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Abstract

We investigate the training and generalization
errors of overparameterized neural networks
(NNs) with a wide class of leaky rectified linear
unit (ReLU) functions. More specifically, we
carefully upper bound both the convergence
rate of the training error and the generalization
error of such NNs and investigate the depen-
dence of these bounds on the Leaky ReLU
parameter, . We show that o = —1, which
corresponds to the absolute value activation
function, is optimal for the training error
bound. Furthermore, in special settings, it is
also optimal for the generalization error bound.
Numerical experiments empirically support the
practical choices guided by the theory.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remark-
able success in diverse fields, including image classification
and text recognition. Despite their achievements, a
comprehensive understanding of these networks remains
elusive. Theoretical justifications for their performance
have primarily centered around the overparameterized
setting and mainly considered a rectified linear unit
(ReLU). This paper aims to extend and generalize insights
gained from recent theoretical works to any Leaky ReLU
and provide practical guidance on selecting the most
suitable Leaky ReLU for overparameterized networks.
By doing so, we offer valuable insights for practitioners
seeking optimal performance in real-world scenarios.

To address our aim, we begin by reviewing two recent
theoretical trends. The first centers around a fundamental
convergence theory for the training error of overparam-
eterized neural networks (NNs). Its pioneering work by
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Jacot et al. (2018) studied the training dynamics using the
neural tangent kernel and showed that the training error
goes to zero in the asymptotic regime where the width
of the layers goes to infinity. A more reasonable regime
assumes a sufficiently large lower bound on the width.
In such overparameterized regime, (Goodfellow et al.,
2015) empirically noticed that the corresponding NNs can
avoid local minima and converge to their global optimal
solutions. (Du et al., 2019) proved the convergence of
gradient descent (GD) for NNs with smooth and Lipschitz
continuous activation functions whose width exponentially
depends on the depth of the networks and polynomially
depends on the number of samples. For 2-layer NNs with a
ReLU, Li and Liang (2018) proved the convergence of the
training error, Oymak and Soltanolkotabi (2020) reduced
the width requirement for training convergence, and Song
et al. (2021) established convergence whenever the width
sub-quadratically depends on the number of samples and
the activation functions are sufficiently smooth.

For DNNs, it has become common to consider the
polynomial regime of overparameterization, where the
NN widths polynomially depend both on the numbers of
samples and the depths. Allen-Zhu et al. (2019b) estab-
lished the first convergence result for the training error in
this polynomial regime, while assuming ReLLU activation
functions. They separately analyzed training by gradient
descent and stochastic gradient descent (SGD). Zou and
Gu (2019) improved the estimates of Allen-Zhu et al.
(2019b) by enhancing the lower bound of the gradient.
Chen et al. (2019) further improved the polynomial
dependence of the width on the number of samples that
was established in Zou and Gu (2019), but on the other
hand, their polynomial dependence on the depth is worse.
Banerjee et al. (2023) showed that for smooth activation
functions a linear dependence of the width on the number
of samples is sufficient to guarantee convergence.

Another recent progress involves bounding the general-
ization error of overparameterized NNs. Chizat and Bach
(2020) established a generalization bound of infinitely wide
two-layer NNs with homogeneous activation functions
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for classification and showed that the probability of
the misclassification bound goes to 0 as the size of the
training samples increases. Arora et al. (2019) bounded
the generalization error of 2-layer overparameterized
NNs for classification. They also analyzed the class of
functions that are learnable by two-layer NNs. Allen-Zhu
et al. (2019a) studied the generalization error of two-layer
and three-layer NN with a non-negative, convex, and
1-Lipschitz smooth loss function using stochastic gradient
descent. They showed that overparameterization improves
generalization. Cao and Gu (2020) further established the
generalization error of deep NNs for classification using
gradient descent. Zhu et al. (2022) extended the latter
work for classification by using some other activation
functions, including leaky ReL.U with av€(0,1).

However, these foundational and important works have
not yet provided much practical guidance for designing
NNs.  Practitioners often use variants of ReLU for
activation and this work aims to provide guidance on their
choices. Leaky ReLU is widely used in DNNs for super-
vised learning tasks (Redmon et al., 2016; Ridnik et al.,
2021) and for generative tasks (Radford et al., 2015; Chen
et al., 2016; Karras et al., 2019; Wang et al., 2021). It
is represented by the function o, (x), where o, (z) =z for
x>0 and o,(z) =ax for £ <0, with « being a parameter.
ReLU is a special case of Leaky ReLU when a=0. The
Leaky ReLU function aims to prevent zero gradients for
negative inputs, thus avoiding neurons from not activating.
Empirical studies have demonstrated the advantage of
using Leaky ReLU with small o > 0 over ReLU (Xu
et al., 2015). However, theoretical studies have primarily
focused on ReLLU and have not directly established the
convergence theory and generalization for regression when
using Leaky ReLU with any o< 1. Moreover, the optimal
choice of the Leaky ReLU parameter « to expedite the
training process and enhance generalization remains
unclear. Therefore, a theoretical study is needed to
analyze the efficacy of leaky ReLU during training and to
provide guidance on selecting the parameter « in practice.

This paper studies overparameterized DNNs with a wide
class of leaky ReLU activation functions and develops theo-
ries for the convergence of the training error and the upper
bound of the generalization error. It builds on the proof
framework and techniques introduced in previous studies,
in particular, the ones of Allen-Zhu et al. (2019b), Zou and
Gu (2019) and Cao and Gu (2020), but establishes the
dependence of the convergence rate and the generalization
error on the leaky ReLU parameter a. It reveals that the
optimal convergence rate bound is achieved at a=—1 and
the optimal bound of the generalization error is achieved
at a=—1 using small training epochs as long as the NN is
sufficiently deep and the dataset is sufficiently large. This
means that activation by the absolute value function may
outperform activation by ReLU and the commonly used

leaky ReLU (with small av>0) in terms of faster training
convergence and smaller generalization error. We are not
aware of any prior use of the absolute value function for
activating DNNs. We are only aware of using it for ac-
tivating the scattering network (Mallat, 2012) due to its
help with “energy preservation” (Bruna and Mallat, 2013).

The main contributions of the current work are as follows:

1. We establish the convergence of the training errors in
overparameterized NNs with any leaky ReLU using
both GD and SGD. Our estimates clarify the effect of
the Leaky ReLLU parameter o on the convergence rate
bound. In particular, = —1, yields the optimal bound.

2. We upper bound the generalization error for over-
parameterized NNs for regression with leaky ReL.Us.
For sufficiently large datasets, deep NNs and small
training epochs, the bound is optimal at a=—1.

3. We improve previous results for ReLU (see §4.2). In
particular, we show that deep NNs achieve a similar
convergence rate as a shallow NN.

4. Our predictions receive substantial support from a
comprehensive set of numerical experiments

The rest of the paper unfolds as follows: §2 details the
assumed setup of the NNs and the training algorithms;
83 presents the main theorems; §4 describes our technical
contributions and sketches the proof of the main theorems;
85 provides extensive numerical tests supporting our
predictions from the theory on synthetic and real datasets;
and §6 concludes this work and discusses its limitations.

2 PROBLEM SETUP

We follow the model of Allen-Zhu et al. (2019b), while
allowing a wide class of Leaky RelLU activation functions.
We consider a dataset {x;,y;}";, where x; €RP, ||x;|| =1,
¥ €RY, |ly;|| <O(1) and d< O(1). We focus on a NN N
R? — R with L hidden layers having m neurons each and
linear input and output layers. Its input layer produces
ho=Ax, where ,AcR™*?. For l€[L]:={1,2,...L}, the
output of the lth hidden layer, hy, is inductively defined by

hi=H(hi—1)=0.(Wihi_1), (1)

where W; e R™*™ and o, is the leaky ReLU activation
function with a<1:

()= z, ifx>0
Ta\L)= ar, if z<0.

The output layer produces 9 = Bhy, where B € R¥>™.
Let W = (W, Wy, ... Wp) store all the trainable
parameters and we thus compactly denote § =N (z;W).
For simplicity, we initialize A and B (see below), so they
are fixed, and only train W, l€[L].

We train the NN using the mean squared error (MSE):
LW)=3"" lyi =N (zi;W)||?. We denote its gradient
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by Vw L(W) := (Vw, LW),..Vw, L(W)). Appendix
B.12 extends our theory to many other useful loss
functions. We assume a specified upper bound ¢ >0 on
the training error and express our estimates in terms of e.

When discussing generalization, we assume that the set
{w;}, is iid. drawn from an arbitrary distribution
Dx and that for 1<i<mn, y; = F(x;) for an arbitrary
measurable function F. The generalization error is thus
R(W )i=Egy | F() N (@ W)

We assume the following data separation property:

Assumption 2.1. There exists 0 <0 < ¢y, where ¢y <1,
so that min, jep,) ||z —x;] > 6 >0.

This assumption, suggested by Allen-Zhu et al. (2019b), is
reasonable. Indeed, if, on the other hand, there exists i+
Jj €[n] such that ; ==, then we can assume y; #y; (oth-
erwise we can combine these multiple instances into one
single data point). It is then impossible to obtain a zero
training error, which is needed for our convergence study.

Algorithm 1 Rescaled initialization

Input: Input dimension p, width of hidden layer m,
output dimension d, and leaky ReLU parameter a.
Initialize:

14,.\JA]\[(0,1>7 BNN<O,1),
m d
(0) 2
W, ~N(o,>, el
m

Activation function:

« ﬁl’, 1fx<0

Following He et al. (2015), we initialize the network
parameters as follows: A~ N(0,1/m), B~N(0,1/d) and
VVZ(O) ~ N(0,2/(m(1+a?))) for I € [L]. Note that the
factor 1/(1+a?) ensures a constant variance for any choice
of a. We can move the factor 1/(1+a?) from the weight
initialization to the activation function, and equivalently
initialize with Algorithm 1. The theoretical study of the
latter formulation with its rescaled Leaky ReLLU function,
Fa(z) (see (2)), turns out to be more tractable.

Algorithms 2 and 3 formulate the training procedures
with simple GD and SGD, respectively.

3 MAIN RESULTS

The two theorems below establish the convergence of the
training error for overparameterized NNs using a Leaky
ReLlU function with a < 1. The first theorem pertains
to training with gradient descent (GD) (Algorithm 2),
while the second applies to training with stochastic
gradient descent (SGD) (Algorithm 3). Both theorems

Algorithm 2 Training (gradient descent)

Input: Learning rate 7.
Initialize: Apply Algorithm 1 to obtain A,B and W (©)
for t=0 to T do

WD =W vy c(W®),

end for

Algorithm 3 Training (stochastic gradient descent)

Input Learning rate 7.
Initialize: Apply Algorithm 1 to obtain A,B and W(©)
for t=0to T do

Randomly select batch B C[n] with |B|=

WD —w® WV L (W(t) ),

> llyi—

i€B

where Lg(W®):= N (s W®)|12.

end for

are formulated within the context outlined in §2. This
setup includes Assumption 2.1 with a parameter 9,
Algorithm 1 for the initialization of the parameters of the
NN, n training points, {x;,y;}" 1, where |lz;||=1, and
lyi|| <O(1), output dimension d (y; €R?), NN depth L,
NN width m, Leaky ReLLU parameter «, learning rate 7,
batch size b (for Algorithm 3) and a desired upper bound
€>0 on the training error.

Theorem 3.1. Assume the setup of §2, where both

m/In*m > (1+a) Q("sgsd) and m>Q(Inlne ™), and the

training is according to Algorithm 2 with learning rate
N<O(-7%=). Then, with probability at least 1—e =™

LW <e and LWO)<ALWO), vt<T, (3)

where

_ (1—a)? ném In(e/L(W©))
-Gy ), p RO

Theorem 3.2. Assume the setup of §2, where both

Ao > ((11+_03)L4Q("8b%;5d) and mInm > Q (Inlne™!)

and the NN is trained according to Algorithm 3 with

N<O(rmtirs) and t> QR 0 m) . There

exists a constant Co>1 such that

LWD) <€ and LW D) <CortL(W®)
for all t <T with probability 1—e~Mm)

where

7:1_9((1—04)2 77b5m>, T ln(g/coﬁ(w(o))) |

Iny

(6)

1+02 n2d
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These theorems show that for any a< 1 the training error
linearly converges to zero when the NN width is sufficiently
large and the learning rate 7 is sufficiently small.

Moreover, these theorems reveal the dependence of the
convergence rate bound on « and this information can
guide one in selecting « for optimal training speed. We
note that the typical choice of the leaky ReLLU parameter
a (e.g., 0.01 or 0.05) does not yield a better bound for the
convergence speed than ReLU (i.e., «=0); furthermore,
the negative values of a yield better results than ReLU
and the optimal choice of a is —1. In §4.1 we interpret
this optimality in terms of obtaining the largest derivative
gap of the rescaled leaky ReLU at 0. We mathematically
formulate the above observation as follows:

Corollary 3.3. Assume the setup of §2 with either
Algorithms 2 or 8 and that all parameters are chosen
so that when =0, y<1. Then a=—1 minimizes the
above convergence rate v among all a« <1. Moreover, vy
is decreasing in « on (—oo,—1) and increasing on (—1,1).

For a =0, our result improves the previous analysis of
both Allen-Zhu et al. (2019b) and Zou and Gu (2019).
We compare our bounds with the ones of Zou and Gu
(2019), since they improved the bounds of Allen-Zhu et al.
(2019b). For this purpose, we examine the difference in the
setups. First, Zou and Gu (2019) divides the loss function
L(W) by n and thus we need to convert their estimate
by a factor of a power of n accordingly. Second, our proof
assumes that the hidden signals are separated by 6 <O(1),
whereas Zou and Gu (2019) assumes that § <O(1/L). We
establish this upper bound independently of L with careful
mathematical estimates; therefore, our setup eliminates
implicit dependence on L in the other formulas. At last,
Zou and Gu (2019) enforces the initial scaled loss to be
bounded by O(1) (this amounts to a bound O(n) on our
loss) and their conclusion holds with probability at least
1-9(1/n). On the other hand, we relax the initial un-
scaled loss to be bounded by O(v/Inm) and our conclusion
holds with probability at least 1—e~2"™) which we find
more natural for the overparameterized regime.

After converting to our setup, the convergence rate in
Zou and Gu (2019) is 1 — Q(ndém/(dnL)) when using
gradient descent, and our convergence rate improves to
1-Q(ném/(dn)); also, when using SGD the convergence
rate in Zou and Gu (2019) is 1—Q(ndmb/(dn’L)) and we
improve it to 1—Q(ndmb/(dn?)). The important finding
is that in the overparameterized regime, a deeper NN
does not lead to slower convergence, but rather achieves a
similar convergence rate as a shallow NN. One can further
note that we improved the bound of Zou and Gu (2019)
on m by the factor n=2L~! for GD and n=8L~2(n/b) =35>
for SGD. Furthermore, our lower bound on the number
of epochs ¢ in Theorem 3.2 improves the one of Allen-Zhu
et al. (2019b) by a factor of order n=2L~2, where there

is no explicit bound in Zou and Gu (2019).

Appendix B.12 extends the above bounds to convex loss
functions, which include the cross-entropy for classification
and a special loss function proposed in Kumar et al.
(2023). The convergence rate for these functions is
different, but «=—1 is still optimal for their bounds.

Next, we establish an upper bound of the generalization
error of a NN trained using GD, where an analogous
bound when using SGD is specified in Theorem B.12
in Appendix B.10. We first follow the previous analysis
of generalization in overparameterized NNs by Cao and
Gu (2020) and establish the corresponding bound for our
setting with Leaky ReLU activation function.

Theorem 3.4. Assume the setup of §2 with GD, where
mz@(%) for 7>0 and n=0(-7%-). As-
sume further that m is larger than its lower bound and 7 is
smaller than its upper bound in Theorem 3.1 (by an appro-
priate choice of the hidden constants in © and compared
to the constants hidden in the lower bound of m and in the
upper bound of n in Theorem 3.1). Then at a given train-
ing epoch t <T (see (4) for T), with probability at least
1—e= 20 “the generalization error is bounded as follows
3/241 §T,,1/24T

R(W(t)) Svtﬁ(w(o))+mm{0(d/5”/>

LY/2="Inm

1-a d\/34/3 ) Vdlnm t
@) - 4+min< O —— |,
(mm1/6n2/3L2/3>} { ( nL )
n1/2+TL2+Td1/2+T Inm

O( §1/2=Tlnm > }+O (d V n ) - (D
In Appendix A, we clarify the above estimates for different
regimes for the number of training epochs, ¢. In particular,
we indicate a tradeoff between the first training term and
the other NN-complexity terms (excluding the last term
of data complexity) and show that we cannot make both
of these kinds of terms sufficiently small. Stopping at a
sufficiently small number of epochs results in a bound
of the generalization error of order O(In(m)), which is
also of order O(In(n)). This bound is composed of several
terms. The term which contributes O(In(m)) is due to
the training error and one cannot expect a better bound
for it when having a small number of epochs. The rest of
the terms do converge when n and L are sufficiently large
and in this latter regime the overall bound is minimized
when av=—1. On the other hand, for larger numbers of
epochs overfitting is observed, which results in divergent
generalization error. Exploring the dependence of the
generalization bound on t is advantageous to an epoch-
independent bound, like the one pursued by Cao and Gu
(2020) for classification instead of regression. Indeed, the
bound of Cao and Gu (2020) is ©(poly(n)-n~1/2), which
is significantly larger than O(log(n)).
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For very special datasets (e.g., single-layer ReLU NN
separability) Cao and Gu (2020) reduced the term poly(n)
so their overall bound is sufficiently small. A natural, but
more complicated, extension of this to regression is to con-
sider datasets well-approximated by L-layer leaky ReL.U
NNs. In Appendix B.11, we improve the convergence rate,
the lower bound of m (so its dependence on n is linear)
and the generalization error bound for such datasets.
However, for a large number of epochs we still notice over-
fitting with divergent generalization error (with a smaller
rate of increase to infinity than for general datasets).

At last, Kumar et al. (2023) claimed that when using
the loss function discussed in (137) of Appendix B.12,
minimizing a particular generalization error bound is
equivalent to minimizing the latter loss function for train-
ing. Therefore, if «=—1 is optimal for the training error,
then it is also optimal for the generalization error bound.
Since we verified the optimality of a=—1 for our upper
bound of the convergence rate in Appendix B.12 and ex-
perimentally demonstrated instances where this bound is
comparable to the actual convergence rate in Figure 2, we
get some numerical evidence that for the latter instances
a=-—1 is optimal for bounding the generalization error.

4 IDEAS OF PROOFS

Our proofs follow ideas of Allen-Zhu et al. (2019b), Zou
and Gu (2019) and Cao and Gu (2020) and adapt them
to the general case of Leaky ReLLU with a < 1. It also
adapts Cao and Gu (2020) to regression. We first sketch
in §4.1 the basic ideas of our proofs, while we supplement
all details in the appendix. We then highlight some of
the innovative ideas in §4.2.

4.1 Sketch of Proofs

We describe here a quick roadmap to verifying the theory.
The proofs of Theorems 3.1 and 3.2 follow the initial
framework of Allen-Zhu et al. (2019b), which was later
followed by Zou and Gu (2019), but consider the effect
of using any leaky RELU with a<1.

These proofs use the following two lemmas, which are
proved in §B.5 and §B.4. Let us first clarify their notation.
We denote by || X||2 and || X|| the spectral and Frobe-
nius norms of a matrix X. For W = (W;.. W) and
V=(Vi..Vy), we define [|(Wy.. WL)|[%:=3" e 1, [|Will%,
||(W1 WL)||2 = maXle[L] ||VVl||2 and <W, V> =
> ie){Wi,Vi). We denote by W' a perturbation of W.

Lemma 4.1 (Semi-smoothness). Assume the setup of §2.
If ||W—W(0)||2<w<0( ) and ||[W'||> < w,

1
L9/2In3/2m,

then with a probability at least 1—e (™)

LWAW')<LW)+(Vw LW),W')

nL?*m

+ o(Iw’[3)

(1—)w'BL2\/mnL(W)lnm
i oWl (®)
d(14+a2)
Lemma 4.2 (Gradient bounds). Assume the setup of
/ .

a probability at least 1—e~%(md*/L%)

IVw LOW)|[E<LW)O(ZF ). for L€[L] (9)

(1—a)? (5m)-

IVw LW)|[7 > L(W)Q2 ( (1+a?) nd

(10)

We note that the factor (1—a)/v/14+a? appears in both
(8) and (10), where it is squared in (10). This factor is
the derivative gap in Leaky ReLU, i.e., 6/ (0+)—47,(0—),
which can be viewed as a measure of nonlinearity. Its
value is larger for Leaky ReLU with a<0 than for ReLU
(with o = 0) and maximized at o« = —1. Our analysis
below, which combines the bounds in (8) and (10), shows
that Leaky ReLU with a <0 leads to better control of
the decay of the loss function than ReLLU and that the
best control is at a=—1.

