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Abstract— For a given endpoint position, a five-bar manipu-
lator may assume several separate configurations, with each
offering distinct differential kinematics. The corresponding
configurations are separated by output singularities and are
said to belong to different output modes. In this work, a
procedure for dynamically switching between output modes
is proposed, with each mode offering different directional
force/velocity transmission ratios. The procedure involves solv-
ing an optimal control problem using a projection-based direct
collocation method for constrained mechanisms to find an
optimal trajectory along which the mechanism changes output
modes. Using this procedure, a five-bar mechanism configured
at a given end-effector position is shown to switch to another
output mode where the electrical energy consumed by the
actuators to statically hold the mechanism reduces by 80%.
Furthermore, the computed trajectories are seen to cross input
singularities, a maneuver made possible by momentum planning
since actuator authority is impaired at these configurations.

I. INTRODUCTION

Both serial and parallel mechanisms can be assembled
into multiple configurations given the coordinates of their
end-effector, i.e., there are multiple inverse kinematic (IK)
solutions. In particular, a five-bar mechanism generally has
up to four real IK solutions. For example, two of the
IK solutions of the five-bar mechanism considered in this
work are shown in Fig. 1. Since these solutions corre-
spond to different configurations of the five-bar mechanism,
their local differential properties dictate different directional
force/velocity transmission ratios. This implies that at the
same end-effector position, different ranges of end-effector
velocity and force can be produced by simply reconfiguring
to different IK solutions. For example, the configuration in
Fig. 1(a) can achieve high end-effector velocities along the y-
axis for small actuator velocities, whereas the configuration
in Fig. 1(b) can produce high end-effector forces along the
y-axis for small actuator torques. Such switchable proper-
ties can be advantageous for mobile robots that hold their
own weight with limbs. The neighborhood of configurations
indicated in Fig. 1(b) can be energy efficient for standing,
whereas the neighborhood of configurations indicated in
Fig. 1(a) is suited for jumping. Thus, switching between the
configurations in Fig. 1 can improve efficiency and jumping
performance.

It is the case for the five-bar mechanism that moving
between IK solutions involves crossing output singularities.

*This material is based upon work supported by the National Science
Foundation under Grant No. CMMI-2144732.

1All authors are with Department of Aerospace and Mechanical En-
gineering, University of Notre Dame, Notre Dame, IN 46556 USA
{sramesh,pwensing,plecnikmark}@nd.edu

Output singularities are the singular solutions to the inverse
kinematics problem. They form curves in the five-bar’s
configuration space that when projected onto the Cartesian
output space indicate workspace bounds (local or global).
These curves partition the configuration space into separate
regions, called output modes. For the case of the five-bar,
IK solutions are necessarily separated by output singulari-
ties, although this is not generically true [1]. Each output
mode can differ in terms of its transmission properties and
bounding output singularities as shown in Fig. 1. Switching
between output modes geared for different tasks forms the
motivation for this work.

In literature, switching configurations of parallel robots
by crossing singularities has been studied for workspace en-
largement in [2]–[4]. Specifically for the five-bar mechanism,
Macho et. al. in [5] describe crossing output singularities to
access the desired portions of the workspace. A graph search
method is proposed in [6] to switch between output modes
of a five-bar mechanism. These methods consider only the
kinematics of parallel robots and tend to be computationally
expensive due to exhaustive sampling of the configuration
space. In [7], minimum-time trajectories are planned to
switch output modes considering the dynamics of the five-
bar mechanism. In contrast, this work uses an optimal control
strategy to plan a trajectory between configurations in differ-
ent output modes with the objective of minimizing actuator
torques. Optimal-control-based path planning for a five-bar
mechanism is detailed in [8] where Pontryagin’s minimum
principle is used. By contrast, this paper contributes a method
for designing trajectories capable of switching output modes
based on a direct collocation approach that is compatible
with closed-chain mechanisms [9]. This method enables
singularity-free computations even at physical singularities
of the mechanism and does not rely on exhaustive sampling
of the configuration space, thereby speeding computations.

The rest of the paper is organized as follows. Section II
presents the background concepts relevant to this work. The
kinematics, dynamics, and optimal control problem for the
five-bar mechanism are formulated and a solution method is
proposed in Section III. Subsequently, Section IV presents
two numerical examples of switching output modes for the
five-bar in Fig. 1. Finally, the discussion of results and
conclusion are presented in Sections V and VI, respectively.

