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Abstract. The multidirectional transmission characteristics of a five-
bar linkage can be visualized by plotting Jacobian-defined velocity
ellipses inside its workspace. The orientation, size, and aspect ratio of
these ellipses indicate directional force and velocity multiplication from
the actuators to the end-effector. Our broader goal is approximate dimen-
sional synthesis to achieve desired ellipses. On a workspace bound, the
minor axis of a velocity ellipse collapses while the major axis aligns tan-
gential to the bound. Interior to the workspace, ellipses vary with conti-
nuity. Therefore, the shape of a workspace bound influences the interior
ellipses. The workspace bounds of a five-bar linkage are formed from seg-
ments of four-bar coupler curves (the locus of endpoint positions while
the five-bar is held in output singularity conditions) and circular seg-
ments. Therefore, interior ellipses can be influenced by the path synthe-
sis of four-bar linkages that represent the five-bar situated with certain
links held colinear (the output singularity conditions). This paper details
the synthesis of these four-bar coupler curves for forming the workspace
bounds of a five-bar in order to influence its interior ellipses. Our app-
roach employs saddle graphs that detail the connectivity of critical points
over an optimization function.

1 Introduction

The velocity and force transmission characteristics of a parallel mechanism is
determined by the first-order kinematics. A well-known visualization of the
force/velocity transmission characteristics is the velocity ellipse as described by
the Jacobian matrix that encodes the first-order kinematics of the mechanism.
Inside the workspace of a mechanism, the desired force/velocity transmission
characteristics can be achieved by appropriately orienting and sizing the veloc-
ity ellipses. For example, high vertical forces at the end-effector of a mechanism
can be produced for low actuator torques by orienting the minor axes of the
velocity ellipses vertically in the desired portion of the workspace. Such mech-
anisms may find utility as legs of robots and industrial manipulators that need
to carry heavy vertical loads for pick-and-place operations. In this work, we pro-
pose the concept of shaping workspace boundaries to influence the orientation,
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size, and aspect ratio of the velocity ellipses inside the workspace. This con-
cept is demonstrated in this manuscript by considering a five-bar mechanism.
At a workspace boundary, the velocity ellipse has zero minor axis length and
its major axis is tangential to the workspace boundary. Thus, given the contin-
uous kinematics of the mechanism, the orientation of a velocity ellipse close to
a workspace boundary is heavily influenced by the local shape of the workspace
boundary. This forms the main motivation for this work.

In literature, several works can be found on designing five-bar mechanisms
for path generation and workspace for optimal performance in terms of force
transmission, dexterity, etc. Methods for path generation using geared five-bars
have been presented in [1,2]. Five-bar design methodologies for improving energy
efficiency over specific trajectories or regions inside the workspace have been
proposed in [3,4]. The design methodology in [5] aims to maximize the dexter-
ous workspace of the five-bar by eliminating singularities inside the workspace.
In [6], the optimal design of the five-bar is carried out by studying performance
indices based on end-effector velocity and force production. However, these meth-
ods do not explicitly synthesize velocity ellipses to achieve the desired bias in
force/velocity transmission. In this regard, Plecnik in [7] details a method to syn-
thesize five-bar mechanisms that exactly produce two given velocity ellipses. In
contrast, this work aims to approximately orient and size many velocity ellipses
inside the workspace by appropriately shaping the workspace boundaries. The
synthesis approach makes use of saddle graphs [8], in order to explore the connec-
tions between critical points across an optimization function. In the following,
the kinematics of the five-bar mechanism are discussed in Sect. 2. The problem of
shaping workspace boundaries for a five-bar mechanism is formulated in Sect. 3,
and a solution method is detailed in Sect. 4. A numerical example is presented
in Sect. 5, and Sect. 6 concludes the work.

