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In this paper, we form a constrained optimization prob-
lem for spherical four-bar motion generation. Instead of us-
ing local optimization methods, all critical points are found
using homotopy continuation solvers. The complete solution
set provides a full view of the optimization landscape and
gives the designer more freedom in selecting a mechanism.
The motion generation problem admits 61 critical points, of
which two must be selected for each four-bar mechanism. We
sort solutions by objective value and perform a second or-
der analysis to determine if the solution is a minimum, max-
imum, or saddle point. We apply our approximate synthesis
technique to two applications: a hummingbird wing mecha-
nism and a sea turtle flipper gait. Suitable mechanisms were
selected from the respective solution sets and used to build
physical prototypes.
Keywords: spherical kinematics, optimization, synthesis

1 Introduction
The spherical four-bar is a four-link mechanism with

four revolute joints, whose axes intersect at a common point.
Motion generation for the spherical four-bar, also known as
rigid body guidance, involves synthesizing the mechanism
dimensions that produce a desired coupler link motion. The
coupler link motion is fully defined by its orientation. The
position of the point on the coupler that is coincident with
the intersection point of the joint axes is fully constrained,
so all motion of the body is a pure rotation. Equivalently,
a point on the coupler at some fixed radius from the inter-
section point produces a motion on a spherical surface. The
motion of the spherical four-bar is independent to radial scal-
ing, which makes it useful for producing spatial motions. In
this paper, we formulate the approximate motion generation
of spherical four-bars with an optimization procedure that
produces all optimal solutions.

Exact synthesis is a common approach to kinematic de-

∗Address all correspondence to this author.

sign, where all desired task orientations are met exactly. This
method has been well-studied for the spherical four-bar and
has been solved in its completeness for three orientations [1],
four orientations [2], and a maximum of five orientations [3].
Specifying more than five coupler orientations results in an
over-defined system, so approximate synthesis approaches
must be used instead. Generally, this involves forming an
objective function that minimizes the error between the op-
timal mechanism and the desired task orientations. Alizade
et. al. [4] formed a least-square optimization that resulted in
a fourth-order polynomial. The nonlinear equation was con-
verted to a system of linear equations with nonlinear opera-
tors and solved for up to four real solutions. Li et. al. [5] de-
veloped a kinematic mapping approach to spherical motion
generation and solved a least-squares fitting with singular
value decomposition. Liu et. al. [6] solved the optimization
problem using a genetic algorithm. To ensure optimal so-
lutions were found, the algorithm was repeated hundreds of
times with a randomized initial population. In a different ap-
proach, Sun et. al. [7] used the harmonic output parameters
of the spherical four-bar to develop a numerical atlas. This
method avoids computing roots to nonlinear equations, but
requires time for the algorithm to search a pre-constructed
atlas for possible solutions.

In our method, we form a constrained optimization
problem to approximate a desired set of task orientations.
We derive the first-order necessary conditions, which form a
square system of polynomials. The discrete task orientation
data from the objective function is fully contained within the
coefficients of these polynomials, so their algebraic form is
invariant to the number of end-effector orientations specified.
Instead of using a local optimization method, we compute all
critical points by finding the roots of the polynomial system
using the homotopy continuation solver Bertini [8]. These
points are classified as maxima, minima, or saddle points
through a second-order analysis, and their principal direc-
tions of curvature are also computed. This work provides
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Fig. 1. Kinematic diagram of the spherical four-bar linkage

the designer with many solution options and a full view of
the optimization space, which is ideal for design exploration.
Unlike other local search methods, which are better for de-
sign tuning, a nearby initial guess is not required to locate
all minima. Other work [9] has shown saddle points to be
useful in mapping connections between minima in the de-
sign space. This paper is related to our previous work [10],
in which a similar method was applied to spherical four-bar
function generators.

In Sect. 2, we formulate the kinematic constraints for
a spherical four-bar. In Sect. 3, we formulate an optimiza-
tion problem to compute a complete solution set for approx-
imate synthesis and classify solutions for efficient design ex-
ploration. In Sect. 4, we apply our approximate synthesis
method to recreate the flapping motion of a hummingbird
and the walking gait of a sea turtle. Conclusions are offered
in Sect. 5.