II. BACKGROUND

For a five-bar mechanism with input joint angles ϕ, ψ ∈ R,
intermediate joint angles ρ, θ ∈ R and output end-effector
position P ∈ R2, the kinematic constraints can be written
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Fig. 1. Five-bar mechanism configured in two different output modes. The
configuration in (a) can achieve high end-effector velocities in the vertical
direction compared to the configuration in (b) which makes it suitable for
jumping. The configuration in (b) can support high vertical forces compared
to the one in (a) and is suited for standing while consuming low energy.

as:

[η(ϕ, ψ, ρ, θ) ζ(ϕ, ρ,P )]⊤ = 0 ∈ R4 (1)

Angles ρ, θ can be eliminated to obtain g(θ,P ) = 0 ∈ R2,
where θ = [ϕ ψ]⊤. Further details on these constraints are
presented in Section III-A. From the total derivative of g,
we get the relation between the input and output velocities:

Ṗ = [J ]θ̇, where (2)

[J ] = −
[ ∂g
∂P

]−1[∂g
∂θ

]
assuming

∣∣∣ ∂g
∂P

∣∣∣ ̸= 0.

In Eq. (2), matrix [J ] is known as the Jacobian matrix.
This Jacobian matrix maps a unit circle in the input velocity
space to a velocity ellipse (or manipulability ellipse) in the
output velocity space as detailed in [10, pp. 148]. Figure 1(a)
shows the velocity ellipse at the end-effector for a particular
configuration of the five-bar mechanism considered in this
work. Along the minor axis of the velocity ellipse, the end-
effector force production is maximum. Hence, the configura-
tion in Fig. 1(b) can support relatively high vertical forces at
the end-effector with low actuator torques and is, therefore,
suited for standing while consuming low energy. Further,
since the major axis of the velocity ellipse in Fig. 1(a) is
nearly vertical, the end-effector can move at high velocities
in the vertical direction which is useful for jumping.

When
∣∣ ∂g
∂θ

∣∣ = 0, then the minor axis length of the velocity
ellipse goes to zero and the mechanism is at a workspace
boundary or an output singularity. At an output singularity,
there exist actuator velocities that instantaneously produce
zero end-effector velocity in the direction normal to the
workspace bound. If

∣∣ ∂g
∂P

∣∣ = 0, the major axis length of
the velocity ellipse goes to infinity and the mechanism is at
an input singularity. Input singularities are boundaries in the
input space, i.e., the space of the two actuator angles. At
an input singularity, there instantaneously exists a direction
in the output space in which force transmission from the
actuators maps to zero at the end-effector.

The set of all configurations of the five-bar mechanism
defines the configuration space of the mechanism. The input
singularities divide the configuration space into several re-
gions known as input modes. Similarly, the regions separated
by output singularities are known as output modes. The
projection of the subset of output singularities that bound a
given output mode onto the output space gives the workspace
boundary of that output mode in the output space. Hence,
the workspace boundaries are different for different output
modes. For example, the configurations in Fig. 1 are in
different output modes and have different workspace bound-
aries. In this work, two examples are considered where the
configurations belong to different input and/or output modes.

In order to plan a path between two configurations in
different output modes, an optimal control approach using the
direct collocation method is followed in this work. Consider
an optimization problem of the form:

min
u

1

2

∫ T

0

x(t)⊤ [Q]x(t) + u(t)⊤ [R]u(t), (3)

ẋ(t) = f(x(t),u(t)) ∈ Rn, (4)

where x ∈ Rn,u ∈ Rm; the weight matrices are [Q] ∈
Rn×n, [R] ∈ Rm×m; t ∈ R is a parameter and T is a
given constant. For robot mechanisms, Eq. (4) would define
the robot dynamics with x as the states (configuration and
velocities) of the robot, u as inputs (actuator torques) to
the robot and t as time. In direct collocation, t is discretized
into N finite elements and Nc collocation points within each
finite element. The states at the collocation points need to
follow collocation constraints that approximate the ODE in
Eq. (4). In this work, the Gauss-Radau collocation scheme
is used to choose collocation points [11]. A polynomial of
degree Nc that interpolates the collocation points represents
an approximate solution to Eq. (4) in each finite element.
The interpolating polynomial also gives a quadrature rule to
approximate x at the end of each finite element. Using this
method, the dynamic equations of a robot mechanism can
be discretized and imposed as algebraic constraints in the
optimal control problem. The mathematical details of this
method are presented in Section III.

