
The effect of Leaky ReLUs on the training
and generalization of overparameterized networks

Yinglong Guo Shaohan Li Gilad Lerman
School of Mathematics
University of Minnesota
Minneapolis, MN 55455

School of Mathematics
University of Minnesota
Minneapolis, MN 55455

School of Mathematics
University of Minnesota
Minneapolis, MN 55455

Abstract

We investigate the training and generalization
errors of overparameterized neural networks
(NNs) with a wide class of leaky rectified linear
unit (ReLU) functions. More specifically, we
carefully upper bound both the convergence
rate of the training error and the generalization
error of such NNs and investigate the depen-
dence of these bounds on the Leaky ReLU
parameter, α. We show that α = −1, which
corresponds to the absolute value activation
function, is optimal for the training error
bound. Furthermore, in special settings, it is
also optimal for the generalization error bound.
Numerical experiments empirically support the
practical choices guided by the theory.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remark-
able success in diverse fields, including image classification
and text recognition. Despite their achievements, a
comprehensive understanding of these networks remains
elusive. Theoretical justifications for their performance
have primarily centered around the overparameterized
setting and mainly considered a rectified linear unit
(ReLU). This paper aims to extend and generalize insights
gained from recent theoretical works to any Leaky ReLU
and provide practical guidance on selecting the most
suitable Leaky ReLU for overparameterized networks.
By doing so, we offer valuable insights for practitioners
seeking optimal performance in real-world scenarios.

To address our aim, we begin by reviewing two recent
theoretical trends. The first centers around a fundamental
convergence theory for the training error of overparam-
eterized neural networks (NNs). Its pioneering work by

Proceedings of the 27th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2024, Valencia, Spain.
PMLR: Volume 238. Copyright 2024 by the author(s).

Jacot et al. (2018) studied the training dynamics using the
neural tangent kernel and showed that the training error
goes to zero in the asymptotic regime where the width
of the layers goes to infinity. A more reasonable regime
assumes a sufficiently large lower bound on the width.
In such overparameterized regime, (Goodfellow et al.,
2015) empirically noticed that the corresponding NNs can
avoid local minima and converge to their global optimal
solutions. (Du et al., 2019) proved the convergence of
gradient descent (GD) for NNs with smooth and Lipschitz
continuous activation functions whose width exponentially
depends on the depth of the networks and polynomially
depends on the number of samples. For 2-layer NNs with a
ReLU, Li and Liang (2018) proved the convergence of the
training error, Oymak and Soltanolkotabi (2020) reduced
the width requirement for training convergence, and Song
et al. (2021) established convergence whenever the width
sub-quadratically depends on the number of samples and
the activation functions are sufficiently smooth.

For DNNs, it has become common to consider the
polynomial regime of overparameterization, where the
NN widths polynomially depend both on the numbers of
samples and the depths. Allen-Zhu et al. (2019b) estab-
lished the first convergence result for the training error in
this polynomial regime, while assuming ReLU activation
functions. They separately analyzed training by gradient
descent and stochastic gradient descent (SGD). Zou and
Gu (2019) improved the estimates of Allen-Zhu et al.
(2019b) by enhancing the lower bound of the gradient.
Chen et al. (2019) further improved the polynomial
dependence of the width on the number of samples that
was established in Zou and Gu (2019), but on the other
hand, their polynomial dependence on the depth is worse.
Banerjee et al. (2023) showed that for smooth activation
functions a linear dependence of the width on the number
of samples is sufficient to guarantee convergence.

Another recent progress involves bounding the general-
ization error of overparameterized NNs. Chizat and Bach
(2020) established a generalization bound of infinitely wide
two-layer NNs with homogeneous activation functions

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

for classification and showed that the probability of
the misclassification bound goes to 0 as the size of the
training samples increases. Arora et al. (2019) bounded
the generalization error of 2-layer overparameterized
NNs for classification. They also analyzed the class of
functions that are learnable by two-layer NNs. Allen-Zhu
et al. (2019a) studied the generalization error of two-layer
and three-layer NN with a non-negative, convex, and
1-Lipschitz smooth loss function using stochastic gradient
descent. They showed that overparameterization improves
generalization. Cao and Gu (2020) further established the
generalization error of deep NNs for classification using
gradient descent. Zhu et al. (2022) extended the latter
work for classification by using some other activation
functions, including leaky ReLU with α∈(0,1).

