
LINKS IN OVERTWISTED CONTACT MANIFOLDS

RIMA CHATTERJEE

Abstract. We prove that Legendrian and transverse links in
overtwisted contact structures having overtwisted complements can
be classified coarsely by their classical invariants. We further prove
that any coarse equivalence class of loose links has support genus
zero and constructed examples to show that the converse does not
hold.

1. Introduction

Knot theory associated to contact 3-manifolds has been a very inter-
esting field of study. We say a knot in a contact 3-manifold is Legendrian
if it is tangent everywhere to the contact planes and transverse if it is
everywhere transverse. The classification of Legendrian and transverse
knots has always been an interesting and difficult problem in contact
geometry. Two Legendrian knots are said to be Legendrian isotopic if
they are isotopic through Legendrian knots. A knot or link type is said
to be Legendrian simple if it can be classified by its classical invariants
up to Legendrian isotopy. There are only a few knot types that are
known to be Legendrian simple in (S3, ξstd). For example topologically
trivial knots in [EF09], the torus knots and figure eight knots in [EH01]
are all Legendrian simple. While there is no reason to believe all knots
should be Legendrian simple, it has been historically difficult to prove
otherwise. Chekanov [Che02] and independently, Eliashberg [Eli98]
developed invariants of Legendrian knots that show that m(52) has
Legendrian representatives that are not distinguised by their classical
invariants.

Since Eliashberg’s classification of overtwisted contact structures
[Eli89], the study of overtwisted contact structures and the knots and
links in them, has been minimal. However, in recent years overtwisted
contact structures have played central roles in many interesting applica-
tions such as building achiral Lefchetz fibration [EF09], near symplectic
structures on 4-manifolds [GK04] and many more. Thus the overtwisted
manifolds and the knot theory associated to them has generated signifi-
cant interest. There are two types of knots/links in overtwisted contact
structures, namely loose and non-loose (Also known as non-exceptional

1

ar
X

iv
:2

01
1.

12
21

7v
2 

 [m
at

h.
SG

]  
15

 A
ug

 2
02

1



2 RIMA CHATTERJEE

and exceptional respectively). A link in an overtwisted contact manifold
is loose if its complement is overtwisted and non-loose otherwise. The
first explicit example of a non-loose knot is given by Dymara in [Dym01].
In general, non-loose knots appear to be rare. It is still not known
if every knot type has a non-loose representative. We have another
notion of classification of knots and links in contact manifolds known as
coarse equivalence. We say knots/links are coarsely classified if they are
classified up to orientation preserving contactomorphism, smoothly iso-
topic to the identity. Observe that, though classification by Legendrian
isotopy and coarse equivalence are equivalent in (S3, ξstd), they are not
the same in general. Eliashberg and Fraser gave a coarse classification
of Legendrian unknots in overtwisted contact structure in S3 [EF09].
Later, Geiges and Onaran gave a partial coarse classification of the
non-loose left handed trefoil knots in [GO18] and non-loose Legendrian
Hopf links in [GO20]. Recently, Matkovič in [Mat20] extended their
result. Note that, this is still not a complete classification. Also, all of
these classification results have been proved in overtwisted S3.

This paper studies links in all overtwisted contact manifolds. In
[Etn10], Etnyre proved that loose, null-homologous Legendrian and
transverse knots can be coarsely classified by their classical invariants.
In [GO18], the authors proved that for the loose Hopf link, this classifica-
tion result remains true. It turns out that Etnyre’s work very naturally
extends for every null-homologous loose links (By null-homologous here
we mean every link component bounds a Seifert surface) which is the
first theorem of this paper:

Theorem 1.1. Suppose L1 and L2 are two loose null-homologous Legen-
drian links with same classical invariants. Then, L1 and L2 are coarsely
equivalent.

Remark 1.2. Here by a null-homologous link, we assume that every
link component is null-homologous.

The above theorem tells us that there is only a unique loose link with
any fixed classical invariants in any overtwisted contact structure up to
contactomorphism.

Remark 1.3. In an overtwisted contact manifold (M, ξ), classification
up to contactomorphism and classification upto Legendrian isotopy
are not equaivalent. Our result doesn’t say anything about the Leg-
endrian simpleness of a loose link. Dymara in [Dym01] proved that
two Legendrian knots having same classical invariants in any contact
3-manifold (M, ξ) are Legendrian isotopic if if there exists an overtwisted
disk disjoint from both of them. Later this result was strengthened by
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Ding–Geiges in [DG09] and further by Cahn-Chernov in [CC20] . In
spite of being a stronger notion of classification, unfortunately this does
not apply to all loose knots.

As a corollary we proved the following result for loose transverse
links.

Corollary 1.4. Suppose T and T′ are two transverse loose null-homologous
links with same classical invariants. Then T and T′ are coarsely equiv-
alent.

In other words, there is a unique loose null-homologous transverse
link with every component having a fixed self-linking number up to
contactomorphism.