It is worth noting that only dynamic equations describing
a robot’s model were considered in the direct collocation
method discussed above. However, for constrained mecha-
nisms like the five-bar considered in this work, even though
the dynamics are defined to satisfy the kinematic constraints
locally, taking discrete steps according to direct collocation
leads to constraint violation as seen in Fig. 2. Therefore,

Fig. 2. Qualitative depiction of the solution obtained for the projection
based direct collocation method presented in [9]. The initial state is given
by x0. The states obtained from the quadrature rule are x̃1, x̃2, x̃3 and
their projections onto the kinematic constraints are given by x1,x2,x3.
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Fig. 3. Kinematic diagram of the five-bar mechanism displaced from a
reference configuration.

kinematic constraints also need to be considered to ensure
that the discretized states in direct collocation also satisfy the
kinematic constraints. However, simply imposing kinematic
constraints as additional constraints in direct collocation
leads to an over-constrained problem since the discretized
states are already well-defined by the collocation constraints
and quadrature rules. Another method would be to param-
eterize the states of the five-bar in terms of some global
minimal coordinates which eliminates the kinematic con-
straints. However, this formulation is not free of singularities
for many robot systems including the five-bar mechanism
considered in this work. Hence, following the projection-
based direct collocation method in [9], new optimization
variables, namely x̃k, k = 1, 2, . . . , N , are introduced for
the states obtained from quadrature rule and are projected
onto the constraint manifold to get xk as depicted in Fig. 2.
This method is discussed in more detail for the problem
considered in this work in the subsequent section.

III. PROBLEM FORMULATION

Given the initial and final configurations of the five-bar
mechanism that are in different output modes, the task is
to plan a trajectory between the two configurations. For
this, the kinematics, dynamics, and optimal control problem
are formulated and a solution procedure is detailed in this
section.

A. Kinematics and Dynamics

Figure 3 shows the kinematic diagram of the five-bar
mechanism displaced from a known reference configuration
given by: A0,B0,C0,D0,F 0,P 0. The actuators situated
at A0 and B0 are fixed to ground and displace the links A0C

and B0D by angles1 ϕ and ψ, respectively. The kinematic
constraints in Eq. (1) are given by:

η = A0 + [R(ϕ)] (C0−A0) + [R(ρ)] (F 0−C0) (5)
−B0 + [R(ψ)] (D0−B0) + [R(θ)] (F 0−D0) = 0,

ζ = A0 + [R(ϕ)] (C0−A0) + [R(ρ)] (P 0−C0)− P = 0.
(6)

In Eqs. (5, 6), ρ and θ describe the orientation of the passive
links CF and DF , respectively. Differentiating Eqs. (5, 6)
and eliminating ρ̇, θ̇ gives [J ] in Eq. (2). If [J ] goes singular,
then the mechanism is at an output singularity as described
in Section II. At an output singularity, the links of either
or both A0CP and B0DF dyads align. These output
singularities in the output space, i.e., workspace boundaries,
are shown in Fig. 3. However, note that for a given output
mode, only portions of these workspace boundaries bound
the output mode as explained in Section II. At input singu-
larities, the joints C,F ,D are collinear and [J ] does not
exist since the inverse of

[
∂g
∂P

]
does not exist.

The configuration of the mechanism is defined uniquely
by q = [ϕ ψ ρ θ]⊤. The set of all q that satisfy Eq. (5)
forms the configuration space of the five-bar mechanism. The
dynamics of the five-bar mechanism is formulated using the
Lagrangian equation of motion given by:

[M(q)] q̈ + [Cm(q, q̇)] q̇ +G(q) = [Jηq]
⊤
λf +Qnc. (7)

In Eq. (7), [M(q)] ∈ R4×4 is the mass matrix, [Cm(q, q̇)] ∈
R4×4 is a Coriolis matrix [12], G(q) ∈ R4 is the gravity
vector, [Jηq] =

