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Complete Solutions for the
Approximate Synthesis of
Spherical Four-Bar Function
Generators
Kinematic synthesis to meet an approximate motion specification naturally forms a con-
strained optimization problem. Instead of using local methods, we conduct global design
searches by direct computation of all critical points. The idea is not new, but performed
at scale is only possible through modern polynomial homotopy continuation solvers.
Such a complete computation finds all minima, including the global, which allows for a
full exploration of the design space, whereas local solvers can only find the minimum
nearest to an initial guess. We form equality-constrained objective functions that pertain
to the synthesis of spherical four-bar linkages for approximate function generation. We con-
sider the general case where all mechanism dimensions may vary and a more specific case
that enables the placement of ground pivots. The former optimization problem is shown to
permit 268 sets of critical points, and the latter permits 61 sets. Critical points are classified
as saddles or minima through a post-process eigenanalysis of the projected Hessian. The
discretization points are contained within the coefficients of the stationarity polynomials,
so the algebraic structure of the synthesis equations remains invariant to the number of
points. The results of our computational work were used to design a mechanism that coor-
dinates the folding wings. We also use this method to parameterize mechanism dimensions
for a family of hyperbolic curves. [DOI: 10.1115/1.4064835]
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1 Introduction
The spherical four-bar is a single-degree-of-freedom mechanism

with four links and four joints, whose axes all intersect at a single
point in space. This mechanism is well-suited for the task of func-
tion generation, where the dimensions of the mechanism are synthe-
sized to coordinate the rotation of the input link with the rotation of
the output link in a desired manner. The synthesis of spherical
four-bar function generators extends from the work of Freudenstein,
where a number of desired mechanism configurations form a system
of kinematic equations [1].
The kinematic synthesis for function generation involves the spe-

cification of input–output angles for the mechanism to pass through.
To synthesize a spherical four-bar that can exactly reach these
points in input–output space, a maximum of six angle pairs can
be specified, as first noted by Roth [2]. Often in mechanical
design, it is more beneficial to have a mechanism that approximates
a specific function than one that meets a small number of points
exactly. By specifying any number of angle pairs more than six

for a spherical function generator to approximate, a designer can
have more control over the function synthesized.
This paper provides a complete solution to the approximate synth-

esis of the spherical four-bars for two different cases: the most
general case and with pre-specification of ground pivots (which is
often practically sought). The complete solutions for common
exact synthesis problems of spherical four-bar function generators
are also reviewed. Our computational work is applied to the design
of amechanismwhich coordinates the timing of foldingwings.Addi-
tionally, ourwork is used to parameterize themechanism dimensions
for a family of hyperbolic function specifications.

1.1 Literature Review. The three-point function generation
problem for the spherical four-bar was first solved by Hartenberg
and Denavit [3]. The four, five, and six point exact synthesis prob-
lems were formulated by Zimmerman [4], Lakshminarayna [5], and
Watanabe [6], respectively. More recent approaches to the five and
six point problems have been shown with numerical results in Refs.
[7,8]. The complete algebraic solution to the six-point problem was
recently published by Jiawei et al. [9].
Approximate synthesis for the general case of spherical four-bar

function generation was first considered by Rao and Ambekar [10].
In their approach, the interior penalty method was used to convert
the constrained optimization problem to an unconstrained
problem. An initial feasible point was found using the three-point
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exact synthesis method, and the Davidon–Fletcher–Powell method
was used to iteratively solve a sequence of unconstrained optimiza-
tion problems until the objective was below a certain threshold. In
Liu and Angeles [11], the orthogonal decomposition algorithm, an
iterative numerical method, was used to find a solution to the
equality-constrained optimization. The formulation in Sancibrián
et al. [12] uses the steepest descent to converge on local minima
and requires a constraint equation for each prescribed position. In
Alizade and Gezgin [13], the nonlinear equations from the stationar-
ity conditions of the objective were converted to large square
systems with nonlinear operators and solved numerically for a
single solution. In a slightly different approach, Farhang and
Zargar [14] applied perturbation theory to this approximate
problem for the case where the input link is much smaller than
the output link, and the motion of the output link is limited to
small perturbations about some mean position. The approaches in
Refs. [10–14] all rely on local optimization techniques, where an
initial guess is used to find a single local minimum. Further, no pre-
vious literature has been found for the approximate synthesis case
where the ground pivots are pre-specified.
In this paper, we formulate approximate kinematic synthesis as a

constrained optimization problem. We next derive the classic
Lagrangian stationarity conditions, but instead of using these condi-
tions as a stopping criterion for an iterative search, we use them to
directly compute all critical points of our optimization landscape.
To elaborate, the stationarity conditions form a square polynomial
system whose roots locate critical points. We apply the root-finding
techniques of polynomial homotopy continuation to find all critical
points of the optimization problem. It is true that within this complete
set of critical points, one will always find the global minimum.
However, Baskar et al. [15] have demonstrated a more compelling
use for complete saddle point computations relevant to design opti-
mization. Either way, our approach is tailored to enhance global
design exploration, rather than design tuning which is more the
realm of local optimizers that require starting guesses.
On a more detailed level, our formulation additionally collects all

discretized task data into polynomial coefficientswhichmultiply into
our system through an organization of symmetric matrices. These
matrices are formed from summations of specified task data, that
may be numerically evaluated before root-finding begins. In this
way, the computational cost of root finding remains independent
from the number of task discretization points selected. This paper
novelly formulates and summarizes the solution counts for (1) a
spherical four-bar with both ground pivots pre-specified and (2)
the general case with no pre-specifications. Both cases are numeri-
cally reduced following the methodology of parameter homotopy
continuation [16]. The latter general case poses a greater computa-
tional challengewhichwas corralled by themethod of randommono-
dromy loops [17]. Despite posing a multihomogeneous degree of
621,984, the random monodromy loops algorithm took 5min on a
personal computer to find a maximum of 268 critical points for this
optimization problem.
Our paper begins with a review of spherical four-bar kinematics