Remark 1.5. In [Etn10], the theorem was proved for null-homologous
knots and it was hinted that these might be extended to non-null
homologous knots using Tchernov’s definition of relative rotation number
and relative Thurston–Benniquin number [Tch03] with some extra
conditions on the underlying manifold. It seems plausible that the same
idea can be extended for links as well.

After classifying the Legendrian and transverse loose links, we asso-
ciate a Legendrian link with a compatible open book decomposition of
the manifold. First, we extended the definition of the support genus
of a Legendrian knot defined in [Ona10] to the support genus of a Leg-
endrian link (this extension comes naturally) and proved the following
theorem about coarse equivalence class of loose Legendrian links.

Theorem 1.6. Suppose [L] denotes the coarse equivalence class of loose,
null-homologous Legendrian links with in any contact 3-manifold.Then
sg([L]) = 0.

The above result gives a generalization (weak) of Onaran’s result.
Like non-loose knots, non-loose links appear to be rare. The above

theorem suggests, if we can find a Legendrian link L with sg(L) > 0
that will immediately tell us that L is non-loose. We also show that the
converse of the theorem is not true by constructing planar open books
for non-loose links.

Theorem 1.7. There are examples of non-loose links with support
genus zero.

Also, as a corollary we have a similar result for coarse equivalence
class of loose transverse links.

Corollary 1.8. Suppose [T] be a coarse equivalence class of loose,
null-homologous loose transverse links. Then sg[T] = 0
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1.1. Organization of the paper. The paper has been organized in the
following way: In Section 2, we discussed preliminaries of contact geom-
etry and Legendrian knots followed by a discussion of Pontyragin-Thom
construction for manifolds with boundary in Section 3. In Section 4,
we proved Theorem 1.1 and Corollary 1.4. We conclude with a proof of
Theorem 1.6 and Theorem 1.7 in Section 5.

1.2. Acknowledgement. I wish to express my deepest gratitude to
my advisor Shea Vela-Vick. His guidance, support and motivation over
the years have been greatly appreciated. I would also like to thank C.-M.
Mike Wong for asking the question which leads to Theorem 1.7. This
research is partially supported by NSF Grant 1907654 and the SFB/TRR
191 “Symplectic Structures in Geometry, Algebra and Dynamics, funded
by the Deutsche Forschungsgemeinschaff (Project- ID 281071066-TRR
191)”.

2. Basics on contact geometry

In this section, we briefly mention the preliminaries of contact geom-
etry and Legendrian knots. For more details the reader should check
[Etn05], [Etn01] and [Etn06].

2.1. Contact structures. A contact structure ξ on an oriented 3-
manifold M is a nowhere integrable 2-plane field and we call (M, ξ)
a contact manifold. We assume that the plane fields are co-oriented,
so ξ can be expressed as the kernel of some global one form α. In
this case, the non-integrability condition is equivalent to α ∧ dα > 0.
There are two types of contact structures–tight and overtwisted. An
overtwisted disk is a disk embedded in a contact manifold (M, ξ) such
that ξ is tangent to the boundary of the disk. We call a contact manifold
overtwisted, if it contains an overtwisted disk. Otherwise we call it
tight.

Though only few results are knows about classifying tight contact
structures on manifolds, overtwisted contact structures are completely
classified by Eliashberg.

Theorem 2.1. (Eliashberg, [Eli89])Two overtwisted contact structures
are isotopic if and only if they are homotopic as plane fields. Moreover,
every homotopy class of oriented 2-plane field contains an overtwisted
contact structure.

2.2. Legendrian links. A link L smoothly embedded in (M, ξ) is said
to be Legendrian if it is everywhere tangent to ξ. For the purpose
of this paper, by classical invariants of a link we refer to the classical
invariants of its components. The classical invariants of a Legendrian
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knot are the topological knot type, Thurston–Benniquin invariant tb(L)
and rotation number rot(L). tb(L) measures the twisting of the contact
framing relative to the framing given by the Seifert surface of L. The
other classical invariant rot(L) is defined to be the winding of TL after
trivializing ξ along the Seifert surface. One can classify a Legendrian
link up to Legendrian isotopy. Two Legendrian links L and L′ are
said to be Legendrian isotopic if they are isotopic through Legendrian
links.There is another type of classification of Legendrian links known as
coarse equivalence. We say two Legendrian links are coarsely classified
if they are classified up to orientation preserving contactomorphism,
isotopic to the identity. In (S3, ξstd) these two types of classification
are equivalent . But in general a coarse equivalence does not imply
Legendrian isotopy.

Figure 1. Stabilizations of a Legendrian knot.

Stabilization of a link can be done by stabilizing any of the link
component. By standard neighborhood theorem of the Legendrian knot,
one can identify any Legendrian link component L locally with the
x axis. Stabilization is a local operation as shown in Figure 1. The
modification on the top right-side is called the positive stabilization and
denoted as L+. The modification on the bottom right-side is known as
negative stabilizations and denoted as L−. It does not matter which
order the stabilizations are being done, it just matters where those are
being done. The effect of the stabilizations on the classical invariants
are as follows:

tb(L±) = tb(L)− 1 and rot(L±) = rot(L)± 1.