However, these foundational and important works have
not yet provided much practical guidance for designing
NNs. Practitioners often use variants of ReLU for
activation and this work aims to provide guidance on their
choices. Leaky ReLU is widely used in DNNs for super-
vised learning tasks (Redmon et al., 2016; Ridnik et al.,
2021) and for generative tasks (Radford et al., 2015; Chen
et al., 2016; Karras et al., 2019; Wang et al., 2021). It
is represented by the function σα(x), where σα(x)=x for
x>0 and σα(x)=αx for x≤0, with α being a parameter.
ReLU is a special case of Leaky ReLU when α=0. The
Leaky ReLU function aims to prevent zero gradients for
negative inputs, thus avoiding neurons from not activating.
Empirical studies have demonstrated the advantage of
using Leaky ReLU with small α > 0 over ReLU (Xu
et al., 2015). However, theoretical studies have primarily
focused on ReLU and have not directly established the
convergence theory and generalization for regression when
using Leaky ReLU with any α<1. Moreover, the optimal
choice of the Leaky ReLU parameter α to expedite the
training process and enhance generalization remains
unclear. Therefore, a theoretical study is needed to
analyze the efficacy of leaky ReLU during training and to
provide guidance on selecting the parameter α in practice.

This paper studies overparameterized DNNs with a wide
class of leaky ReLU activation functions and develops theo-
ries for the convergence of the training error and the upper
bound of the generalization error. It builds on the proof
framework and techniques introduced in previous studies,
in particular, the ones of Allen-Zhu et al. (2019b), Zou and
Gu (2019) and Cao and Gu (2020), but establishes the
dependence of the convergence rate and the generalization
error on the leaky ReLU parameter α. It reveals that the
optimal convergence rate bound is achieved at α=−1 and
the optimal bound of the generalization error is achieved
at α=−1 using small training epochs as long as the NN is
sufficiently deep and the dataset is sufficiently large. This
means that activation by the absolute value function may
outperform activation by ReLU and the commonly used

leaky ReLU (with small α>0) in terms of faster training
convergence and smaller generalization error. We are not
aware of any prior use of the absolute value function for
activating DNNs. We are only aware of using it for ac-
tivating the scattering network (Mallat, 2012) due to its
help with “energy preservation” (Bruna and Mallat, 2013).

The main contributions of the current work are as follows:

1. We establish the convergence of the training errors in
overparameterized NNs with any leaky ReLU using
both GD and SGD. Our estimates clarify the effect of
the Leaky ReLU parameter α on the convergence rate
bound. In particular, α=−1, yields the optimal bound.

2. We upper bound the generalization error for over-
parameterized NNs for regression with leaky ReLUs.
For sufficiently large datasets, deep NNs and small
training epochs, the bound is optimal at α=−1.

3. We improve previous results for ReLU (see §4.2). In
particular, we show that deep NNs achieve a similar
convergence rate as a shallow NN.

4. Our predictions receive substantial support from a
comprehensive set of numerical experiments

The rest of the paper unfolds as follows: §2 details the
assumed setup of the NNs and the training algorithms;
§3 presents the main theorems; §4 describes our technical
contributions and sketches the proof of the main theorems;
§5 provides extensive numerical tests supporting our
predictions from the theory on synthetic and real datasets;
and §6 concludes this work and discusses its limitations.

2 PROBLEM SETUP
We follow the model of Allen-Zhu et al. (2019b), while
allowing a wide class of Leaky ReLU activation functions.
We consider a dataset {xi,yi}ni=1, where xi∈Rp, ∥xi∥=1,
yi∈Rd, ∥yi∥≤O(1) and d<O(1). We focus on a NN N :
Rp→Rd with L hidden layers having m neurons each and
linear input and output layers. Its input layer produces
h0=Ax, where ,A∈Rm×p. For l∈ [L] :={1,2,...L}, the
output of the lth hidden layer, hl, is inductively defined by

hl=Hl(hl−1)=σα(Wlhl−1), (1)

where Wl∈Rm×m and σα is the leaky ReLU activation
function with α<1:

σα(x)=

{
x, if x≥0;
αx, if x<0.

The output layer produces ŷ=BhL, where B ∈Rd×m.
Let W := (W1, W2, ... WL) store all the trainable
parameters and we thus compactly denote ŷ=N (x;W).
For simplicity, we initialize A and B (see below), so they
are fixed, and only train Wl, l∈ [L].

We train the NN using the mean squared error (MSE):
L(W)=

∑n
i=1∥yi−N (xi;W)∥2. We denote its gradient

Yinglong Guo, Shaohan Li, Gilad Lerman

by ∇WL(W) := (∇W1L(W),...∇WL
L(W)). Appendix

B.12 extends our theory to many other useful loss
functions. We assume a specified upper bound ϵ>0 on
the training error and express our estimates in terms of ϵ.

When discussing generalization, we assume that the set
{xi}ni=1 is i.i.d. drawn from an arbitrary distribution
DX and that for 1≤ i≤ n, yi =F(xi) for an arbitrary
measurable function F . The generalization error is thus
R(W):=Ex∼DX

∥F(x)−N (x;W)∥2.

We assume the following data separation property:

Assumption 2.1. There exists 0<δ<c0, where c0<1,
so that mini,j∈[n]∥xi−xj∥≥δ>0.