(Sec. 2), and the solutions to the exact synthesis problems for five
and six positions (Sec. 3–5). New complete solutions to the approx-
imate synthesis problems are presented for the case when ground
pivots are pre-specified (Sec. 6), and the general case when no
dimensions are pre-specified (Sec. 7). Section 6 also highlights
the collection of task data into polynomial coefficients to facilitate
function evaluations for large numbers of discretization points.
Section 8 details the application of our computational work to
design a spherical four-bar for an aircraft application. The synthesis
method is used to parameterize mechanisms with similar motions in
Sec. 9. Conclusions are offered in Sec. 10.

2 Kinematics of a Spherical Four-Bar
A spherical four-bar is shown in Fig. 1. Its design is specified by

the location of its four joint axes in a reference configuration, i.e.,

fixed joints sA0 and sB0, moving joints sC0 and sD0. Rotations
about ground pivot sA0 are parameterized by ϕ. Rotations about
ground pivot sB0 are parameterized by ψ . Rotation matrices
written in axis-angle form are notated as [R(s, ϕ)]. A rotation of
x by ϕ about unit vector s evaluates to (Fig. 2)

[R(s, ϕ)]x = x + sinϕ s × x + (1 − cosϕ) s × (s × x) (1)

A rotation of sC0 about sA0 yields the displaced vector

sC = [R(sA0, ϕ)]sC0 (2)

where the exclusion of zero from the subscript differentiates
between the displaced and reference configurations of sC . Similarly,
a rotation of sD0 about sB0 yields

sD = [R(sB0, ψ)]sD0 (3)

The constraint of a spherical four-bar is that the relative angle
between sC and sD remains constant throughout its motion. There-
fore, the dot product of the vectors sC and sD should match the dot
product of the vectors sC0 and sD0 at the reference configuration

sC · sD = sC0 · sD0 (4)

Substituting Eqs. (2) and (3) in Eq. (4)

[R(sA0, ϕ)]sC0 · [R(sB0, ψ)]sD0 = sC0 · sD0 (5)

An explicit function of ψ in terms of ϕ can be found by first expand-
ing (5) according to Eq. (1) to obtain

A(ϕ) cosψ + B(ϕ) sinψ + C(ϕ) = 0 (6)

where

A(ϕ) = [R(sA0, ϕ)]sC0 · (sD0 − (sB0 · sD0)sB0)
B(ϕ) = [R(sA0, ϕ)]sC0 · (sB0 × sD0)

C(ϕ) = [R(sA0, ϕ)]sC0 · (sB0 · sD0)sB0 − sC0 · sD0
The well-known solution to Eq. (6) is provided by the explicit func-
tion

ψ = f (ϕ) := arctan
B(ϕ)
A(ϕ)

± arccos
−C(ϕ)����������������

A(ϕ)2 + B(ϕ)2
√ (7)

where either the “+” or “−” branch may be selected from the “±”
symbol

3 Function Generation: General Setup
The goal of function generation is to synthesize a mechanism that

coordinates the angle pairs (ϕj, ψ j), j = 0, 1, . . . , N − 1. Without
loss of generality to the function produced, one of the fixed axes
should be specified. In the proceeding, we set sA0 = {1, 0, 0}. A
plane is spanned by sA0 and sB0. Without loss of generality to the
function produced, any plane may be chosen. We choose to set
both sA0 and sB0 into the z = 0 plane Therefore, in the proceeding,
the second fixed axis takes the form sB0 = {sBx0, sBy0, 0}.

Fig. 1 Schematic of spherical four-bar
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4 Exact Synthesis for Five Positions
Without loss of generality, any desired function may be shifted

such that (ϕ0, ψ0) = (0, 0). The synthesis equations follow the
form of Eq. (5)

[R(sA0, ϕj)]sC0 · [R(sB0, ψ j)]sD0 = sC0 · sD0, j = 1, . . . , 4 (8)