2.3. Transverse link and its relationship with a Legendrian link.
A link T in (M, ξ) is called transverse (positively) if it intersects the
contact planes transversely with each intersection positive. By classical
invariant of a transverse link, we will refer to the classical invariants of
its components. There are two classical invariants for transverse knot,
the topological knot type and the self-linking number sl(T). Self-linking
number is defined for null-homologous knots. Suppose Σ be a Seifert
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surface of a transverse knot. As Σ|ξ is trivial, we can find a non-zero
vector field v over Σ in ξ. Let T′ be a copy of T obtained by pushing T
slightly in the direction of v. The self-linking number sl(T) is defined
to be the linking no of T with T′.

Legendrian and transverse links are related by the operations known
as transverse push off and Legendrian approximation. The classical
invariants of a Legendrian link component and its transverse push off
are related as follows:

sl(L±) = tb(L)∓ rot(L)

where L± denotes the positive and negative transverse push offs. In
this paper, if we mention transverse push-off it is always the positive
transverse pushoff unless explicitly stated otherwise. Note that, while a
transverse push off is well defined, a Legendrian approximation is only
well defined up to negative stabilizations.

2.4. Open book decomposition and supporting contact struc-
tures. Recall an open book decomposition of a 3-manifold M is a triple
(B,Σ, φ) where B is a link in M such that M\B fibers over the circle with
fiber Σ and monodromy φ so that φ is identity near the boundary and
each fiber of the fibration is a Seifert surface for B. By saying φ is the
monodromy of the fibration we mean that M \ B = Σ× [0, 1]/ ∼ where
(1, x) ∼ (0, φ(x)). The fibers of the fibration are called pages of the open
book and B is called the binding. Given an open book (B,Σ, φ) for M,
let Σ′ be Σ with a 1-handle attached. Suppose c is a simple closed curve
that intersects the cocore of the attached 1-handle exactly once. Set
φ′ = φ ◦D+

c , where D+
c is a right handed Dehn-twist along c. The new

open book (B′,Σ′, φ′) is known as the positive stabilization of (B,Σ, φ).
If we use D−c instead, that will be called a negative stabilization. For
details check [Etn04].

We say a contact structure ξ = kerα on M is supported by an open
book decomposition (B,Σ, φ) of M if

(1) dα is a positive area form on the page of the open book.
(2) α(v) > 0, for each oriented tangent vector to B.

Given an open book decomposition of a 3-manifold M, Thurston and
Winkelnkemper [TW75] showed how one can produce a compatible
contact structure. Giroux proved that two contact structures which are
compatible with the same open book are isotopic as contact structures
[Gir02]. Giroux also proved that two contact structures are isotopic if
and only if they are compatible with open books which are related by
positive stabilizations.
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It is well known that every closed oriented 3-manifold has an open
book decomposition. We can perform an operation called Murasugi
sum to connect sum two open books and produce a new open book. An
interested reader should check [Etn06] for details.

3. Homotopy classes of 2-plane fields

In this section, we review the homotopy theory of plane fields in
the complement of a link. Specifically, we will study homotopy classes
of 2-plane fields on manifolds with boundary. We start by recalling,
Pontyragin-Thom construction associated with manifolds with boundary
(For Pontyragin-Thom construction for closed manifolds see [MW97])

3.1. Pontyragin-Thom construction for manifolds with bound-
ary. Suppose M be an oriented manifold with boundary. The space
of oriented plane-fields on M will be denoted as P(M). On the other
hand, if η is a plane-field defined on the boundary of M, then the set of
all plane fields that extend η to all of M will be denoted by P(M, η).
V(M) will be the set of all unit vector fields and V(M, v) will denote
the set of all unit vector fields which extend v to all of M. Here v is
the unit vector field defined along ∂M . Also observe the sets P(M, η)
and V(M, v) can be empty depending on η and v.

After choosing a Riemannian metric on M we can associate a unit
vector field to an oriented plane field in the following way: We send a unit
vector field v to the plane field η such that v followed by the oriented
basis of η orients TM. Thus there is a one-to-one correspondence
between P(M) and V(M). Similarly for P(M, η) and V(M, v) where v
is the unit vector field along the boundary associated to η by a choice of
metric and orientation. Notice both the correspondences only depend
on a choice of metrics.

We know that any 3-manifold has trivial tangent bundle. Thus fixing
some trivialization we can write TM ' M × R3. So the unit tangent
bundle UTM can be identified with M× S2. Any unit vector field on
M can be defined as a section of this bundle and can be associated to a
map M→ S2. We can identify V(M) with [M, S2]. Similarly if v is a unit
vector field on ∂M , we can associate it with a map fv : ∂M→ S2. Thus
V(M, v) can be identified with the maps from M to S2 which coincides
with fv on the boundary, denoted by [M, S2; fv].