[
∂η
∂q

]
is the Jacobian matrix of the con-

straints, [Jηq]
⊤
λf is the vector of generalized constraint

forces and Qnc = [τ1 τ2 0 0]⊤, where τ1 and τ2 are the
actuator torques at joints A0 and B0, respectively. Gravity
is assumed to act downwards along the negative y-axis in the
reference frame in Fig. 3. The ODEs in Eq. (7) along with
the constraints η = 0 in Eq. (5) form a set of differential
algebraic equations (DAE) that defines the dynamic model
of the mechanism. Alternatively, the unknowns λf ∈ R2

can be eliminated from the DAE using the double derivative
of η = 0 to get:

ẋ =

[
q̇

[M ]
−1

(h1 − [Jηq]
⊤
[Am]

−1
h2)

]
(8)

= f(x,τ), where (9)

[Am] = [Jηq] [M ]
−1

[Jηq]
⊤

h1 = Qnc − [Cm] q̇ −G,

h2 = ( ˙[Jηq]q̇ + [Jηq] [M ]
−1

h1),

x = [q q̇]⊤.

Given the actuator torques τ = [τ1 τ2]
⊤, solving the ODE in

Eq. (8) yields states x that satisfy the following kinematic
constraints:

f c(x) = [ η(q) [Jηq(q)] q̇ ]⊤ = 0. (10)

1All angles in this manuscript are measured in radians until otherwise
mentioned explicitly.
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With this dynamic model, an optimal control problem is
formulated in the next section.

B. Optimal Control Problem

The goal is to reach a given final configuration qF starting
from a known initial configuration qI in a given time T .
If EI and EF are the total energies (kinetic and potential
energy) of the mechanism at qI and qF , respectively, the net
mechanical work done in moving from qI to qF is WIF =
EF − EI . Since WIF does not depend on the trajectory
followed to move from qI to qF , the portion of electrical
energy consumed by the actuators to do this work is fixed
for the given qI and qF . However, the rest of the electrical
energy consumed by the actuators is dissipated as Joule
heating which depends on the trajectory between qI and qF .
Assuming identical BLDC actuators with torque constant Kt

and winding resistance Rw, the electrical power dissipated
as Joule heat is:

Pt =
R

K2
t

τ⊤τ. (11)

With the objective of minimizing the total energy dissipated
as Joule heat to reach qF starting from qI , the following
optimal control problem is formulated:

min
τ

R

K2
t

∫ T

0

τ⊤τ dt (12)

s.t. ẋ = f(x,τ). (13)

The above optimal control problem is of the same form as
Eqs. (3, 4) with2 [Q] = [ 0 ]2×2, [R] = 2(R/K2

t )[ I ]2×2,
u = τ which is solved using the direct collocation method.
According to this method, the time domain is discretized
uniformly into N time steps, i.e., tk ∈ [0 T ], k = 1, 2, . . . , N
with a time interval of h = T/N . Let Nc be the number of
collocation points in each time interval [tk tk+1] that are
chosen according to the Gauss-Radau collocation scheme.
The states, actuator torques, and time at each collocation
point are denoted by xkj ,τkj and tkj , respectively, for k =
1, 2, . . . , N and j = 1, 2, . . . , Nc. The optimization problem
can now be written as

min
τ

N∑
k=1

h

Nc∑
j=1

wjτ
⊤
kjτkj (14)

s.t. ẋkj = f(xkj ,τkj), (15)

xkj = xk + h

Nc∑
i=1

βjiẋki, (16)

xk+1 = xk + h

Nc∑
j=1

wjẋkj , (17)

where wj , βji are the weights computed according to the
Gauss-Radau collocation scheme [11]. Equations (15, 16)
define the collocation constraints and Eq. (17) is the quadra-
ture rule. Since the direct collocation method approximates

2In this manuscript, [ 0 ]2×2 and [ I ]2×2 denote the 2 × 2 zero matrix
and identity matrix, respectively.

the ODE in Eq. (8) through discretization, the optimal tra-
jectory obtained by solving Eqs. (14-17) may not satisfy the
kinematic constraints in Eq. (10) as discussed in Section II.
To account for the kinematic constraints, the projection-
based direct collocation method presented in [9] is followed.
Let x̃k+1 denote the state at the end of the interpolating
polynomial between tk and tk+1 time interval. This state
does not necessarily satisfy the kinematic constraints and is
computed according to the quadrature rule:

x̃k+1 = xk + h

Nc∑
j=1

wjẋkj . (18)