See that the index j = 0 is not used as it evaluates as identically true,
reflective of the fact that (ϕ0, ψ0) = (0, 0) is automatically satisfied
by virtue of choosing these angles to be measured from a reference
configuration.
Following Sec. 3, the components of sB0, sC0, and sD0 serve as

design variables (sA0 is set to {1, 0, 0}). For the case of five position
synthesis, we elect to also set sB0, leaving the six components of sC0
and sD0 to form a simplified design space. These six variables must
satisfy the four constraints of Eq. (8).
Note that sC0 and sD0 indicate directions, such that their magni-

tude is kinematically unimportant. Following this, one might set
their magnitude to be unit by invoking two quadratic sphere con-
straints, sC0 · sC0 = 1 and sD0 · sD0 = 1. As an alternative, observe
that the constraint of a constant dot product between sC and sD
must adhere no matter their magnitudes. So instead of unity, we
choose random magnitudes by invoking random linear cutting
planes for sC0 and sD0

lC · sC0 = 1 and lD · sD0 = 1 (9)

where lC and lD are random 3× 1 vectors. These linear constraints
are advantageous over sphere constraints due to their reduced
degree.
Equations (8) and (9) are six equations in six unknowns: the com-

ponents of sC0 and sD0. Over the complex numbers, these equations
can be shown to generically have six finite, isolated solutions by
choosing a multihomogeneous grouping that partitions the compo-
nents of sC0 and sD0. The solutions to these equations can be
obtained by many conventional means, and indicate spherical
four bars that reproduce the desired function points, so long as
branch or circuit defects are not present.
One of the six solutions is always a degenerate solution with no

physical utility. This solution is the case where sC0 and sA0 are coin-
cident and sD0 and sB0 are coincident. Since the moving joints are
always aligned with the fixed joints, this solution can match any
function, yet it has no practical value. However, since this solution
is always real and complex solutions come in complex conjugate
pairs, there will always be one real solution to this synthesis
problem. Without considering the degenerate solution, this formu-
lation admits five solutions, which is the same solution count
shown algebraically in Ref. [5].

5 Exact Synthesis for Six Positions
In the formulation above, the components of sB0 were set rather

than solved for. By leaving these components as unknowns, sphe-
rical four-bars can be computed that exactly reproduce the
maximum number of six angle pairs. The constituent synthesis
equations include Eq. (8), but now incremented from j = 1, 2, 3,
4, 5. Equation (9) is also reused. Similar to sC0 and sD0, the
vector sB0 indicates an unknown direction. Dissimilar to sC0 and
sD0, the vector sB0 must take unit magnitude, else Eq. (1) is no
longer valid. Therefore, the quadratic circle constraint

sB0 · sB0 = s2Bx0 + s2By0 = 1 (10)

is appended to our synthesis equations. Note that Eq. (10) is a circle
constraint and not a sphere constraint because, without loss of gen-
erality, sBz0 is set to zero (Sec. 3). By modifying Eq. (8) to include
j = 5, and combining it with Eqs. (9) and (10), a system of eight
equations is formed in eight unknowns: two components of sB0,
three components of sC0, and three components of sD0.
A three-homogeneous grouping partitioned by the vector compo-

nents of sB0, sC0, and sD0, indicates a Bézout degree of 120. A more
in-depth analysis computed by Bertini [18] found 14 finite, isolated
solutions and 9 positive dimensional components. The isolated
solutions occur in pairs that differ from each other by a 180° rota-
tion about the x-axis. This is most readily identified by a sign flip
of the variable sBy0. Since the members of each pair are easily
obtained from one another, we only need to compute one member
of each. Therefore, the number of isolated solutions to compute
for the exact six position synthesis problem is only seven. This is
the same solution count found algebraically in Ref. [9].
The positive dimensional components are split between a single

quartic component of dimension 1, and eight linear components of
dimension 2. The quartic component corresponds to the case when
sC0 and sA0 are coincident, sD0 and sB0 are coincident, and sB0 may
point in any direction of the x–y plane. The quartic algebraic variety
is defined by

sB0 · sB0 = 1, (lC · sA0)sC0 = sA0, (lD · sB0)sD0 = sB0 (11)

Two of the linear components correspond to the case when sA0, sB0,
and sC0 are simultaneously coincident

sBx0 = ±1, (lC · sA0)sC0 = sA0,
sBy0 = 0, lD · sD0 = 1

(12)

Another two correspond to the case when sA0, sB0, and sD0 are
simultaneously coincident

sBx0 = ±1, lC · sC0 = 1,
sBy0 = 0, (lD · sA0)sD0 = sA0

(13)

The final four linear components take on complex values defined by
certain special conditions. These can be summarized in the follow-
ing two equations, denoting two components each

sBx0 = ±1, sBy0 = 0, lC · sC0 = 1,
sCy0
sCz0

=
sDy0
sDz0

= i, lD · sD0 = 1 (14)

sBx0 = ±1, sBy0 = 0, lC · sC0 = 1,
sCy0
sCz0

=
sDy0
sDz0

= −i, lD · sD0 = 1 (15)

Here i represents complex unit number.

6 Approximate Synthesis With Both Ground Pivots
Specified
Now we alter the goal to only approximately reproduce the angle

pairs, (ϕj, ψ j), j = 0, 1, . . . , N − 1. For this formulation N must be
greater than five. In this case, we must modify our constraint of a

Fig. 2 General setup for spherical four-bar function generation
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constant dot product from Eq. (8)

ηj := [R(sA0, ϕj)]sC0 · [R(sB0, ψ j)]sD0 − RCD

j = 0, 1, . . . , N − 1
(16)