2 Kinematics of the Five-Bar Mechanism

Figure 1(a) shows the kinematic diagram of a five-bar mechanism displaced
from a known reference configuration given by: A0,B0,C0,D0,F0,P0. A global
frame {1} is defined with its origin at O. The actuators situated at A0 and B0

are fixed to ground and displace the links A0C and B0D by angles φ and ψ,
respectively. The kinematic constraints relating the input variables θ = [φ ψ]�

and the output variables P = [x y]� are given by:

A0 + [R(φ)] (C0−A0) + [R(ρ)] (F0−C0) (1)
= B0 + [R(ψ)] (D0−B0) + [R(θ)] (F0−D0),
A0 + [R(φ)] (C0−A0) + [R(ρ)] (P0−C0) = P. (2)

In Eqs. (1, 2), ρ and θ are known as intermediate variables. They describe passive
link orientations that belong to neither the input nor output space. Introduce
the notation rij , i, j ∈ {A,B,C,D, F, P}, that is the vector from the pivot i to
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Fig. 1. (a) Kinematic diagram of a five-bar mechanism, (b) Four-bars arising from
the alignment of the links of B0DF dyad whose coupler curves are the workspace
boundaries of the five-bar in (a).

pivot j, e.g., rDF (θ) = [R(θ)] (F0−D0). Differentiating Eqs. (1, 2) and eliminat-
ing ρ̇, θ̇, the Jacobian matrix [J ] takes the form,

[J ] =
[
J1 J2

]
, where, (3)

J1 = [ i ]
(
rAC(φ) − rDF (θ) × rAC(φ)

rDF (θ) × rCF (ρ)
rCP (ρ)

)
,

J2 =
rDF (θ) × rBD(φ)
rDF (θ) × rCF (ρ)

[ i ]rCP .

The symbol “×” above denotes the 2D analog of the cross product, i.e. a×
b = |a b|. If [J ] is singular, the five-bar mechanism is at an output singularity,
indicating a workspace bound. In this case, there exist actuator velocities in the
nullspace of [J ] that instantaneously do not produce any end-effector velocity.
The output singularities bound regions in the configuration space known as
output modes [9]. For example, the five-bar in Fig. 1(a) has six output modes
that are shown as shaded regions in the task space. The workspace boundaries
are output singularities viewed in the workspace of the mechanism which can
occur in two ways:

1. Links of A0CP dyad align: When the angle between the links A0C and CP
is zero, the inner workspace boundary is obtained which is circular with
radius RI as seen in Fig. 1(a). Similarly, the circular outer workspace boundary
with radius RO is obtained when the angle between the links A0C and CP
is π.
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2. Links of B0DF dyad align: Enforcing zero angle between B0D and DF
on two degree-of-freedom (DoF) five-bar leads to one DoF four-bar motion
generating a coupler curve at P which is the folded workspace boundary of the
five-bar. Similarly, extended workspace boundary is obtained when the angle
between B0D and DF is π. These boundaries along with the four-bars are
shown in Fig. 1(b).

The B0DF dyad workspace boundaries are algebraic curves of degree higher than
the A0CP dyad workspace boundaries. Hence, the former can produce more
customized shapes. This motivates shaping the extended and folded workspace
boundaries of the five-bar mechanism and the procedure for the same is presented
in the next section.

3 Problem Formulation

The problem of shaping the folded and extended workspace boundaries of the
five-bar mechanism is formulated in this section. The extended and folded
workspace boundaries of the five-bar mechanism are coupler curves of four-bar
mechanisms A0CePeFeB0 and A0CfPfFfB0, respectively, resulting from the
alignment of the links in B0DF dyad as explained in Sect. 2. These four-bars
are shown in Fig. 1(b) where their joints are indexed1 by i or j when their end-
effectors are at Pei or Pfj , respectively. Thus, the problem can be posed as
synthesizing two four-bar with some shared dimensions whose coupler curves
follow desired shapes. Note that the links B0Fe and B0Ff have different lengths
while the rest of the dimensions are common between the two four-bars as seen in
Fig. 1(b). The lengths of links A0Ce (or A0Cf) and CePe (or CfPf) are denoted
by rAC and rCP , respectively. The problem is formulated to first compute rAC

and rCP which are common between the two four-bars and subsequently, com-
pute the remaining dimensions of the four-bar mechanisms.