In Eq. (18), xk denotes the state at tk that satisfies the
kinematic constraints. To compute xk+1 that satisfies the
kinematic constraints, new variables µk+1 ∈ R4 are intro-
duced and x̃k+1 is projected onto the constraint manifold in
Eq. (10) as:

xk+1 = x̃k+1 +
[ ∂f c

∂x

]∣∣∣∣⊤
x=xk+1

µk+1, (19)

f c(xk+1) = 0. (20)

In Eq. (19), µk+1 is the vector of Lagrange multipliers
associated with the projection of x̃k+1 onto the constraint
manifold. Thus, the optimization problem is reformulated
by replacing Eq. (17) with Eqs. (18-20). The states at the
collocation points can also be projected onto the constraint
manifold as explained in [9]. However, this introduces ad-
ditional variables in the optimization problem. Since the
constraint drift within each element was observed to be low,
only the state at the end of each element was projected
thereby leading to a simpler optimization problem with fewer
optimization variables.

The optimization problem is set up in Python using
the CasADi package [13] and solved using the IPOPT
method [14]. Since a local optimization method is chosen,
a good initial guess for the trajectory is crucial for obtain-
ing feasible solutions. Depending on the input modes that
the initial and final configurations belong to, two heuristic
methods are proposed for finding an initial guess trajectory.
Case I where qI and qF belong to the same input mode: A
family of circular arcs joining θI = [ϕI , ψI ]

⊤ and θF =
[ϕF , ψF ]

⊤ were considered. The shape of the arcs was
parameterized by curvature α, and their traversal was pa-
rameterized by arc length s: θ(s, α) = ΦIF (s, α), s ∈
[0, 1] such that θ(0, α) = θI and θ(1, α) = θF . For a
set of curvatures αi, configurations qi(s) were computed
along the path θ(s, αi) using forward kinematics.3 As-
suming a trapezoidal velocity profile for s(t), the trajec-
tories qi(t), q̇i(t), q̈i(t) were computed. The velocity and
acceleration parameters for the trapezoidal velocity profile
were chosen based on the path length and the time needed
to traverse the path. Subsequently, the torques τi(t) required
to realize qi(t), q̇i(t), q̈i(t) were computed from Eq. (8).

3Note that the forward kinematic solutions are unique since the input
mode is known
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Evaluating the sum of square of torques, i.e., the objective
in Eq. (14), for each i, the trajectory with the least objective
value was chosen as the initial guess trajectory for the
optimization problem.
Case II where qI and qF do not belong to the same input
mode: In this case, the trajectory joining qI and qF has to
cross input singularities to switch input modes. The method
in Case I cannot be applied since the trajectories do not cross
input singularities. The initial guess trajectory in this case
was simply assumed to be a linear interpolation between qI

and qF with zero velocities and actuator torques. Note that
this initial guess will not satisfy the kinematic and dynamic
constraints as in Case I.
The resulting optimal states and torques are denoted as x∗

k =
[q∗

k q̇∗
k]

⊤ and τ∗
k, respectively. The kinematic and dynamic

feasibility of optimal trajectories were verified by evaluating
the following error metrics:
Kinematic constraint residual: The states along the optimal
trajectory are substituted into the kinematic constraints in
Eq. (10) to get rpk

= ∥η(q∗
k)∥, rvk

= ∥ [Jηq(q∗
k)] q̇

∗
k∥.

The position and velocity error metrics are defined as rp =
1
N

√∑N
k=0 r

2
pk

and rv = 1
N

√∑N
k=0 r

2
vk

, respectively.
Energy conservation residual: The change in total en-
ergy at each state along the optimal trajectory, given
by dE

dt (x∗
k), must be equal to the instantaneous mechanical

power Pk = [ϕ̇∗k ψ̇
∗
k] ·τ∗

k. This motivates the error metric e =
1
N

√∑N
k=0 e

2
k, where ek = dE

dt (x∗
k)− Pk.

A computed trajectory is deemed acceptable if rp ≤ 10−9

m, rv ≤ 10−9 m/s and e ≤ 10−4 W. Computations were
performed with double precision. The small dimensional and
inertial parameters of the five-bar studied in this paper led
to numerical scaling that hindered precision.