Theorem 3.1 can be proved as follows. Let W :=W®) and
W' :=—nVw L(W®) and note that by gradient descent,
W W' =W Denoting LY :=L(W®) and apply-
ing (8) of Lemma 4.1, we can conclude that with a proba-
bility of at least 1—e =™ the following inequality holds

LD <O (Vi £O Ty D) (11)
n(1—a)ws L*VmnL®Onm ®
+ Ol [|VwZL 12
— (IVwe®l) a2
2nL?m
+PR0(Ivw £O3). (13)

Using (10) we bound v £® as follows with probability

at least 1—e—Umd*/L?).

1402 d
Vo <Y1 o(@)ﬂvwz%. (14

1—

Applying (14), we control the term in (12), with
probability at least 1—e~Ums?/ Ls), by

nwl/%LQ(VhTm/\/S)o(uvwc<t>||2F). (15)

. 3/2 . . .
Using w < O(m), which is required by

Lemma 4.2, we reduce (15) to n||Vw £®|%/3. Using
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n<O(d/(nL*m)), which is required in Theorem 3.1, we
reduce the bound in (13) to n||Vw£®||%./3.

Next, we apply these bounds to the respective terms in
(11) and use the identity (X,X)=||X||% for a vector of
matrices X =(X1,...,X1) to reduce (11) to

LU <£O 173V LD |12 (16)

Further application of the lower bound in (10) to the
above equation results in LD <~£® with ~ specified
in (4) and we consequently conclude (3) of Theorem 3.1.

The above argument holds for one training step with
probability at least 1—e~*(™) . This argument extends to
T steps with probability at least 1—Te~2") We note
that the number of epochs T' can be bounded using the
bound € on the training error, the convergence rate in (4)
and the estimate £(W () <O(nv/Inm), which is shown
in Appendix B.6, as follows:

T=1n(e/L(W©)) /Iy <O(In(e/nVInm) /Iny)
<0 (771;2171 (Ine ™' +In(n lnm))> .

Thus the total probability to ensure T-steps training with
training error lower than ¢ is at least 1—O( Jg—fn(lne’l—k
In(nvInm)))e=4™). Given that m > Q(poly(n,L,d,6 "))
and m > Q(Inlne 1), this probability is of order 1—e~2(™).

In Appendix B.6, we demonstrate that the inequality
WO WOy <w< 032/ (n?2L15/2In* *m)) holds
with probability at least 1 — e~ Note that the
latter bound implies the conditions for both Lemmas 4.1

and 4.2 and thus concludes the proof of Theorem 3.1

The proof of Theorem 3.2 is detailed in §B.7. We briefly de-
scribe the proof idea as follows. First, we use a similar argu-
ment as in the proof of Theorem 3.1 to bound the expecta-
tions of the loss functions at each step. Second, we use (9)
to find an absolute upper bound of the loss functions. By
combining these two bounds and using Azuma’s inequality,
we derive the decay of the loss function in (5) with the con-
vergence rate in (6) in Theorem 3.2. Finally, we verify that
the conditions for Lemma 4.1 and Lemma 4.2 are satisfied
when the NN width satisfies m/In*m > (1+a?)*/(1—
a)®Q(n®LYd/(b6%)) and thus conclude the theorem.

The proof of Theorem 3.4, which appears in §B.9, relies on
the following lemma that bounds the generalization error
for a class of NNs whose parameters are close to W(©).

Lemma 4.3 (Generalization error with perturbation).
Assume the setup of §2, where o is the leaky ReLU

parameter. If |[W —W0O)| < w < O(
—Q(Inm)

§3/2
n3/2L15/21n3/2m> ’
then with probability ot least 1—e

-« 2 4/3

OM¢R@E§E&@+O@V§E§)

RW)< %E(W)Jr

The proof of Lemma 4.3, which appears in Appendix B.8,
follows similar ideas as those of Cao and Gu (2020) but
adapted to the different task of regression. Theorem 3.4 is
a consequence of this lemma and two different estimates
of the size of w during training. The first estimate
controls w during the entire training with GD, regardless
of how large the training epoch is, and is expressed in
Lemma B.9. The second estimate uses direct bounds of
the learning steps and provides a better upper bound of
w when the training epoch is small.

4.2 Discussion of Innovation

While we followed, extended and improved an existing
proof framework, we would like to emphasize some innova-
tion in our proof techniques. To begin with, it is difficult to
directly extend the previous methods to any leaky ReLU
with a < 1. Our idea of rescaling the leaky ReLLU activation
function, along with the observation that, with rescaled
initialization, it is equivalent to using the unscaled leaky
ReL.U, helped tremendously simplify our initial technical
and complex effort. This allowed us to elegantly use the
previous ideas and further improve them. Additional tech-
nical steps that are required to address the case a0 can
be noticed in the proofs of Lemmas B.1, B.2, B.4 and B.7.

We have also made notable improvements to previous esti-
mates. In particular, we improved the lower bound for the
gradient established by Zou and Gu (2019) by a factor of L.
We also eliminated the previous dependence of the conver-
gence rate on a negative power of L, which was undesirable
as it implied that deeper networks might experience slower
convergence. This demonstrates that the convergence rate
of deep neural networks is at least comparable to that of
shallow neural networks. Specifically, the later estimates
can be found in the proof of Lemma 4.2 in Appendix B.4.
They are motivated by a suggestion from Allen-Zhu et al.
(2019b) to incorporate gradients from all layers’ param-
eters, departing from previous estimates that solely relied
on the gradients of parameters from the last layer. More
specifically, improved lower bounds for the gradients from
all layers’ parameters can be found in Lemma B.7 in Ap-
pendix B.4. We also obtained a tighter bound for the
spectral norm of W® — W when using SGD. This
improved the lower bound on the width m for training
convergence by a factor of order n=8L=2(n/b)~35%.

Additionally, a more careful and fresh look helped
improve the interpretation of the results. In particular,
noting the effect on the number of epochs ¢ on the
generalization error, while developing tighter bounds
when ¢ was sufficiently small, helped with a meaningful
bound on the generalization error. Another example
includes making all the probabilities dependent on m, a
choice we deemed more suitable for the overparameterized
regime. Furthermore, to avoid the hidden dependence
of § on L in the previous works, we had to develop some
careful mathematical estimates (see (29) in the appendix),



Yinglong Guo, Shaohan Li, Gilad Lerman

10° 10!

—e— alpha = -2 —e— alpha = -2 —e— alpha=-2
—=— alpha = -1 —=— alpha = -1 0.4 —=— alpha=-1
102 —— alpha=0 —— alpha =0 —+— alpha=0
—— alpha = 0.01 0 —— alpha = 0.01 0.2 —— alpha=0.05
5 —— alpha = 0.05 g 10 alpha = 0.05 S
= & o
g g 2
< £ £0.08
= © @©
g 10 = 1071 =
0.04
1071
- 10-2 0.02
1072 0 100 200 300 0 250 500 750 1000
0 zo?uunft?gr of?iop%chssoo 1,000 Number of Epochs Number of Epochs
103 10 0.6
—e— alpha = -2 —— alpha =-2 —e— alpha=-2
—=— alpha = 8 —=— alpha = -1 —=— alpha=-1
—— alpha=0 —— alpha=0 0.4 —— alpha=0
. —— alpha = 0.01 6 —— alpha =0.01 —— alpha=0.05
510 —— alpha = 0.05 S —— alpha = 0.05 g
b w i
2 g4 g
Z Z i
el 101 & 3 e
2
10° ) 20 10 60 30 100 0 20 40 60 80 100 0 200 400 600 800 1000

Number of Epochs

Number of Epochs

Number of Epochs

Figure 1: Log-scale training and testing errors using different datasets and different o’s. From left to right: synthetic
dataset, F-MNIST and CIFAR-10. Top row: training errors. Bottom row: testing errors.

so we could explicitly identify the dependence on L and
relax the previous assumption 6 <O(1/L) to 6 <O(1).

5 NUMERICAL EXPERIMENTS

As our theory deals only with upper bounds, we conduct
numerical experiments to examine the dependence of
the actual training convergence rate and generalization
error, particularly at an early epoch, on the parameter
«. Our main goal is to determine whether o = —1 is
the optimal choice for convergence and generalization
in overparameterized NNs with LeakyReLLU activation
functions. Appendix C provides additional experiments.

5.1 Setup

We summarize our implementation for the following
datasets. We provide additional details in §C.1.

Synthetic dataset: We simulate a dataset which
contains 1,000 data points in R® ii.d. sampled from a
normalized Gaussian distribution, N(0,I5). We verified
that Assumption 2.1 holds for the generated dataset
with §=0.21. We generate real-valued labels, y, by the
following noisy nonlinear function of a:

y=sin(10x; +20x3)+cos(3x3+5z3)
+2/(14+ReLU(0.05425)) /2 4221 25 +¢,

where ¢ ~ N(0,0.01). We construct NNs with five
hidden layers, m = 5,000 and leaky ReLUs with
a € {-2,-1,0,0.01,0.05}. We initialize the NNs by
Algorithm 1 and train them with GD using the MSE loss.

F-MNIST: This standard grayscale image classification
benchmark consists of ten classes (Xiao et al., 2017). We
build NNs with two hidden layers and width m =2,000.
We use leaky ReLUs with o€ {—2,—1,0,0.01,0.05}. We
initialize the NNs by Algorithm 1 and train them using
SGD with batch size 64 and the cross entropy loss.

CIFAR-10: This is another standard dataset for image
classification (Krizhevsky et al., 2009). It consists of ten
classes of RGB natural images. We modify the architec-
ture of VGG19 (Simonyan and Zisserman, 2014) with
four convolutional layers (width 512) and two linear layers
(width 512) using Leaky ReLUs with a€{—2,—1,0,0.05}.
We use Algorithm 1 to initialize the NNs and train them
using SGD with batch size 64 and cross entropy loss.

To ensure that m is sufficiently large with respect to n,
we randomly sample subsets of F-MNIST and CIFAR-10
(see more details in Appendix C.1).

5.2 Results

Figure 1 demonstrates both training errors (top) and test-
ing errors (bottom) for the synthetic dataset, F-MNIST
and CIFAR-10 (from left to right) for different as. We
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Table 1: Training and testing errors for the three main datasets. The first three rows report the training error at
the last epoch. The next ones report the testing error at an early epoch (¢ =30 for synthetic, t =20 for F-MNIST

and t=200 for CIFAR-10).

METRIC DATASET a=-2 a=-—1 a=0 a=0.05
FINAL TRAINING SyYNTHETIC  0.03940.002 0.022+0.002 0.19740.013 0.245+0.022
ERROR F-MNIST  0.0964+0.009 0.076+£0.008 0.21140.018 0.229+0.032
CIFAR-10 0.01940.001 0.018£0.001 0.02440.001 0.027+0.001
EARLy EPOCH SYNTHETIC  1.91440.067 1.775+£0.065 2.08640.173 2.313+0.218
TESTING ERROR F-MNIST  2.3714+0.103 2.362+0.053 2.442+40.067 2.47040.092
CIFAR-10 0.1464+0.004 0.143=£0.005 0.16940.012 0.173+0.007

remark that we use the testing error as an approximation
of the generalization error. Observing the training errors
in the top row we note that the convergence is fastest for
the NN with «=—1 and the ranking of « from fastest to
slowest convergence corresponds to the one predicted by
our theory; that is, if a obtains a lower estimate for «y in (4)
than o/, then it results in faster convergence in our experi-
ments. Observing the testing errors, we note that around a
small training epoch (e.g., 30 for the synthetic dataset, 20
for F-MNIST, and 200 for CIFAR-10), the testing error is
smallest when a=—1. However, at larger training epochs
the gaps of the testing errors are small for most of the as.

To get a better quantitative idea, Table 1 summarizes
for the different data sets the training error at the last
epoch and the testing error at an early epoch. We ran the
experiments 10 times and reported the mean and standard
deviations (std’s). We note that the std’s are small and for
better visualization we did not include them in Figure 1.
We observe that choosing c=—1 gives the least final train-
ing error in all datasets. Compared to ordinary ReLU, our
choice of a=—1 reduces the final training error by at least
22% (CIFAR-10) and at most 91% (synthetic). At early
training epoch, compared to ordinary ReLU, the choice of
a=—1 reduces the testing error by at least 4% (F-MNIST)
and at most 15% (CIFAR-10). This correlates with the pre-
dictions we made by our theory that the optimal bounds
of the convergence rate and generalization error (at a
sufficiently small epoch) are achieved with a=—1.

Lastly, we compare the theoretically predicted upper
bounds of the convergence rate and the empirical conver-
gence rates with different as. For this purpose, we ran
experiments using the synthetic dataset and California
housing (see its detailed description in Appendix C.1) with
choices of « from [—10,0.5]. We approximate the conver-
gence rate for each « using the training errors from the
experiments at time steps 100 (i.e., £(109) and 1,000 (i.e.,
£(1000)) " The empirical convergence rate is calculated as

A(ar) := (£ 1000) /£(100))1/900

To simplify our upper bound, we denote the constant
Q (%) in (4) by Cy and estimate its value based on

the calculated convergence rate at a=0 as
C’y::C’O(l_’s/(O))v (17)

where we choose Cy =1 for the synthetic dataset and
Cp=0.5 for California housing. Consequently, we obtain
our theoretical upper bounds of the convergence rates

(1-a)?
1+o2
)2

(1-«
1+a?

v(a)=1-0.00143 for the synthetic dataset,

~(a)=1-0.000537 for California housing.
Figure 2 compares the theoretical upper bound of the
convergence rate, y(«), with the experimental convergence
rate Y(c) for the tested values of as. It is interesting to
note that the predicted upper bound dependence on «
correlates very well with both numerical experiments.

Appendix C.2 includes additional details and numerical
results. In particular, it performs experiments similar to
the ones reported in Figure 1, while incorporating the
datasets MNIST, California housing and IMDb movie re-
views; the architectures of recurrent NNs and transformer
NNs; and another loss function for regression. It also
demonstrates how the training and testing errors depend
on the NN hyperparameters (e.g., depth and width).

All codes are available at https://github.com/s1i743/
leakyReLU.

6 DISCUSSION

We established a mathematical theory that clarifies the
impact of the Leaky ReLU parameter on bounds of both
the training error convergence rate and the generalization
error for overparameterized NNs. We showed that the
absolute value function yields the optimal convergence
rate bound for the training error and also the optimal
generalization error bound when the training epoch
is sufficiently small, with a sufficiently large dataset
and a deep NN. Our extensive empirical tests support
using the absolute value function for effective training
of overparameterized NNs and for effective generalization
with sufficiently small epochs and sufficiently large
datasets and deep overparameterized NNs.
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Figure 2: Comparison of the “shape” of the theoretical upper bound of the training convergence rate (orange line)
with the calculated convergence rate (blue dots). We used the synthetic dataset (left) and California housing dataset

(right) with different values of o’s.

There are different possible extensions of our theory. For
example, it is useful to extend it to other structured
NN, such as convolutional NNs (CNNs), while allowing
any Leaky ReLU. Allen-Zhu et al. (2019b) established
convergence for overparameterized CNNs with ReLLU and
one can directly extend their analysis to any Leaky ReL.U.
Nevertheless, it still remains open to extend the gener-
alization theory to other structured NNs. Furthermore, it
is useful to study the training convergence and generaliza-
tion for larger classes of activation functions, such as the
Gaussian error linear unit (Hendrycks and Gimpel, 2016).

Our work has three major limitations. First, our
generalization error bound is not sufficiently small.
Nevertheless, we believe it still indicates some interesting
and relevant phenomena, in particular, the behavior
when stopping at an early epoch. We further improved
our estimates for a special class of datasets, although we
observed that it was not sufficiently small in general. This
is likely due to the fact that the regression setting poses
greater challenges than classification. We also highlighted
the possible implications of Kumar et al. (2023) to a
generalization estimate given tight training error bounds.

Second, the lower bound that we require on the width,
m, is generally unrealistically large and we thus find
it important to extend our theory to lower values of
m. Developing such a theory seems to require a careful
analysis of nonlinear dynamical systems, given that cur-
rent methods aim to linearize the underlying dynamical
system. Nevertheless, for the special class of datasets
discussed in Appendix B.11, we were able to provide a

satisfying linear dependence of the lower bound of m on n.

Lastly, to theoretically guarantee the use of a=—1, we
need to develop respective lower bounds. We are not
aware of useful and generic lower bounds and we find it
rather difficult to develop them. Nevertheless, we still
believe that making predictions based on the carefully
developed upper bound and empirically testing them is
valuable for practitioners. Indeed, our numerical results
indicate the optimality of @« = —1 in many scenarios of
overparameterized networks. On the other hand, we are
unaware of much practical guidance that stems from the
many other important and fundamental estimates in the
study of overparameterized NNs. Additionally, Figure 2
shows cases where our upper bound for the convergence
rate aligns with the observed convergence rate.
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Appendix

Section A discusses the generalization error bound, established in Theorem 3.4, under different regimes for the number
of training epochs. Section B completes the proofs of the theorems stated in the main text and establishes four
additional theorems: Theorem B.12, which bounds the generalization error when applying SGD; Theorem B.16, which
bounds the convergence rate when using another loss function for regression; and Theorems B.14 and B.15, which
bound the convergence rate and generalization error, respectively, for a special class of datasets. Section C describes
additional numerical experiments and the full details of implementation for both the previous and the new experiments.

A Discussion of the Generalization Error Bound

In this section, we clarify the estimates for generalization error in (7) for different regimes of the number of training
epochs, t.

We first note that the last term in (7) can be sufficiently small for a sufficiently large sample size n, so we may ignore it.
The first bounding term in (7) reflects the training error and the middle two bounding terms represent the NN complexity.
There is a tradeoff between the training and NN-complexity terms, as we explain below; in particular, we cannot make
both of them sufficiently small. We remark that the closest bound on the generalization error for overparameterized
deep NNs was established in the context of classification using GD in Cao and Gu (2020). Their generalization bound
is independent of the training epoch. Instead, their bound is of order ©(poly(n)-n~1/2) and is typically not small even
for arbitrarily large n. For very special cases (e.g., linear separability) they reduced the term poly(n) so their overall
bound is sufficiently small. In this work, we investigate the dependence of the generalization bound on ¢ for regression
without making assumptions about the data distribution. Nevertheless, one may consider similar special assumptions
as in Cao and Gu (2020) and apply them to our theory in order to better control our generalization bound.

To better understand the bound in (7), we apply the bound on v from Theorem 3.1 and our choice of m. We first
quickly show that 7T is at order of ©((nL)?), from §4, we know that

T=In(e/L(W?))/Iny < O(In(e/nvInm) /Iny),

by using (3) and n=0(d/(nmL?)), this upper bound is ©((nL)?), and when n is large, a lower bound with the same
order can be achieved. We observe two different regions of t <O((nL)?) (in §4, we show that ©((nL)?) approximates
T). When t=0((nL)'~"), where 0< <1, the first 3 terms of R(W®)) are bounded by

2 1/652/3 A/
exp<—9((1_o‘)5>)0(1nm)+ (1—a) 0< 405 )+0<dlnm>.
(14-a2)(nL)1t+ Vita2 \nL'/6(nL)4s/3 (nL)~
The last two terms above are sufficiently small for sufficiently large n or L and the first training term is of the order
O(lnm) and is thus the dominant one. In practice, it can be reduced through careful initialization. We note that
this dominant term is minimized at «=—1. When n and L are not sufficiently large and the second bounding term
is comparable to the first term, then the bound is minimized at a certain o between —1 and 1. If, on the other hand,
t=Q((nL)*)), where 0< £ <1, then the order of the NN-complexity terms of (7) is O(n™inir1/2+7} pmin{s,247})
which becomes extremely large when n and L grow. This illustrates the overfitting phenomenon in neural network
training, where the generalization error bound increases significantly as the training error approaches zero. Overall,
we note that a smaller bound is obtained when t=0((nL)! ") and moreover overfitting occurs when ¢t=0((nL)'**).
These observations support the benefit of early stopping. We remark that when ¢t=T, which is roughly at ©((nL)?),
we can express the upper bound in (7), excluding its last term, in terms of e as follows:

A )11/3 1/354/3 3/247 ST 1/247
e—|—min{<(1 @) )O( a7’ 14/3(nvlnm/e))70<d§n)}

(1+a2)11/6 m1/65,10/3,10/3 = L1/2~"lnm
) (170[)2 d1/25 /lnm n1/2+‘rL2+-rd1/2+‘r
+mm{ < a2 ) 373 In(nvInm/e),0 Y- :

The examination of our above theoretical results on generalization error bounds reveals two weaknesses when compared
to the convergence theorems, that is, Theorems 3.1 and 3.2. Firstly, unlike the convergence rate that guarantees the
training error’s convergence, the generalization error bound doesn’t assure a convergence to zero. Consequently, this
bound may not offer a precise guideline about the optimal choice of «, especially when the number of epochs is large.
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Secondly, = —1 is the optimal choice for the generalization error bound when training terminates early and both
n and L are sufficiently large. In contrast, the convergence theorem asserts that a=—1 consistently ensures the fastest
convergence. Numerical results align with these observations.