Compared to Eq. (8), we have introduced a new variable RCD,
which is only approximately equal to sC0 · sD0. Despite this inexact-
ness, we substituted in RCD. Also, we included the j = 0 index,
moved all variables to one side, and defined the resulting expression
as ηj. For the approximate case, the angle pair (ϕ0, ψ0) = (0, 0) gen-
erally will not be exactly reproduced. Therefore, the dot product
sC0 · sD0 will not hold constant at latter configurations, necessitating
the introduction of the unknown dot product value RCD. Following
this vein, Eq. (16) will not evaluate to identically zero at the j = 0
configuration, hence its reinstatement compared to the exact case,
Eq. (8).
If the jth angle pair were to be exactly met, then ηj = 0. The

objective is then to minimize the sum of squares of ηj

f :=
1
2

∑N−1
j=0

η2j (17)

For brevity of notation, we omit summation indices in the proceed-
ing because they generally do not change. Unless otherwise noted,
assume j = 0, 1, . . . , N − 1. For this case, we are taking the values
of both ground pivots sA0 and sB0 to be preset, leaving sC0, sD0,
and RCD as design variables to solve for.
The simplification invoked in Eq. (9) cannot be used for the

approximate case. If sC0 and sD0 are not unit magnitude, it can be
shown that the squared product of these magnitudes factor out of
the summation of Eq. (17),

f := (|sC0||sD0|)2 1
2

∑
η2j

( )
(18)

In this way, the objective can be interpreted as simultaneously min-
imizing the lengths of sC0 and sD0 according to each’s intersection
with a random cutting plane, as well as minimizing the intended
objective. This unintentionally skews the landscape of the objective,
therefore, constraints (9) are not invoked and instead quadratic
sphere constraints are used

sC0 · sC0 = 1 and sD0 · sD0 = 1 (19)

The following optimization problem has been framed:

min
sC0,sD0,RCD

1
2

∑
η2j

s.t. h :=
sC0 · sC0 − 1

sD0 · sD0 − 1

{ }
= 0

(20)

The corresponding Lagrangian is

L :=
1
2

∑
η2j + hTλ (21)

where λ = {λ1, λ2} are Lagrange multipliers. Before forming the
stationarity conditions, introduce the following relative rotation
matrices:

[Rj] = [R(sB0, ψ j)]
T [R(sA0, ϕj)], j = 0, 1, . . . , N − 1

= cxj cyj czj
[ ]

=

rxj
ryj
rzj

⎡
⎢⎣

⎤
⎥⎦ (22)

The columns of [Rj] are notated cxj, cyj, czj, and its rows are rxj, ryj,
rzj. The partial derivative of L may then be written

∂L
∂sC0

=
∑

((sC0 · [Rj]
TsD0 − RCD)[Rj]

T )sD0 + 2λ1sC0 (23)

∂L
∂sD0

=
∑

(([Rj]sC0 · sD0 − RCD)[Rj])sC0 + 2λ2sD0 (24)

∂L
∂RCD

= −
∑

([Rj]sC0 · sD0 − RCD) (25)

∂L
∂λ

=
sC0 · sC0 − 1

sD0 · sD0 − 1

{ }
(26)

Equations (23)–(26) comprise of nine polynomials in nine vari-
ables: three components of sC0, three components of sD0, RCD, λ1,
and λ2. The roots of Eqs. (23)–(26) indicate the critical points of
the optimization problem (20). Collecting coefficients rearranges
the form of Eqs. (23)–(26) to make it more efficient for computa-
tions that involve a large number of discretization points.
To perform this collection, let’s first consider Eq. (23). By expan-

sion and application of the vector triple product identity, Eq. (23)
may be rewritten

∂L
∂sC0

=
∑

([Rj]
TsD0 × ([Rj]

TsD0 × sC0)

− [Rj]
TsD0RCD + (sD0 · sD0)sC0) + 2λ1sC0 (27)

The collection of j indexed terms is straightforward except for the
first term in the summation. To rearrange it into an amenable
format, breakdown the following matrix multiplication:

[Rj]
TsD0 = rxjsDx0 + ryjsDy0 + rzjsDz0 (28)

where rxj, ryj, rzj were introduced as the rows of [Rj] in Eq. (22).
Then the first term of Eq. (27) may be rewritten

[Rj]
TsD0 × ([Rj]

TsD0 × sC0) = (rxjsDx0 + ryjsDy0 + rzjsDz0)

× (rxj × sC0sDx0 + ryj × sC0sDy0
+ rzj × sC0sDz0)

=
∑
i=x,y,z

∑
k=x,y,z

(rij × (rkj × sC0)sDi0sDk0)

(29)

The cross products of Eq. (29) can be traded out for skew symmetric
matrices. We notate skew symmetric matrices with the tilde “∼”
accent such that

for r =

x

y

z

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭, then [r̃] :=

0 −z y
z 0 −x
−y x 0

⎡
⎣

⎤
⎦ (30)

Then Eq. (29) can be rewritten

[Rj]
TsD0 × ([Rj]

TsD0 × sC0)

=
∑
i=x,y,z

∑
k=x,y,z

([r̃ij][r̃kj]sC0sDi0sDk0)
(31)

Expansion of the right-hand side yields

[r̃xj][r̃xj]sC0s2Dx0 + [r̃yj][r̃yj]sC0s2Dy0 + [r̃zj][r̃zj]sC0s2Dz0

+ ([r̃yj][r̃zj] + ([r̃yj][r̃zj])
T )sC0sDy0sDz0

+ ([r̃xj][r̃zj] + ([r̃xj][r̃zj])
T )sC0sDx0sDz0

+ ([r̃xj][r̃yj] + ([r̃xj][r̃yj])
T )sC0sDx0sDy0 (32)
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Substituting this expression back into Eq. (27) and distributing the
summation yields