Now Suppose fv : ∂M → S2 misses the north pole p. Now given
any f ∈ [M, S2; fv] we can homotope it so that it is transverse to the
north pole (Thus p will be a regular value for f). Then f−1(p) = Lf
will be in the interior of M with framing ff given by f ∗(TS2|p). As
f homotopes through maps in [M, S2; fv] the link (Lf , ff ) changes by
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framed cobordism. Thus any v defined on ∂M which extends to M can
be associated to framed cobordism classes of link. This gives us the
relative version of Pontyragin-Thom construction.

Remark 3.1. Notice, this construction works fine if M has multiple
boundary components.

Lemma 3.2. Assume that η is a plane field defined along the boundary
of M that in some trivialization of TM corresponds to a function that
misses the north pole of S2. There is a one-to-one correspondence
between homotopy classes of plane fields on M that extend η on M and
the set of framed links in the interior of M up to framed cobordism.

For the closed case, the following proposition was proved in [Gom98].

Proposition 3.3. Let M be a closed, connected 3-manifold. Then any
trivialization τ of the tangent bundle of M determines a function Γτ
sending homotopy classes of oriented 2-plane fields ξ on M into H1(M,Z)
and for any ξ, 2Γτ (ξ) is Poincaré dual to c1(ξ) ∈ H2(M,Z). For any
fixed x ∈ H1(M,Z), the set Γ−1(x) of classes of 2 plane-fields ξ mapping
to x has a canonical Z action and is isomorphic to Z/d(ξ), where d is
the divisibility of the chern class.

Now suppose M is a manifold with boundary and F(M) denotes the
set of all cobordism classes of framed link in the interior of M. Then
there is a homomorphism

φ : F → H1(M,Z)

such that

(Lf , f)→ [L].

This map is clearly surjective. We want to compute the preimage of
this map. First notice, there is a natural intersection pairing between
H1(M) and H2(M, ∂M). Let i : (M, ∅) → (M, ∂M) induces the map
i∗ : H2(M,Z)→ H2(M, ∂M,Z). For L ∈ H(M,Z), set

DL = {L · [Σ] : where Σ ∈ i∗(H2(M,Z))}

where L · Σ denotes the intersection pairing. Clearly this is a subset of
Z. Suppose d(L) is the smallest non-negative integer in DL.

Lemma 3.4. With the notations above,

φ−1(L) = Z/d(2L).
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4. Classification of loose Legendrian links

There are two types of links in an overtwisted contact manifold,
namely loose (also known as non-exceptional) and loose (also known as
exceptional). A Legendrian link L is called loose if the contact structure
restricted to its complement is overtwisted. Otherwise, it is called
non-loose. In other words, a loose link must have an overtwisted disk
disjoint from it.

Remark 4.1. Note that, for a loose Legendrian link, all of its compo-
nents must be loose. But a non-loose link can have loose components.
In fact, a non-loose link can have all its components loose.

The following is our main theorem in this section.

Theorem 4.2. Suppose L and L′ are two Legendrian n-component links
in (M, ξ) with all of their components null-homologous. We fix their
Seifert surfaces. If L and L′ are topologically isotopic, tb(Li) = tb(L′i)
and rot(Li) = rot(L′i) for i = 1 . . . n (where the classical invariants
are defined using the fixed Seifert surfaces), then L and L′ are coarsely
equivalent.

In other words, there is a unique loose Legendrian link with the
components having fixed tb and rot up to contactomorphism. Before
we begin proving this, we need the following lemma:

Lemma 4.3. Suppose L and L′ be two Legendrian n-component links
in (M, ξ) with each of their components being null-homologous. Suppose
they are topologically isotopic, tb(Li) = tb(L′i) and rot(Li) = rot(L′i) for
i = 1 . . . n, then ξ|M\N(L) is homotopic to ξ|M\N(L′) rel boundary as plane
fields.

Proof. We will use techniques similar to [Etn10]. As L and L′ are
topologically isotopic, there is an ambient isotopy of M which takes L
to L′. We will assume that the Seifert surfaces of the link components
are also related by this ambient isotopy (So after applying the ambient
isotopy we assume the Seifert surfaces of the components agree).

As L and L′ are topologically isotopic there is an ambient isotopy of M,
φt such that φ0 = id and φ1(L) = L′. Using this isotopy we push forward
the underlying contact structure ξ. Thus we now have a new contact
structure φ−11∗ ξ and call it ξ′. Observe ξ and ξ′ are homotopic as plane
fields in M. After we apply the isotopy we can assume L = L′ and N be
their standard neighborhood. Note that, tb measures the twisting of the
contact framing with respect to the surface framing. As the components
have the same tb, this allows us to identify the neighborhoods. Now
by standard neighborhood theorem of Legendrian links, ξ and ξ′ agree
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on N. We need to show that ξ|M\N is homotopic to ξ′|M\N rel boundary
as plane fields. We know that homotopy class of plane fields are in
one-to-one correspondence with framed links up to framed cobordism.
Now using Pontyragin-Thom construction for manifolds with boundary,
we will associate these plane fields with (Lξ, fξ) and (Lξ′ , fξ′). We need
to show that these links are homologous in M\N and that their framing
differs by 2d[Lξ] where d is the divisibility of the euler class of ξ.