B Proofs

We detail the proofs of Lemmas 4.1, 4.2 and 4.3 and the conclusion of Theorems 3.1, 3.2 and 3.4 from these lemmas.
Moreover, we formulate and prove some the following additional theorems: a theorem that bounds the generalization error
when using SGD, which is the analog of Theorem 3.4 for SGD instead of GD; theorems that improve our estimates for for
a special class of datasets; and a theorem for the convergence theory when using a different loss function. Section B.1 intro-
duces notation needed for the proof, § B.2 quantifies the bounds for the initial weights, § B.3 extends the latter bounds to
weights within a small perturbation around the initialization, § B.4 proves the lower and upper bounds for the gradient at
initial weight and within a small perturbation (Lemma 4.2), § B.5 shows the proof of semi-smoothness (Lemma 4.1), § B.6
and § B.7 conclude the main theorem for gradient descent and stochastic gradient descent (Theorem 3.1 and 3.2), §B.8
proves the upper bound of the generalization error for a class of NN functions (Lemma 4.3), §B.9 concludes the generaliza-
tion error bound for GD (Theorem 3.4), §B.10 formulates and clarifies an upper bound of the generalization error for SGD,
§B.11 introduces a special dataset and establishes theorems on the convergence rate bound and generalization error bound
using this dataset, and §B.12 extends Theorem 3.1 and provides bounds of the convergence rate for a special loss function.

For the study of training convergence, we follow the notation and proof framework of Allen-Zhu et al. (2019b), while
incorporating the improvements suggested by Zou and Gu (2019) and some additional ones. For the study of the
generalization error, we follow the proof framework of Cao and Gu (2020) while extending the latter work to the task
of regression. Whenever previous ideas require adaptation to Leaky ReLUs or to some of our technical contributions
(summarized in §4.2), we prefer to repeat and even add more details so the reader can fully follow the current text
and will not need to switch between references. However, when we feel that the ideas of previous works directly extend
to our setting we formulate the analogous lemmas without proving them.

B.1 Notation

Throughout this appendix, we denote the entries of a vector & € R™ by z; or (x);, j € [m]. We denote the entries
of a matrix Ae€R™ "™ by A;; or (A);, i,j € [m]. For i€ [m], the ith row vector of a matrix A is denoted by A, ..
and its ith column vector is denoted by A. ;. The default norm ||-| is the £, norm. We denote by 1g the indicator
function of the event E, which equals 1 when E occurs and 0 otherwise. We denote by B7* the unit ball in R™.

We use the rescaled leaky ReLU introduced in (2) as the activation function of the neural networks under consideration.
When acting on each coordinate of a vector € RP we express its action using the following diagonal matrix D,:

Te;>0  alyj<o

Go(x)=Dgx, where (Dg);;= T ite and for k#j (Dg)k; =0. (18)
For i€[n] and a data point x; €RP, We inductively define
91 =Wihi;_1, hi;:=6,(Wih;1_1)=64(9i,), hio=Ax; (19)

and use the notation h; ;= (hi ), and g; % :=(g:1)k. We denote

lgi,l,j20+a19i,l,j<0
Vita?  Vi+a? '

We further denote Dy:=1 and use the new notation to express the outputs of all hidden layers via matrix products
(where according to the notation of §2 Wy=A and Wy, =B:

D;;:=Dy,, and D ;j:=(D;1);;=

gio=h;o=Ax;,

gil = VVlDi,lflvvlfl~~W2Di,1W1Awi7

hi;=D; W,D;;_1W,_1.WyD; i W, Ax;,

gi+1:=Bh; ;. =BD; ;W D; 1 _1Wi_1.WyD; W, Ax;.

We denote the residual and its elements by

€' =gi1+1—Yi, €ij=(€i);



Yinglong Guo, Shaohan Li, Gilad Lerman

and the loss function by

n

" 1
=D Joss(@iys W)= _:[lyi—girer(zsW Zneznz
=1

i=1

Section 5 in Higham and Higham (2019) presents a comprehensive derivation for the gradient of the loss function
in a neural network. In our case, the activation function derivative can be written as
Ohi. - <1gi,l,k20 Jralgz 1,k<0
o9ir " \V1+ta2 V1t+a?

Denoting Back; 1.+1:=B and Back;;:=BD, ;W..W, (this is the backpropagation operator) we can express the
derivative of the loss with respect to the rt entry of W;, where r,t € [m], as

> ”]k,fOI‘ZE[L]

Vwy),Joss(x;,yi; W) = (Backz:Hlei)TDi’l’Mhi,l,l’t.

Similarly, the gradient of the loss according to the matrix W; and according to its kth row vector, (W}) ., can be
expressed as
Vw,loss(x;,y;; W) :Di,lBackZlHeihﬁl (x;),
V(I/Vl)k,,loss(wi;yﬁw):Di,l,kk<(BaCki,l+1)-,kvei>hlfl(wi)~

For a vector v €R?, we denote its £> norm by [[v[|s (where [[v][5=3",;,v7), foo norm by [|v]|ec =max;e v ], and £o
“size" by ||v]lo=|{j €[p]:v;#0}|. For a matrix X € R™*"™, we denote its spectral norm by || X ||z =max;epm|A;(X)],
Frobenius norm by ||W||F=, /Ziyje[m]I/Vw, and {y “size" by || D|lo=|{(i,j) € [m]*: D;; #0}|. For a vector of matrices

W =(Wi,..,.W)), where Wy, ..., W, €R™*"™, we define its £, norm by ||[W||2:=max;c)||W;||2 and Frobenius norm

by [|W]|F:=1/ ZZL:1||VVI||%“ For simplicity of notation we use ||-|| instead of ||-||2 for vectors, matrices and vectors
of matrices.

Throughout this appendix, we apply Algorithm 1 to initialize the weights W, A, B for the neural network.

We use the big O, Q@ and © notation. That is, f=O(N) or f=Q(N) if there exists C >0 and Ny € N such that
f<CN or f>CN, respectively, for all N> Ny. Also, f=0(N) if and only if f=0O(N) and f=Q(N).

Throughout this appendix, we may neglect the subscript ¢ or superscripts (¢) or (0) when there is no confusion.

B.2 Initialization

In this section, we focus on properties of the weights initialized by Algorithm 1 without training. We thus denote
W :=W© and for any input vector £ €RP and € [L]

go=ho:= Ama
a=w"D,, . .W\"D, W Az,
hl = Dglgl-

For simplicity, we denote D;:=Dyg,.

We first establish Lemma B.1 which controls the norms of the outputs of the hidden layers with high probability. We
then establish Lemma B.2 that upper bounds max;;epn(hii/||hill,hji/||Rjall) for all I € [L]. Lastly, Lemma B.3
summarizes useful bounds of the norms of some relevant matrices.

We remark that the proof of Lemma B.1 adapts ideas of Allen-Zhu et al. (2019b) to the setting of Leaky ReLUs.
The proof of Lemma B.2 follows ideas of Zou and Gu (2019), while assuming that 6 <O(1) instead of § <O(1/L)
and applying minor adaptation to Leaky ReLLUs. At last, Lemma B.3 directly follows the same proof argument in
Allen-Zhu et al. (2019b) (while using the conclusion of Lemma B.1) and we thus omit its proof.

Lemma B.1. Assume the setup of §2 and the above notation. Ifx €RP, ||z||=1 and e is a fived number in (Q(£),1), then

lhi| €[1—€1+€] forall 1€{0}U[L] with probability at least 1—e~Ume /L),
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Proof. We first prove the lemma for [ = 0. Due to the initialization of the input layer by Algorithm 1,
ho= Az~ N(0,||z||?/m)=N(0,1/m). Therefore, m||ho||?> ~x?(m), where x?(m) denotes the chi-square distribution
with m degrees of freedom. Using the tail bound for this sub-Gaussian distribution

B[Rl —1|> 5 ) <2673 < 2ne), (20)

We next prove the lemma for [ >1. For each layer [, we analyze the distribution of each entry of h;, and denote by
hyj:=(hy);, j €[m], conditioned on the output from the former layer h;_;. We note that the randomness of h; comes
from W, given the fixed h;_;.

We note the following expression for h; j, which follows from (18) and (19):

~ gi,5 agp,j
hm‘Z%(gl,j)=1gl,j>o\/1+]7+1gl,jg L. (21)

We remark that unlike previous analyses (Allen-Zhu et al., 2019b; Zou and Gu, 2019), we need to deal with two different
terms in the sum in order to address Leaky ReLU and note just ReLU. We observe that due to the initialization
of Wi and (19), gi.; ~ N(0,23°h7_, ./m) = N(0,2|[hi_1][*/m). By the symmetry of the normal distribution, g; ; is
positive with probability 0.5. Thefore the random variable

Bj = 191,j>0

is Bernoulli with probability 0.5, that is, B; ~B(0.5). We further note that B;g; j = B;gi ;|g91,; >0. We thus rewrite (21) as

hyy = \/% B> 0}~ (1= By) (1) oy <03 (22)

Conditioning on the event g; ; >0, glyji\XL where X ~N(0,2||h;_1||?/m). Therefore,

915 |(915>0) ~INO2[hy-][2/m)].
Similarly,
5] (015 <0) ~INO20|hu1|[*/m).
Therefore, (22) and the above two equations imply the following distribution law for h;;:
d 1 a
it ——— BV~ (1-B;)Vja,
l,j \/@ j Vil m( ]) Ji2

where Vj 1, Vja~ |N(0,2||hi_1|*/m)|, Bj~B(0,3) and V} 1, V2 and B; are independent. We further claim that if
the former layer h;_; is given, then V}; and Vj o are independent for j & [m]. Indeed, We first observe that conditioned
on h;_; the entries hy ;, j € [m], are independent. Indeed, they depend on different rows in W; and due to Algorithm 1
for the initialization of the /th layer these rows are independent. We also note that V;; and Vj > only rely on Ay j,
and thus conditioned on h;_; they are independent for j € [m)].

We next derive an expression that clarifies the distribution of ||h;||?> conditioned on h;_;. We denote

Pr={je[m]: g;>0}, Ki:=|P,
m
Hyyi= gz > Vilhiy, Hp=go—s5 > Vilhi
2||hy—1]? - 2||hl 1l
JEPR JEIM],i¢P;

We note that K; is Bernoulli with m trials and probability 0.5, i.e.,
Kl ~ B(m,05)

The above observations imply that conditioning on hy_1 and P, H; 1 ~x*(K;) and H;o~x?*(m—K;). Therefore, | hy||
conditioned on h;_; is given by
d 2P| 20%|| by |?

h|? k1= — 1 H — 1 H,. 2
|| % Ri—1 (+a®)m 1t (+ad)m 1,2 (23)
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Note that the indices used by H;; and indices used by H; 2 do not overlap and thus form a partition of [m]. This
partition is determined by P, and H;; and H; > are conditionally independent given Fj.

We denote Ay:= L H”2 and rewrite |||/ (fixing [=b) as follows
b
[y | > =In[o[*+ “InA,. (24)
=1

Using the distribution of ||h;||> conditioning on h;_;, where 1<1<b, we first derive upper and lower bounds of the
expectation E(InA;|h;_1). We then show that given h;_; and other information, InA; is an O(m~!) sub-Gaussian
random variable. With these two properties we conclude the lemma by applying a variant of Azuma’s inequality for
sub-Gaussian random variables on Z?:llnAl.

Bounds on the expectation of InA|h;_q: We note that E(H,;,|P,) = K;, E(H;1/P) = m — K; and thus
E(H;1)=EE(H;1|P))=E(K;)=0.5m. Similarly, E(H;2)=0.5m and therefore E(H;,)=E(H,2). Using the latter
observation and (23) we obtain

2

E(Al|hl—1):m

(E(H;1)+o’E(H, 1)) =1. (25)

Applying the concavity of the log function, Jensen’s inequality and then (23) and (25) yields

1 2 o?
E( —h—H 1+ ——
<1+a2 Y l’1+1+a

Using the Chernoff bound for the binomial distribution, we note that

2
In— H12> <E1H(Al|hl 1)<hﬂE(Al|hl 1) (26)

K;€[0.4m,0.6m], or equivalently m— K; €[0.4m,0.6m)], with probability 1—e~ %™, (27)

We next use the property that if H~x?(K) and K € [0.4m,0.6m], then Eln%H > —% (see page 13 in the proof of
Lemma 7.1 in Allen-Zhu et al. (2019b)). This property and (26) imply

B(u(A)lhr-1) € 40, (25)

Conditional sub-Gaussianity of InA; : We derive a tail bound for InA;|h;—; and consequently conclude its
sub-Gaussianity. We denote
E;:={|P|€[0.4m,0.6m]}.

The combination of (2

2
#(15

basic probabilistic manipulations and the conditional independence of H;; and H; o yields

Al—*’<t‘hl 1;El;Pl)

2 m
Hl,1+2Hl,2—‘ <t‘Ez7Pz)
« 2

—P
1+a2 2 14+a? 1+a2 2

EEAN <t/2‘EP (|- g, <t/2‘EP
1+a2 "' 142 2 bt 1402 " 1402 2 b

EIP’(‘HM—%‘ <t/2‘El,B)P(‘Hl,2—5‘ <t/2‘El,Pl).

3),
m
2
1 1 2 2
P( = _Hi- Tl <t/2 and ’O‘le a <t/2‘El,Pl)

Recall that given P, H; 1 and H,» are x?(|P)|) and x?(m—|P)|), respectively. We thus apply the corresponding tail
bounds of H;; and H; 5 and (27) to the bound above and obtain that

(‘ Al——’<t‘hl 1) (1 e~ /m)) >1—Q(B_Q(t2/m)>.
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Consequently,
t ty2
P(ln|Al|<‘hl_1>21—69((m) ™ for te(0,m/4].
m

Therefore, InA; conditioned on h;_; and K; € [0.4m,0.6m] is O(m~1)-sub-Gaussian.

Conclusion of the proof of the lemma: We define a new variable A;, where A;=A, if K; € [0.4m,0.6m] and A=1,
otherwise. From the tail probability of InA; and the definition, it is clear that 1nAl|hl_1 is O(m~1)-sub-Gaussian. It
follows from (27) that with overwhelming probability A= A. We consider the sequence of the following random variables
{(InA;—EnA,)|h;_1}}_,. By Azuma’s inequality for sub-Gaussian variables (see Theorem 2 with ¢=m in Shamir (2011))

d

Applying (28) to the above inequality yields

d

b
> A —E(InA k)

=1

> be) < e~ 2" m),

b

ZlnAl

>e+0 <b>> <= AEm/b),
I=1 m

(o)

Combining (20), (24) and the above equation we obtain that

We can choose €> Q(%) such that

P(|[[hs]*—1|>€0) <e~UmE/D) for be(L.

O

Lemma B.2. Assume the setup of §2 and the notation introduced in this section. If §<O(1) and m>Q(InnL?*), then

< hia Py >2 9(52> ith probability at least 1—e~2@"m/L") (29)
max — w1 T00a 0 at teas —€ .
zietn \ Thaal Tk, P Y

Proof. We separate the proof of this lemma into three parts. The first one establishes a useful upper bound of the
expectation of the multiplication of two leaky ReLUs of certain inner products (see (30) below). Given this upper
bound, the second part shows that with high probability,

min Hh”— h;||>Q(/L), for any le€[L).
i#j€[n]

The third part uses the result to conclude this Lemma.

Part 1. We verify the following probabilistic estimate:

a2
EG,(u'h)5,(u"h;) < 1<1—;92> ngal)O(@B), (30)

where h;,h; ERP, for 9>07<hi,hj>g1—§92, and u~N(0,I) ERP.

Since u ~ N(0,I), Eugury = 0 whenever k # k'. We denote u := (u,uz - up)T, h; := (hi1,hia, - hip)? and
hj = (hj717hj727“'hj7p)T. We first note that

P P
1
E( Th <Zukhz k) <Zuk/hj7k/> :]EZuﬁhNJLM:hiTthEuTuS 17502'

k'=1 k=1
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For simplicity, we denote Z;:=u"h; and Z; ::uThj and thus express the above equation as
E(Z:Z;) §1—%92.
Using the symmetry of normal distribution, we obtain that
E(Z;Z;|1Z;,Z; >0)=E(Z,;Z;| Z;,Z; < 0)

Consequently, the expectation of 6,(Z;)64(Z;) can be rewritten as

__ L
1+a?
VaE(Z: 2|2 <0,Z; > 0)+0*B(Z, Z;| 2, 2; < 0))

E6 o (Z:)50(Z;) (E(Zizj |Z:,7; > 0)+aE(Z; 7| Z; > 0,2, <0)

20
=K(Z,Z;|Z;,Z; ZO)—F@E(ZiZﬂZi >0,Z;<0).

Similarly, we express EZ;Z; as follows: (32)
B2, 2; =28(Z: Z;| Z:,2; > 0)+ 2B(Z: Z;| Z: > 0,Z; <0)

- - da
ZQEUQ(Zl)O'a (Zz)+ (2— ]-_’_a2>E(ZlZ2|Z1 Z O,ZQ S 0)

Rearranging the above equation yields

(1—a)?

1_i_ﬁ]}?l(21ZQ|Z1 Z O,ZQ <0)

- - 1
]EO'O((Zl)O'a(ZQ) = EEzle —

Noting that EZ; Z; <1—16? and using the proof of Lemma A.3 of Zou et al. (2020) result in
|E(Z1Z5|Z1>0,25 <0)| <O(6).

The application of both (31) and the above estimate to (33) results in(30) and thus concludes this part.

Part 2. For [=0,...,.L and §;:= we prove by induction:

[
20+1)

min ||h;;—h;,|| > with probability at least 1—e U m/LY)
i#j€[n]

We first prove (34) when [=0. Recall that h; o= Az; and note that for any ,j € [n],

E(”A(Ih—ASC]Hz) :E(Awl—Aac],sz—Aw]) :E||A(I}l||2+E||A$]||2—2E<A$“A1}]>

m m
=2-2E> Y Apowi Apewjp =2-2B Y w; .2 A7,

k=1 st k,s=1
9 1
=2-2 E T 05, BAL, =2—2 E TisTjs
s,k s,k
_ T
=2-2x; x;.

Recall that Assumption 2.1 implies that ||&; —x;|| >¢ and thus clearly
x] x; <1-6%/2.
Applying this estimate in (35) yields the that

E(||Az;— Az;|*) > 6°.

(31)

(33)

(35)

(36)



The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Due to the random initialization, m/| Az||> ~ x?(m) and therefore ||Az||? is (O(1/m,4) sub-exponential. Since
P(|Az;— Az;|* > 5) <P(||Az;|* > 5/2)+P(| Az |* > 5/2),

the tail probability of || Az; —Az;||? is of the same order as the tail probabilities of ||Az;|* and ||Az;||>. Therefore,
we conclude that ||Az; — Az;||? is also (O(1/m),4) sub-exponential. Using the assumption § < ¢y, where ¢ can
be appropriately chosen (here we assume that cod < 3/4), (36) and the fact that |Az; — Az;||? is (O(1/m),4)
sub-exponential) we conclude that

2
(1w Ay | <] ) <P(|Az- Awy P <57(1-6)

_P(HAJ%—ACIJJ H2 < (1—(5)E||A$l—ij||2)
0(6764’”).