This assumption, suggested by Allen-Zhu et al. (2019b), is
reasonable. Indeed, if, on the other hand, there exists i≠
j∈ [n] such that xi=xj, then we can assume yi≠yi (oth-
erwise we can combine these multiple instances into one
single data point). It is then impossible to obtain a zero
training error, which is needed for our convergence study.

Algorithm 1 Rescaled initialization
Input: Input dimension p, width of hidden layer m,
output dimension d, and leaky ReLU parameter α.
Initialize:

A∼N

(
0,

1

m

)
, B∼N

(
0,
1

d

)
,

W
(0)
l ∼N

(
0,

2

m

)
, l∈ [L]

Activation function:

σ̃α(x)=

{
1√

1+α2
x, if x≥0

α√
1+α2

x, if x<0
(2)

Following He et al. (2015), we initialize the network
parameters as follows: A∼N(0,1/m), B∼N(0,1/d) and
W

(0)
l ∼N(0,2/(m(1+α2))) for l ∈ [L]. Note that the

factor 1/(1+α2) ensures a constant variance for any choice
of α. We can move the factor 1/(1+α2) from the weight
initialization to the activation function, and equivalently
initialize with Algorithm 1. The theoretical study of the
latter formulation with its rescaled Leaky ReLU function,
σ̃α(x) (see (2)), turns out to be more tractable.

Algorithms 2 and 3 formulate the training procedures
with simple GD and SGD, respectively.

3 MAIN RESULTS

The two theorems below establish the convergence of the
training error for overparameterized NNs using a Leaky
ReLU function with α< 1. The first theorem pertains
to training with gradient descent (GD) (Algorithm 2),
while the second applies to training with stochastic
gradient descent (SGD) (Algorithm 3). Both theorems

Algorithm 2 Training (gradient descent)

Input: Learning rate η.
Initialize: Apply Algorithm 1 to obtain A,B and W (0)

for t=0 to T do

W (t+1)=W (t)−η∇WL(W (t)).

end for

Algorithm 3 Training (stochastic gradient descent)

Input Learning rate η.
Initialize: Apply Algorithm 1 to obtain A,B and W (0)

for t=0 to T do
Randomly select batch B⊂ [n] with |B|=b.

W (t+1)=W (t)−η∇WLB(W
(t)),

where LB(W
(t)):=

∑
i∈B

∥yi−N (xi;W
(t))∥2.

end for

are formulated within the context outlined in §2. This
setup includes Assumption 2.1 with a parameter δ,
Algorithm 1 for the initialization of the parameters of the
NN, n training points, {xi,yi}ni=1, where ∥xi∥=1, and
∥yi∥≤O(1), output dimension d (yi∈Rd), NN depth L,
NN width m, Leaky ReLU parameter α, learning rate η,
batch size b (for Algorithm 3) and a desired upper bound
ϵ>0 on the training error.

Theorem 3.1. Assume the setup of §2, where both
m/ln4m> 1+α2

(1−α)2Ω(
n5L15d

δ4) and m>Ω
(
lnlnϵ−1

)
, and the

training is according to Algorithm 2 with learning rate
η≤O(d

nL2m). Then, with probability at least 1−e−Ω(lnm),

L(W (T))<ϵ and L(W (t))≤γtL(W (0)), ∀t≤T, (3)

where

γ=1−Ω

(
(1−α)2

1+α2

ηδm

nd

)
, T=

ln
(
ϵ/L(W (0))

)
lnγ

. (4)

Theorem 3.2. Assume the setup of §2, where both
m

ln4m
> (1+α2)4

(1−α)8 Ω(
n8L15d
bδ5) and m lnm > Ω

(
lnlnϵ−1

)
and the NN is trained according to Algorithm 3 with
η≤O(dδ

mn3L3ln2m
) and t> (1+α2)2

(1−α)4 Ω(
n5L2

bδ2 ln2m) . There
exists a constant C0>1 such that

L(W (T))<ϵ and L(W (t))≤C0γ
tL(W (0))

for all t≤T with probability 1−e−Ω(lnm),
(5)

where

γ=1−Ω

(
(1−α)2

1+α2

ηbδm

n2d

)
, T=

ln
(
ϵ/C0L(W (0))

)
lnγ

. (6)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

These theorems show that for any α<1 the training error
linearly converges to zero when the NN width is sufficiently
large and the learning rate η is sufficiently small.

Moreover, these theorems reveal the dependence of the
convergence rate bound on α and this information can
guide one in selecting α for optimal training speed. We
note that the typical choice of the leaky ReLU parameter
α (e.g., 0.01 or 0.05) does not yield a better bound for the
convergence speed than ReLU (i.e., α=0); furthermore,
the negative values of α yield better results than ReLU
and the optimal choice of α is −1. In §4.1 we interpret
this optimality in terms of obtaining the largest derivative
gap of the rescaled leaky ReLU at 0. We mathematically
formulate the above observation as follows:

Corollary 3.3. Assume the setup of §2 with either
Algorithms 2 or 3 and that all parameters are chosen
so that when α=0, γ < 1. Then α=−1 minimizes the
above convergence rate γ among all α<1. Moreover, γ
is decreasing in α on (−∞,−1) and increasing on (−1,1).