The desired shapes of the extended and folded workspace boundaries are
specified by the points Pei , i = 1, 2, . . . , ne and Pfj , j = 1, 2, . . . , nf, respectively,
that need to be followed as closely as possible. For this, the specified points must
at least be reachable by A0CePe and A0CfPf dyads:

RI ≤ ‖A0 − Pei‖ ≤ RO, RI ≤ ‖A0 − Pfj‖ ≤ RO. (4)

Let dmin and dmax denote the minimum and maximum distance between the
specified points and A0. Given the minimum allowable distance εO between the
specified points and the outer workspace boundary, the radius RO = dmax + εO.
Similarly, RI = dmin − εI where εI is the minimum allowable distance between
the specified points and the inner workspace boundary. Thus, rAC and rCP have
two solutions:

1 The indices are dropped to represent the joints for any general end-effector point Pe

or Pf.
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rAC =
RI + RO

2
, rCP =

RO − RI

2
, and (5)

rAC =
RO − RI

2
, rCP =

RI + RO

2
(6)

Recognizing that the four-bars for Eq. (5) are cognates of those for Eq. (6),
the rest of the problem is solved considering only one of the solutions among
Eqs. (5, 6).

Let the coordinates of B0 in {1} be B0 = [Bx0 , By0 ]
�. The lengths of the

links B0Fe and B0Ff are given by rBFe and rBF f , respectively. Having com-
puted rCP , the dimensions of CeFePe (or CfFfPf) link are fully determined
by specifying the coordinates of Fe (or Ff) relative to Ce (or Cf). For this, a
local frame {2} is defined with its origin at Ce (or Cf) and x-axis along CePe

(or CfPf) as shown in Fig. 1(b). The coordinates of Fe and Ff in {2} are identical
and are given by f = [fx, fy]�. Therefore, the unknown variables in this problem
are:

dfe = [fx, fy, Bx0 , By0 , rBF e , rBF f ]
�. (7)

With the end-effector P at each Pei , the coordinates of Cei (see Fig. 1(b)) and the
orientation of CeiPei , denoted by βei , are computed from the inverse kinematics
(IK) of A0CePe dyad. For each Pei , two IK solutions, i.e., “elbow-up” and
“elbow-down” configurations, exist which belong to two different output modes
of A0CePe dyad. In this manuscript, all the solutions Cei , βei , i = 1, 2, . . . , ne

are found confining2 to only one of the output modes of A0CePe dyad. The
coordinates of Fe in {1} is:

Fei = Cei + [R(βei)] f . (8)

Similarly, for all Pfj , the coordinates of Cfj , and the orientation of CfjPfj ,
i.e., βfj are found confining to only one of the output modes of A0CfPf dyad.
In this case, the location of Ff in {1} is found as:

Ffj = Cfj +
[R(βfj )

]
f . (9)

Following the kinematic constraints of the four-bar mechanisms, the distances
of Fei and Ffj from B0 must be the link lengths rBF e and rBF f , respectively:

‖Fei − B0‖ = rBF e , ‖Ffj − B0‖ = rBF f , i = 1, 2, . . . , ne, j = 1, 2, . . . , nf.
(10)

If ne + nf ≤ 6, the constraints in Eq. (10) can be exactly satisfied by solving
for dfe. For ne + nf = 6, the number of constraints and variables are equal, and
2 Subsets of IK solutions for A0CePe dyad can belong to different output modes. If

the IK solutions for Pek and Pek+1 belong to different output modes, the portion
of the extended workspace boundary between Pek and Pek+1 touches the inner or
outer workspace boundary. Further study in this direction is considered for future
work.
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finitely many solutions are obtained. If ne +nf < 6, infinitely many solutions are
obtained for dfe. If ne + nf > 6, Eq. (10) becomes an over-constrained system
which, in general, cannot be satisfied exactly. Hence, an optimization approach
is adopted where the objective is to compute dfe such that the kinematic con-
straints in Eq. (10) are approximately satisfied with minimum residual. The
residuals are given by:

rei =
(‖Fei − B0‖2 − rBF e

2
)2

, rfj =
(‖Ffj − B0‖2 − rBF f

2
)2

. (11)