∂L
∂sC0

= [Mxx]sC0s2Dx0 + [Myy]sC0s2Dy0 + [Mzz]sC0s2Dz0

+ [Myz]sC0sDy0sDz0 + [Mxz]sC0sDx0sDz0 + [Mxy]sC0sDx0sDy0

− [ΣR]T sD0RCD + NsC0 + 2λ1sC0 (33)

where

[Mxx] =
∑

[r̃xj][r̃xj], [Myz] =
∑

([r̃yj][r̃zj] + ([r̃yj][r̃zj])
T ),

[Myy] =
∑

[r̃yj][r̃yj], [Mxz] =
∑

([r̃xj][r̃zj] + ([r̃xj][r̃zj])
T ),

[Mzz] =
∑

[r̃zj][r̃zj], [Mxy] =
∑

([r̃xj][r̃yj] + ([r̃xj][r̃yj])
T ),

[ΣR]T =
∑

[Rj]
T

(34)

Note that all [M] matrices can be evaluated as static numerical coef-
ficients during problem formulation with no need to evaluate them
during the solution process. If desired, the summations of Eq. (34)
can be converted to integrals (for an infinite number of discretiza-
tion steps) at next to no computational cost. Note that [M] matrices
are symmetric. The symmetry of Eq. (33) may be appreciated by
writing it as

∂L
∂sC0

= sTD0
∑ [r̃xj][r̃xj] [r̃xj][r̃yj] [r̃xj][r̃zj]

([r̃xj][r̃yj])T [r̃yj][r̃yj] [r̃yj][r̃zj]

([r̃xj][r̃zj])T ([r̃yj][r̃zj])T [r̃zj][r̃zj]

⎡
⎢⎣

⎤
⎥⎦sD0

⎛
⎜⎝

⎞
⎟⎠sC0

− [ΣR]TsD0RCD + NsC0 + 2λ1sC0 (35)

where the first term is written using unconventional notation meant
to be intuitive. This term can be interpreted as a summed matrix of
matrices where each entry is pre- and post-multiplied by sD0 to form
a usual 3 × 3 matrix which is subsequently multiplied by sC0.
Equations (27)–(35) were dedicated to rearranging Eq. (23) to

collect j indexed terms into coefficients. The process of rearranging
Eq. (24) is quite similar. We write the result as follows:

∂L
∂sD0

= [Nxx]sD0s2Cx0 + [Nyy]sD0s2Cy0 + [Nzz]sD0s2Cz0

+ [Nyz]sD0sCy0sCz0 + [Nxz]sD0sCx0sCz0 + [Nxy]sD0sCx0sCy0
− [ΣR]sC0RCD + NsD0 + 2λ2sD0 (36)

where

[Nxx] =
∑

[c̃xj][c̃xj], [Nyz] =
∑

([c̃yj][c̃zj] + ([c̃yj][c̃zj])
T ),

[Nyy] =
∑

[c̃yj][c̃yj], [Nxz] =
∑

([c̃xj][c̃zj] + ([c̃xj][c̃zj])
T ),

[Nzz] =
∑

[c̃zj][c̃zj], [Nxy] =
∑

([c̃xj][c̃yj] + ([c̃xj][c̃yj])
T ),

[ΣR] =
∑

[Rj] (37)

The [c̃xj], [c̃yj], [c̃zj] matrices are skew symmetrics formed from the
columns of [Rj] as outlined in Eq. (22). Just as before, all [N] matri-
ces are symmetric and may be evaluated before the actual solution
process. The symmetry of Eq. (36) may be appreciated by writing it
as

∂L
∂sD0

= sTC0
∑ [c̃xj][c̃xj] [c̃xj][c̃yj] [c̃xj][c̃zj]

([c̃xj][c̃yj])T [c̃yj][c̃yj] [c̃yj][c̃zj]

([c̃xj][c̃zj])T ([c̃yj][c̃zj])T [c̃zj][c̃zj]

⎡
⎢⎣

⎤
⎥⎦sC0

⎛
⎜⎝

⎞
⎟⎠sD0

− [ΣR]sC0RCD + NsD0 + 2λ2sD0 (38)

where the same unconventional notation of Eq. (35) is reused.
Expansion of Eq. (25) is much simpler