For α=0, our result improves the previous analysis of
both Allen-Zhu et al. (2019b) and Zou and Gu (2019).
We compare our bounds with the ones of Zou and Gu
(2019), since they improved the bounds of Allen-Zhu et al.
(2019b). For this purpose, we examine the difference in the
setups. First, Zou and Gu (2019) divides the loss function
L(W) by n and thus we need to convert their estimate
by a factor of a power of n accordingly. Second, our proof
assumes that the hidden signals are separated by δ<O(1),
whereas Zou and Gu (2019) assumes that δ<O(1/L). We
establish this upper bound independently of L with careful
mathematical estimates; therefore, our setup eliminates
implicit dependence on L in the other formulas. At last,
Zou and Gu (2019) enforces the initial scaled loss to be
bounded by O(1) (this amounts to a bound O(n) on our
loss) and their conclusion holds with probability at least
1−Ω(1/n). On the other hand, we relax the initial un-
scaled loss to be bounded by O(

√
lnm) and our conclusion

holds with probability at least 1−e−Ω(lnm), which we find
more natural for the overparameterized regime.

After converting to our setup, the convergence rate in
Zou and Gu (2019) is 1− Ω(ηδm/(dnL)) when using
gradient descent, and our convergence rate improves to
1−Ω(ηδm/(dn)); also, when using SGD the convergence
rate in Zou and Gu (2019) is 1−Ω(ηδmb/(dn2L)) and we
improve it to 1−Ω(ηδmb/(dn2)). The important finding
is that in the overparameterized regime, a deeper NN
does not lead to slower convergence, but rather achieves a
similar convergence rate as a shallow NN. One can further
note that we improved the bound of Zou and Gu (2019)
on m by the factor n−3L−1 for GD and n−8L−2(n/b)−3δ3

for SGD. Furthermore, our lower bound on the number
of epochs t in Theorem 3.2 improves the one of Allen-Zhu
et al. (2019b) by a factor of order n−2L−2, where there

is no explicit bound in Zou and Gu (2019).

Appendix B.12 extends the above bounds to convex loss
functions, which include the cross-entropy for classification
and a special loss function proposed in Kumar et al.
(2023). The convergence rate for these functions is
different, but α=−1 is still optimal for their bounds.

Next, we establish an upper bound of the generalization
error of a NN trained using GD, where an analogous
bound when using SGD is specified in Theorem B.12
in Appendix B.10. We first follow the previous analysis
of generalization in overparameterized NNs by Cao and
Gu (2020) and establish the corresponding bound for our
setting with Leaky ReLU activation function.

Theorem 3.4. Assume the setup of §2 with GD, where
m=Θ(n

10+2τL15+2τd1+2τ

δ4−2τ) for τ >0 and η=Θ(d
nL2m). As-

sume further that m is larger than its lower bound and η is
smaller than its upper bound in Theorem 3.1 (by an appro-
priate choice of the hidden constants in Θ and compared
to the constants hidden in the lower bound of m and in the
upper bound of η in Theorem 3.1). Then at a given train-
ing epoch t≤T (see (4) for T), with probability at least
1−e−Ω(lnm), the generalization error is bounded as follows

R(W (t))≤γtL(W (0))+min

{
O

(
d3/2+τδτn1/2+τ

L1/2−τ lnm

)
,

O

(
1−α√
1+α2

d1/3t4/3

m1/6n2/3L2/3

)}
+min

{
O

(√
dlnm t

nL

)
,

O

(
n1/2+τL2+τd1/2+τ

δ1/2−τ lnm

)}
+O

(
d

√
lnm

n

)
. (7)

In Appendix A, we clarify the above estimates for different
regimes for the number of training epochs, t. In particular,
we indicate a tradeoff between the first training term and
the other NN-complexity terms (excluding the last term
of data complexity) and show that we cannot make both
of these kinds of terms sufficiently small. Stopping at a
sufficiently small number of epochs results in a bound
of the generalization error of order O(ln(m)), which is
also of order O(ln(n)). This bound is composed of several
terms. The term which contributes O(ln(m)) is due to
the training error and one cannot expect a better bound
for it when having a small number of epochs. The rest of
the terms do converge when n and L are sufficiently large
and in this latter regime the overall bound is minimized
when α=−1. On the other hand, for larger numbers of
epochs overfitting is observed, which results in divergent
generalization error. Exploring the dependence of the
generalization bound on t is advantageous to an epoch-
independent bound, like the one pursued by Cao and Gu
(2020) for classification instead of regression. Indeed, the
bound of Cao and Gu (2020) is Θ(poly(n)·n−1/2), which
is significantly larger than O(log(n)).