To do this, first we will fix a trivialization of TM. Note that,
Pontyragin–Thom construction works for any trivialization, but we
would like to use a convenient one. Suppose v1 be the Reeb vector field
of ξ. Now we choose a Riemannian metric such that v1 is positively
orthogonal to ξ with respect to this metric. Thus v1 defines ξ in M. To
avoid ambiguity, from now on we will call the contact structure ξ, ξv1
and start making alterations to ξv1 which do not affect ξ or ξ′. Next
choose v2 in the following way:

(1) Choose v2 to be the tangent vector field along Li , if rot(Li) is
even.

(2) Choose v2 to be the tangent vector field along Li with an extra
negative twist with respect to the fixed Seifert surface of the
component, if rot(Li) is odd.

Observe that the tangent vector field v2 along L = L′ agrees as all the
components have same rot (rot measures the winding of the tangent
vector field along the component) Notice that as we know ξ in N , we
can extend v2 to all of N . Now we need to extend v2 to all of M. In
general, this might not be possible. The relative Euler class e(ξV1 , v2) is
the obstruction to this extension. So our goal is to make this obstruction
vanish.

By using Lefchetz duality and Mayer–Vietoris sequence, we have

(1) H2(X, ∂X;Z) ' H1(X;Z) ' H1(M)⊕ Zn

where each of the Z factors are generated by the meridian of the link
components. Now the relative Euler class e(ξv1 , v2) lives in H2(X, ∂X;Z).
By Equation 1, it has n + 1 components. As the splitting suggests
one can check that the relative Euler class of ξv1 relative to v2 on
∂X is computed as its evaluation on absolute chains in X ⊂ M and its
evaluation on the Seifert surfaces of Li. For the first part, the evaluation
is determined by the evaluation of e(ξV1) on surfaces in M. Now as ξv1
is a contact structure, it is an even class. On the other hand, by our
choice of v2,

〈e(ξv2 , ), [Σi]〉 = rot(Li) or rot(Li) + 1



LINKS IN OVERTWISTED CONTACT MANIFOLDS 11

In both the cases, this is always even for each i. So the relative Euler
class is a n+ 1 vector with every co-ordinate even. Let us rename this
as α. Next we will apply half Lutz twist to alter the relative Euler class.
Now choose a transverse knot K in X (that is [K] ∈ H1(X,Z)) such that
PD[K] = 1

2
(α) (We can always find such knot). If we apply half Lutz

twist in X along K, we get a new contact structure ξv′2 such that

e(ξ′v1 , v2)− e(ξv1 , v2) = −2PD[K]

By our choice of K, e(ξ′v′1
, v2) becomes zero. Thus we can extend v2 as a

section of ξ′v1 on all of X. Now choose an almost contact structure J on
M and say v3 = Jv2. We use the vector fields −v1, v2, v3 to trivialize
TM and TX. Notice here v1 is mapped to the south pole p∗. We will
call this trivialization τ .

Using this trivialization, we find framed links (Lξ, fξ) and (Lξ′ , fξ′)
associated to ξ and ξ′ by Pontyragin–Thom construction on X. As M
is trivialized by τ , both Lξ and Lξ′ are oriented cycles. Next we need
to show that Lξ and Lξ′ are homologous in X. As H1(X,Z) splits in
n+ 1 components,we need to check if they agree in each of them. First
we will show they agree in H1(M,Z). Now notice, v1 is the vector field
that defines ξ in N and also it is mapped to the south pole. So we can
define a map from N to S2 where N is collapsed to the south pole p∗.
Now we can extend the map fξ in the following way:

Fξ(x) =

{
fξ(x) if x ∈ X
p∗ if x ∈ N

Now F−1(p) = f−1(p) = Lξ. Similarly for Lξ′ . Thus Lξ and Lξ′ are also
associated to ξ and ξ′ in M. Now as ξ and ξ′ are homotopic as plane
fields in M, the components must agree in H1(M,Z).

Next we need to verify if Lξ ∩Σi = L′ξ ∩Σi for each i. Note that here
we can take the same Seifert surfaces for each link components Li and
L′i as they are related by the ambient isotopy. As the tangent vector v2

gives the framing to the link Lξ (as framing of Lξ is given by the pull
back of TpS

2 and this is exactly equal to ξ along Lξ), we have

〈e(ξ, v2),Σi〉 = Lξ ∩ Σi.