The objective is to minimize the total residual, denoted by r, given by:

min
dfe

r =

(
ne∑
i=1

rei

)
+

⎛
⎝ nf∑

j=1

rfj

⎞
⎠ . (12)

In Eqs. (8, 9), Fei ,Ffj are obtained by choosing output modes for A0CePe

and A0CfPf dyads. Since two output modes are possible for each dyad, a total
of 22 = 4 sets of Fei ,Ffj are obtained which give rise to four objective functions,
namely, rk, k = 1, 2, 3, 4, according to Eq. (12). A solution method to solve the
optimization problem for each rk is presented in the next section.

4 Solution Method

All the objective functions rk are polynomials of total degree four in dfe that
differ only in terms of the coefficients of their monomials. Therefore, the number
of critical points and the solution method are the same for all rk. The critical
points of rk are obtained by setting the gradient ∂rk

∂dfe
= 0 and solving for dfe.

This gives rise to six polynomial equations of total degree 324 in six variables dfe.
Since the polynomial system does not contain all possible monomials in dfe, the
number of finite solutions is expected to be less than the Bezout limit of 324.
In fact, the number of finite solutions can be at most 81 found using parameter
homotopy in Bertini [10].

Given the points A0,Pei ,Pfj and the values for εO and εI , the critical
points of rk are computed by solving ∂rk

∂dfe
= 0 using Bertini. The critical

points are saddles of index3 ranging from zero to six, where an index-0 sad-
dle is a minimum and an index-6 saddle is a maximum. For any given A0 =
[Ax0 , Ay0 ]

�,Pei ,Pfj , εO, εI , the solution d∗
fe = [0 0 Ax0 Ay0 rAC rAC ]� (see

Eqs. (5, 6) for rAC) is a global minimum where the value of the objective func-
tion is r∗

k = 0,∀k = 1, 2, 3, 4. For d∗
fe, the four-bars obtained are identical with A0

and Ce (or Cf) coinciding with B0 and Fe (or Ff), respectively. In this case, the
four-bars are equivalent to a serial 2R chain defined by dyad A0CePe whose
end-effector can reach every given point Pei ,Pfj while satisfying the kinematic
constraints in Eq. (10) exactly giving r∗

k = 0,∀k = 1, 2, 3, 4.
3 Index of a critical point is the number of principal directions of negative curvature,

i.e. the number of negative eigenvalues of the Hessian matrix evaluated at the critical
point.
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Starting from each saddle point, gradient descent paths to minima are com-
puted following [8]. These paths are represented as edges of a saddle graph
whose nodes are the critical points. A point on a gradient descent path gives
a point in the design space dfe, i.e., the dimensions of the four-bar mecha-
nisms A0CePeFeB0 and A0CfPfFfB0. The corresponding five-bar mechanism
has the dimensions of the links A0C and CPF same as A0Ce (or A0Cf)
and CePeFe (or CfPfFf), respectively. The lengths of links B0D and DF
are rBD = (rBF e + rBF f)/2 and rDF = (rBF e − rBF f)/2, respectively. Swap-
ping the links B0D and DF results in a different five-bar mechanism that has
the same workspace boundaries. Additionally, from the cognates of the four-
bars A0CePeFeB0 and A0CfPfFfB0, two more five-bar mechanisms can be
obtained. Therefore, for a solution of dfe, four five-bar mechanisms are obtained.
This solution method is used to synthesize a five-bar mechanism with the desired
workspace boundary in the next section.