Yinglong Guo, Shaohan Li, Gilad Lerman

For very special datasets (e.g., single-layer ReLU NN
separability) Cao and Gu (2020) reduced the term poly(n)
so their overall bound is sufficiently small. A natural, but
more complicated, extension of this to regression is to con-
sider datasets well-approximated by L-layer leaky ReLU
NNs. In Appendix B.11, we improve the convergence rate,
the lower bound of m (so its dependence on n is linear)
and the generalization error bound for such datasets.
However, for a large number of epochs we still notice over-
fitting with divergent generalization error (with a smaller
rate of increase to infinity than for general datasets).

At last, Kumar et al. (2023) claimed that when using
the loss function discussed in (137) of Appendix B.12,
minimizing a particular generalization error bound is
equivalent to minimizing the latter loss function for train-
ing. Therefore, if α=−1 is optimal for the training error,
then it is also optimal for the generalization error bound.
Since we verified the optimality of α=−1 for our upper
bound of the convergence rate in Appendix B.12 and ex-
perimentally demonstrated instances where this bound is
comparable to the actual convergence rate in Figure 2, we
get some numerical evidence that for the latter instances
α=−1 is optimal for bounding the generalization error.

4 IDEAS OF PROOFS

Our proofs follow ideas of Allen-Zhu et al. (2019b), Zou
and Gu (2019) and Cao and Gu (2020) and adapt them
to the general case of Leaky ReLU with α< 1. It also
adapts Cao and Gu (2020) to regression. We first sketch
in §4.1 the basic ideas of our proofs, while we supplement
all details in the appendix. We then highlight some of
the innovative ideas in §4.2.

4.1 Sketch of Proofs

We describe here a quick roadmap to verifying the theory.
The proofs of Theorems 3.1 and 3.2 follow the initial
framework of Allen-Zhu et al. (2019b), which was later
followed by Zou and Gu (2019), but consider the effect
of using any leaky RELU with α<1.

These proofs use the following two lemmas, which are
proved in §B.5 and §B.4. Let us first clarify their notation.
We denote by ∥X∥2 and ∥X∥ the spectral and Frobe-
nius norms of a matrix X. For W = (W1 ...WL) and
V =(V1...VL), we define ∥(W1...WL)∥2F :=

∑
l∈[L]∥Wl∥2F ,

∥(W1 ... WL)∥2 := maxl∈[L] ∥Wl∥2 and ⟨W , V ⟩ :=∑
l∈[L]⟨Wl,Vl⟩. We denote by W ′ a perturbation of W .

Lemma 4.1 (Semi-smoothness). Assume the setup of §2.
If ∥W −W (0)∥2 < ω <O

(
1

L9/2ln3/2m

)
and ∥W ′∥2 < ω,

then with a probability at least 1−e−Ω(m)

L(W+W ′)≤L(W)+⟨∇WL(W),W ′⟩

+
nL2m

d
O(∥W ′∥22)

+
(1−α)ω1/3L2

√
mnL(W)lnm√

d(1+α2)
O(∥W ′∥2). (8)

Lemma 4.2 (Gradient bounds). Assume the setup of
§2. If ∥W−W (0)∥2<ω<O

(
δ3/2

n3/2L15/2ln3/2m

)
, then with

a probability at least 1−e−Ω(mδ2/L3)

∥∇Wl
L(W)∥2F ≤L(W)O

(mn

d

)
, for l∈ [L] (9)

∥∇WL(W)∥2F ≥L(W)Ω

(
(1−α)2

(1+α2)

δm

nd

)
. (10)

We note that the factor (1−α)/
√
1+α2 appears in both

(8) and (10), where it is squared in (10). This factor is
the derivative gap in Leaky ReLU, i.e., σ̃′

α(0+)−σ̃′
α(0−),

which can be viewed as a measure of nonlinearity. Its
value is larger for Leaky ReLU with α<0 than for ReLU
(with α = 0) and maximized at α = −1. Our analysis
below, which combines the bounds in (8) and (10), shows
that Leaky ReLU with α< 0 leads to better control of
the decay of the loss function than ReLU and that the
best control is at α=−1.