IN

Applying a union bound over all distinct i, j € [n], we conclude that with probability at least 1—n 6_9(54’”),

0
min ||h10 h;, >§—50

i#j€[n]

Next, we fix | € [L], assume that (34) holds for all £ € [0,I — 1] and verify (34) for . Using the fact that
E(||Fi]|?|Rii—1)=]/hi—1]* and the definition of h;; we obtain

E(|[hi—hal[*|hi—1)
=E([|hig|?[Pii—1) +E( Rl [P —1) = 2E((hi g b o) 1)
=[|hi—1|>+ -1 ]* = 2E((Ga(Wihii—1).60(Wihji—1)) | hi1). (37)

Applying the induction assumption (i.e., (30) with §=4§_1) and the fact that (W;)s.~ N (0,21) and denoting by

u a random variable such that w~N(0,I) so (Wfl)ngu/ m result in
(<0a(VVlhzl 1) Ua(v‘/l 7,0—1 |hl 1 ZE zl l)aa((m) h],l 1)‘hl 1)

:HE( Ga(uThig—1)50(uhjy_1)|hi_1)

1 1—a)?
§1—§6?,1+( ag O3 ,).

Using Lemma B.1, we note for any i € [n], ||hi || € (1—O(53_,),14+O(5%_,)) with probability at least 1—ne=%-1m),
Combining this observation with (37) yields for a constant C'>0

(ki1 —ho P 262 (1-c9= 5 Yo )
i, 7,1 1—1) =011 1+Oz2 1—1 1—1)-

It follows from (23) and the fact that H;; ~ x*(K;) and H;o ~ x*(m — K;) that |h;,|*|hi—1 is (O(1/m),4)
sub-exponential and thus ||h;;—h;,||*|h—1 is also (O(1/m)4) sub-exponential. Thus for i j € [n]
o) )

P(hi,l—hj,lpgé?l (1—(0(1+ ) ll) (1—5571)

Applying a union bound for all n(n—1)/2 pairs yields
hll)

. 1—a)?
(i s hialP<ot s (1- (04520 o 1)

i#j€[n] I+a

h) <Ofexp(—5ym)).

<n(n—1)/20(exp(~0ym)). (38)
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Consequently,
1=nQ(exp(—Q(5-ym)))

1— 2
SP( min Hh”— JlH2>6l 1( (C( Z) )51_1)(1—51_1)

i#j€[n]

1—a)? 1—
]p( i hi,lhjﬁz(sf_l@(c( ) +1>5l_1>+c( g
i#j€[n] «

()

Next, we verify that 1—(C(1—a)?/(1+a?)+1)8_1>1%/(1+1)? for a sufficiently small cq (recall that § <cp). We first
note that for {>1,

§IP’( min Hh”—h
i#j€[n]

hll). (39)

2 241 I+1 1 1

—1- <1- e <1~
(1+1)2 (I+1)2 =" (I+1)2 +1— 2
Therefore, if §<1/(C(1—a)?/(1+a?)+1) <co, then for any [ €[L]

(1- a) (1-a)® \ 6 1.2
. 1 _—> )
! (C Traz )=\ O T ) 52 2= (1+1)2

Thus (39) implies min; ;e |hig—hjal|* > 67, (l+1)2 =67 with probability 1—n?e~ Q*m/L*)  When m>Q(InnL*),
the latter probability can be written as 1—e~6 ™/ which concludes (34).

Part 3. \:ZVe conclude the lemma as follows. We recall that Lemma B.1 implies that with probability at least
1—e=Um /L) || hy |2 €[1-0(6}),14+0(87)]. Applying this conclusion and (34) we conclude that for any i+ j € [n]

1 1 1 1
hj;— h;,; H h;;— hi;+ h;;— h;;
th,l| 7 b Rl Nkl ||h‘l|| [[Fi ]
1 1
> Lyl el
Rl ™ sl TRl |

261(1—6;/2) with probability at least 1—2¢=ma" /L),

We note that for 6 <co<1/2, 6 <i and thus 61(1—611/2) > %6;. Consequently,

1 1
h',l,hi7l>
<||hj,z| IRl
2
l >

1<|hj,12 IRy |2 1
1
<1- 287 with probability at least 1—2¢~Ums" /1Y)

+ — hj,— h
gl NThial? HHh;zH " il
1 2
- R — h:
2H||h',l|| P R
Therefore, if §7 <8, then

1 1 2 ( 1 )2 1 o
—~ _hi,———h;; ) <[1-=6?) <1—-6? with probability at least 1—2e Xm0 /L),
<hj,l| "Rl ’l> - gt) =" 8! p y

Finally, we apply a union bound on all the distinct ¢, j pairs to obtain

1 1 2 1
max < hll,hiyl> §1776l2 with probability at least 1—n e~ Umd*/LY)
ijeln) \ || b, [[Fui. 8

The proof of the lemma is concluded by the above bound and the following two immedaate ?bservations:
§1=6/2(1+1)>Q(5/L) and when m>Q(Inn)L* the above probability can be expressed as 1—e =0 /L7,

O
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Lemma B.3. Assume the setup of §2 and the notation introduced in this section. If 0<a<b< L, then with probability
at least 1—e=2"/L) the following statements hold:

1. |[Wyp1 DyWi,...D || <O(VL).
2. I d<O(72-), then | Back,| = || BDWy..D,W,| <O(/).
3 vaERm and ||v||0<O(Lln7n) then ||WbDb_1.-.DaWa'U||S2H’UH,

For s<O(m/LIlnm) and d<O( with probability at least 1—exp(—$2(slogm)), the following statement holds:

Llnm)’
4. For any vector u€ R, v€ R™ such that ||v||o<s, then |ul BD WD, W, v|<O(;/slnm/d||v||||ul]).

The proof of the lemma follows the same argument of the proof of Lemma 7.3 (a), (b) and Lemma 7.4 (a), (b) in Allen-
Zhu et al. (2019b) and is not directly affected by our use of Leaky ReLU. We remark though that it requires applying
Lemma B.1, which was formulated for any Leaky ReLU function instead of Lemma 7.1 of Allen-Zhu et al. (2019b).

B.3 Perturbation

We establish Lemma B.4 which quantifies the effect of a small perturbation of the randomly initialized parameters
W (® on the output of the hidden layers. Lemma B.5 uses the former lemma to bound the norms of the perturbed
matrices and the perturbations themselves. The proof of Lemma B.4 directly follows ideas of Lemma 8.2 of Allen-Zhu
et al. (2019b), but adapts them to the setting of Leaky ReLUs. The final conclusion of this lemma is independent
of « since the leading terms turn out to be independent of a.. For completeness, we find it useful to include all these
details. Lemma B.5 directly follows arguments of Allen-Zhu et al. (2019b) and we thus omit its proof.

We denote the perturbation matrix by W’ and the perturbed matrix of parameters by W :=W(© + W', Given an
input vector @ such that ||z||=1, we denote as follows the variables at the initialization (in first column), the variables
after perturbation (in middle column) and the perturbation themselves (in last column):

h\" = Ax ho=Azx 6=0

g =wOn g =Wih;_, g=g-g"
1 99,2 +al, o 1 +al

D@ — 6207 (6% <0. D (91);20 T (g1),<0 D/=D,— DY

( l)]] m ( l) Ao l l 1

h? =5,(W B, ) =54 (9("), =G0 (Wihi_1)=5a(1), hy=hi—h{".

Since we fix A and Wy, =B in the training, B("):=B and A®):=A.

Lemma B.4. If |[W/'|a=w<O(
ml/2

1)

1. | Dillo<O(mw?**L) and | Digi]| < 525 OWL*?)

2. there exist vectors g| , and g|, such that gj=g| 44, ,, and ||g ;|| =O(wL*?) and ||g{,2\|0020(% Vlnm),

5. lgfl i)l < O (wL?/2Vinm).

m) and m>$(L?), then the following events hold with probability at least

Proof. We divide the proof into two steps. First, we show that statements 2 and 3 of the lemma imply statement
1. We then prove statements 2 and 3 of the lemma using an induction argument for /€ {0,1,...L}.

Statements 2 and 3 imply statement 1. We fix [ €{0,1,...L}. In view of Lemma B.1 and the focus on the /th

layer, we assume that hl(g)l is a fixed vector such that ||h(0)1 |l €10.5,1.5]. More precisely, we can condition on hl( )1

0)._ ((0)

and we know that with overwhelming probability ||h(0)1|| €10.5,1.5]. We denote g; ; := (g, '); (note the difference

between the vector notation g;; and the scalar notation 9. )) We recall that

2 h(o) 2 2 h(o) 2
0>Wl(°>h§0_>1~N<o,”Tln—1”I and thus g ~N o,% for j € [m].

We define the following vector d and express it using the decomposition g;=g; ; +g; , in statement 2 of this lemma:

d:=Dj(W,"n{" +g))=D|(W" " +g] , +g] ).
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We denote Dl/,jj =(Dy)jj» 92,1,3 (gz 1); and 91 2,5 (gf,z)j-

To estimate ||d|| and ||d||o we define the following auxiliary sets that partition {j € [m]:d; #0}, S; and S,. To do
this we arbitrarily choose a positive number §>2||g; 5[/ and define

Sy={j€m]:|g <€, d;#0}

and
y:={j:j€[m]/S1,d; #0}.
In the rest of the proof we bound |51, desl 5 1Saand 3 g, d?. We then use these estimates to bound ||d|| and ||do.

In order to bound |S;|, we first note that

m
P(lg() | <&d;#0)<P(lg] 1 <€) <O € 0 | =0
1—1
Combining a Chernoff bound for the binomial distribution with the above estimate yields
51| < O(¢m3/?) with probability at least 1—e~ ("9 (40)
For j€ S, we upper bound the coordinate d; of d:

,]+92,2,j|§ (§+||gé||00+|gl/,1,j‘)'

11—«
1+a?

1
di| < | —
|J’\/ﬁ

For each index j€[m] such as Dj ;;#0 we note from the definition of D’ that |D; ;;|=(1—a)/v1+a?. By squaring
both sides of the above inequality, summing over the indices in S; and applying (40), we conclude that with probability

at least 1—6_9(7”3/29

>l \2<3Z 1+ 2 §2+||912H2 +g11,4%)

JES JES
3(1—a)? 3(1—a)?
<X i1 Hghal2)+ 2 gt
3(1-a)? 3/2 (2 ro2 3(1-a)?
<S5 O(em )(5 gt a2+ o (41)

We next estimate |Sz|. The definitions of the diagonal matrices D, D(O) and Dj imply that if D’ 70, then g( ) and
g1,; have opposite signs, or equivalently, g, ])+ gl’) ; and g ) have oppos1te signs, which further 1mphes that |g] J | > gl(o)|
We further note that by the triangle inequality | gl’7 il < | gl71,]|+ | 9[,2, ;|- Combining these two observation and then

applying additional basic estimates, we obtain

0 .
> 19\ ~1g12,;1= €~ gi ollc for jESa.

|gl/,1,j

This bound clearly implies

Hgl’,l”22 Zlgll,l,j|22|52‘(§ 00)2
JES2
and consequently
ool "
2| < .
(€= llg72lloc)”

For j € S5, we note as above that gl ) and g;.; have opposite signs and |g; ;|>g; )| The combination of both of these

observations imply |g, j) +g, j| <l|g 91,5 |. The later observation and the partition of g; according to the second statement
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of the lemma yield the following bound for j € 5;:

[1—af
V1+a?

+llgt,alloc)- (44)

1-al ©
Vitaz M
1l

— \/@ugl/,l,j

Squaring both sides of (44), summing over j € Sy and applying (42) yield

(1-a)? (
Z|dj‘2§2 Tra? Z(‘gl/,l,j|2+||gl/,2|

JES2 JES2

A=), o lgiallZller I
<2—— g+ 7-3 | (45)
a2 \ "M (6 lg] olloe)?

|d;|= +Ql/,j|§ ‘gl/,j| (43)

a)?

17
23)<2
%) < 1+a?

(Ilgt 1 17+152llg7 211%)

Obtaining these four different estimates we conclude with bounds on ||d||o and ||d||. We first note that (40) and (42) yield

| 2

”gl/,l

—Qm®/%¢)
(€= lgr 2lloc)?

lld]jo <|S1|+]S2] <O(EM>?)+ with probability at least 1—e

Since §>2||g; 5|00, We can obtain the following bound:

Algr.4 |

IS
In order to tighten the above bound, we minimize the right hand side term with respect to £ and note that its
minimal value is mHgile/ 3 and is obtained at &p, = © (||gl’71|\2/ 3 /mY/ 2). We note that the assumed conditions:

w<O(L™2(Inm)=3/2), g || =0(wL??) and g7 21l <O(wL??v/Inm/+/m) imply that &pin >2|g] 5/|0c s0 that the
minimum is achieved. Thus, an upper bound of ||d||o is obtained as

d]lo <O(Em*/?)+

ldllo <O(mlg;, /%) < O(mw*L).

Combining (41) and (45) yields

ld*=>"d?=>"d3+> d
j=1

JESL JES2

3(1-a)? 3 5(1-a)? (1—c)? llgi 1 1 lg1,2 113
< O( m /2) 2, 2y /11249 , ,
=142 g (g Hgl,QHOO) 1+a2? ||gl,1|| 1+a2 (é-_Hgl/’ZHOO)Q

(1-a)®
< @m gl B).

Plugging in £ =&, to the above equation and applying the second statement of this lemma result in

1—a)? -«
ja <0 T gk 1) < =002 (1)

Consequently, our bounds for || Do and ||d||=|D;g:|| are
IDllo <lldllo < O(m(wL*?)**)=0(mw?" L), (47)
1Djgi]| = |dl| < O(WL?). (48)

Proof of Statements 2 and 3. We prove statements 2 and 3 of Lemma B.4 by induction on [€{0,1,--L}. These
statements clearly hold at /=0 because there is no perturbation at =0 and g{=hj,=0. In view of the previous
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part of the proof, we assume the lemma holds for layers 0<j<[—1 and prove that the second and third statements
of the lemma hold at layer [.

Following the given definitions, we expand g; as follows

g,=W,D,_1g,_1-W," D g\
=W +w/) (D, +D;_ 1><g<°> +gi.)-W "D g,
:VVZ/( (O) +Dl 1)(9(0) +gl—1> W(O)Dl 1(9(0) +9271)+W(O)Dl(8)1gl/71- (49)

We first expand g;_; in the last term of the above equation. Similarly, we then iteratively expand g] ,, ..., g; and
obtain the following expression:

0 0 0
9,=W/(D ()JrDl 1)(91( )1+gl 1)+W )Dl 1(9( ) 1+g)
0) 5~ (0 0 0 0 0
JrVVz( )D( ) ("Vl 1(Dl( )2+Dl—2)(gl( )2+gl 2)+‘/Vl(—)1D; 2(91( )2+gl 2))
+VVI(0)D(O) W(O) D(02 l/ )

-1

0 0 0 0
S TIW D, | (WD, Dl 6 bt
k=0 \j=1

0 0 0 0)
+VVZ( )Dz/—k—1(gz(_)k—1+gf—k 1 ) HVVl( ;+1D( i |90

Since g(, =0, the last term is 0. We consequently express g; as a sum of the following two terms:

-1 k
0 0 0

gi=>_| [IW D) | (WD, +Di )01 +i-i) (50)
k=0 \j=1
— k

0 0 0 0

[ [IW.D, | (WD (9% +iin)- (51)

=\ L

We estimate with high probability the above first term (right hand side in (50)) by using the assumption ||[W'||<w
and the first statement in Lemma B.3 (to bound ||TT¥_, W%, D{”) ||, k=0,1,..1~1). We thus obtain with probability
at least 1—Le®(m/ 1)

— 0 0
> HW ) DO (W (DO, +D) )9+l ))
k=0 \ j=1

0) 0 0 0
< Lmax HVVZ( j+1 l(—)] val/—k(Dl(f)kfl+Dl/—k-—1)(gl(—)kfl+gi—k—1)H

0
SL-oML)-m,gxnankn-HDHHH-||g§3k,1+g;,k,1||

max(|al,1) 0) ,
e/ 'IMax . + e
\/1_’_72 p ||gl k—1TY1—k 1||

<O( L3/2)max||gl k— 1+gl/—k—1||'

<L-OWL)w

We further use Lemma B.1 to bound Hgl(g)k_lﬂ, ke{0,1,...1—1}, by a constant and use the induction assumption to

bound ||g,_, 4, k€{0,1,...1—1}, by O(wL>/?v/Inm). With probability at least 1—O(L)e~*™/L) the first term (right
hand side in (50)) is thus bounded by

O(WL¥*)(0(1)+O(wL?*VInm)) =O(wL??). (52)
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In order to bound the second term, which appears in (51), we denote
— (0) / _
dk'*Dl—k—l(gl—k—1+gl—k—1)7 k—O,l,l—l
and

k
0 0 0
[IW2,. D2 |W.ds.

We show it can be decomposed into yr =1vyi,1+ Yk 2, where with probability at least 1—Lem/L),

lyea]| <O (1—a)wL?? e lloe <O (1—)wL?2yInm
MEE\ a2y ) W2l =2 Tagaeizym )

Denoting uy, ::D;E)IW/Z(E))I,...DZ(E),CW/}(BLdk and applying the induction assumption we note that ||d]|o <O(mw? 3L).
Next, we apply the third statement of the Lemma B.3 for uy (instead of v) and obtain that with probability at least
1— e—Sm/L)

(e || <4||dy]|- (53)

We note that yk:VVl(O)uk and thus yk|uk~N<0,2“:f”21)_

We denote yj j:=(yx); and o2 :=2[juy||*/m and we let b=0O(||ux||\/Inm/m). We investigate the tail probability of
the Gaussian random variable ¥, ; conditioned on uy. It is clear that

>btlug) < ———e /20" yreN, 54
P(lyr,j| > bt|ug) < fbt/a (54)

We denote Ry :={j:yx; >bt} C[m] and r; :=+/m/((Ilnm)*¢*). Using the independence of {yx ;}jepm) given uy and
applying a union bound for (54) yield

P(|Re| > r¢|ug) < ( ) (\/2771'[)15/06 b2t2/2<72>

( s ) (m) (-0
bty /m(1+a?)
<01 )exp( (b2t2m7't)+(2lnm—lnb—Q(1))7’t).

IA

Denoting q:=+/m/ In®m, we simplify the above bound as follows

P(|Ry| > q/t2) < e~ 20%am),

We further denote @ :=1{0,1,2,3,..|3log,q}, Ng:=|3logyq) and T:={27:pe Q}. We designate the elements in T
by t,:=2P for peQ. Let tn,11 :=2l3l0820)+1 =9No+1 and notice that t?\r@ 41>¢- Thus, applying the above estimate
and a union bound over ¢t €T and tn, 41

|Ri| <q/t?, Vt€T, and |RtNQJrl | <1 with probability at least 1—(|T|—|—1)e‘Q(b2‘1m).