∂L
∂RCD

= −[ΣR]sC0 · sD0 + NRCD (39)

and Eq. (26) requires no expansion.
Equations (26), (33), (36), and (39) reform the system of nine

polynomials in nine variables originally formed in Eqs. (23)–(26).
A three-homogeneous grouping partitioned by the vector compo-
nents of sC0, sD0, and the group {RDC , λ1, λ2} indicates a Bézout
degree of 3564. This polynomial system contains 82 parameters:
the six components of each symmetric [M] matrix (34), the six com-
ponents of each symmetric [N] matrix (37), the nine components of
[ΣR], and the number of discretization points N. This is not the
smallest parameterization but was found to be sufficiently
minimal. Analysis by Bertini found 244 finite, isolated solutions.
It can be found that solutions occurred in sets of four characterized
by swapped signs between vector components of sC0 and sD0.
Namely, for any solution containing {sC0, sD0} there also existed
solutions with {sC0, −sD0}, {−sC0, sD0}, and {−sC0, −sD0}. This
stems from the quadratic sphere constraints of Eq. (26). All four
solutions indicate the same four-bar, so only one copy from each
set is kept, effectively reducing the solution count to 61. Proceeding
solutions computed by parameter homotopy continuation then only
need to track 61 homotopy paths.
One of the 61 solutions always results in the same degenerate

mechanism found in the exact five position synthesis, where sC0
and sA0 are coincident and sD0 and sB0 are coincident. Since this
solution meets the objective exactly, it will always be the global
minimum of the optimization problem.
This method does not constrain the approximate motion to

remain on the same circuit or branch, so defective solutions are pos-
sible. However, by computing all critical points, this method pro-
vides many alternative solutions when defects are encountered.

6.1 Eigenanalysis of Critical Points. After all of the critical
points of Eq. (20) are computed by parameter homotopy continua-
tion, each should be identified as a minimum, saddle, or maximum.
It is additionally useful to know the principal directions of curvature
of each critical point, see Ref. [15]. Such information is obtained by
computing the eigenvalues and eigenvectors of the Hessian. For the
case of constrained optimization, the Hessian should be transformed
to only consider directions of perturbation that adhere to the
constraints.
Consider the minimization of f (x), subject to h(x) = 0 where x ∈

Rn and h ∈ Rm. The gradient ∇f (x) =
∂f
∂x

is an n × 1 vector, and the

Hessian is an [H(x)] =
[
∂2f
∂x2

]
is an n × n matrix. The second-order

Taylor approximation of f (x) about point a is

f (x) ≈ f (a) + (x−a)T∇f (a) +
1
2
(x−a)T [H(a)](x−a) (40)

Subtract f (a) from both sides to represent the change in objective.
Note that the gradient vanishes at critical points. Then the
Hessian term stands alone on the right-hand side to approximate
changes in the objective due to perturbations Δx = x−a.
However, we should only study perturbations in directions

that adhere to the constraints h(x) = 0. The derivative
∂h
∂x

[ ]
gives

an m × n matrix with row vectors that span the space normal to
the constraints. Represent a vector tangent to the constraints as t.

Then the equation
∂h
∂x

[ ]
t = 0 can simply be interpreted as a

listing of orthogonality constraints of t with the normal space. Com-

putation of the null space of
∂h
∂x

[ ]
yields d = n−m basis vectors of
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the tangent space. We orthonormalize these basis vectors then place
them into the columns of a new n×d matrix [T]. Once [T] is com-
puted, perturbations that adhere to the constraints may be repre-
sented as

Δx = [T]Δy (41)

where the components of Δy parameterize the tangent space. Sub-
stituting this into Eq. (40) applies a similarity transformation to the
Hessian, [T]T [H(a)][T], that reduces it to a d × d matrix. The
product is called the projected Hessian. Its eigenvectors, after
being transformed by [T] (41), indicate principal directions of cur-
vature. Its eigenvalues are called principal curvatures, i.e., the
second-order information which finds itself leading the Taylor
series. Positive eigenvalues indicate directions of ascent, and nega-
tive eigenvalues indicate directions of descent. Such criteria are
used to identify minima, maxima, and saddle points. Saddle
points are further classified as index-k saddles if k of the eigenval-
ues are negative. It has been shown in another work [15] that char-
acterizing the descent directions of saddles can be useful.

7 Approximate Synthesis for the General Case
The approximate synthesis formulation presented in Sec. 6

presets the ground pivot axes sA0 and sB0. The most general formu-
lation leaves the components of sB0 to vary. Recall from Sec. 3 that,
without loss of generality, sA0 = {1, 0, 0} and sB0 = {sBx0, sBy0, 0}.
Our goal is to once again minimize Eq. (17) but now subject to an
additional circle constraint

min
sB0 ,sC0,sD0,RCD

1
2

∑
η2j (42)

s.t. h :=

sB0 · sB0 − 1

sC0 · sC0 − 1

sD0 · sD0 − 1

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ = 0 (43)

The Lagrangian takes the same form as Eq. (21) and the stationarity
conditions repeat in that Eqs. (23)–(25) must vanish along with the
additional partial derivative

∂L
∂sB0

=
∑(

([R(sA0, ϕj)]sC0 · [R(sB0, ψ j)]sD0 − RCD)

· (−sinψ j([R(sA0, ϕj)]sC0) × sD0

+ (1 − cosψ j)(([R(sA0, ϕj)]sC0) × (sD0 × sB0)

+ sD0 × (([R(sA0, ϕj)]sC0) × sB0)))
)
+ 2λ3sB0 (44)