2 Motion Generation Set-Up
A kinematic diagram of the spherical four-bar is shown

in Fig. 1. The mechanism dimensions are specified using
the directions of the four joint axes and the orientation of
the coupler link in a reference configuration. The ground
pivots are denoted sA0 and sB0, and the moving pivots are
denoted by sC0 and sD0. The orientation of the coupler link
is given using a 3×3 rotation matrix [R0]. Rotations about
the ground pivots sA0 and sB0 are parameterized by ϕ and ψ,
respectively. Relative rotations between neighboring links at
the moving pivots sC0 and sD0 are parameterized by θ and
ρ, respectively. The rotation matrix [R(s, ϕ)] rotates a vector
or another rotation matrix by an angle ϕ about unit vector s,
where

[R(s, ϕ)] = [I] + sinϕ[s̃] + (1− cosϕ)[s̃]2, (1)

where s =

sxsy
sz

 , and [s̃] :=

 0 −sz sy
sz 0 −sx
−sy sx 0

 .

Fig. 2. Task orientation specification

The displaced orientation of the coupler, [Rj ], for angles
ϕj , ψj , θj , and ρj , is expressed by splitting the mechanism
into two 2R chains and rotating the home orientation using
the rotation matrices in Eq. (1),

[Rj ] = [R(sA0, ϕj)][R(sC0, θj)][R0], (2)
[Rj ] = [R(sB0, ψj)][R(sD0, ρj)][R0]. (3)

The goal of motion generation is to find the reference
joint axes sA0, sB0, sC0, and sD0 that achieve N speci-
fied task orientations, [R̂j ], j = 0, 1, . . . , N −1, as shown
in Fig. 2.

Without loss of generality, any set of task orientations
may begin with [R0] = [I], where [I] is the 3×3 identity
matrix. In case [R0] is not set as identity, task orientations
should be transformed by [R̂0]

T ,

[R0] = [R̂0]
T [R̂0] = [I], (4)

[Rj ] = [R̂0]
T [R̂j ]. (5)

After solving for the joint axes, we pre-multiply sA0, sB0,
sC0, and sD0 by [R̂0] to match the original task.

Substituting Eq. (4) into Eqs. (2) and (3),

[Rj ] = [R(sA0, ϕj)][R(sC0, θj)], (6)
[Rj ] = [R(sB0, ψj)][R(sD0, ρj)]. (7)

To form the kinematic constraints, the intermediate variables
ϕj , ψj , θj , and ρj must be eliminated from Eqs. (6) and (7).
Starting with Eq. (6), we multiply by sC0,

[Rj ]sC0 = [R(sA0, ϕj)][R(sC0, θj)]sC0. (8)

Rotation of a vector about itself yields the same vector, so

[Rj ]sC0 = [R(sA0, ϕj)]sC0. (9)
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Take the dot product of both sides with sA0 and rearrange the
order of multiplication in the dot product on the right hand
side,

([Rj ]sC0) · sA0 = ([R(sA0, ϕj)]sC0) · sA0, (10)

= sC0 · ([R(sA0, ϕj)]
T sA0). (11)

Here once again, sA0 is stationary after rotation about its own
axis. Simplifying and rearranging, the kinematic constraint
for the sA0 side becomes

sA0 · ([Rj ]sC0) = sA0 · sC0. (12)

The same approach can be used for Eq. (7), yielding the
constraint on the sB0 side,

sB0 · ([Rj ]sD0) = sB0 · sD0. (13)

These kinematic constraints have the same algebraic
form, i.e. any sA0 and sC0 that satisfy Eq. (12) would also
satisfy Eq. (13) for sB0 and sD0. This decouples the prob-
lem into two identical 2R synthesis problems. Therefore,
Eq. (12) can be solved once, and solutions can be selected
for each side.

3 Optimization Formulation
Instead of satisfying Eq. (12) exactly at each task orien-

tation, our goal is to approximately meet the specified cou-
pler orientations. We choose N task orientations and mod-
ify our constraint from Eq. (12) to form kinematic constraint
residuals,

ηj := sA0 · [Rj ]sC0 −RAC j = 0, 1, . . . , N−1.