Theorem 3.1 can be proved as follows. Let W :=W (t) and
W ′ :=−η∇WL(W (t)) and note that by gradient descent,
W+W ′=W (t+1). Denoting L(t) :=L(W (t)) and apply-
ing (8) of Lemma 4.1, we can conclude that with a proba-
bility of at least 1−e−Ω(m), the following inequality holds

L(t+1)≤L(t)−η⟨∇WL(t),∇WL(t)⟩ (11)

+
η(1−α)ω

1
3L2

√
mnL(t)lnm√

d(1+α2)
O
(
∥∇WL(t)∥2

)
(12)

+
η2nL2m

d
O
(
∥∇WL(t)∥22

)
. (13)

Using (10) we bound
√
L(t) as follows with probability

at least 1−e−Ω(mδ2/L3):

√
L(t)≤

√
1+α2

1−α
O

(√
nd

δm

)
∥∇WL(t)∥F . (14)

Applying (14), we control the term in (12), with
probability at least 1−e−Ω(mδ2/L3), by

ηω1/3nL2(
√
lnm/

√
δ) O

(
∥∇WL(t)∥2F

)
. (15)

Using ω < O(δ3/2

n3/2L15/2ln3/2m
), which is required by

Lemma 4.2, we reduce (15) to η∥∇WL(t)∥2F/3. Using

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

η<O(d/(nL2m)), which is required in Theorem 3.1, we
reduce the bound in (13) to η∥∇WL(t)∥2F/3.

Next, we apply these bounds to the respective terms in
(11) and use the identity ⟨X,X⟩=∥X∥2F for a vector of
matrices X=(X1,...,XL) to reduce (11) to

L(t+1)≤L(t)−1/3η∥∇WL(t)∥2F . (16)

Further application of the lower bound in (10) to the
above equation results in L(t+1)≤γL(t) with γ specified
in (4) and we consequently conclude (3) of Theorem 3.1.

The above argument holds for one training step with
probability at least 1−e−Ω(m). This argument extends to
T steps with probability at least 1−Te−Ω(m). We note
that the number of epochs T can be bounded using the
bound ϵ on the training error, the convergence rate in (4)
and the estimate L(W (0))≤O(n

√
lnm), which is shown

in Appendix B.6, as follows:

T=ln(ϵ/L(W (0)))/lnγ≤Θ(ln(ϵ/n
√
lnm)/lnγ)

≤O

(
nd

ηδm
(lnϵ−1+ln(n

√
lnm))

)
.

Thus the total probability to ensure T -steps training with
training error lower than ϵ is at least 1−O(nd

ηδm(lnϵ−1+

ln(n
√
lnm)))e−Ω(m). Given that m>Ω(poly(n,L,d,δ−1))

and m>Ω(lnlnϵ−1), this probability is of order 1−e−Ω(m).

In Appendix B.6, we demonstrate that the inequality
∥W (t)−W (0)∥2<ω<O(δ3/2/(n3/2L15/2ln3/2m)) holds
with probability at least 1− e−Ω(lnm). Note that the
latter bound implies the conditions for both Lemmas 4.1
and 4.2 and thus concludes the proof of Theorem 3.1

The proof of Theorem 3.2 is detailed in §B.7. We briefly de-
scribe the proof idea as follows. First, we use a similar argu-
ment as in the proof of Theorem 3.1 to bound the expecta-
tions of the loss functions at each step. Second, we use (9)
to find an absolute upper bound of the loss functions. By
combining these two bounds and using Azuma’s inequality,
we derive the decay of the loss function in (5) with the con-
vergence rate in (6) in Theorem 3.2. Finally, we verify that
the conditions for Lemma 4.1 and Lemma 4.2 are satisfied
when the NN width satisfies m/ln4m> (1+α2)4/(1−
α)8Ω(n8L15d/(bδ5)) and thus conclude the theorem.

The proof of Theorem 3.4, which appears in §B.9, relies on
the following lemma that bounds the generalization error
for a class of NNs whose parameters are close to W (0).

Lemma 4.3 (Generalization error with perturbation).
Assume the setup of §2, where α is the leaky ReLU
parameter. If ∥W −W (0)∥ < ω < O

(
δ3/2

n3/2L15/2ln3/2m

)
,

then with probability at least 1−e−Ω(lnm)

R(W)≤ 1

n
L(W)+

1−α√
1+α2

O(d(lnm)
√
mL2ω4/3)+

O(d
√
m(lnm)/nLω)+O

(
d
√
lnm/n

)
.

The proof of Lemma 4.3, which appears in Appendix B.8,
follows similar ideas as those of Cao and Gu (2020) but
adapted to the different task of regression. Theorem 3.4 is
a consequence of this lemma and two different estimates
of the size of ω during training. The first estimate
controls ω during the entire training with GD, regardless
of how large the training epoch is, and is expressed in
Lemma B.9. The second estimate uses direct bounds of
the learning steps and provides a better upper bound of
ω when the training epoch is small.

4.2 Discussion of Innovation
While we followed, extended and improved an existing
proof framework, we would like to emphasize some innova-
tion in our proof techniques. To begin with, it is difficult to
directly extend the previous methods to any leaky ReLU
with α<1. Our idea of rescaling the leaky ReLU activation
function, along with the observation that, with rescaled
initialization, it is equivalent to using the unscaled leaky
ReLU, helped tremendously simplify our initial technical
and complex effort. This allowed us to elegantly use the
previous ideas and further improve them. Additional tech-
nical steps that are required to address the case α≠0 can
be noticed in the proofs of Lemmas B.1, B.2, B.4 and B.7.