5 Numerical Example

In this section, a numerical example is presented where the goal is to synthesize
a five-bar mechanism that has “flat” velocity ellipses with minor axes oriented
almost vertically throughout the bottom portion of its workspace. To achieve
this, the extended workspace boundary is desired to be nearly horizontal by
closely following the line Le given by:

Le : pe(αe) = αe[−0.112 − 0.049]� + (1 − αe)[−0.159 − 0.025]�. (13)

For a larger portion of the workspace to have “flat” ellipses, the folded workspace
boundary is also desired to be as horizontal as possible. By trial and error,
desirable results were obtained if the folded workspace boundary closely followed
the line Lf given by:

Lf : pf(αf) = αf[−0.097 − 0.095]� + (1 − αf)[−0.149 − 0.092]�. (14)

The lines Le and Lf are chosen to lie below the ground pivot A0 = [0 0]�

so that the region between them can be the portion of the workspace where
“flat” velocity ellipses may be possible. Further, ground pivot B0 is desired to
lie above Le, Lf to maintain a location suitable for applications.

From Le, ne = 100 points are uniformly sampled to get Pei . Similarly, nf =
100 points are sampled from Lf to get Pfj . Further, εO = 0.004, εI = 0.04 were
chosen. The link lengths rAC , rCP are found using Eq. (6). Following Sect. 4,
the optimization problem was solved for each rk, k = 1, 2, 3, 4 using Bertini.
The magnitude of perturbation h = 10−4 to compute the gradient descent
paths in the saddle graph. Choosing “elbow-up” configurations for both A0CePe

and A0CfPf dyads to find Fei ,Ffj in Eqs. (8, 9), the solutions obtained are shown
in Fig. 2. All the saddle points are seen to connect to the global minimum along
gradient descent paths. Although the saddle solutions in Figs. 2(b)–2(d) that fol-
low Le, Lf closely, they are not desirable since the workspace is not entirely the
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Fig. 2. Saddle graph and solutions for five-bar whose portions of extended and folded
workspace boundaries closely follow Le and Lf in Eqs. (13, 14), respectively. In the
saddle graph, edges labelled +h and −h correspond to gradient descent paths obtained
by perturbing the saddle point along positive and negative eigenvector, respectively,
along the steepest descent direction.

regions between Le, Lf. In cases like Fig. 2(c), the workspace can also be very nar-
row due to small B0D link length. However, exploring designs along the gradient
descent paths, the solution in Fig. 2(e) is a possible candidate that meets all the
criteria mentioned previously in this section. Interchanging the links of A0CP
dyad gives another five-bar that has the same workspace boundaries.

The cognates of A0CePeFeB0 and A0CfPfFfB0 are A0C′
eP

′
eF

′
eB

′
0

and A0C′
fP

′
fF

′
fB

′
0 as shown in Figs. 2(f) and 2(g), respectively (formulas given in

[11, Eq. (16)]). These four-bars can be used to find another five-bar mechanism
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in Fig. 2(h) that has the same workspace boundaries as in Fig. 2(e). Finally, the
fourth five-bar that has the same workspace boundary is found by swapping the
links of A′

0C
′P′ dyad.

From Fig. 2(e) it can be seen that the majority of the velocity ellipses in the
bottom workspace are nearly “flat”. This has been achieved by shaping portions
of the extended and folded workspace boundaries as roughly horizontal straight
lines.

6 Conclusion

The concept of shaping workspace boundaries to tune the first-order kinematics
of a mechanism was proposed in this work. A five-bar mechanism was considered
to demonstrate this concept. Given one of the ground pivots and the desired
shape of the workspace boundary, a method to synthesize five-bar mechanisms
was presented. The method was used to synthesize a five-bar mechanism with
portions of its workspace boundaries being roughly horizontal. By achieving this
shape of the workspace boundaries, it was shown that the minor axes of the
velocity ellipses could be oriented almost vertically in the region between the
shaped workspace boundaries.
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