We introduced a new variable RAC , which acts as a best-
fit link dimension approximately equal to sA0 · sC0. We
choose one task orientation to be the reference configuration,
[R̂0], and multiply all task orientations by its transpose, as
described in Sect. 2. We also define quadratic sphere con-
straints to make sA0 and sC0 unit vectors,

sA0 · sA0 = 1 and sC0 · sC0 = 1. (14)

The objective of our optimization is to minimize the sum
of squares of the kinematic constraint residuals, ηj ,

min
sA0, sC0, RAC

f :=
1

2

N−1∑
j=0

η2j (15)

s.t. h :=

{
sA0 · sA0 − 1
sC0 · sC0 − 1

}
= 0.

The corresponding Lagrangian is

L := 1
2

N−1∑
j=0

η2j + hTλ, (16)

where λ = {λ1, λ2} are Lagrange multipliers.
We define the decision variables, x, as the vector com-

ponents of sA0 and sC0 and the variable RAC . We form the
first-order necessary conditions by taking the partial deriva-
tives of Eq. (16) with respect to x and λ,

∂L

∂x
= 0 (17)

∂L

∂λ
= h = 0. (18)

Eqs. (17) and (18) form a system of nine polynomials in nine
variables. The roots of this system are the critical points of
the optimization problem.

3.1 Computational Results
The discrete task orientation data is contained within

the coefficients of Eqs. (17) and (18). As a result, the al-
gebraic structure is invariant to the number of task orienta-
tions specified. A 3-homogenous grouping partitioned by the
components of sA0, the components of sC0, and the group
{RAC , λ1, λ2} indicates a Bézout degree of 3564 for the sys-
tem. The polynomial homotopy continuation solver Bertini
found 244 finite, isolated solutions. Further analysis shows
these solutions occur in sets of four. Namely, for every solu-
tion {sA0, sC0}, the solutions {sA0,−sC0}, {−sA0,−sC0},
and {−sA0, sC0} also exist. This is a result of the quadratic
sphere constraints. Each solution in the set of four pro-
duces the same motion, so only one copy is kept. The sys-
tem can then be computed using a parameter homotopy that
only needs to track 61 paths. Proceeding computations take
roughly 5 seconds on a personal computer for any set of task
orientations.

Once solutions are computed, complex solutions are re-
moved. Each solution is only half of the four-bar, so two
solutions must be selected for each possible mechanism. For
M real solutions, there exist M choose 2 solution combina-
tions. Empirically, the number of real solutions ranges from
10-30, resulting in anywhere from 50-400 possible mecha-
nisms. To efficiently parse and select mechanisms, each so-
lution is plugged back into the objective of Eq. (15). For each
mechanism, the objective values of each of the two solutions
are added together, and the mechanisms are sorted from low-
est to highest total objective value.

3.2 Eigenanalysis of Critical Points
Both minima and saddles are computed in our complete

solution set to provide a full picture of the design space. Sad-
dle points have utility for other downstream design activities,
like mapping connections between minima [9]. Computing
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the complete solution set is particularly advantageous for this
problem, since two solutions need to be selected to construct
each four-bar. A local optimization method would require
randomizing initial guesses until the solver converged to two
different minima.

To identify each critical point as a minimum, maximum,
or saddle point, we compute the eigenvalues and eigen-
vectors of the projected Hessian, which is appropriate for
equality-constrained optimization. Recalling Eqs. (15)-(18),
the Hessian [H(x)] =

[
∂2f
∂x2

]
is a 7×7 matrix. The derivative[

∂h
∂x

]
is a 2 × 7 matrix with row vectors that span the space

normal to the constraints. The null space of
[
∂h
∂x

]
contains

the 5 basis vectors of the tangent space. We orthonormalize
these vectors and place them in [T ], a 7× 5 matrix. We then
compute the projected Hessian, [T ]T [H(a)][T ], a 5 × 5 ma-
trix. The eigenvectors of this matrix indicate the principal
directions of curvature after transformation by [T ], and the
eigenvalues are the principal curvatures. Positive eigenval-
ues indicate directions of ascent, and negative eigenvalues
indicate directions of descent. If all eigenvalues are posi-
tive or all eigenvalues are negative, the point is a minimum
or maximum, respectively. Other points are saddle points,
which are classified as index-k saddles if k eigenvalues are
negative. Other work [9] has shown the usefulness of char-
acterizing descent directions.