By definition, we note that when |R,5NQ+1 |=0 and [y, ;| <tng41 for j € Riy,,- We also note that for JER N\ Ry,
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Yk,j| <tpt1. Thus, for R:=Ri={j:|ys ;| >b}, we bound 3=, py7 ; with high probability as follows

Zyl%,j: Z yl%,j"‘ Z yl%,jg Z yl%,j—’_'RtNQ‘(thQ‘i’l)z

JER JER/ Ry, J€Ry, JER/Rey
< Z y]%,j+ Z y£7j+|RtNQ |(thQ+1)2
JER/Ruy,, /Ry, JERt NG 1/ Riyg,
< Z y£7j+|RtNQ—1‘(thQ)2+|RtNQ|(thQ+1)2

jER/RtNQ /RtNQ—l

<D R 0272 <Y g/t (620

PEQ PeEQ
= qu222 =0(gb*Ing) with probability at least 1—Q(|T |)eiﬂ(b2qm).
PEQ

Since sz(HukH\/lnm/m) and g=+/m/In*m, we express the above bound as

ml/2
Zy,%] <O(||lug|?/m) with probability at least 1—e~*fwn), (55)
JER
We split vector yy, into yi =yk,1+Yk 2 using the indices set R as
Y1 = Wk1lier Yk 212e Ry Yhom lmer) (56)
Y2 =(Yk,1 11¢Rayk,212¢R7~-~7yk,m1m¢R)T~ (57)

Using (55) and the definition of R, and then the induction assumption on the bound of ||di|| and (53) yield the

ml/2
following estimates with probability at least 1—e ( fnm ):

u —o)w 3/2
0180 <of( A0k ) "
u nm —Q)w 3/2 nm
oo BB co 1)

Following the later decomposition of y;, (with the components in (56) and (57)), we decompose the term in (51) into
Z;;loym and Zi;loyk,g. We denote g; , 1222;103/;“2 and g; , :=g;—g; ,- We note that g;, is the sum of the term
in (50) and Zz;loyk,l. By using the bound of (50) given in (52) and (58), we bound gj , as follows

-1

k
0 0 0 0
ot <> TIWE D | (Wis(D 1+ Dl )09l
k=0 \j=1

-1
+> |yl
k=0

-1

<SOWL2)+ " llyrall
k=0
<OWL*)+L
SO(WL”7)+ ke{oﬁlf?‘ffl_l}uy’“”
1—a)wL3/?
SO(wL3/2)+LO(< o) )

(1+a2)1/2m1/2
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Using the fact that m>Q(L?), we show the ¢ norm for g;, in the second statement of this lemma holds:

1—a)wL?/?
o106 +10( 1 s ) <OWLY)

Applying the induction assumption, i.e., [|g;_ | <O(WL?"?) for k€{0,1,...,1—1}, and (59), we conclude the second
statement of the lemma for layer [ as follows

=L l—a \/111me3/2> (\/111me5/2>
=<3 2||OO<LO< _ —of YmerT ) (60)
2 (a2 i Vi

Finally, we note that [|gjl| <|lg; [ +lg; o|l, and thus the first part ||g; [ is bounded by O(wL?/?). Furthermore,
applying (60), we bound the second part, [|g; ,||, as follows

lnme
lgiall= | Y g2, <y/m = VInmwL5/2.
JES2

By definition, h; = Dg; + D'gl(o) + D'g] = Dg, + D'g,. Applying |D| < 1, |g/|| < OwL*?VInm) and
| D’'gi|| <O(wL?/?), we bound the norm of hj in the following way

[hi]| <O(1)OWLY2Vinm)+O(wL*?) =O0(wL**vInm).

Thus the third statement of this lemma is concluded for layer . O

Lemma B.5. For given integer a,b as 1<a<b<L, and if d<O(F2-), |W’|| §w<0(m>. Then we obtain

that with probability at least 1—e~*m/L)

1. (wODY)_ +DL, WD)+ D )W | <O(VL).
o |(WO+ W) (DY) +Dl, )W+ W) (DO 4D, )W+ W) <OWE).

5. WD)+ D, ) (W, + Wy).. (D) + D, ) - W DY W, W DY <O (A2 L42).

4 |1BDY+D) W +wy)...(DY + D) -BDYW .. W), DY)

1—a_ w'/3L%Vmlnm
SO( 1+a? vd )

The proof of this lemma follows the same arguments of the proofs of Lemmas 8.6 and 8.7 in Allen-Zhu et al. (2019b),
but uses instead Lemma B.4 and the fact that | D’||=(1—«a)/v1+a?.

B.4 Gradient Bounds and Proof of Lemma 4.2

We first introduce two lemmas (Lemmas B.6 and B.7) that provide upper and lower bounds for the Frobenius norm
of a certain matrix-valued function G; l(v'W(O)) with randomly initialized parameters W (. This function, which
is defined below in (61) equals the gradient of the loss function when v = e( =Bh; 0) At last, we conclude
Lemma 4.2 by applying the perturbation bounds of Lemmas B.4 and B.5 in order to show that the order of the bounds

in Lemmas B.6 and B.7 are not affected by a small perturbation W' as long as ||W'|| §w<0<n¢L).

3/21,15/2]n3/2m,

We remark that the proof of Lemma B.6 is straightforward and follows Allen-Zhu et al. (2019b). The proof of
Lemma B.7 follows ideas of Zou and Gu (2019), while adapting it to Leaky ReLUs and improving the lower bound
of |V LW (®)||2, by quantifying lower bounds for layers before L instead of only using ||V, L(W(®)||2, as done
in Zou and Gu (2019). This improvement reduces a factor L in the lower bound, which will eventually make the
learning rate of the desired theory independent of L. The idea of concluding Lemma 4.2 by examining the effect of
a small perturbation on the parameter follows Allen-Zhu et al. (2019b).

We define the matrix-valued function, G; ;(v;W), for [€[L] and i € [n] and v€R? as follows

G (v;W):=D; Back] wh],_, =(Back;;D;;)"vh],_;. (61)
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We note that G; ;(v;W) is related to the gradient of the loss function as follows:

G, (e; W)=V, loss(x;,y;;W).

Lemma B.6. Assume the setup of §2 with randomly initialized W . If d<O(475=), then with probability at least
1—e—Um/L)

|GiaoW )30 (%) ol (62)

Proof. The second statement in Lemma B.3 implies that |Back;,|| <O(y/%) with probability at least 1—e=m/L)
and therefore

G2 (0;W ©)|2.<||D; Back) " vh)" |12
0)T 0)T
<||D;Back{ v |[* R, |

<O(Flwil3).

Lemma B.7. Assume the setup of §2 and with randomly initialized W'©) . For any set of vector {v;}, CRY,

n n
(1-a)? om 2 e —Q(mé?)
1 "Gy (vi;WO))2 ZQ( — |lvil|® with probability >1—e=>*\").
; pT F (14a?) ndL ; ‘

Proof. We separate the proof of this lemma into four parts. In the first part, we define a set in R™ (see (63) below)
and show two important properties of this set (see (64) and (66) below). In the second part, we establish a lower
bound for a useful function (as defined in (70) below) with a probability at least 0.5. In the third part, we use this
lower bound to establish a lower bound of the loss function with a positive probability. In the fourth part, we conclude
the lemma by using all the results proved in the former three parts.

Since we assume randomly initialized parameters without training, we simply denote h;;:= h( l) and W:=W© across
this proof.

Part 1. We arbitrarily fix [ € [L] and recall that h;; is the output of Ith layer. We denote

hiy=hiy/|hi,
We form an orthogonal matrix Q;; € R™*™ whose first column is h;;. We denote the matrix in R™*(m=1) which
completes this vector by QM, that is, Q; .—[ z,vaz,l]-
For a small constant ¢; >0 (the choice of ¢; will be determined during the proof), we let y=c16/(nL+/m). For i€ [n]
and the fixed [ €[L], we define

Wigi={w eR™: Al w| <7, [(QiiQf yw.hyi) | > 2y Vi € [n]j #i} CR™. (63)

We prove that for any choice of «y the sets W, i € [n], have no intersection, that is,

WLZQWJ‘_’[ :(Z), VZ#j S [’ﬂ] (64)

For any w €W, ;, we need to prove that w¢W;,;, where j#i¢e [ ]. We prove this by contradiction. Given weW,,

we assume that there exists j#i€ [n] such that weW);;. Since Q] ZQJ =1— hj AT

j1» We rewrite Q]lQJ Jw as

Q;Q  w=(I—h; k! ) w=w—(wh;)h;,. (65)

s
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Applying (65) and the fact that (w,h;;) <7 and (w,h;;) <7 for weW;;NW;; results in
(QuQT w b )| =|(w— (w,h )bk
<|(w.h;, l>|+|<w7ﬁj,l><ﬁj,l7ﬁi,l>|
<v+|(hjLohiL)
<2.

On the other hand, since weW,, |<Qj7lQ}jlw,fLi7l>| > 2 for i+ j, which contradicts the above equation. Therefore,
we conclude (64).

Next, we assume w~ N (0,2 1) and prove that

P(weW,)) za(&) (66)

The orthogonality of Q;; implies that fzzlw and Qzlw are independent. We thus express the probability (66) as follows

P(w e W,,) =P(|h]w| <7P((Q;, QT w.hj )| > 27, Vj € [n].j #i). (67)

We note that th'wNN (0,2) and thus express the first multiplicative term in (67) as

P(|h] w| <) = / dx>Q(7\F) when v/m< 1. (68)
N
To express the second multiplicative term of (67), we first derive the distribution of ijTlQZ lQile. Since
Qi.Q],=I,,—hi;h]; and Q],Qi =1, 1,
ﬁjT,lQi,zQle~N<0, 11Q:.1Q7,Q.,Q7 h; )
(0 Ehf (I-hihl)h;, )
—N< ( <iL. h: >2)2>
3,05T44,1 m
By Lemma B.2, we recall that with probability at least 1— =8 m/ L4),
(hi,p,hjr)? <1—-Q(8%/L2), for all ijen).
We thus note that ﬁlei,lQlewN (0,72), where 72 is greater than Q(6%2/mL?). Consequently,
22
cp a7 ~yLy/m
P(lh;,Qi:Q;w|<27)= m/ < >d$<0( )<O( 5 >
Applying a union bound over all j € [n], j#1, yields
N~ L
]P(Elje[n],j#i such that |h7,Q; Q7 w| §2'y) gn()(”g/ﬁ)
Consequently,
Ao ) L. ynL/m
P(IA1,QuQT wl > 2y Vi€ln]j#i) >1-0 (f) (69)

Plugging (69) and (68) into (67) yields

Plw eW; 1) =P(Jui 1| <v)P(|v; j| > 2, Vj € [n],j#1)

(o 4)
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Recall that v=c18/(nL\/m), we select small ¢; such that both O(% Y2Y=0(1)-¢c1 <1 and y4/m=c16/(nL) <1
We thus conclude this part as follows
1
>Q
(w ew; z) <n L)

Part 2. Given integer k€ [m] and [ €[L], we define the following vector-valued function for a=(ay,...a, )’ €R™ and
weR™:

b (w,a): Zaz ((w,hi )i (70)

We prove that conditioning on the event weW,;, a certain lower bound of ||by;(w,a)]| is achieved with a probability
at least 0.5, that is,

P(Ibestwall= Lo bt fwews) > 5.

2 V14a?

We rewrite w as w:Qilele (hZ lw) i l+Qz le LW,

(w,hjo) = (hfw)(hi g hi) +(Qi QT w,hyy) for ji

Using the following two facts: w € W;; and both ilu and ijJ are unit vectors, we bound the absolute value of the
first term of the above expression as folows

(Rl )l (hig byl <.

Since w € W; ;, the magnitude of the second term is greater than 2y. We note that the sign of <w,ﬁjyl> is the same
as that of <Qi,kQ;‘1:kw7hj,l>~ This and the piecewise linearity of the Leaky ReLU function imply that for weW;;

o ((whj ) =5, (QixQFw.hy ), for j#i. (71)

We note (71) implies the following expression for by ;(w,a) for weW,;: by ,

bri(w,a) =a;6, (] w)hi i+ a;50 (h] w)hy,
Vo
=a;0 1 lw Z+Za] Q1 kQ LW, h’] l>>)h’
J#
_a‘ﬂlAT hi+a,—— l—i—Za Q kQ kwh l>>)h
- Y hz 'LU>O (2 Z ) j 1, i
V1t+a? M po
We denote
 (1-w
b ~—ai\/ﬁhi,L—1
!
r=0,—F——= s zL 1+Za’j¢ Qzuzv 5, L— 1>)hj,L717
1ta JFi
and thus express by ;(w,a) as follows
bk7l(w,a):b11ﬁzlw>0+r. (72)

By symmetry of normal distribution, we know that fzzlw >0 with probability 0.5. We also note that ﬁgl'w and Qile
are independent and thus 15+ . is independent with 7.
i,l

We consider two possibility for r:

e When |r|| > 3||b1||, we know that with probability 0.5, ﬂg:lw < 0, which implies by;(w,a) = r, and thus
[|bri(w,a@)|| > 1||b1]|. We thus note that at least with probability 0.5 that ||by(w,a)|| > 2 |b1]|.
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e When |Ir| < 1||b1]|, we note that fLiT,lw > 0 with probability 0.5, then by triangle inequality, we imply
br.s(w.a)| > [[b1]| = [l > 5][bal-

We conclude that

a; (1-a)

2 V1+a?

Part 3. The proof of this part does not depend on a particular choice of i € [n]. For simplicity, we thus drop the
subscript ¢ in this part.

(73)

1
P(1osstwa) = Il e ) > 5.

For veR?, k€[m] and [ € [L], we define ay,;:=((Back;). x,v). We want to show that for any integers k € [m] and I € [L],
2 Jv]? (o
P{ (ar))"20( = >1—exp(—0(1)). (74)
To prove the above statement, we also need an auxiliary statement for [ € {2,3,...L+1},

|D_1Back] v|| > (1—¢), %””” with probability at least 1—e~(me*/L%), (75)

In order to prove the above two statements (74) and (75), we first prove that W;|D; has the same distribution as
W, ie., N (0,%). Then we use a similar argument to that in the proof of Lemma B.1 in order to show (75). Finally,
by using the distribution of W; given D, together with (75), we prove (74) and conclude this part.

We prove a more general statement for conditional distributions: given a normal random vector in R? as w ~ N(0,6%1,),
and a random vector h €RP that satisfies following three properties:

1. h is independent with w
2. The norm ||h|| is independent with the direction h/||h||
3. The direction h/| k|| is uniform distribution in the unit sphere SP~*

We further define B:=1p7,,~¢ as a random variable. Then the conditional distribution of w|B is the same as the
unconditional distribution of w, that is

w|BLw~N(0,02L,). (76)
Remark: a normal random vector N (0,02I) satisfies the above three properties and thus w also satisfies above three
properties.

We denote the unit vectors h:=h/||h| and @w:=w/|w|. We first note that B=1 AT w0 Only depends on the directions
of h and w. By the former observation and the fact that |Jw|| is independent with @, we thus note ||w|||B = |jw]].
We denote the probability density function for a random variable Y by fy. We next consider the probability density
function f,,z(w), by independence of the norm and the direction for w, we obtain

fw|B(W) = (W], W) = fluw) B (W) fo 5 (W) = filw ([w]) fo 5 (D). (77)

Thus, in order to show (76), it is sufficient suffices to show that '[U\Bi'ﬁ]. We prove this by showing that for any
set ACSP~! in unit sphere, P(w e A[B=b) =P(we.A) for any b=0 or 1. Given h is uniform in unit sphere, we know
that for any fixed direction s, P(h”4>0)=0.5. By Bayes formula, former observation, and h is uniform in SP~!
P(we A, B=1)

P(B=1)
_ P(B=1llweA)P(we A)
[ P(RTw>0[) fo ()
B fAIP’(B:1|ﬁ;=ﬁ;)fﬁ,(1b)dtb
 Jso P(RT > Ol fo (1) o
B 0.5fAfﬁ,(127)dﬁJ
05 g o)

- / Fao o) dio =P (1 € A).
A

P(we Al B=1)=
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A similar argument leads to P(w € A|B=0)=P(we A). By (77) and above argument, we conclude (76).

Given the symmetry of normal distribution, we conclude that g; satisfies the three properties we required for h
above. Together with the fact that (W})g,. is normal N(0,2/ml,,), we thus conclude that (W}).|(D;)xx is still normal
N(0,2/ml,,).

Next, we estimate the norm of DﬁlBaclev. We define vector z; ::DlBackﬁ_lfv for l€[L] and z41:=v. We first
note z;, =Dy BTv and (BTv);~N(0,||v||?/d) for j€[m]. By denoting Bournulli random variables B, ;:=1(g, ), >0,
each index of zj, can be expressed as

Br j+a?(1-Br ;)
2_PLyj L,j T,.\2 :
(zL)j= T2 (B v); for je[m].

We denote Qr,:={j: By ;=1}. Conditioning on @, denote two independent random variables Hy, 1~x*(|Qr|) and
Hpo~x*(m—|QLl) , we note
a_ vl o?||v|f?

2
= H
bl 1= G ey et i)

Hpo.

By symmetry of random variables before L layer, we know By, ; ~ Bournulli(0.5) and then by Chernoff bound on
binomial distribution, we note that with probability at least 1—e~%m<") |QL| €[(0.5—¢€/2)m,(0.54¢/2)m]. Given
this even happen, by using tail probability for chi-squared distribution, we note that

P(Hy , <0.5m(1—e)) <e 2me),
Similarly,
P(Hy 5 <0.5m(1—¢)) <e2me).

By taking event |Qr|€[(0.5—¢/2)m,(0.5+€/2)m] and using above probabilities, we conclude the lower bound for ||z ||

2 mlfol?

zr||*> 1—¢) with probability at least 1—£2 e~SUme), 78
2d

We note that z;_; =D} W'z, Conditioning on 2;, we note that Wj|z;=W,|D, is a random matrix whose entries
are iid N(0,2/m). We denote a random variable By j:=1(4,) -0, then

m 2
Bl,‘—‘rOzQ(l—Bl,‘)
R D e e DL AT I | 52

j=1

We note that (3, W)); ;(21)ilzi~N(0,2]|z]|?/m). We denote the indices set where B; ;=1 by Q;:={j:B;;=1} and
conditioning on @, we further denote two independent random variables H; 1 ~x?(|Q;|) and Hj 2~ x%(m—|Qu|). We
note that conditioning on @;, by similar argument we used above in proof of Lemma B.1, we know that

2 2 2 2 2
(e Zl»QliiHZZ” Hiit — Iz

m(1+a2) " WHZ’Z (79)

By the same argument to derive (78), we know that by Chernoff bound for binomial distribution, with probability
at least 1—e~2m") Q| €](0.5—¢/2)m,(0.5+¢/2)m], thus we note that

P(H; 1 <0.5m(1—¢€)) <e 2m) P(H, 5 <0.5m(1—e)) < e~ 2me),

Consequently,
llzi_1][*>||z1]|*(1—€) with probability at least l—Q(e_Q(mEQ)). (80)

For any positive number €y, when we choose e=¢o/L in (78) and (80), and then by (1—e/L)* >1—e¢, we conclude that

2] > %||v||2(1—60) for all [€[L], with probability at least 1—Q(L)e~2(me/L%) (81)
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Finally, recall that ay; = ((Back;). x,v) and by definition of z; in above proof, we note that ax; = (W)). x,21).
We note that (W)). x|z = (W)).x|Dy, by first statement we proved in this part, we further can derive that
(W1). k|21~ N(0,2/mI). Thus, we know that conditioning on z,

2|z

ay,|z1~N(0, ),

By the tail probability of normal, we note that the with a constant probability that ay; is lower bounded as

2]z

(072022 ) > 1-ep-)

m
Combining with (81), which holds with an overwhelming probability, with a small constant choice of €, we conclude

o]

P((ak,lf zo<d>> >1—exp(—Q(1)) forl €[L].

Lastly, we also show this is also true for [=L+1. Recall that Backy ;=B and that ax 141 =(B. ;) NN(O, HZHQ )

By using normal distribution property,

o]

p((arer720( 1)) > 100

We conclude this part by the final statement that

[[v]|?

P((ak,l)220< y >)>lexp(Q(1)) for 1€ [L+1]. (82)

Part 4. We denote a vector a;; €R™ by denoting its entries as (ay,),:= ((Back; ;). x,v;) for i €[n]. By definition (70),
we note that by ;—1(W)),.,ak,141) = (Z?=1Gi,l (vi;W))y.., by the definition of Frobenius norm of a vector of matrices,

n 2

ZGi,l(Ui;W)

=1

m

= ki1 (W), axa41)lI. (83)

F k=1

Due to (64), for any vector w€R™ and any integer [ € [L], we note
n
12 Twew, - (84)
i=1

It follows from (83) and (84),

2

> GiwiW)| =D bkt (Wk i) I 1w, ewsis

i=1 F k=1 i=1
:Zznbk,l_l((m)k;'7a'k;l+1)||21(Vvl)k,-€Wi,l—1
k=1i=1

By (73), we know that with probability at least 0.5, conditioning on (W;)g,.€W;,—1,

(ari41); 1-a)?

br1—1 (W) 2> hig
1Bra—1 (W@ )" 2 =7 o2 ([Pui -1l
We introduce the following new event V;; as follows
o |lvill? 1
Vi,l:{("Vl)k:,- EW5i-1, (Qri41); > 5d [P -] 25}-
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Using this event, the observation V; ; C {(W))k,. €W, 1}, the definition of V;; and (73), we obtain the following lower
bound on the squared norm in (83):

2 m n
>3 bkt (Wi @) P Lwn, e,y

n

ZGi,l(vi;W)

i=1 F o k=li=1
>3 Nl (W ara51) P,
k=1i=1
[vil[> (1—a)?
_ZZ P(V;1)-
2 ;
— 32d 1—|—a

For simplicity, we denote

n ’ 2 1— 2
foey Il (=

To lower bound the probability P(V; ), we note that W, ay ;41 and h; ;1 are independent because they depend on
Wiy, for ke [L—1+1], W, and W,_, for k€[l]. We note that (agy1); is corresponding to ay ;41 with selecting v=wv;
in the statement proven in the previous part (74). Then by using (67), (74) and applying Lemma B.1

v;||? 1
PV =B Wi (i)t = )P (a2 )

>Q<n6L> x (1—exp(—0(1))) x (1—e*9<m/L>) :Q(i)

By property of indicator function, we note that

and ) )
llesl|* (1—c)
32d 1+a2

Va Z 1V¢)ZP(Vi,Z)(]—*P(Vi,l)~

Then, by using Hoeffding inequality, with probability at least 1—e=md*/L%) that
leq]” (1
Zy> i
Z g QZ o Ty PO
sz||vz||2 1 CY i
32d 1—1—042 nL )’
Thus we conclude the Lemma, for all [ €[L], as follows:

>sz— <

zn:G” v ;W)

i=1

ndL)D .