We have also made notable improvements to previous esti-
mates. In particular, we improved the lower bound for the
gradient established by Zou and Gu (2019) by a factor of L.
We also eliminated the previous dependence of the conver-
gence rate on a negative power of L, which was undesirable
as it implied that deeper networks might experience slower
convergence. This demonstrates that the convergence rate
of deep neural networks is at least comparable to that of
shallow neural networks. Specifically, the later estimates
can be found in the proof of Lemma 4.2 in Appendix B.4.
They are motivated by a suggestion from Allen-Zhu et al.
(2019b) to incorporate gradients from all layers’ param-
eters, departing from previous estimates that solely relied
on the gradients of parameters from the last layer. More
specifically, improved lower bounds for the gradients from
all layers’ parameters can be found in Lemma B.7 in Ap-
pendix B.4. We also obtained a tighter bound for the
spectral norm of W (t) −W (0) when using SGD. This
improved the lower bound on the width m for training
convergence by a factor of order n−8L−2(n/b)−3δ3.

Additionally, a more careful and fresh look helped
improve the interpretation of the results. In particular,
noting the effect on the number of epochs t on the
generalization error, while developing tighter bounds
when t was sufficiently small, helped with a meaningful
bound on the generalization error. Another example
includes making all the probabilities dependent on m, a
choice we deemed more suitable for the overparameterized
regime. Furthermore, to avoid the hidden dependence
of δ on L in the previous works, we had to develop some
careful mathematical estimates (see (29) in the appendix),

Yinglong Guo, Shaohan Li, Gilad Lerman

Figure 1: Log-scale training and testing errors using different datasets and different α’s. From left to right: synthetic
dataset, F-MNIST and CIFAR-10. Top row: training errors. Bottom row: testing errors.

so we could explicitly identify the dependence on L and
relax the previous assumption δ<O(1/L) to δ<O(1).

5 NUMERICAL EXPERIMENTS

As our theory deals only with upper bounds, we conduct
numerical experiments to examine the dependence of
the actual training convergence rate and generalization
error, particularly at an early epoch, on the parameter
α. Our main goal is to determine whether α = −1 is
the optimal choice for convergence and generalization
in overparameterized NNs with LeakyReLU activation
functions. Appendix C provides additional experiments.

5.1 Setup

We summarize our implementation for the following
datasets. We provide additional details in §C.1.

Synthetic dataset: We simulate a dataset which
contains 1,000 data points in R5 i.i.d. sampled from a
normalized Gaussian distribution, N(0,I5). We verified
that Assumption 2.1 holds for the generated dataset
with δ=0.21. We generate real-valued labels, y, by the
following noisy nonlinear function of x:

y=sin(10x1+20x32)+cos(3x3+5x24)

+2/(1+ReLU(0.05+x5))
1/2+2x1x5+ε,

where ε ∼ N(0, 0.01). We construct NNs with five
hidden layers, m = 5, 000 and leaky ReLUs with
α ∈ {−2,−1, 0, 0.01, 0.05}. We initialize the NNs by
Algorithm 1 and train them with GD using the MSE loss.

F-MNIST: This standard grayscale image classification
benchmark consists of ten classes (Xiao et al., 2017). We
build NNs with two hidden layers and width m=2,000.
We use leaky ReLUs with α∈{−2,−1,0,0.01,0.05}. We
initialize the NNs by Algorithm 1 and train them using
SGD with batch size 64 and the cross entropy loss.

CIFAR-10: This is another standard dataset for image
classification (Krizhevsky et al., 2009). It consists of ten
classes of RGB natural images. We modify the architec-
ture of VGG19 (Simonyan and Zisserman, 2014) with
four convolutional layers (width 512) and two linear layers
(width 512) using Leaky ReLUs with α∈{−2,−1,0,0.05}.
We use Algorithm 1 to initialize the NNs and train them
using SGD with batch size 64 and cross entropy loss.

To ensure that m is sufficiently large with respect to n,
we randomly sample subsets of F-MNIST and CIFAR-10
(see more details in Appendix C.1).

5.2 Results
Figure 1 demonstrates both training errors (top) and test-
ing errors (bottom) for the synthetic dataset, F-MNIST
and CIFAR-10 (from left to right) for different αs. We

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Table 1: Training and testing errors for the three main datasets. The first three rows report the training error at
the last epoch. The next ones report the testing error at an early epoch (t=30 for synthetic, t=20 for F-MNIST
and t=200 for CIFAR-10).