Same argument works for Lξ′ . Now if rot(Li) is even, the definition of
v2 gives us rot(Li) = 〈e(ξ, v2),Σi〉. Thus if rot(Li) is even, we have,

Lξ ∩Σi = 〈e(ξ, v2), [Σ]〉 = rot(Li) = rot(L′i) = 〈e(ξ′, v2), [Σ]〉 = Lξ′ ∩Σi

Similarly for rot(Lj) odd,

Lξ ∩ Σi = 〈e(ξ, v2), [Σ]〉 = rot(Lj) + 1 = rot(L′j) + 1 = L′ξ ∩ Σi.
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Thus Lξ and Lξ′ are homologous in H1(X,Z).
Next we want to show that the framing differs by 2d([Lξ]). Now

notice that ξ and ξ′ are homotopic as plane fields in M. Thus the
framings of Lξ and L′ξ associated to ξ and ξ′ must differ by d(ξ) where
d(ξ) is the divisibility of e(ξ) [Gom98]. In other words, its the same as
the divisibility of the Poincaré dual of e(ξ). We will show this is exactly
2d[Lξ]. We know ξ = f ∗ξ (TS2).

e(ξ) = e(f ∗ξ (TS2)) = f ∗ξ (e(TS2)) = f ∗ξ (2[S2]).

Now p = PD[S2] as p is a regular value. So

f ∗ξ (2[S2]) = f ∗ξ (2PD[p]) = 2PD(f−1ξ (p)) = 2[Lξ].

For the second equality check [Gei08]. So the framing differs by 2d[Lξ].
Thus by Lemma 3.2, ξM\N and ξ′M\N are homotopic rel boundary. �

Proof of Theorem 4.2. As L and L′ are loose, they have overtwisted
complements. Now by Eliashberg’s classification of overtwisted contact
structures we know that isotopy classes of overtwisted contact structures
are in one to one correspondence with the homotopy class of plane
fields [Eli98]. Thus if each of the components of L and L′ have same
Thurston–Benniquin and rotation number, by Lemma 4.3 they have
contactomorphic complements rel boundary. As we can extend this
contactomorphism over the standard neighborhood of L (disjoint union
of solid tori), this proves L and L′ are coarsely equaivalent. �

Corollary 4.4. Suppose T and T′ are two topologically isotopic loose
n-component transverse links with each of their components being null-
homologous (i.e each of the components bounds a Seifert surface). Fix
these Seifert surfaces and with respect to these surfaces suppose sl(Ti) =
sl(T′i), then T and T′ are coarsely equivalent.

Proof. Suppose T and T′ be two loose transverse links with each of
their components being nullhomologous (i.e each component bounds
a Seifert surface) and sl(Ti) = sl(T′i) for each i. Now we Legendrian
realize T and T′ component by component and call them L and L′. We
can do the Legendrian approximation in a small enough neighborhood
so that the Legendrian links remain loose. After this step, we can have
the following two cases:

Case 1. Suppose tb(Li) = tb(L′i) and rot(Li) = rot(L′i) for all i. Then
we have two loose Legendrian links with each component null homol-
ogous and with same classical invariants. Thus by Theorem 4.2, they
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have contactomorphic complements. Now we take the transverse push-
off of L and L′. As transverse push-off is well-defined, we get back T
and T′. This proves that T and T′ are coarsely equaivalent.

Case 2. Suppose tb(Lj) 6= tb(L′j) for some j. We may assume tb(Lj) >
tb(L′j). So we start by negatively stabilizing Lj . As we can do a negative
stabilization in a small enough Darboux ball, this does not effect any
other link component and thus without changing the transverse link
type. So we can negatively stabilize each of the link components locally
one by one till tb(Li) = tb(L′i) for each i. As sl(Ti) = sl(T′i), we must
have rot(Li) = rot(L′i) for each i as well. So we are back in case 1. �

5. Links and open book decomposition

In this section, we extend the idea of support genus of a Legendrian
knot [Ona10] to the support genus of a link and prove that every coarse
equivalence class of loose null-homologous Legendrian links have support
genus zero.

We can always associate a Legendrian link in (M, ξ) with an open
book supporting the underlying manifold by including the link in the
1-skeleton of the contact cell decomposition of the contact manifold.
Thus we define the support genus of a Legendrian link in (M, ξ) as
follows:

Definition 5.1. The support genus sg(L) of a Legendrian link L in a
contact 3-manifold (M, ξ) is the minimal genus of a page of the open
book decomposition of M supporting ξ such that L lies on the page of
the open book and the framings given by ξ and the page agree.

In [Ona10], Onaran proved the following theorem.

Theorem 5.2. Any link in a 3-manifold M is planar.

The above theorem tells us that that any link in M can be put on a
planar open book (B,Σ, φ) for M. For details of the proof see [Ona10].
Now before we proceed to the main theorem of this section, we will
need the following lemmas.

Lemma 5.3. Suppose L be a Legendrian link sitting on a planar open
book as shown in Figure 2. Then positive/negative stabilization of any
of the link component Li can be done fixing the Legendrian isotopy type
of the other link components.

Proof. Suppose L be a Legendrian link sitting on the page of a planar
open book. Fix an orientation of the link. Suppose Bi is the outer
most binding component. Now choose a particular region of Bi which
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Figure 2. Page of a planar open book where the link lies.
The blue outline shows the outer boundary component of
the punctured disk. The box depicts the boundary area
where we want to do the stabilization or detabilization of
Lk.