C. Metrics to Evaluate the Optimal Trajectory

For the optimal trajectory, two metrics were considered:
(1) total electrical energy loss due to Joule heating (or
thermal energy loss) in Eq. (14), and (2) root mean square
(RMS) of torque exerted by each actuator along the trajec-
tory, i.e., τRMS

i = 1
N

√∑N
k=0 τ

∗2
ik
, i = 1, 2. Additionally, the

sensitivity of each metric was quantified as described below.
In practice, the actuator torques may slightly deviate

from τ∗
k due to disturbance, denoted by τdk

. To study the
effect of this on thermal energy loss, a feedforward PI
controller was implemented for the actuators. Under this
control law, if the actuator states at time tk are ϕk, ψk,
then the actuator torques τk required to follow the desired
trajectory ϕ∗k, ψ

∗
k are:

τk = τ∗
k + τdk

+ [KP ] ek + [KI ]
k∑

j=1

ej , where, (21)

ek = [ϕ∗k − ϕk ψ∗
k − ψk]

⊤, [KP ] , [KI ] ∈ R2×2.

In Eq. (21), [KP ] and [KI ] are the proportional and integral
gains, respectively, which are diagonal matrices. In this work,
the gains are assumed to be [KP ] = [ I ]2×2 Nm/rad, [KI ] =
0.1[ I ]2×2 Nm/rad. Further, four possible torque disturbances

TABLE I
JOINT COORDINATES OF THE FIVE-BAR MECHANISM AT THE REFERENCE

CONFIGURATION

B0 C0 D0 F 0 P 0

x (mm) 0 −4.71 −1.23 −5.43 3.19
y (mm) −4.75 −1.56 −6.31 −6.45 −11.75

are assumed that are constant for all time with magnitude
of 3% of RMS torque given by τdk

= 3
100 [±τ

RMS
1 ±τRMS

2 ]⊤.
The following simulation of the controller in Eq. (21) is
carried out for each possible τdk

. At each step tk, the torques
are computed from the control law in Eq. (21) and are
used to compute the states xk+1 at the next time step by
solving Eq. (8). For k > N , the desired actuator states
are ϕ∗k = ϕ∗N , ψ∗

k = ψ∗
N and the torques τ∗

k are computed
from Eq. (8) with x = xN and ẋ = 0. This simulation
is carried out until ϕk and ψk lie within 1◦ of ϕ∗N and ψ∗

N ,
respectively. The time taken for both ϕk and ψk to reach and
stay within ±1.5◦ about ϕ∗N and ψ∗

N is defined as the settling
time and is denoted by Tss. Subsequently, at each tk, the
total thermal energy loss starting from time t0 is computed
as Ek = (R/K2

t )
∑k

j=0 hτ
⊤
j τj . The thermal loss at Tss is

computed for each possible τdk
and the highest value is

compared with the optimal value obtained from Eq. (14).
In the subsequent section, two numerical examples are

presented to demonstrate the procedure for switching output
modes detailed in this section.

IV. EXAMPLES

In this section, two numerical examples are considered to
demonstrate output mode switching for the five-bar mecha-
nism in Fig. 3. The dimensions of the five-bar are given in
Table I in terms of the joint coordinates in the reference
configuration. Note that A0 is fixed to the origin of the
reference frame as shown in Fig. 3. The links A0C,FD,
and DB0 are assumed to be cylindrical with diameter 6 mm
and uniform density4 8000 kg/m3. The masses of CFP link
and the payload at the end-effector are assumed to be 0.2
kg and 0.5 kg, respectively. The moment of inertia of all
links is assumed to be 0.01 kg m2. The constant R/K2

t = 1
in Eq. (11). For both the examples, the initial configuration
is qI = [0 0 0 0]⊤ (see Fig. 1(a)), and the parameters in the
optimization problem are chosen to be T = 1.5 s, N = 100
and Nc = 4.