Note that Eq. (44) is a 3 × 1 vector where the third component is
zero since sBz0 is not present. Therefore, we only consider the
first two components of Eq. (44). Equations (23)–(25), (43), and
(44) form a system of 12 polynomials in 12 variables: two compo-
nents of sB0, three components of sC0, three components of sD0,
RCD, λ1, λ2, and λ3. For neatness, it is more pleasant to order the
synthesis equations as (44), (23), (24), (25), and (43), and
re-index the Lagrange multipliers to follow the order of Eq. (43).
The roots of these equations indicate the critical points of the opti-
mization problem (42).
A four-homogeneous grouping partitioned by the vector compo-

nents of sB0, sC0, sD0, and the group {RCD, λ1, λ2, λ3} indicates a
Bézout degree of 621,984. Furthermore, it can be found that solu-
tions appear in sets of eight, which correspond to all sign combina-
tions of sC0 and sD0, plus rotations of 180° about sA0. In other words,
a single solution {sB0, sC0, sD0, RCD, λ}, appears in the following

set of eight solutions:

{sB0, sC0, sD0, RCD, λ}

{sB0, sC0, −sD0, −RCD, λ}

{sB0, −sC0, sD0, −RCD, λ}

{sB0, −sC0, −sD0, RCD, λ}

{[R(sA0, π)]sB0, [R(sA0, π)]sC0, [R(sA0, π)]sD0, RCD, λ}

{[R(sA0, π)]sB0, [R(sA0, π)]sC0, − [R(sA0, π)]sD0, − RCD, λ}

{[R(sA0, π)]sB0, − [R(sA0, π)]sC0, [R(sA0, π)]sD0, − RCD, λ}

{[R(sA0, π)]sB0, − [R(sA0, π)]sC0, − [R(sA0, π)]sD0, RCD, λ}

(45)

To solve this system, we applied the method of random mono-
dromy loops [17]. By forming duplicate criteria from Eq. (45),
the algorithm was configured to collect sets of solutions at a time,
rather than piecemeal. Through random monodromy loops, 268
sets of eight finite, isolated roots were computed in about 5min
on a single thread using a personal computer. To compare the effi-
ciency of our algorithm, we also setup a multihomogeneous homo-
topy, which took about 20 h on a cluster of 192 cores to produce a
similar solution.

8 Design of a Mechanism to Time Wing Deployment
We applied our theoretical work to the design of a mechanism

that coordinates unfolding angles for a deployment. The problem
statement is visually summarized in Figs. 3 and 4. Each wing
rotates around a spatially angled pivot from a compact stowed con-
figuration to a flight-ready deployed configuration. The two spatial
wing pivots intersect at a common point with a relative interior
angle of 20°. This sets the pre-specification of axes sA0 and sB0.
We applied the synthesis solution for approximate function gener-
ation by a spherical four-bar with both ground pivots specified.
To improve the structural capabilities of the wings after deploy-

ment, the wings possess tabs that cross over each other and span the
width of the fuselage. An uncontrolled deployment of this design
could result in a collision between the overlapping tabs of the two
wings, preventing the wings from reaching their final configuration.
Likewise, a 1:1 counter-rotation by means of bevel gears would also
result in collision. However, a spherical four-bar is capable of

Fig. 3 A spherical four-bar to coordinate the timing of wing
deployment
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producing a nonlinear coordination between wing angles ϕ and ψ to
allow proper nesting between the wing tabs.

8.1 Function Generation Setup. The setup described in
Sec. 3 is applied to this problem, see Fig. 4. To show the pivots,
the nose of the UAV has been removed. The pivot axes sA0 and
sB0 are in the direction of the joints connecting the wings to
the fuselage. The angle pairs must move from the stowed configu-
ration, (0◦, 0◦), to the fully deployed configuration,
(99.2◦, − 99.2◦). Between these configurations, it was required
that the two joints counter-rotate in a nonlinear manner to avoid col-
lision. Specifically, the right wing rotates more quickly at the begin-
ning of the deployment to get clear of the left wing. In total, ten
angle pairs, (ϕj, ψ j), j = 0, . . . , 9, were chosen, which are listed in
Table 1.

8.2 Analysis of Candidate Designs. The approximate synth-
esis problem was solved using the formulation in Sec. 6. Using
parameter homotopy continuation, all 61 critical points were
found repeatedly in less than 5 s using a personal computer. Elimi-
nating imaginary solutions and the single known degenerate solu-
tion (sC0 = sA0 and sD0 = sB0) resulted in 12 physical solutions.
An eigenanalysis of the physical solutions identified three minima
and nine saddles. For this application, both ground pivots will be
actuated by a cable wrapped around a capstan, so branches in the
solutions were not considered an issue. Figure 5 shows the func-
tions produced by each solution, along with each solution’s
saddle index.
Solution 2 was selected because it is a minimum, it approximates

the angle pairs most closely, and it does not pass through any sin-
gular configurations. This same function can be produced by four
different constructions of the mechanism, which are found by tog-
gling the positive and negative directions of sC0 and sD0. Four dif-
ferent constructions of Solution 2 are shown in Fig. 6. The
(− sC0, −sD0) construction in Fig. 6 fits particularly well within
the fuselage of the UAV, so it was selected for implementation.

8.3 Implementation of Design. The function generator design
was incorporated into a small aircraft fuselage and fabricated using
additive manufacturing. The computer-aided design (CAD) model
and physical prototype are shown in Fig. 7. Each wing will be actu-
ated by a cable wrapped around a capstan at the joint, and the func-
tion generator will facilitate timing coordination between the two
wings.