Figure 3. Positive and Negative stabilization of the link
sitting on the page of an open book.

is closest to Li and far from other components. The shaded region
in Figure 2 shows us where we will do the stabilizations. We do a
positive stabilization along Bi and push the link component Li along
the attaching 1-handle as shown in Figure 3. We call it L′i. by our
choice of attaching region, this operation is local and thus does not
affect any other link component sitting on the page of the open book.
Clearly D is a disk with tb = −1 and a single dividing curve. Thus we
assume it to be convex. Therefore, L′i is the stabilization with D being
the stabilizing disk. Also D can be thought as bypass disk along L′. The
sign of the stabilization will depend on the orientation of the boundary
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Figure 4. The positive and negative stabilization of Li
and the signs of bypass disks.

of the disk.. The orientation of the boundary of the disk is inherited by
the Legendrian knot L′. The sign of the singularity of Dξ is determined
by the contact planes. We will call a singularity along ∂D positive or
negative according to if the contact plane takes a right handed or a left
handed turn along ∂D. See Figure 4. Now clearly we have chosen to
do this operation away from the other link components. Thus all other
link components remain unaltered during the operation and so are their
Legendrian knot types. Observe that, Li has a fixed orientation. So we
can perform any number of positive or negative stabilization of any link
component away from the other components.

�

The next lemma tells us that de-stabilization of any component of a
loose link can be done in the complement of other components.

Lemma 5.4. Suppose L be a link sitting on the page of a planar open
book (B,Σ, φ) as shown in Figure 2. Suppose Bi be the outer most
boundary component. Now suppose we do a negative stabilization of
(B,Σ, φ) along Bi. The new open book does not support (M, ξ) and we
get a new link Lnew in the new contact structure. Now if we push Lnew
along the attaching handle, this will destabilize the link component and
it can be performed in a way that it does not affect the Legendrian type
of any other link components.

Proof. In [Ona10], a similar version of this lemma has been proved for
knots. We give a slightly different proof. Our proof relies on the fact
that null-homologous Legendrian knots having same classical invariants
are Legendrian isotopic in S3 if there is an overtwisted disk disjoint
from them [Dym01].
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Figure 5. Negative stabilization of the open book and
the de-stabilized link component sitting on the page

Suppose L be a Legendrian link sitting on the page of a planar open
book (B,Σ, φ). Fix an orientation of L. Pick a link component Li, we
want to destabilize. Now we choose a particular region of the outer
most boundary component near Li and away from all other Lj’s. This
can be done as shown in Figure 2.

Now do a negative stabilization along that region and push the link
component Li along the attaching 1-handle. By our choice of attaching
region, this operation is away from the other link components. The new
open book (B′,Σ′, φ′) doesn’t support the underlying contact structure
anymore. We will call the link Lnew in the new contact structure and
show that (L′new)i is a destabilization of (Lnew)i as shown in Figure 5.
Here the disk D has tb = 1 and thus cannot be made convex. So

Figure 6. Negative stabilization followed by a positive
stabilization of the open book near Lk and away from
other components.

we stabilize the open book along the same boundary component as
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shown in Figure 6. Now positive and negative stabilization of (Σ, φ)
can also be thought as Murasugi summing with (H±, π±). Also notice
(H+, π+)](H−, π−) is an open book for (S3, ξ−1). As the link components
are identical outside the neighborhood of the boundary, we can assume
the local operation to be entirely in the overtwisted S3. Now we push
(L′new)i along the new attaching handle. And by Lemma 5.3, we get
(L′new)±i according to the orientation of the link component. Also we
found an overtwisted disk D in the complement of (Lnew)i and (L′new)±i .
Now by [Dym01], (Lnew)i and (L′new)±i must be Legendrian isotopic. As
(L′new)±i is a stabilization of (L′new)i, clearly (L′new)i is the destabilization
of (Lnew)i. Nothing changed outside the overtwisted S3. Thus all other
link components remain unaltered and so their Legendrian isotopy class.

�

Thus Lemma 5.4 together with Lemma 5.3 proves that if a link
lies on an open book as shown in Figure 2, any number of positive
(resp. negative) stabilization and de-stabilization of a particular link
component can be done in the complement of the other link components.
We will use these lemmas in the proof of our main theorem in this section.

Definition 5.5. Suppose [L]n denotes the class of all the n-component
links with each component having fixed tb and rot. For any two links in
this class there exists a contactomorphism that takes one to the other.
We call this the coarse equivalence class of a link.

Theorem 5.6. Suppose [L]n be the coarse equivalence class of null-
homologous, loose Legendrian link in (M, ξ). Then sg([L]n) = 0.