3.3 Error calculation
As a metric to validate the effectiveness of designs, the

error was computed between the specified task orientations
and the actual motion of each solution. Given the four-bar
dimensions of a solution, {sA0, sB0, sC0, sD0}, orientations
of the coupler link were sampled, [Rk], k = 1, ..., 1000, us-
ing the mechanism’s forward kinematics. For each specified
task orientation, [Rj ], j = 1, ..., N , the orientation on the
mechanism’s coupler that was nearest to the specified task
orientation was compared.

The relative rotation between [Rj ] and [Rk] is

[Rjk] = [Rj ]
T [Rk]. (19)

Considering axis-angle parameters, the angle of [Rjk] is

φjk = arccos
(

1
2 (tr[Rjk]− 1)

)
. (20)

Note that φjk ∈ [0, π]. To measure the difference between
[Rj ] and [Rk], we use the formula,

ϵjk = 1− cos
φjk

2
, (21)

where ϵjk ∈ [0, 1] with the lower bound indicating that [Rj ]
and [Rk] are the same. The nearness of the jth task orienta-
tion to the coupler’s motion is computed by taking the mini-
mum from its discretized motion,

ϵj = min
({
ϵjk

}1000

k=1

)
. (22)

The error between a set of task orientations and a cou-
pler motion is then

ϵ =
1

N

N−1∑
j=0

ϵj . (23)

This error metric was computed between the set of task ori-
entations and every continuous motion branch of a single
four-bar. The motion branch which yielded the least error
was used as the metric for that four-bar. In this way, branch
defects are accounted for. We use this error metric to eval-
uate solutions, and we compare it to the objective values of
our solutions in Sec. 4.1

4 Applications
Many spatial motions can be well-approximated as one

degree-of-freedom spherical motions. We applied our ap-
proximate synthesis method to two bioinspired motions: the
flapping of a hummingbird wing and the walking motion of
a sea turtle.

4.1 Hummingbird Wing Flapping
One example of a spatial motion that is nearly spherical

in nature is the flapping of a hummingbird’s wings. Unlike
most birds, hummingbirds are able to hover and maneuver
quickly due to their wing flapping. Instead of only producing
lift during the downstroke of the flapping motion, they twist
their wings to produce lift on the upstroke as well [11]. This
results in a figure-8 motion that can be well-approximated as
spherical. Rehmat et. al. [12] discovered a spherical four-bar
with hummingbird-like motion from a family of mechanisms
with symmetric coupler curves. McDonald and Agrawal [13]
designed a similar spherical four-bar for a flapping micro air-
vehicle application using a local optimization method. Here,
we apply our approximate synthesis method to find a mech-
anism that replicates the flapping of a hummingbird wing.

We specify task orientations with the Euler angles α1,
α2, and α3, which produce the orientation

[Rj ] = [Y (α1,j)][X(α2,j)][Z(α3,j)], j = 0, . . . , N−1
(24)

α1

α2

α3

Fig. 3. Euler angle parameterization
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where [X(α1)], [Y (α2)], and [Z(α3)] are the rotations about
fixed axes x, y, and z. This Euler angle specification corre-
sponds to the longitude α1 and latitude −α2, which locate
the task orientation on a spherical surface, and the rotation
angle α3, which rotates the task orientation about the axis
normal to the spherical surface. This is shown in Fig. 3. We
found this Euler angle parameterization to be convenient, but
any other rotation matrix parameterization could similarly be
used to specify task orientations.

To reproduce the hummingbird wing motion, we manu-
ally specified 15 orientations, which are tabulated in Table 1
and shown in Fig. 4. These task orientations trace a figure-
eight on the surface of a sphere. The rotation angles of each
task orientation about the axis normal to the sphere were cho-
sen such that the wings are always angled down during the
forward and backward strokes. We applied our optimiza-
tion procedure and computed all critical points. Of the 61
critical points, 21 were real, which resulted in 210 possible
mechanisms after enumerating combinations. The mecha-
nisms were ordered from least to greatest by the summation
of the objectives of their two component critical points. The
mechanisms with the 12 lowest objective values are shown
in Fig. 5.

