allows for tailored
adjustments in the balance between exploration and exploitation, based on prior beliefs. Such an
ML manner to data acquisition can help minimize the need for new data in reaching the design
target [217, 218].

4.2.6. Other thoughts

Addressing these above challenges will enable ML techniques te.be more effective and to yield
reliable outcomes in energy material design, allowing for applying them in various research and
industrial fields. However, many ML algorithms are black-box, meaning that it is hard to explain
their mechanisms. Hence, future development of ML algorithms should focus on building
transparent and interpretable models, which will be more broadly applicable for decision-making,
predictions, and inverse designs. Opening upthe box will also shed light on the fundamental
physics governing the material behayior, understanding which will improve the knowledge base
and is more generalizable than a dataset ona ML model.

Hyperparameters, which are not learned from data, are crucial components to determining the
performance of ML algorithms, but, identifying optimal hyperparameters is challenging.
Optimization spaces of hyperparameters may be complex, and interactions between
hyperparameters may add complexity to the optimization process, making non-convexity of the
objective function. This imposes an additional optimization problem on the ML materials
optimization task. To tackle these difficulties, many approaches have been proposed to optimize
hyperparameters using ML methods. With the optimal hyperparameters, ML can present higher
performance for predictioniand design in the energy material field.

As can be seen in Kiati and Kim’s works [79, 134, 140], quantum computers exhibit notably
enhanced computational capabilities to explore optimization spaces. Hence, the integration of ML
algorithms‘and quantum computers will become important for the optimization of energy materials
that have complex structures and characteristics. There are still current limitations on quantum
computing hatdware, such as the limited number of qubits, limited connections between the qubits,
and the lack of capability to optimize effectively continuous variables.
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Furthermore, in the future, it is expected that quantum ML, leveraging principles from quantum
mechanics to address certain computational challenges much more efficiently, will enable us'to
build better models and identify optimal solutions much faster than classical ML approaches.
While these are still limited by quantum computing hardware, these advancements, if realized, will
open new avenues in energy material fields for highly complex properties and significantly large
optimization spaces, which are difficult for now.
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