A. Example 1

In this example, the five-bar needs to reach the configuration
in Fig. 1(b) given by:

qF = [−3.250 1.509 − 0.789 − 1.468]⊤. (22)

The net mechanical work to be done to reach qF is WIF =
0.062 J. At qI and qF , the actuator torques, namely τI

4All of the links of the five-bar are assumed to have uniform mass
distribution, i.e., the center of mass lies at the centroid of the link

5

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on December 28,2024 at 19:03:48 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Example 1: Configurations of the five-bar mechanism at time
instants (a) t = 0.36 s, (b) t = 0.735 s, (c) t = 1.5 s, along the optimal
trajectory. At each of these time instances, the regions in the input and
output space accessible by the corresponding output mode are shaded. The
initial guess trajectory and the optimal trajectory are shown in the actuator
(input) space and the Cartesian (output) space.

and τF , respectively, needed to statically hold the mechanism
is found from Eq. (8) by substituting ẋ = 0 as:

τI = [−0.47 0.13 ] Nm, τF = [ 0.21 0.04 ] Nm. (23)

From Eq. (11), the electrical power dissipated as Joule heat
for τF is lower than that for τI by 80%. This motivates
switching output modes to configure in qF instead of qI for
the same end-effector position.

Following the method for finding the initial guess trajec-
tory explained in Section III, the circular trajectory in the
input space in Fig. 4 is obtained. This trajectory is also
shown in the output space of the manipulator in Fig. 4.
With this initial trajectory, the optimal control problem was
solved following the method in Section III and the resulting
optimal trajectory and configurations are shown in Fig. 4
at different time instants. Along the optimal trajectory, the
five-bar mechanism changes output mode for the first time
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Fig. 5. Example 2: Configurations of the five-bar mechanism at time
instants (a) t = 0.135 s, (b) t = 0.885 s, (c) t = 1.035 s, (d) t = 1.5 s,
along the optimal trajectory. This figure shares a legend with Fig. 4.

at p1, where the links of B0DF dyad align, after which the
workspace in the input space changes as shown in Fig. 4(b).
Subsequently, the output mode changes at p2, where the links
of A0CP dyad align, after which the workspace in the input
and output space changes as seen in Fig. 4(c).

The electrical energy lost as Joule heat for initial and
optimal trajectories were 0.621 J and 0.413 J which are 10×
and 6.6× the minimum required work, respectively. The
error metrics defined in Section III-C are found to be rp =
5.57×10−11 m, rv = 7.82×10−11 m/s and e = 2.33×10−6

W which are less than the tolerances stated in Section III-C.
For the actuator at A0, the RMS torque for the initial and
optimal trajectory is 0.578 Nm and 0.386 Nm, respectively.
Similarly, the RMS torque for the actuator at B0 for the
initial and optimal trajectory is 0.275 Nm and 0.354 Nm,
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1.725 1.875

Fig. 6. Thermal energy loss over time along the optimal trajectory and for
feedforward PI control with disturbance in actuator torques until the settling
time Tss.

respectively. Following the sensitivity analysis in Section III-
C, the thermal energy loss was found to be maximum
for positive disturbances. For this case, the thermal energy
loss Ek is plotted with time and compared with the thermal
energy loss along the optimal trajectory as shown in Fig. 6.
For feedforward PI control with disturbance in torques as
defined in Section III-C, the total thermal energy loss un-
til Tss = 1.725 s is 0.434 J which is 0.021 J higher than
that for the optimal trajectory.

B. Example 2

In this example, the five-bar mechanism is desired to reach:

qF = [0.204 − 3.733 2.172 − 1.181]⊤. (24)

The motivation of this example is to reach a point in the
output space which is not part of the initial output mode.
The initial and final configurations are shown in Fig. 1(a)
and Fig. 5(d), respectively. The work to be done to reach qF

is WIF = 1.24 J. In this case, qI and qF belong to different
input modes and hence, the method in Case II in Section III
is used to find the initial guess trajectory. This initial guess
is not shown in Fig. 5 since it does not satisfy the kinematic
constraints. The optimal trajectory at different time instants
are shown in Fig. 5. Similar to the example in Section IV-
A, the five-bar changes output mode twice at p1 and p2

where the links in B0DF and A0CP align as shown in
Figs. 5(b) and 5(c), respectively. The output mode after
crossing p2 has input singularities shown in Fig. 5(c) that
need to be crossed to switch to the input mode to which qF

belongs. The five-bar was seen to cross the input singularity
by passing through p3 in the output space or touching the
input singularity at p3 in the input space when CD and DF
links aligned. Finally, after switching input modes, the five-
bar reaches qF as seen in Fig. 5(d).