Solutions were parsed to find a suitable mechanism

Articulated
wing twist

Fig. 4. Visualization of task orientations for hummingbird flapping

Table 1. Task orientations for hummingbird flapping motion
j α1[

◦] α2[
◦] α3[

◦]
1 30.94 18.33 −30.60
2 −41.83 −25.21 −22.00
3 −24.64 −25.21 −42.28
4 −53.29 13.18 6.07
5 16.04 −15.47 49.56
6 13.75 13.18 −47.10
7 −42.40 23.49 3.38
8 −12.03 −16.04 −65.20
9 1.15 1.15 −49.39

10 −58.44 −8.02 −19.31
11 30.94 −20.05 14.15
12 −20.63 18.33 27.56
13 51.57 −16.04 0.00
14 −5.73 5.16 57.30
15 46.41 6.88 −24.12

for the wing application. Several mechanisms had defects,
where the motion was split into two circuits or branches by a
singularity. Mechanism 11 completes the entire figure-eight
motion without encountering singularities and approximates
the task orientations very closely, so it was chosen for this
application. While it may seem unexpected that the 11th-
highest objective value would be preferred over the global
minima or other solutions with lower objective value, it sat-
isfied design criteria that the objective did not capture, such
as avoiding defects and having suitable ground pivot loca-
tions. Mechanism 11 is composed of a minimum and a sad-
dle point, yet its objective value is still within 0.03 of the
global minimum.

The error of each solution, defined in Sec. 3.3, is also
included in Fig. 5. To compare the abilities of our objective
value and error metric to sort desirable solutions, we plot the
error against the objective value in Fig. 6. The relationship

Min., Min. Min., Min. Min., Min.
Objective: 0.0666 Objective: 0.0692 Objective: 0.0779
Error: 0.0273 Error: 0.01 Error: 0.00473

Min., Index 1 Min., Min. Min., Min.
Objective: 0.0779 Objective: 0.0792 Objective: 0.0879
Error: 0.0346 Error: 0.00929 Error: 0.00323

Min., Index 1 Min., Min. Min., Index 1
Objective: 0.088 Objective: 0.0904 Objective: 0.0905
Error: 0.0153 Error: 0.036 Error: 0.00458

Min., Index 1 Min., Index 1 Min., Index 1
Objective: 0.094 Objective: 0.0973 Objective: 0.0992
Error: 0.0705 Error: 0.00358 Error: 0.00358

Forward kinematics solution 1

Forward kinematics solution 2

Fig. 5. Mechanisms with the the lowest objective value for hum-
mingbird flapping

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanisms and Robotics. Received August 14, 2024;
Accepted manuscript posted October 06, 2024. doi:10.1115/1.4066850
Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanism
srobotics/article-pdf/doi/10.1115/1.4066850/7387618/jm

r-24-1451.pdf by U
niversity O

f N
otre D

am
e user on 28 D

ecem
ber 2024



1211

10

9

8

7

6

5

4

3

2

1

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Objective
Value

0.02

0.04

0.06

Error

Fig. 6. Error vs. objective value for the 25 mechanisms with the
smallest objective value for hummingbird flapping. Mechanisms
shown in Fig. 5 are labeled.

between error and objective value is not monotonic. There
are many solutions with low objective values that have higher
error than solutions with high objective values. For example,
solution 11 has a higher objective value than solution 4, but
about half of the error. The discrepancy between error and
objective value comes from the decoupling of the synthesis
procedure into two 2R linkages. The objective value only
considers the ability of a 2R to meet the task orientations,
so summing the objectives of two 2R solutions into a four-
bar mechanism could yield less favorable designs with low
objective values. Alternatively, the error metric gives infor-
mation on the performance of the full four-bar mechanism,
so it aligns more closely with what a designer would con-
sider ”good” designs. A prototype of this mechanism was
constructed and is shown in Figs. 7 and 8.

Fig. 7. Hummingbird wing flapping prototype

4.2 Sea Turtle Walking
A robotic sea turtle was developed similar to [14]. This

robot mimics the way the turtle traverses difficult terrain like
rocks and sand. The motion of the sea turtle’s front flippers
propel its body across granular media. We studied these mo-
tions and applied our synthesis method to find a mechanism
that approximates the motion.