At last, we conclude the proof of Lemma 4.2.

Proof of Lemma 4.2. In order to prove the lower and upper bounds for the gradient for parameters W close to W©),
we need leverage Lemma B.5 to show that after perturbation from W), the change in gradient has a smaller order
than the upper bound in Lemma B.6 and the lower bound in Lemma B.7. Then the same upper and lower bounds
hold for W such that |[W(®) —W | <w and thus conclude Lemma 4.2.
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We denote a perturbation of the function G ;(v;W () with respect to W),
Gii(v;W) =G, (;W )
:(UTBDi7LWL~-~Di,l+1VVl+1Dz‘,l)ThZF1—(UTBDg,OL)W(O) Dz(%r1“/z(+)1D O))Thzo)i
= BD; \Wy...D; Wi D)) 'R~ (0" BDO)W " ..DY), W\ DI))Th,_|

I+1
+@"BDO)W.. D WD) h],_, ~ (" BDOWY...DY), W, DO)TR)",

Using ||uv”||r <|Ju||||v]|, and denoting vectors v; €R?, we derive the bound for the change of the gradient by

HZGM ’UI, zl(vz7W(O )HF
<3 o] (BDLW,.. DisWiss D~ BDO WL DO W) DO |
i=1
0) 11,0 0 0 @
+i! BDY W, DL WD s =k (85)
By Lemma B.5,
|0" BDL WDy Wia) (0" BD WD W) |
vml
<0 Wi/ Y |v|| with probability at least 1—e~S2"/E), (86)
Vd
By Lemma B.1,
[ <1.1 with probability at least 1—e™2"/L), (87)
By Lemma B4,
||hl,1—hl(2)1|| <O(WL*?VInm) with probability at least 1—e~*™/L), (88)

We note that the combination of (87), (88) and the bound w<O (W) (which is a weaker bound than the one
stated in the lemma) imply
|h||<O(1) with probability at least 1—e~ ™/, (89)

By applying (86), (87), (88) and (89) to (85), we conclude that with probability at least 1—e=2(m/L)

2
minm ) w—

il 'Um i l(vwW( ) SO(W2/3L4d>Z|vi|2' (90)
i=1

F

We note that for [ €[L], i €[n],
Vw,loss(@;,y:;W) =G (e W).

and thus

n

Vw L(W)=> GiesW). (91)

=1

Therefore, substituting v; =e; in (90), the left-hand side of (90) becomes the perturbation of the gradient of the loss
function. Since w <O (%) and d <cg,

23 parminm _ o ( om mn
WA <o(n )<0( ) (92)
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For the upper bound, by Lemma B.6, (91), (90) and then by (92), with probability at least 1—e=(m/L),

2

IVw LW)[[5=|>_Giiles; W)
=1 F
n 2 n 2
SQ ZGi,l(ei§W(0)) +2 ZGi,l(eiQW(O))_Gi,l(ei§W)
=1 F i=1 F

< (O(W;n)+0( 2/3L4mlnm)>2”61”2
<O(Z2) Y ledl?
=1

:O(—)ﬁ(W).
By definition, we further conclude that

2 2 mn
[V £OW)|* <ma|[Vow, £OW) 1< O ) £(W).

For the lower bound, by Lemma B.7, (91), (90) and then by (92), with probability at least 1—e_Q(m52),

n 2

IVw LOV) 7= [ D_Giiles; W)
=1 F
- (e WO _ e WON_@. (e
> ZGz,l(ewW ) ZGz,l(euW )=Gii(esW)
i=1 F =1 F
(1—-a)? om 23 4mlnm 5
Q( 1+a2 ndL © L ZHEZH
(1—-a)? dm
>0 —_— .
- < 1402 ndL £w)
By definition, we conclude that
(1—a)? dm
IFw £ 1= Y 9w W)l >0 0 ) e (93

le[L]

B.5 Proof of Lemma 4.1

We prove Lemma 4.1 by adapting the arguments of the proof of Theorem 4 in Allen-Zhu et al. (2019b) to Leaky ReLUs.
Let us first introduce some notation. We let W* be a vector of matrices satisfying |[W* — W(©)|| < w, where we
think of W* as a vector of matrices at an arbitrary training step (we will apply the lemma in this way). We denote

a perturbation of W* by W’ and the perturbed matrix by W :=W*+W’. Additional notation corresponding to
the original, perturbation and perturbed settings (of W*, W and W’ respectively) is summarized as follows:

9, =W/'h{,_,, gi,=Wih; 1 9i1=9i1—9;
(Di,l);j _ 1(gi,l)j_0+a1(gf,z)j <0 ’ (Dig)js = Ligin), >0t al(g,),<0 ’
V1ta? V1t+a?
hii=6a(W/'hi_1)=64(9;,) hii=6a(Wihi—1)=064(gi.), h; =hii—h],
ef,z =Yi —Bh;u €i1=Y; _thL e;,l =€l —ef,r

/! L *
Di,l—Dz,l Di,l
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The loss functions at W* and W are expressed as

ZII e;l? L leezH2 (94)

We introduce an auxiliary lemma before proving Lemma 4.1.

Lemma B.8. There exists a set of diagonal matrices Dg:l €[—V2,V/2]™*™ so that

l
h;,l:hil h’zl*Z(D* ZZ)VVZ*( 1l 1+Dlll 1) Vva+l(‘D>'< Dgl,a)Wz;h’i,a—l'

a=1

Furthermore, the following bounds hold

IR I <OLP2)[W'|, - [IBR; LIl SO(Ly/m/d)|[W|| and | Df,llo<O(mw??L).

The proof of this lemma is identical to the proof of Claim 11.2 in Allen-Zhu et al. (2019b). It is obtained by replacing
|Dy. | <1 in the second statement of Proposition 11.3 in Allen-Zhu et al. (2019b) with |Dy/ ;| < V/2 in order to fit the
setting of Leaky ReLUs.

The rest of this section provides a detailed proof of Lemma 4.1.

Proof of Lemma 4.1. We first express the loss function at W as follows

loss(;,yi; W)

1 1 N N
:§||Bhi,L_yi||2:5||B(hi,L_hi7L)+Bhi,L_yiH2

1 * * 2 1 * |12 1 * 2 * *
:§||ei+B(h’i7L_hi,L)H :§||ei|| +§||B(hi,L—hi,L)|| +(e;,B(hir—h}))

1 1
=loss]+ 5 | Bhi L —hi)|*+e;" B(hi—hi ) =loss] + 5 [|B(hi r—hi 1)|* +e;" Bh 1. (95)
Then we expand (VL(W™*) W') as

(VL(W™), W)
L n

L
=Y (Vw LW W))=3"> (D; Wi D}y, D; BT e il (2:), W)
I=1

I=11i=1

L n
= ZZ<DZlVVlfiDZl+1 ---D;LBTef hffl (x:), W)

I=11i=1

:ZZ *TBD*LWL i, l+1"Vzi1Df,zwfz/h7—1(mi)-

l=11=1

~
3
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The above two equations imply the following estimate
LW +W') = LW*)—(VL(W*) W)
=—(VL(W™*),W') —I—Z(lossi —loss))
i=1

:_ZZQ*TBD*LWL D*z+1vvl+1DleVzhl 1 ()
1=11i=1

- 1 * * *
JFZ(QHB(’%L*hi,L)H2+67:TB(hi,L*hi,L))

n L
=> " B((hip—hi 1) =Y D; Wi ..Dip s Wi Dy Wihi_y (@) (96)
i= =1
I .
+5 D IBhir—hi ). (97)
=1

Lemma B.8 provides the following upper bound for (97)
*ZHB iL—h; )| <O(mL?m/d)|W'||*. (98)

We note that (96) can be differently expressed by using Lemma B.8 to replace h—h* with some diagonal matrices,
DY, and by adding and subtracting the term ZleDZ (Wi..Df Wi Dy Wik as follows

e;"B((his—hiL ZD Wi D Wi Dy Wihi_y ()

&~

:efTB(Z it D)WL W (D + Dy )Wihi
=1

L
=Y D} Wi D Wi Dy Wihiy ()

L
—e;"B(Y_((D; 4+ D)W Wi (D + D)W~ D Wi Wi Dy W iy (99)

=1
—ZD D} Wi Dy Wi (i1 —hi_y (@1)). (100)

Next, we upper bound (99) and (100). In order to bound (99), we first use Lemma B.5 to obtain the following bound
|B(D; +D; 1 )W;..W/"(D;,+D;,)W/-BD; ,W;..W, D, W/|
l—a w'3L?/mlnm ,
<o o Wil
Vita Vd

Using (94), we note that (3", |lef])*<nd>_",|lef|?*=nL(W*). Combining this fact and (101) yields the following
bound for (99):

(101)

Ze*TB(Z LW Wiy (D} + D)W/ = D; Wi Wi Dl W R )

—a WBL2/minm
sx/nﬁ(W*)0< \/ﬁw — 1 >||W’||. (102)
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In order to bound (100), we apply Lemma B.3 and Lemma B.5 to obtain

|BD*; ;W*1,...D*; ;.1 W* 1,1 D", |

0 0 0 0 0

<|BD°  W?°,..D% s W° D’
0 0 0 0 0

+||BD% ;W°,,..D% 1 ;W° 1D ,—BD*; ;W*|,..D*; | . yW* .1 D", |

1—a w3L2V/mlnm
<O(\/Lm/d)+0<m 7 )

Lemma B.8 implies that ||h—h*||=|/k'|| <O(L*?||W’||). Combining this observation and (103) results in

<lee*ll0 Vm/d)||W'|.

Ze*TZBD WD} Wi D Wihi
=1

In order to bound ||ef||, we first note that at initialization
© 0
e 1= 1BRE) il <[luil + BRI
where

2
Bhg)in(O,H}ZJ'Id).

For this Gaussian distribution and d<O(1),
P(”(Bh([?)i)”? N Vm) <emUWE) — = m)
’ Vd

Therefore, with probability at least 1—e (™),

<0 7).

For general e}, |lef||= HB(hEOL) (hi,— h(O))) that if w<O(1/L)

" (0) * (0) vm
e[| <l ||+||B(h; <0

The combination of (105) and (104) results in the following bound on the term specified in (100)

nL*m
<o "5 )W

ZE*TZBD*LWL Wi Dy Wik, i,l—1
i=1

(103)

(104)

(105)

(106)

Combining the bounds in (98), (102) and (106) we bound the terms in (96) and (97) with the above specified probability.
We thus conclude the desired result, that is, if W* is such that | W* — W (9)|| <w, then with probability at least 1—e~2("™)

LOW* +W')— L(W*)— (VLW*), W'

1— /312y /ml
<¢n£<W*>0< c m“’”)nvv'+0<nL2m/d>||W'||2.

V142 Vd
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B.6 Conclusion of the Proof of Theorem 3.1

Most of the proof of Theorem 3.1 was given in §4. The only part that remains unverified is to show that during training

W WO | <w<O L
n3/2L15/2103 2, )

For this purpose, we establish Lemma B.9 below.

Lemma B.9. Assume the setup of §2, where the learning rate satisfies n< % and the width m of the
neural network satisfies r— >Q( &Jrz — §41 sd). Then in the training stage described by Algorithm 2
@ _ &2 - N —Q(inm)
Wt —w ||<O(n3/2[/15/2hl?’/2m> with probability at least 1—e . (107)

Proof. We first establish the bound
LW ) <O(nn/?m) with probability at least 1—e ™), (108)

We note that Bh; , ~N (O,%) and thus ﬁ | Bhi ||*|li., ~x?(d). Applying this observation and Lemma B.1
(ie., ||| €]0.5,1.5], with probability at least 1—e~("/L)) yields

d
P
(Ih

Choosing € = vInm and applying a union bound over i € [n] (but noting that since m > (n) the probability
1—ne~¥dm) s of the same order as 1—e~{™)) we obtain the bound

|Bh; 1 ||> <O(VInm) with probability at least 1—e~$Xdnm), (109)

Tl Bl |7 (1) <0,

Therefore, we conclude (108) as follows:
LWO)=>"|ly;— Bh; |> <n(O(1)+O0(VInm)) =O(nvVinm).
=1

Next, we prove (107) by induction on t=1,--. It is trivial that the statement holds for ¢=0.

To prove the induction step we follow ideas that were introduced in the proof of Lemma 4.1 in Zou and Gu (2019).
Using the induction assumption, we can apply (16) and then (14) (indeed, the conditions for these bounds are
guaranteed by the induction assumption) and consequently obtain

; oy LWE)—L(wth) VLW )|
VEWO) = [ewe+n) = e e 2 e

> “T‘;;QQ/%) VLW ),
nIVLW®)||p< v(11—+§2 <\/7> (\/c \/c s+1)> (110)

Combining the training procedure with (110) yields

or equivalently,

t—1

WO WO <> [V (WD)

s=0

<L) (- )

Sv(llj—;j)29< "d> LW O), (111)

om
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Applying (108) to the bound above we conclude that when 7> (}fg; Q(ndLd/5%),

53/2

IWO-WO<0(
n3/21,15/21n32m

) with probability at least 1—e~ (™),

B.7 Proof of Theorem 3.2
§3/2

Throughout this proof we assume that |[W® —W©)|| < O( 5771572077, ) during training, which is a sufficient
condition for some of the propositions used, such as for Lemma 4.1. After finalizing the proof under this assumption,
we establish Lemma B.10 that guarantees this assumption.

Applying Lemma 4.1 and taking expectations yield
EL(W D) =EL(W D -V Lp(W D))
<ELWY)—En(Vw LW") Vo Ls(W D))
+n(1—o¢)w%L2 mnL(W ®)lnm
d(1+a?)

EO (7w Ls(W ) (112)

nL?m
+77

Eo(ancB(W(t))H?).
Applying the following basic observations:
E(Vw LW ) Fw L (W)= [V WO},
IVw LW )| =max| Vo LW )| < max| Vo LW O < [V LW ) e

while selecting w < and 1< 7%, to (112) results in

)
n3L6In3/2m

b (1—a)? némb
E (t+1)y < (ty_1° V12, < (1-0 O 11
LV ED) < W)= 7y, LW ) 2. < ) )ew ) (113
For simplicity, we define
(1 (1—a)? némb
= (1 Q( 1402 n2d ) )’
and (113) becomes
EL(W DY <A o(Ww®), (114)

Next, we establish a bound for £(W (*+1) without expectation. We note that (9) implies
IV Le(W D) |7 < (bm/d)L(W ),
and consequently

bmL

IVw Ls(WO) |7 <=—LWY) and vaﬁB(W(”)IIQSmeC(W“)) (115)

The application of Lemma 4.1, (115) and our choice of 7 results in

2
LW D) < LOWO) 1 Vow L (WO | Vo LV £ (W )

< <1+O (W) ) LWO). (116)

For simplicity, we define 3:=1+0(nmLv/nb/d), and (116) becomes

LW <aLw®), (117)
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We denote
Lh=cw®)

and define the filtration
Fr=o(WO W),

We further define
Y=Ll L' —E(InL! —InL' 1 F )

and .
X, ::ZYS.
s=1

We note that {X;} is a martingale.

We will use Azuma’s inequality to bound X;. We thus need to show that {X;} is c—Lipschitz ( ie., |Y;|<c,). We
verify the e—Lipschitz property by applying the definition of Y, (117) and (114) as follows:

Vi1 | =L —Inf® —Elngt+) —ing®| 7|
< 1n6—1n’y:1né.
gl

Then by Azuma’s inequality,

)\2
P(| X —EX | >N) <2 - . 118
(i) 20 <2exp ) (119

Choosing A=+/tln(B/v)lnm in (118) yields

|X;| <Vtn(B/7)lnm with probability at least 1— = Q0n*m) (119)

Applying the definition of ¥; and (114) results in

t
L' =X+ +Z]E(Ys ~Ye1|Far1) S X +InLO 4ty

s=1
We further apply the above observation and (119) to conclude that with probability at least 1—e=n*m)
InL® <Inf©® +4tlny++/n <B) Inm
Y
I 2(ﬂ>ln2m ln m \ 2
We note that for f(x)=(az+b)* and z>4b/a, f(x)>ja*x?. Using this fact, we conclude that when /> ‘21r|llnir|lm,
4In? gln m
or equivalently, when ¢ > o
In%81n%m
Inl® <@ 7 4¢x1 28,2 3 Iny with probability >1 _ e~ Qn*m). (120)
4y {t &}
n<y

4in*L1n*m . . . .
This implies that when ¢ > 7ﬁy we achieve linear convergence with a convergence rate of . By our choice of

7, the additional term in (120) is bounded as follows

2 2 2
:ln (ﬁfgln m <O<(ﬁljy)21n2m> :O<n”m?’zzhlm) <O(1).
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The above lower bound of ¢ that guarantees linear convergence can be further simplified. Since {7 < In(142z) <
(B=D*+ 052 )1 m
(v=1)?

we note t> and thus

e (1 010,

Recalling the expressions for 5 and -y, we conclude that linear convergence is achieved when

(1+a?)? L2

The above argument holds for one training step with probability at least 1 —e~ (™). It extends to T steps with

probability at least 1—Te~ ™) We note that the number of epochs T' can be bounded using the bound € on the
training error, the convergence rate in (6), and (108), as follows:

T =In(e/CoL(W®)) /Iy < O(In(e/Conv/Inm) /lny) <O (’72‘2521 (Ine~? +1n(com/h7n))> .

Therefore, the probability that ensures T-steps training with training error lower than € is at least

1- 0(7725;”( el+ln(00nvlnm))>eﬂ(m).

Because m > Q(poly(n,L,d,0~1,b)) and also m>Q(Inlne '), this probability is of order 1—e=?™),

§53/241/2
3 LI5/2mi/2In2m

= :))8 Q( SéLszsd). Then during training according to Algorithm 3,

Lemma B.10. Assume the setup of §2 with learning rate n< 517

and neural network width m satisfying

53/2

WO -wO| <O —————
n3/2115/2103/2m,

> with probability at least 1—e 2™,

Proof. The proof is similar to Lemma B.9, but with different bounds in this SGD setting. We first show bound the
perturbation at initialization as follows:

WO _WO| = Ve LW <n0O[ /™2 ) cow @) <0 o2
I - l=nlVwLs( N<n e ( )< 321523, )

We denote Tj ::Q(((lltoj)f ”;Lbz ln2m). Combining the SGD update step, (115), (120), (121) and our choice of 7 yields
t—1 (S s
WO WO <nd |IVwLe(WO)||<nd_y/ 7 VEW®E)
s=0 s=0
mb 1
< T, w )
V(i T V)

mb [ 1+a? n?Ln (1+a?)?nSL? 4
<O()y/— Q 1 ©)
=03 ”((1—a)2 Smb + ((1—a)4 gz ) )V EW)

mb (1+a?)2n°L2% 5
- )
o) 7" ((1—@)4 5 In m) L( )
mb ds (1+a?)?nsL?, 4
< — (0)
<0(1) FREY ((104)4 5% In“m |/ L(W ()
1+a2)2 2
:O(l)ﬂ Vdn LWO),

(1=a)* Vmbé

4
It is thus clear that when (2> (225 ) (250) WO - WO | <O( o ) O

(1-a)? 3/2015/21n3/ 2y, ) *




Yinglong Guo, Shaohan Li, Gilad Lerman

B.8 Proof of Lemma 4.3
To simplify the proof, we study the generalization error of each output coordinate separately. We denote the k—th
row of the matrix B by By, . and treat it as a column vector. For k€ [d], we define function

fr(@;W):=B[ hy(z),

that is, fy(ax; W) is the k—th coordinate of the NN output vector. The loss function can be written as
lossg(x,y; W) := (fu(x; W) — yi)?. Recall that the underlying measurable function F(zx) (ie., y; = F(x;)) is a
d—dimensional vector-valued function and we denote by Fj(x) the k—th coordinate of F(x). The generalization error
is similarly defined as Ry (W):=Eqpy (fi(2;W)—Fi(x))2. We also denote

B (W)= {W:|[W-WO | <w}.