Proof. As every link is planar, we can put L on a planar open book
(B,Σ, φ) for M. Now (B,Σ, φ) does not necessarily support the underly-
ing contact structure. But we can always negatively stabilize the open
book and assume the contact structure it supports is overtwisted and
call it ξ′. As overtwisted contact structures can be identified using their
d2 and d3 invariant, we start making alterations to the open book so
that the invariants match with those of ξ. By Lutz twist and Murasugi
summing in an appropriate way we can make the d2 and d3 invarants
agree. Note that, d3 invariant are additive under connected sum op-
eration. Also none of these operations change the genus of the open
book. For details of these operations check [Etn04]. Now we have a
planar open book which supports a contact structure whose d2 and d3
invariants agree with ξ. By Eliashberg’s classification of overtwisted
contact structures, these contact structures are isotopic. Next we can
Legendrian realize the link on the page and call it L′. Suppose we
want to realize the following classical invariants, tb = (t1, t2, . . . tn) and



18 RIMA CHATTERJEE

rot = (r1, r2, . . . rn). If the classical invariants of L′ agree with that of
L, we are done. Suppose not. Then we can have the following cases:

Case 1. Suppose tb agrees but rot does not. Let Lj be a link component
with tb(Lj) = tj and rot(Lj) = r′j 6= rj. Now we will negatively or
positively stabilize the link component Lj to increase or decrease r′j.
We know by Lemma 5.3, this operation can be done fixing other link
components. Notice, this will change tj to tj − 1. So we need to
destabilize the link component in an appropriate way so that we do not
reverse the change in rj. This can be done in the following way, if we
positively stabilize the link component, we will negatively destabilize
it. This can be done fixing all other link components as stated in
Lemma 5.4. Now this will keep the tb fixed and increase rot by 2.
Similarly doing a negative stabilization and a positive destabilization
will keep tb fixed and decreases rot by 2. As tb + rot is always odd for
a Legendrian knot, we can achieve any possible rotation number for a
link component. Now we can do this any number of time to achieve
rj while fixing the Legendrian type of all other link components. Here
note that, we might end up in a contact structure different from the one
we started as negative stabilization alters a contact structure. But then
we can always alter it by Murasugi summing with appropriate open
books of S3. In this way, we will find a link sitting on the page of an
open book supporting the contact structure ξ with tb = (t1, t2, . . . tn)
and rot = (r1, r2, . . . rn). By Theorem 4.2, L must be in the same coarse
equivalence class . This proves the theorem.

Case 2. Suppose tb(Lj) = t′j 6= tj. In this case we need to stabilize or
destabilize the link component Lj to decrease and increase the tb till it
agrees with tj and this can be done keeping the other components fixed
by Lemma 5.3 and Lemma 5.4. Now we can do this local operation for
all the link components one by one till we get the tb we desire. So we
are in Case 1. �

The next theorem tells us that the converse of the above theorem is
not true.

Theorem 5.7. There are examples of non-loose links with support
genus zero.

Proof. Figure 7(a) shows a non-loose positive Hopf link in (S3, ξ−1). To
see this, we do a -1 surgery along L1 which will cancel one of the +1-
surgeries and we will be left with one +1- surgery on tb = −1 unknot
in (S3, ξstd) which produces the unique tight S1 × S2. For details, check
[GO20]. Next, we constructed a planar open book compatible with
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Figure 7. Example 1:(a) Non-loose Hopf link in
(S3, ξ−1). (b) Planar open book supporting the contact
structure where the Hopf link sits. We do a right handed
Dehn twist along the green curves and left-handed Dehn
twist along the dashed one.

(S3, ξ−1) where the non-loose Hopf link sits. We start with the annular
open book that supports (S3, ξstd) and used the well known stabilization
method we used previously in Lemma 5.3. The monodromy of this
open book can be computed from the Dehn twists coming from the
stabilizations and the Dehn twists defined by the surgery curves. One
of the left-handed Dehn twist coming from the +1 surgery will cancel
the right handed Dehn twist of the annular open book we started with.
We perform right handed Dehn twist along the solid green curves and
the left handed Dehn twist along the dashed curve. This clearly shows
sg(L0 t L1) = 0.

Example 2 shows a non-loose Hopf link in (S3, ξ−2). Here a −1 surgery
on L2 and −2 surgery on L2 gives us (S3, ξstd). Check [GO20] for details.
We produce a compatible open book for this contact structure as follows:
like before we started with an annular open book supporting (S3, ξstd)
and used the well known stabilization method. Notice that the right
handed Dehn twist coming from the annular open book again gets
cancelled with the negative Dehn twist coming from one of the surgery
curve. We perform right handed Dehn twist along the green curves and
one left handed Dehn twist along the black dashed curves. �
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Figure 8. Example 2:(a) Non-loose Hopf link in
(S3, ξ−2). (b) A compatible planar open book with the
link lying on the page.
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[Ona10] Sinem Çelik Onaran, Invariants of Legendrian knots from open book

decompositions, International Mathematics Research Notices 2010 (2010),
no. 10, 1831–1859.

[Tch03] Vladimir Tchernov, Vassiliev invariants of Legendrian, transverse, and
framed knots in contact three-manifolds, Topology 42 (2003), no. 1, 1 –
33.

[TW75] William P Thurston and Horst E Winkelnkemper, On the existence of
contact forms, Proceedings of the American Mathematical Society (1975),
345–347.

Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931
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