The electrical energy loss due to Joule heating was 0.117 J,
i.e., 0.094× the minimum required work. The error metrics
are found to be rp = 3.78 × 10−10 m, rv = 4.36 × 10−10

m/s and e = 3.09× 10−5 which are less than the tolerances
stated in Section III-C. The RMS torques for the actuators
at A0 and B0 are 0.162 Nm and 0.228 Nm, respectively. The
thermal energy loss was maximum for positive disturbances

in torques in Section III-C. For this case, the thermal energy
loss with time for the optimal trajectory and feedforward
PI control with disturbance in torques (see Section III-
C) is plotted in Fig. 6. The total thermal energy loss for
feedforward PI control until Tss = 1.875 s is 0.027 J higher
than that for the optimal trajectory.

V. DISCUSSION

As seen in Section IV-A, changing from the configuration
in Fig. 1(a) to the one in Fig. 1(b) required switching output
modes twice. Each time the output mode switches, the local
differential kinematics of the five-bar changes, which is
evident from the changing workspace regions in the output
and input space shown in Fig. 4. Therefore, the directional
velocity and force transmission ratios change as the output
mode changes. This was shown in Section IV-A where the
final configuration consumed 80% less electrical power than
the initial configuration to statically hold the mechanism.
In this case, changing output modes by reconfiguring the
five-bar from Fig. 1(a) to Fig. 1(b) changed the workspace
and introduced a different lower workspace boundary which
enabled the five-bar to support high vertical forces with
low actuator torque. Furthermore, the workspace area also
increased as can be seen in Fig. 4(c). Compared to the
initial guess trajectory, the electrical power loss due to
Joule heating for the optimal trajectory was significantly
lower since the five-bar stays near the output singularity of
A0CP dyad. In the presence of small constant disturbance
in actuator torques, the five-bar was able to reach the same
final configuration without much change in electrical power
loss due to Joule heating. Thus, switching output modes in
this case is robust to changes or disturbances in the optimal
trajectory.

Similar observations can be made for Example 2 in Sec-
tion IV-B where the five-bar had to cross an input singularity
to access the upper portion of the workspace. The evolution
of states locally around the input singularity is solely dictated
by the momentum built in the system before reaching the
input singularity since the actuators lose control authority
at input singularities. In this case, the trajectory satisfied
the kinematic constraints and energy conservation equation
within the specified tolerances showing that it is feasible
both kinematically and dynamically. In the presence of small
constant disturbance in actuator torques, the five-bar was able
to switch input and output modes and reach the same final
configuration. However, the settling time was higher than
that in Example 1 due to high overshoot from the desired
trajectory resulting from the momentum built in the system
to cross the input singularity.

VI. CONCLUSION

Switching output modes can be useful in realizing different
workspaces, velocities, and force production at the end-
effector. In this work, the problem of switching output modes
for the five-bar mechanism was solved using an optimal
control approach that included the dynamics of the mech-
anism. The optimal control problem was set to minimize
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actuator torques and solved using a projection-based direct
collocation method [9]. Depending on the input modes that
the final and initial configurations belonged to, two methods
for finding a good initial guess were presented. Using this
method, output mode switching for the five-bar mechanism
was demonstrated for two different final configurations. In
these examples, the five-bar crossed output and/or input
singularities to switch output modes and reach the desired
configuration. Furthermore, crossing input singularities re-
quired momentum based planning since the actuators lose
authority in a direction at these singularities. Considering a
dynamic model that included the states of all links (more than
the degree-of-freedom of the five-bar) enabled singularity-
free computations even at physical input and output singu-
larities. This formulation allowed the optimizer to compute
trajectories that switched both input and output modes.
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[8] C. Mirz, F. Schöler, J. P. Barreto, and B. Corves, “Optimal control
based path planning for parallel kinematic manipulators utilising
natural motion,” in 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE), 2018, pp. 223–228.

[9] R. Bordalba, T. Schoels, L. Ros, J. M. Porta, and M. Diehl, “Direct
collocation methods for trajectory optimization in constrained robotic
systems,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 183–202,
2023.

[10] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

[11] S. Karneswaran and L. Biegler, “Convergence rates for direct transcrip-
tion of optimal control problems with final-time equality constraints
using collocation at radau points,” in 2006 American Control Confer-
ence, 2006, pp. 7 pp.–.

[12] S. Echeandia and P. M. Wensing, “Numerical methods to compute
the coriolis matrix and christoffel symbols for rigid-body systems,”
Journal of Computational and Nonlinear Dynamics, vol. 16, no. 9, p.
091004, 2021.

[13] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.
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