From Lemma B.9 and Lemma B.10, with high probability, W) is close to W(®) during the training. Therefore, we
just need to only consider NN functions whose parameters W fall in a small ball around W© ie. |[W-W )| <w,

3/2
where oJ<O( 9

m) For a given k €[d], we denote the corresponding function class as

={g:(x,y)— fr(x;W): ||W—W(0) |<w}

We introduce the empirical Rademacher complexity on the dataset {z;,y;}7 as follows:

7A?/(gk,w): o Sup Zaig xuyz)

gegk wi—1

For k€[d], we first bound the generalization error on the k—th coordinate of the output vector.

We first note that by (109) and Lemma B.4, with high probability that fi(z;;W) < O(In'/*m) for all i € [n] and
[W —W©)| <w. We apply Theorem 11.3 in Mohri et al. (2018) with function class Gy, and thus bound Ry (W)
with probability at least 1—Q(1/m) by

. In2
Eyppy lossg (z,F(x Z:loss;€ ;,y;; W) +20 (ln1/4m)7€(gk,w)—|—0(1n1/4m>0( I;:f) (122)

We note that the first term in (122) is bounded by the previously discussed training error, and the third term in (122)
is very small when we collect a sufficiently large dataset since m is polynomially dependent on n. Next, we estimate
the bound for the second term, the empirical Rademacher complexity.

R(Grw)=E;  sup Zaz(fk 2iyi; W) = fi @i,y W O) = (Vw fio(@s,5: W), W —W ()

WeB, W(0>

+ fe(@iyss W) +(Vw fi (;ci,yi;w(o))’W_W(%)

< supsup|ful(@iyis W) — fe(@iys W) — (Vi fi (2,5 W O) W —w () (123)
WEBL(W©) i
+E,  sup Zosz (i W) (124)
WeB, (W)
1 n
"‘FEJ sup 7202‘<wak({)3i7yi;w(0)),W—W(O)>. (125)

WeB,(W©O) =]

We first consider (124), since there is no dependence on W, it is clear that

Es sup szk zi,ys; W (O) fk i,y W UUiZO- (126)
WeB, (W<0>)n; Z

In order to help bound (123), which is the first term in our bound of the empirical Rademacher complexity for the
NN function class, we introduce the following lemma.
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Lemma B.11. Ifw < O (%) and |W —WO)|| < w, then for any x € RP, with probability at least
1—exp(—Q(y/m/lnm),
-«
. _ a7 (0)y _ a7 (0) . (0) et 4/312
‘fk(ﬂf,w) Je(@W) = (Vw fi(x;s W)W -W) | < 1+a20(w L7vmlnm). (127)

We prove Lemma B.11 at the end of this section after we finalize the proof of Lemma 4.3 (while applying Lemma B.11).
Using Lemma B.11, the term (123) can be bounded as

sup| fio(@s,yi; W) = fi(@s,y W ) = (Vw fi(@i,y:W ), W - W)

11—«
< ——— W32V minm.
T V1+a?

Applying Cauchy-Schwarz inequality and Jessen’s inequality to (125) and using Lemma 4.2, we conclude

E, sup Zaz (Vw fi(@iyis W)W -Ww )
WeB, (W) =]

<wE, sup ZZHlefk (ziys W)

WeB, (W) Vi

<

3\8

L n
) ZHVWLfk (@iyi;WO)| %
=1 \ i=1

L/
<“rymn< T
n N

Using the bound for (123), (124) and (125) in (122), it follows that with probability at least 1—e~?(™)

1 ) l1-a 2 4/3 Inm
R, (W) < Hlossk(a:,;,yi,W)wL WO (lnm\/ﬁL w ) +wO (L mlnm/n) +0 -

Summing over k € [d], we conclude Lemma 4.3 as follows

ROW) < Moss(@i,ys: W)+ ——2 o(dlnm\/%L2w4/3)+o(d mlnm/an)+0<d,/lnm>.
n n

V1+a?
Finally, we complete this section by presenting the proof of Lemma B.11.

Proof of Lemma B.11. Using the notation of §B.3 (in particular, h; and hl(o)) and the definitions of fi(z;W () and
fr(x;W) and recalling that hy :hg]) and h;=D;W;h;_1 we derive the following expression:
Fol@W)— fiu(m;W ) =BT (DLWL--.Dlwl—D<L°)WL<°>..-D§O>W1<°))Am
=Bl (DyWihy D W Ry
+DOW O, -DPW DY W hy_,
DO DY W - D WD, 0,
...... (128)
+DOW..DY W h, —-DOW.. ;0)W2(0>D§0)W1(0)h0).
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Let a and b be two integers in [1,L]. If b<a, we denote
(D(O)W(O))w—w3:D((;O)WCEO)Dt(zo—)lwéO—)l"'DISO)Wb(O)'

If a<b, we denote
(DOWO), =1

Applying hy=D;W;h,_ for the first term in each line of (128), (128) can be written as
fel@; W) — firo(z; W)
-B ((DLWL ~DOW R,
+(DOWO) (D, W4 —D(LOLWL(O,)l)thz
+(D(O)W(O))LHL—l(DL—zwL—Q—D(Lolgwé()_)g)hL—:a

+DOWO) o (DyW1~DOW o )

L
=B Y (DOWO) 11 (DWW~ D" W )by,
=1

L
:BE-Z(D(O)W(O))LMH(DI*Dl(o))VVlhz—l (129)
=1

L
+B£-Z(D(O)W(O))LHZ+1D§O) (W, —VVl(O))(hzq _hz(g)ﬂ (130)

=1

L
+B£~Z(D(O)W(O))LH1+1D§O)(VVz*"Vl(o))hl(g)l- (131)

=1

According statement 1 in Lemma B.4, with probability at least 1—e~?(Vm/m) || Dig)|| < (1—a)/v/1+a20(L%/w)
and || D}|jo < O(mw?/3L). Combining this with statement 4 in Lemma B.3 with v=(1,1,--,1)T € R¢, we bound the
norm ||(BI DOW©) ;14| by O(w'/3vmLInm) with probability at least 1—exp(—Q(mw3/2LInm). Then (129)
can be bounded (with the same probability) by

\;%O(w4/3L2 Vmlom). (132)

By using statement 3 in Lemma B.4, i.e., ||k —hl(0)|| < O(wLP?Inm) with probability at least 1—e~(Vm/lm) e
note the norm of the summation in (130) is bounded by O(w?L%?Inm) (with the latter probability), which is much
smaller than (132) when w is small as given.

By noting that the gradient of fi(a;W') with respect to W; can be written as

DOYTROT

Vw, fila;W )= (B DY W - W) 11 5

I+1

we express the summands in (131) as follows

(Vi i@ W )W, - W, =BL DOW .. w2 D (W —~w,")n{",. (133)

I+1

Using (133) and bounding (129) and (130) by (132), we conclude that with probability at least 1—e~?(vminm)

Fo(@;W) = fi(@; W) — (T fi (W O), W - W) | < %O(w‘*/i”L?\/mlnm).
(0%
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B.9 Proof of Theorem 3.4

The key idea of the proof of this theorem is to establish a bound for w, such that |[W® —W| <w during training.
Considering the learning rate n and training steps ¢, we first establish a simple bound for w as

t—1 t
Inm
(t)_ (0) < ®) < mn (t)< nm -
WO WO <Y Vo £ <y [ Ve

t=0

Furthermore, in the proof of Lemma B.9, the following universal bound of w was introduced:

Hw(t)_W(O)” §O<‘ /;d> £0).
m

. . . 3/
By combining these two bounds with the universal bound w < O(m

the theorem.

) and using Lemma 4.3, we conclude

B.10 Generalization Error Bound for SGD
We present a theorem similar to Theorem 3.4 that establishes the upper bound of the generalization error for SGD.

Theorem B.12. Assume the setup of §2 with SGD, where m:@(%) fore>0 and nz@(%).
Assume further that m is larger than its lower bound and n is smaller than its upper bound in Theorem 3.2 (by an

appropriate choice of the hidden constants in © and in comparison to the constants hidden in the lower bound of m

and the upper bound of n in Theorem 3.2). Then at a given training epoch t, with probability at least 1 — e~ @Inm)
the generalization error is bounded as follows
1—a d1/344/3 B3/2+ep2+e
) t ;
R(WW) <~ O(lnm)—i—mm{ ( T ) 0] <m1/6n10/3L21n8/3m) ,O (b1/261/2—6L1/2—61nm> }—i—
(134)

2+4-€ 1 24€,J1/2+€
wind of YA oL d +ol ay/mm).
n3L21113/2m bl/281=€lnm n

The proof is similar to the proof of Theorem 3.4. We estimate the bound of w when ¢ is small as
WO _wo) <O<’”Z77t> 0.
Also, the bound of w in the entire training for SGD can be obtained in the proof of Lemma B.10 as
dv/n
w _—w© <0<\/£(O>>.
| | 5v/mb

Then combining these two bounds of w and using Lemma 4.3, we could conclude the theorem.

B.11 Special dataset

In this section, we consider a special class of datasets and improve our theory for datasets from this class. We first
introduce the special dataset and establish the assumption, then present theorems to bound the convergence rate
and generalization error under this assumption. The proof will be given in Appendix B.13.

First, with the parameters W) before the [—th layer, we denote the output at the I—th layer as
Ni(@; AW WO W) ) =G0 (uT 50 (W) 50 (W) 50 (W) A)))),
and define the following class of functions:
Fiim { @)= (@) fa(w)) " RO R, where
(@) =Euyc; ()N (2 AW W, ) for ueR™ ~ N (02) and (135)

¢; :R™—RR such that |c;(-)| <1 for je[d]}.
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We note that this function class F; includes functions defined by an [—layer leaky ReLLU neural network, where the
first [—1 layers use the initialized parameters W and only the parameters of the [—th layer are tuned with a certain
regularization condition (||¢j|joc <1). Given this function class, we restrict our discussion to datasets satisfying the
assumption below. For such datasets, we can improve the upper bound for the convergence rate, the lower bound
for the width m, and the upper bound for the generalization error.

Assumption B.13. For any small constant 0 <\ < ﬁ, there exists f € Fr_1 such that

| f(z:)— (yi—9:)|| <\, for all i€ n].

Theorem B.14. Assume the setup in §2 with a dataset satisfying Assumption B.13, where both m/In*m > Q(d°nL'?)

and m > Q(Inlne™1) , and the NN is trained according to Algorithm 2, with learning rate n < O(—%—). Then with

nLZm
probability at least 1—e~Hm)

LW <e and LOWD) <A LW ), vt <T,

where

o of0=a)?gm 7ln(e/£(W(o)))
y=1 Q( T @ andeiln’y .

Theorem B.15. Assume the setup of §2 with GD, a dataset satisfying Assumption B.13, m=0(n!T27 [12+27{5+27)
for >0 and n= @(ﬁ) Assume further that m is larger than its lower bound and n is smaller than its upper
bound in Theorem B.14 (by an appropriate choice of the hidden constants in © and compared to the constants hidden
in the lower bound of m and in the upper bound of n in Theorem B.14). Then at a given training epoch t <T (see
(4) for T), with probability at least 1—e=*"™) the generalization error is bounded as follows

d3/2+rn1/2+7LT 11—« d1/3t4/3
Inm >’O<4/1+a2 m1/6n2/3L2/3)}

T 1147 247
+min{o<v dlnmt),o(" L >}+o<d,/lnm>.
nL Inm n

We notice that for datasets satisfying Assumption B.13 several significant improvements from the previous estimates are
obtained. Firstly, the lower bound for m is improved to linear dependence on n, whereas in the general scenario the lower
bound grows as n°. Secondly, the bound of 1—+ is improved in Theorem B.14 by a factor of 55 Thirdly, several terms
in the generalization error bound in Theorem B.15 are improved from Theorem 3.4, including the first term in the first

RW®)<~tL(w©) +min{0 (

minimum is improved by a factor of % and the second term in the second minimum is improved by a factor of L—”ii‘f. On the
other hand, the optimal choice of & remains the same as the dependence on « is the same as that in Theorems 3.1 and 3.4.
B.12 Convergence Theorem for General Convex Loss Functions

We extend our convergence theory, in particular Theorem 3.1, to convex loss functions, i.e., loss functions of the form

ECOHVEX(W):ZZ(yi,@i), where {(y;,) is convex. (136)

K3

These include common loss functions for classification, such as the binary cross entropy and categorical cross entropy.
Furthermore, it also includes the following loss function suggested in (Kumar et al., 2023):

1 Sell?
Lexp(W);zizeMlyryiH , (137)

Kumar et al. (2023) obtained a special bound for the generalization error when using this loss function. We later use
the following theorem and the proposition of Kumar et al. (2023) to infer that «w=—1 is also optimal for generalization
when using re-weighted gradient descent and overparameterized neural networks.

We next formulate the main theorem using the following definition. Let W* denote the matrix of parameters
minimizing the loss function and define

5(t) = ['convex (W(t) ) - ﬁconvex (W* ) .
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Theorem B.16. Assume the setup of §2 with the convez loss function defined in (136), where the width m satisfies
both m/In*m > A, Q("OLmd) and m>Q(In(e *net)) and the training is according to Algorithm 2 with learning

rate n<O(n 75 ()lial)“hen w;:h probability at least 1—exp—20m)
EM <¢ and £ §fy(t)5(t), Vt<T, where (138)
where
A =1— E(t)Q<§1+o;) sgﬂ) and TSO((1+Z) Z;;lf (Ine™ —&—ln(n\/i))) (139)

Combining (138) and the expression for 7(*) in (139), we note that the rate of convergence is slower than the one
in (3) and that &= —1 corresponds to the smallest upper bound for the number of epochs needed for the training
error to be smaller than e.

Proposition 3.1 in Kumar et al. (2023) implies that minimizing the generalization error bound is equivalent to
minimizing the training error when using the modified loss function given in (137). Applying (139) of Theorem B.16,
we conclude that when using the modified loss function in (137) for training, the choice of a«=—1 yields the smallest
bound for the required number of training epochs to achieve a bound € on the training error. Using this observation
with arbitrarily small € and the above discussed theory of Kumar et al. (2023) we can conclude that o=—1 minimizes
the generalization error bound with the smallest upper bound on the number of training epochs for which the training
error is guaranteed to be less than e. Nevertheless, this discussion involves an upper bound we obtained for the number
of epochs and does not apply to the actual number of epochs. Consequently, the above stated prediction may not
be precise, that is, it is possible that at a smaller number of epochs than the bound, one may obtain an error less
than € by a# —1. For a synthetic dataset, we empirically verified the predicted optimal choice of «=—1 (see Figure 6).

Proof of Theorem B.16. We consider the modified loss function defined in (136), and, for simplicity, we let y=1 in
this section, while the proof can be easily extended for any > 0. By introducing the convex function I(y,z), the
loss function for each data point i€ [n] can be written as

lossconvex (€1, W) :=U(Yi.gi,L+1 (2 W)
We denote the following notation in this subsection,

€=V l(yi.gi,L+1(zi;W)). (140)

We will establish similar gradient bounds as in Lemma 4.2 and a similar semi-smoothness inequality as in Lemma 4.1
for the loss function defined in (136), and then we will prove the convergence theory with this loss function using
some of the above established results.

For the first part, in order to achieve the gradient bound, we follow the proof of Lemma 4.2 with the modified loss
function defined in (136). The proof is mostly the same as the one in Appendix B.4. The only difference is the use of
the previous definition in (61). We remark that it is straightforward to verify that G; ;(e;;W)=Vw,lossconvex (i,yi; W)
by using the definition of e; in (140). By Lemma B.6 and Lemma B.7

(N — ||F<Z||e,\|20( 2). for el (141)

om
||VW£convex ||F>Z|| ZHZ ( 1—‘1—0[2) ’I’Ld) (142)

Remark: In the above bounds, when we use the MSE loss function, Y i ||e;|[*=L, which yields the original bounds
provided in Lemma 4.2.

In order to show the semi-smoothness, we follow the proof of Lemma 4.1 in Appendix B.5, where most parts are exactly
the same. By using (142) and (141), and plugging the notation of e; (defined in (140)) into (95), the semi-smoothness
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inequality becomes

nL?*m

Leomvex(W +W") < Leomvex (W) +(Viy Leonvex (W), W)+ o(IwW'13)

143
(1-a) L2 frmn3 el 2am &

+
d1+a2)

O(|[W']l2)-

Lastly, we prove the convergence for this loss function. By using (143) and the same argument discussed in §4.1, the
inequality (16) still holds. Then using the lower bound of the gradient in (142), (16) becomes

2 6nm
(t+1)y < OY_Q n )2 144
Loonex (W) < Loomex (W) <1 To?) nd )D . (144)

By convexity of I(y,z), we first establish that for any i€ [n] and any y,z € R?,

UYiy) —Yy,,= < (Vyl(yi,9),y—2) < [Vyl(yi,y) || |ly—z]|.

We denote by W* the optimal parameter that minimizes Loy, (W). Letting y:=g;, LH(a:Z-;W(t)) and z:=gy,+1(x;W*)
and using the above inequality result in

Wyi,gi,L+1 (s W) —U(y; gL (W)
lgi.L+1(xi;W®)—gp 1 (xi;W*)||

el > (145)

Using Lemma B.5, yields that, with probability at least 1—e~(nm)

195,41 (@5 W*) = gi, 41 (@i W) <lgs, 11 (€W ) =g 1 (i, W) |
+11gi,+1 (wz‘;W(t)) —Gi.L+1 (wi;W(O))“
<(IWO-W*[[+0) [Vwgi.o1 (@ W) <ONVD). (146)

Applying (146) to (145) results in
el (Uwi.gizs (@iW ) ~U(gigis(@:W™) ) JOWVE). (147)
Applying (147) to (144), we derive that

Lconvex (W(t+ 1) ) - ﬁconvex (W* )

(1—a)? onm

2 (148)
(14-a2) n2dL ) ’

S Econvex (W(t) ) - ‘Cconvex (W*) - Q ( ) ('Cconvex (W(t) ) - Econvex (W* )

In order to derive a bound for the number of training epoch 7' that is required for £(T) —£* <, for t <T', by assuming
L® —£*> ¢, the above equation is bounded by

2
(t+1)y_ e (1- (1—a)® dnm )y _ *
ﬁconvex(W ) Econvex(W )7 (1 1ay) < (1+O{2) nQdL (ﬁconvex(W ) Econvex(W )) .

The lower bound for m becomes min*m > (1“‘ Q(nSL'%d/5*) to ensure the same perturbation bound in Lemma B.9.

Denoting ~:= ( —GQ((I o)’ _dnm )), it follows that

(1+a?) n2dL?

Ine™ 1 1 convex ) — convex * 2 L
pome+ n(L (W7 )—L W) <o(Z d (Ine~* +In(nvInm)) .
ln'y 1 775m

We follow the exact same steps in the proof of Lemma B.9 in Appendix B.6 and verify that when m >In(e~tlne=1),
the probability that (148) holds for T—steps is at least 1—e~2("™), O
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B.13 Proofs for a special class of datasets

This section includes the proof of Theorems B.14 and B.15 in Appendix B.11. We first present several lemmas and
their proofs, then use these lemmas to prove those theorems.

Lemma B.17. Consider a dataset {x;,Y;}icfn) satisfying Assumption B.13, where m > Q(nd), then there exists a
vector u; ; € B{* CR™, such that

|<ul7j,hl(.?£_1>—(yi,j—g}w)\ <O(N), for all i€n],jeld], with probability at least 1—e M),

Proof. We complete the proof by constructing the following unit vector u;:

s == (e (VAW )1 s P2AW D o) (W) ))

One can easily verify that w; € B by using the fact that |c;| <1, which is guaranteed by the definition of the function
class in (135).