Fig. 8. Hummingbird wing orientations

Fifteen task orientations were manually chosen for the
turtle flipper motion, using the same Euler angle parameteri-
zation as Sect. 4.1. The task orientations are listed in Table 2
and shown in Fig. 9. In the bottom portion of the stroke, the
flipper is nearly vertical, which helps it push through granu-
lar media. On the return part of the stroke, the flipper flattens
out and reaches forward to prepare for the next stroke. We
computed all solutions for these task orientations using our
approximate synthesis technique. From the 61 critical points,
13 were real. This resulted in 78 mechanisms. Mechanisms

Articulated 
flipper twist

Fig. 9. Visualization of task orientations for turtle walking

Table 2. Task orientations for turtle walking motion
j α1[

◦] α2[
◦] α3[

◦]
1 1.72 −30.94 25.61
2 −15.18 2.29 −100.90
3 14.90 −30.94 −5.39
4 30.65 −31.51 −19.37
5 32.37 2.29 −103.71
6 11.46 2.29 −95.17
7 −26.64 −8.59 −62.51
8 −20.63 −15.47 −48.36
9 41.54 −29.22 −51.34
10 −26.07 −21.77 9.91
11 3.44 5.73 −100.90
12 −28.93 −4.01 −97.92
13 −16.90 −30.94 22.80
14 46.12 −22.35 −61.94
15 50.99 −5.73 −94.31
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were ordered by objective value. The 12 mechanisms with
the lowest objective values are shown in Fig. 10.

Min., Min. Min., Index 1 Min., Index 1
Objective: 0.0372 Objective: 0.0517 Objective: 0.0626
Error: 0.00303 Error: 0.0288 Error: 0.0214

Min., Min. Min., Min. Min., Index 1
Objective: 0.0736 Objective: 0.0845 Objective: 0.099
Error: 0.0107 Error: 0.00668 Error: 0.0166

Min., Index 1 Min., Index 1 Index 1, Index 1
Objective: 0.213 Objective: 0.224 Objective: 0.238
Error: 0.0217 Error: 0.0542 Error: 0.0368

Min., Index 1 Min., Min. Min., Min.
Objective: 0.26 Objective: 0.267 Objective: 0.278
Error: 0.0294 Error: 0.0682 Error: 0.00934

Forward kinematics solution 1

Forward kinematics solution 2

Fig. 10. Mechanisms with the the lowest objective value for turtle
walking

Unlike the hummingbird wing, Mechanism 1 was free of
defects and approximated the specified motion very closely.
Additionally, both solutions were local minima. The mecha-
nism was implemented in a sea turtle robot, shown in Fig. 11.
Mechanisms 2, 3, 6, and 9 produce nearly no motion, yet they
have very low objective values. These mechanisms are de-
generate solutions, where the sB0 and sD0 vectors are nearly
coincident. The degenerate 2R solution can only produce a
one degree-of-freedom motion in a circle about the two co-
incident axes. Since the turtle motion is nearly circular, it is
not surprising that this solution would have a low objective
value. However, once paired with another solution to form
a full four-bar, the mechanism loses its mobility due to the

degeneracy. This is made clear by the high error values for
these degenerate solutions. Fortunately, with the complete
set of optimal mechanisms, these solutions can simply be
discarded.

Fig. 11. Turtle robot prototype

5 Conclusion
In our approach to the approximate motion generation of

spherical four-bars, we compute all critical points to a non-
linear optimization problem. Instead of using local search
methods, which require initialization near the local minima,
we obtain all minima and saddle points to give the designer
a full view of the design space. For the general case of mo-
tion generation for spherical four-bars, our method computes
all 61 sets of critical points and sorts them to find the most
useful designs. We demonstrated our method with the design
of a hummingbird wing-flapping mechanism and a sea turtle
walking robot. We obtained 210 possible mechanisms for the
hummingbird wing and 78 possible mechanisms for the sea
turtle robot. We selected suitable designs from each solution
set and validated their functionality with physical prototypes.
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Figure captions and table headings
Fig. 1. Kinematic diagram of the spherical four-bar link-

age
Fig. 2. Task orientation specification
Fig. 3. Euler angle parameterization
Fig. 4. Visualization of task orientations for humming-

bird flapping
Fig. 5. Mechanisms with the the lowest objective value

for hummingbird flapping
Fig. 6. Error vs. objective value for the 25 mechanisms

with the smallest objective value for hummingbird flapping.
Mechanisms shown in Fig. 5 are labeled.

Fig. 7. Hummingbird wing flapping prototype
Fig. 8. Hummingbird wing orientations
Fig. 9. Visualization of task orientations for turtle walk-

ing
Fig. 10. Mechanisms with the the lowest objective value

for turtle walking
Fig. 11. Turtle robot prototype
Table 1. Task orientations for hummingbird flapping

motion
Table 2. Task orientations for turtle walking motion
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