Table 1 Angle pairs for approximate synthesis

j ϕj ψ j

0 0° 0°
1 14.8969° −4.0107°
2 30.9397° −10.3132°
3 45.2637° −16.6158°
4 59.0147° −25.2101°
5 69.9009° −34.9504°
6 79.6411° −46.9825°
7 85.9437° −63.0254°
8 91.6732° −81.9330°
9 99.2° −99.2°

Fig. 4 The aircraft wings rotated around two intersecting spa-
tially angled axis

Fig. 5 The coordination of angles exhibited by each of the crit-
ical points

Fig. 6 Each solution corresponds to four different construc-
tions of Solution 2 from Fig. 5
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9 Analysis of Function Specification
To observe the effects of function specification on our optimiza-

tion algorithm, the desired function for the deployment mechanism
in Sec. 8 was varied. The manually-specified angle pairs in Table 1
form a hyperbola-like curve that allows one of the wings to rotate
more quickly than the other at the beginning of the mechanism
motion. To generalize this, now we aim to obtain a family of hyper-
bolas in ϕ–ψ space, parameterized by a

ψ = f (ϕ, a) :=
a

ϕ − b
+ c (46)

where

b =
1
2
(ϕ0 + ϕf + d)

c = ψ0 +
2a

−ϕ0 + ϕf + d

d =

����������������������������������
(ϕ0 − ϕf ) ϕ0 − ϕf −

4a
ψ0 − ψ f

( )√√√√
This is the family of hyperbolas that pass through points (ϕ0, ψ0)
and (ϕf , ψ f ) with varying curvatures parameterized by a. In the
exercise below, we set (ϕ0, ψ0) = (0◦, 0◦) and (ϕf , ψ f )=
(99.2◦, −99.2◦), similar to the task illustrated above. Twenty
curves were specified by changing values of a, from smooth (a =
15) to sharp (a = 0.025), see Fig. 8. For each value of a, 100 discre-
tization points, spaced evenly by arc length, were used as angle pairs.
The synthesis method in Sec. 6 was performed for each value of a.
Between 12 and 14 real, non-degenerate critical points were found
for each a, of which exactly three were minima for each case. For
each critical point, the objective value was computed from the sum
of squares in Eq. (17). The smallest objective value for each a is
plotted in Fig. 9. All of these objective values were 10−7 or lower,
indicating that the hyperbolic curve in Eq. (46) with any a can be
nearly perfectly approximated by a spherical four-bar. Plots of the

curve produced by the mechanism for each a were found to be visu-
ally indistinguishable from Fig. 8. Visualizations of the optimal
mechanism produced by four values of a are shown in Fig. 10.
The critical points in Fig. 9 form a curve of solutions in R7 as a is

varied. This suggests that the mechanism dimensions can be directly
parameterized by a. The angles between sA0 and sB0, sA0 and sC0; sB0
and sD0; and sC0 and sD0, are given by

δAB = arccos (sA0 · sB0)
δAC = arccos (sA0 · sC0)
δBD = arccos (sB0 · sD0)
δCD = arccos (sC0 · sD0)

(47)

Fig. 7 Prototype of the deployment timing mechanism: (a) CADmodel and (b) physical prototype

Fig. 8 Curves and discretization points for varied values of a
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where δAB = 20◦ is the specified interior angle between the ground
pivots. The optimal values of δAC, δBD, and δCD as a function of a
were plotted in Fig. 11, and approximate curves δAC(a), δBD(a),
and δCD(a) were constructed using a fourth-order polynomial fit.
Figure 11 shows that for each a, δAC = δBD, meaning the optimal

input and output links always have the same dimension. The fitted
curves for δAC(a), δBD(a), and δCD(a) are given in Eq. (48)

δAC(a) = 0.000260557x4 − 0.00104994x3 + 0.0152373x2

− 0.0971407x + 0.240457

δBD(a) = δAC(a),

δCD(a) = −(9.9 ∗ 10−6)x4 + 0.000326275x3 − 0.00341895x2

+ 0.011249x + 0.356166 (48)

10 Conclusion
Our approach to optimization is not based on iterative local

searching. Instead, we form Lagrangian stationarity conditions
and compute their complete set of zeros using polynomial homo-
topy continuation. As a result, we obtain all critical points globally
throughout the design space, including all local minima and the
global minimum. In this sense, we term our solutions complete.
Our approach is applied to the approximate synthesis of spherical
four-bar function generation. For the case where both ground
pivot directions are specified, the method in this paper can be
used to quickly find all 61 sets of critical points of the optimization
problem and locate useful designs. For the general case with no pre-
specification, there are 268 sets of critical points which can quickly
be computed. This synthesis procedure was demonstrated in the
design of a function generator used to coordinate the deployment
timing. For this design, 12 sets of critical points were found, with
each corresponding to four constructions of each mechanism. The
functionality of the selected mechanism was demonstrated with a
physical prototype. Additional analysis was done to observe the
effects of changing the specified angle pairs. A parameterized
hyperbolic curve was used to specify functions with varying curva-
tures. The synthesis procedure was applied to each curve, which
resulted in a family of mechanisms with near-perfect fit.
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Fig. 9 Smallest objective value for each a

Fig. 10 Mechanism visualizations for a = 0.2, 0.5, 2.0, 7.5

Fig. 11 Mechanism dimensions plotted as a function of a and
fitted to fourth-order polynomials
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