The inner product of u; and hg,og_l is given by
0 0 0 0 0
<“J>h£L) 1= FZCJ W£ )1) ’-)NLfl(WAle( )a"‘WL(227W£21)

FZCJ Vm W) NL (AW WO, Smpw )
:E CJ WL(,O)l) ,~)NL—1(-’BJA7W1(O)7"'WL(O—)27\/m/ZWL(O—)1)

For simplicity, we denote that Z;; := c;(y/m/2 (WIEO Dk )JNL-1(x; A Wl( )W, L 2,\/ WLO)1 and above
equation becomes

0
(uj.h E L) 1) szw (149)

Noting that \/m WL(0 k.- ~N(0,1), by using (135), it implies that Eyyy ) Zg; ;(Wr-1) 0)) fias).

Since |¢;(-)| <1 is bounded, Zj; ; is a sub-Gaussian random variable, therefore we can apply Hoeffding’s inequality

and conclude that
1 m
‘mZZk,i,j —fi(=i)
k=1

<), with probability at least 1—e 2™, (150)

Using (149), (150) and Assumption B.13, it follows that with probability at least 1—(nd)e=2*"m)
0 . . . .
a0 )= (W= < (o)) = i @) |1 (6) = (9=, <2\ for all i€ [n], j€ld].
We conclude the Lemma by noting that the probability is at least 1—e= 2™ when m>Q(nd). O

Lemma B.18. Under Assumption B.13, when m>$Q(nd), the lower bound for the gradient of the loss function becomes

—a)’m
14+« 2 d2

|Vw LW ©)]2.>0 <( >£(W(O)), with probability at least 1—e ™),

Proof. We first note that by definition, ||VW£H F > ||[Vw, L||. Then by definition of matrix F—norm and (61),
it follows that ||V, LW )2 =31 |30 (Gi L(€s W)y, H We write that the k—th row of the matrix

S Gin(ei, W) by

2 2

n

Z(Gi,L(ei§W(0)))k,~

i=1

n
T
= E By .e.D; 1 krhin—1
=1

(151)

2 2
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Using the vector u; € By chosen in Lemma B.17, and denoting u := 525:1 u;, we note that |lul| <1. Thus we
conclude that

2 2

n
T
E By .e.D; 1 krhin—1
=1 =1

2

n
> <ZB,Z:,eiDi,L,kkhi,L1,u>

2

n
= ZB;Z.eiDi,L,thi,L—hw

i=1
) 2
=12 ZBk ei(a+(1—a)ln, ;,>0)(hiL—1.u)
1 n n 2
= 1+a2 (1_a)zBlz-eilhi,L’k>0<h'i7L—1au>+azBl€-ei<hi,L—lau> (152)
i=1 i=1
By Jensen’s inequality, we note that the expectation of (152) becomes
n n 2
En, (1_Q)ZBI{,-eithL,k>0<hi,L717u>+aZB]Z:.ei<hi,L717u>
i=1 =1
n n 2
Z ]Ethl ((1_Q)ZB}Z:.eilhi,L,k>O<hi,L1au>+aZB1{,-ei<hi,L17u>> (153)
i=1 i=1
Since 1p, ; , >0 is independent with h; 1, for any integer N, the conditional expectation can be given as

N n
EhL 1 (ZBk ez]-h, L k>0 z L-1,u ‘Zlm Le>0= ) = EEhL71 (ZB]Z:-ei<hi,Llau>> (154)
=1

Moreover, since 1p, ; , >0 a Bernoulli random variable B(0.5), when n>100, using an approximation of the probability
by the central limit theorem, we know that

> 1., ,>0>n/2+/n, with probability at least 0.1, (155)

Zlhu,wo <n/2—+/n, with probability at least 0.1. (156)

To find a lower bound for (153), we consider two cases for the second term, when |EhL71aZ?:1B,€_ei<hi7 Lo1w)|>
%|En,_, (B{ ei(hir—1,u))|, then by (156) and (154), we know that with probability at least 0.1 that

]EhL—l ((1 _a)ZB;{,-eilhi,L,k>0<hi,L71au>+QZBI,€-62' <hi7L17u>> ’

i=1 i=1

By, (Z(l_o‘)B}Z:.ei<hi,L—1au>> ‘ (157)

=1

> 7

Using similar argument, when [Ep,_, a1 B ei(hir1u)| < 5[En,_, (B{ ei(hiL_1,u))|, by using (155), it also
follows that with probability at least 0.1 that (157) holds. Thus we conclude that

EhL71 ((1_Q)ZB]Z—:~ei1hi,L,k>o <hi,L717u> +OZZB}Z:_€i<hi’L1,U>> ‘

i=1 i=1

Eh, 1<Z(la)B,€,e¢<hi,L_1,u>>

i=1

f

, with probability at least 0.1. (158)
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Combining (152), (153), and (158), it follows that
2

1-
(1—a)* , with probability at least 0.1 (159)

ZBkT,_eiDi,L,kkhz‘,Lq 2 (l4a?)

i=1

En,_, En,_ 1ZBk €i(hi—1,u)

i=1

By using the lower bound of |BTka| derived in (74), we obtain that with at least a constant probability
po:=1—exp(—§)(1))

n 2 n 2 d n 2
En, .y Bi.eilhi 1u)| = ‘B{, (EhL_lzexhi,Ll,w) > Ba, Y eijlhir-1.u) (160)
=1 i=1 j=1 i=1
We thus conclude that by (151), Hoeffding inequality, (159) and (160), with probability at least 1—e~2("™)
I L 01 (1 ’
pom (1—
kzz: g i,L ela Z]EhL 1 ZBk €; szkth 1 9 (1—|—0¢2 ZEhL 12613 i, L—1,U
(161)
Using (161), Assumption B.13 and the fact that Ee; je; j =0 if j#j’, when £>1 imply
d n 1 n
D [Bry Y eijhi1u)|= 7 B e i ((hi,p—1.05) =i+ +Yi;—Tij)
j:l = =
1 d n 1 d n
2 EZ Ze” (Y15 —8i.5) _EZ Zez‘,j«hi,L1,uj>—(yi,j—@i,j))’
i=1li=1 j=1li=1
| 2SS e e L
= 4+ 44| L = =T T E
=1|i=1 Jj=1]:=1
Applying (161) and (162), we conclude that
kz:: E_:Bk e.D; 1 kehi -1 22 % (1132 L2, with probability at least 1—e0m), (162)
Considering at initial parameter W),
LW Z”yz Bh; 1 |*= Z||y1||2+||th tl*=2(yi,Bhi ).
Using the fact that E(y;,Bh; ) =0 and Lemma B.1, we establish a lower bound for £(W©)),
LW ) >Q(n). (163)

Applying the definition of the gradient norms, and (162) with the lower bound of £L(W () in (163), we conclude that

||VW£ (O) ||2 >Z ZBk; €; Zka)hlL 1

1—a)2
ZQ<( @) m)lﬁ(W(O))7 with probability at least 1—e—m)

2 2
k=1]li=1 1+a d
O
Lemma B.19. Assume the setup of §2 and the dataset satisfy Assumption B.13, when |W — WO)| < w <
O(m), with probability at least 1—e=m)

Fwew)l=0( G0 ) e,
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Proof. For W such that |[W () —W|| <w, we use the same argument in the proof of Lemma 4.2. It is straightforward
to verify that w?3L*mInm/d (this is the right hand side of (90)) is smaller than O(m/d?) by plugging in
w<O(z575pam75=)- We conclude that for W such that |W —W )| <w, with probability at least 1—e~(™)
(1—a)?m

> =/ %
vwew)ze( 0

>£(W). (164)
O

Compared to the conclusion in Lemma 4.2 with Lemma B.19, the lower bound is improved by a factor of 3; when
the dataset satisfies Assumption B.13.

Proof of Theorem B.14. We follow the exact same proof of Theorem 3.1, with the lower bound of the gradient given
in Lemma B.19. It is straight-forward to derive the same inequality (16), and by the lower bound in (164), we obtain

that with probability 1—e (™)
2
£ < (1_9( (1-a) W)) £

1+a? d?
We conclude the theorem by verifying that during the training process, we always have |W(0) — W(O)\ <w <

O(m), which satisfies the condition for both Lemmas B.19 and 4.1. Following the same argument that
derives (111) and using the lower bound in (164), we achieve that

£/ 2
W o) < Y Q<d>\/cw<0>. (165)

1-« vm

By further applying (108), we verify that when m/ In*m > (ig; Q(d°nL'?), we can derive that

1
w® _w©
I H SO(dg’/QLﬁlns/zm). (166)

O

Proof of Theorem B.15. The universal bound of |[W® —W ()| is improved as shown in (165) and (166). Then, we can
conclude the theorem by following exactly the same as the proof of Theorem 3.4 which is shown in Appendix B.9. [

C Supplemental numerical experiments and details for the previous experiments

Section C.1 provides the full details of implementation for both the previous and the new experiments. Section C.2
describes new numerical experiments.

C.1 Details of Implementation

We provide some general implementation details and also details specific to the different datasets. Two datasets are
new to this section. For completeness, we repeat some information that was provided in Section 5.1.

General implementation details: Throughout the numerical experiments, we applied Algorithm 1 to initialize
the parameters of the neural networks. In order to implement the rescaled leaky ReLU as given in (2), we introduce
a MULTIPLIER(c) layer, which simply does element-wise multiplication with a given constant ¢. By combining
Leaky ReLU(«) and MULTIPLIER(l /V 1+a2), we replicate the rescaled Leaky ReLLU with parameter a.

In the experiments, we train the NN on the training set and report the error on a reserved testing set (we view it
as an approximation for the generalization error). For the synthetic dataset, we generated additional 500 synthetic
data points for the testing set. For the real dataset, we performed a standard training-testing split for each dataset.

Synthetic dataset: The architecture of the NNs that we used for the synthetic dataset is shown in Table 2. We
generate 1,000 data points as the training dataset and 500 data points as the testing dataset (following the model
and sampling procedure described in the main text). We train the NN with GD and a learning rate of 10~

California housing: We use an updated version of the California housing dataset, which can be downloaded
from Kaggle (https://www.kaggle.com/datasets/camnugent/california-housing-prices) and is licensed by CCO.


https://www.kaggle.com/datasets/camnugent/california-housing-prices
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This dataset was drawn from the 1990 U.S. Census and contains 20,640 observations with 10 different characteristics.
Nine of them are numerical ones (e.g., the median income for households and the median value of the houses within a
block) and are given in the original dataset Pace and Barry (1997). An additional categorical characteristic is the ocean
proximity. Borisov et al. (2022) used this dataset as a benchmark for regression, where one needs to predict the value of
the house given the other numerical characteristics. The last characteristic, which is the median house value for households
within a block, provides labels for the dependent variable. We follow a similar setting of regression, but we also use the
categorical feature of the updated dataset. We standardize the 9 numerical characteristics using the respective means
and standard deviations of the training data. We generated a one-hot coding vector for the feature "ocean proximity",
including 5 categories, <1H OCEAN, INLAND, NEAR OCEAN, NEAR BAY, and ISLAND. In total, the input x is a
13—dimensional vector. The training data contains 15,480 data points and the testing data contains 5,160 data points.

We built NNs to predict the median housing value in the dataset. The architecture of the NNs is given in Table 3.
We applied Algorithm 3 with a batch size of 512 and a learning rate of 107> to train the NNs.

Table 2: Architecture of the NNs with Leaky ReLLU parameter « used for the synthetic dataset.

LAYER PARAMETER
LINEAR (5, 5000)
REPEAT LINEAR (5000, 5000)
5 LEAKY RELU o
TIMES MULTIPLER 1/(1+a%)7?
LINEAR (5000, 1)

MNIST: We used the MNIST dataset of 28 x 28 images of handwritten digits in order to classify handwritten digits.
This dataset is licensed by CC BY-SA 3.0. We flattened each image to a vector of length 784. We randomly sample
2,100 data points from the training set of MNIST as our training set, and use the rest as our testing set. We normalized
the training data with 0.5 mean and 0.5 standard deviation. We applied SGD with batch size 64 and a learning rate of
1073, The architecture of the NN is presented in Table 4 and we use leaky ReLUs with av€ {—2,—1,0,0.01,0.05}. MNIST
was also used to test the Transformer networks. In this case, we normalized the training set with 0.1307 mean and
0.3081 standard deviation. Furthermore, we used the Vision Transformer (ViT) (Dosovitskiy et al., 2020) architecture
and applied SGD with batch size 100 and learning rate 10~%. The details of this architecture are shown in Table 5.

F-MNIST: We used the F-MNIST dataset of 28 x 28 images of clothing or accessory items for classification. This
dataset is licensed by MIT. We flattened each image to vectors of length 784. We randomly sample 3000 data points
from the training set of F-MNIST as the training set, and use the rest for testing. We normalized the training data
with 0.5 mean and 0.5 standard deviation. We applied SGD with batch size 64 and a learning rate of 107°. The
architecture of the NN is presented in Table 6 and we use leaky ReLUs with av€ {—2,—1,0,0.01,0.05}.

CIFAR-10: We used the CIFAR-10 dataset of 32x 32 RGB images with 10 categories for classification. This dataset
is licensed by MIT. We randomly sample 2560 data points from the training set of CIFAR-10 as our training set,
and randomly sample 2560 data points from the testing set of CIFAR-10 as our testing set. We normalized the training
data with 0.5 mean and 0.5 standard deviation. Then we applied SGD with batch size 64 and a learning rate of 1076.
The architecture of the NN is presented in Table 7.

IMDB movie reviews dataset: This is a dataset of highly popular movie review paragraphs and it is used
for positive or negative sentiment classification (Maas et al., 2011). We downloaded it from the following URL:
http://ai.stanford.edu/ amaas/data/sentiment/. We randomly sample 5,000 data points from the IMDB movie
reviews as the training dataset and use the rest as the testing dataset. We processed the data as follows. We first
recorded the words that appeared at least once in the training dataset. For each word, a unique integer was assigned
to index it. Then we mapped each paragraph to a vector, whose i-th entry is the assigned index of the i-th word
of the paragraph. Finally, we padded each vector with zeros, so that each vector was of the same length. We used
the zero-padded vectors as the input of our neural network. After preprocessing, we applied SGD with batch size
50 and learning rate 10~° with an LSTM network, whose architecture is presented in Table 8.

C.2 Additional numerical results

We describe here two additional experiments.


http://ai.stanford.edu/~amaas/data/sentiment/

Yinglong Guo, Shaohan Li, Gilad Lerman

Table 3: Architecture of the NNs with Leaky ReLLU parameter o used for California housing,.

LAYER PARAMETER
LINEAR (13,5000)
REPEAT  LINEAR (5000,5000)
7 LEAKY RELU o
TIMES MurtipLER — 1/(14+a%)1/?
LINEAR (5000,1)

Table 4: Architecture of the neural networks with o Leaky ReLLU parameter used for MNIST.

LAYER PARAMETER
LINEAR (784, 2000)
LINEAR (2000, 2000)
LEAKY RELU a

T
MULTIPLIER Jire
LINEAR (2000, 2000)
LeEaky RELU e

T
MULTIPLIER NaT
LINEAR (2000, 10)

Table 5: Architecture of the Transformer neural networks with a Leaky RelLU parameter used for IMDB movie reviews.

LAYER PARAMETER
PosiTioNAL EMBEDDING (49, 64)

HEAD DIM = 64,
TRANSFORMER OUTPUT DIM = 64,
ENCODER NUMBER OF HEADS = 8

NUMBER OF LAYERS = 6
MLP DIM = 8192

LINEAR (64,8192)
LeEaky RELU «

T
MULTIPLIER Jirar
LINEAR (8192, 10)

Table 6: Architecture of the neural networks with o Leaky RelLU parameter with width of m and depth of L used
for Fashion MNIST.

LAYER PARAMETER
LINEAR (784,m)
REPEAT  LINEAR (m,m)
L LEAKY RELU o
TIMES MurtipLER  1/(14+0?)'/?
LINEAR (m,10)

Additional experiments using MINIST and California housing: We ran the same experiments done in Section
5.1, but with MNIST and California housing. Figure 3 demonstrates the training errors (top) and testing errors (bottom)
for the two datasets. For MNIST (left) we used the cross entropy loss and for California housing (right) the MSE loss.
For the training errors, we note that the convergence rate is the fastest at a=—1 for both datasets and this observation
aligns with our theoretical prediction and the previous experiments. The testing errors are rather similar for different
choices of a. For the California housing dataset, we note that a«=—1 achieves the smallest testing error at an early
epoch (about t=20), but the advantage is marginal compared to other ’s. For MNIST, we note that a=—1 gets to the
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Table 7: Architecture of the neural networks with o Leaky ReLLU parameter used for CIFAR-10.

LAYER PARAMETER
CNN CONV3-512
LeEaky RELU o

T
MULTIPLIER e
CNN CONV3-512
LEAKYy RELU a

T
MULTIPLIER Jire
Max POOLING 2% 2
CNN CONV3-512
LeEaky RELU «

T
MULTIPLIER NaTs)
CNN CONV3-512
LeEaky RELU a

T
MULTIPLIER m
MAax PooLING 2x2
FLATTEN
LINEAR (32,768, 512)
LeEaky RELU «

T
MULTIPLIER NaTs
LINEAR (512, 10)

Table 8: Architecture of the neural networks with o Leaky ReLLU parameter used for IMDB movie reviews dataset

LAYER PARAMETER
EMBEDDING (1000, 64)
INPUT DIM = 64,
LSTM HIDDEN DIM = 256,
NUMBER OF LAYERS = 2
DrorouT 0.3
LINEAR (256,4096)
LEAaky RELU a
T
MuLTIPLIER e
LINEAR (4096, 1)

same level of testing error as the other as from a much larger initial testing error. We note that a«=—1 is not optimal
for the testing error. This might happen because the number of samples and the depth are not sufficiently large enough.

Experiments with Long Short-Term Memory (LSTM) and Transformer networks: We ran the same
experiment done in Section 5 on MNIST and IMDB with Transformer and LSTM networks, respectively. These
architectures are described in Section C.1. Figure 4 demonstrates the training errors (top) and testing errors (bottom).
For MNIST (right) we used the negative log likelihood loss and for IMDB (left) we used the binary cross entropy loss.
For both algorithms, the training errors converge fastest with a=—1. This observation agrees with our theoretical
findings and previous experiments. The testing error for IMDB decreases during the first 100 epochs and then increases
for the rest of the training. This is because of severe overfitting that is due to the following property of IMDB: the
training dataset is small (we used randomly sampled 5,000 data points to be able to deal with sufficiently large widths for
overparameterization) compared to the input data dimension (we have 1,000 unique words). The testing error on MNIST,
on the other hand, is also the lowest for a«=—1, but there’s no overfitting phenomenon since MNIST is a simple dataset.

Dependence on m and L: We demonstrate the dependence of the training error on m and the testing error on
L. We thus ran additional experiments on F-MNIST with different choices of L and m and a € {-2,—1,0,0.01,0.05}.
First, we fixed L=2 and tested m € {1,000,2,000,5,000,10,000}. Next, we fixed m=5,000 and tested L€ {2,3,4}. The
architectures of thes NNs were given in Table 6, but with the latter choices of m and L.

Figure 5 shows the dependence of training errors on m and the dependence of testing errors on L. We note that the
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Figure 3: Log-scale training and testing errors using different datasets and different o’s. Left: cross entropy errors
for MNIST; Right: MSE for California housing. Top row: training errors. Bottom row: testing errors.

training error is monotonically decreasing w.r.t. the width m. We also note that the minimal training error is always
achieved at o= —1 for different choices of m. This matches our theoretical predictions. We note that the testing
error is decreasing for L <4. This aligns with equation (134) when ¢ is small. Moreover, when L =4, we observe that
the minimal testing error is achieved at a=—1.

Results using the loss function given in (137): We perform numerical experiments using the exponential loss
function in the two datasets for the regression task, the synthetic dataset and the California housing dataset. Figure 6
reports the results. We observe that aa=—1 achieves both the optimal training error and the optimal generalization
error in the synthetic dataset. Furthermore, a=—1 achieves optimal training error and second optimal generalization
error for the California housing dataset, though the difference in the testing error is small.
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Figure 4: Log-scale training and testing errors using different datasets and different o’s. Left: binary entropy errors
for IMDB; Right: negative log likelihood errors for Transformer on MNIST. Top row: training errors. Bottom row:
testing errors.
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Figure 5: Log-scale errors on F-MNIST with different o’s. Left: training errors at the last epoch with L =2 and
different widths (ms); Right: testing errors at the epoch t=300 with m=5000 and different depths (Ls).
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Figure 6: Log-scaled mean square errors for the synthetic dataset with different o’s using the loss function of (137).
Left: MSE for the synthetic dataset. Right: MSE for California housing dataset. Top row: training errors. Bottom
row: testing errors.
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