Metric Dataset α=−2 α=−1 α=0 α=0.05

Final training
error

Synthetic 0.039±0.002 0.022±0.002 0.197±0.013 0.245±0.022
F-MNIST 0.096±0.009 0.076±0.008 0.211±0.018 0.229±0.032
CIFAR-10 0.019±0.001 0.018±0.001 0.024±0.001 0.027±0.001

Early Epoch
testing error

Synthetic 1.914±0.067 1.775±0.065 2.086±0.173 2.313±0.218
F-MNIST 2.371±0.103 2.362±0.053 2.442±0.067 2.470±0.092
CIFAR-10 0.146±0.004 0.143±0.005 0.169±0.012 0.173±0.007

remark that we use the testing error as an approximation
of the generalization error. Observing the training errors
in the top row we note that the convergence is fastest for
the NN with α=−1 and the ranking of α from fastest to
slowest convergence corresponds to the one predicted by
our theory; that is, if α obtains a lower estimate for γ in (4)
than α′, then it results in faster convergence in our experi-
ments. Observing the testing errors, we note that around a
small training epoch (e.g., 30 for the synthetic dataset, 20
for F-MNIST, and 200 for CIFAR-10), the testing error is
smallest when α=−1. However, at larger training epochs
the gaps of the testing errors are small for most of the αs.

To get a better quantitative idea, Table 1 summarizes
for the different data sets the training error at the last
epoch and the testing error at an early epoch. We ran the
experiments 10 times and reported the mean and standard
deviations (std’s). We note that the std’s are small and for
better visualization we did not include them in Figure 1.
We observe that choosing α=−1 gives the least final train-
ing error in all datasets. Compared to ordinary ReLU, our
choice of α=−1 reduces the final training error by at least
22% (CIFAR-10) and at most 91% (synthetic). At early
training epoch, compared to ordinary ReLU, the choice of
α=−1 reduces the testing error by at least 4% (F-MNIST)
and at most 15% (CIFAR-10). This correlates with the pre-
dictions we made by our theory that the optimal bounds
of the convergence rate and generalization error (at a
sufficiently small epoch) are achieved with α=−1.

Lastly, we compare the theoretically predicted upper
bounds of the convergence rate and the empirical conver-
gence rates with different αs. For this purpose, we ran
experiments using the synthetic dataset and California
housing (see its detailed description in Appendix C.1) with
choices of α from [−10,0.5]. We approximate the conver-
gence rate for each α using the training errors from the
experiments at time steps 100 (i.e., L(100)) and 1,000 (i.e.,
L(1000)). The empirical convergence rate is calculated as

γ̂(α):=(L(1000)/L(100))1/900.

To simplify our upper bound, we denote the constant
Ω
(
ηδm
nd

)
in (4) by Cγ and estimate its value based on

the calculated convergence rate at α=0 as

Cγ :=C0(1−γ̂(0)), (17)

where we choose C0 = 1 for the synthetic dataset and
C0=0.5 for California housing. Consequently, we obtain
our theoretical upper bounds of the convergence rates

γ(α)=1−0.00143
(1−α)2

1+α2
for the synthetic dataset,

γ(α)=1−0.000537
(1−α)2

1+α2
for California housing.

Figure 2 compares the theoretical upper bound of the
convergence rate, γ(α), with the experimental convergence
rate γ̂(α) for the tested values of αs. It is interesting to
note that the predicted upper bound dependence on α
correlates very well with both numerical experiments.

Appendix C.2 includes additional details and numerical
results. In particular, it performs experiments similar to
the ones reported in Figure 1, while incorporating the
datasets MNIST, California housing and IMDb movie re-
views; the architectures of recurrent NNs and transformer
NNs; and another loss function for regression. It also
demonstrates how the training and testing errors depend
on the NN hyperparameters (e.g., depth and width).

All codes are available at https://github.com/sli743/
leakyReLU.

6 DISCUSSION
We established a mathematical theory that clarifies the
impact of the Leaky ReLU parameter on bounds of both
the training error convergence rate and the generalization
error for overparameterized NNs. We showed that the
absolute value function yields the optimal convergence
rate bound for the training error and also the optimal
generalization error bound when the training epoch
is sufficiently small, with a sufficiently large dataset
and a deep NN. Our extensive empirical tests support
using the absolute value function for effective training
of overparameterized NNs and for effective generalization
with sufficiently small epochs and sufficiently large
datasets and deep overparameterized NNs.

https://github.com/sli743/leakyReLU
https://github.com/sli743/leakyReLU

Yinglong Guo, Shaohan Li, Gilad Lerman

Figure 2: Comparison of the “shape” of the theoretical upper bound of the training convergence rate (orange line)
with the calculated convergence rate (blue dots). We used the synthetic dataset (left) and California housing dataset
(right) with different values of α’s.

There are different possible extensions of our theory. For
example, it is useful to extend it to other structured
NNs, such as convolutional NNs (CNNs), while allowing
any Leaky ReLU. Allen-Zhu et al. (2019b) established
convergence for overparameterized CNNs with ReLU and
one can directly extend their analysis to any Leaky ReLU.
Nevertheless, it still remains open to extend the gener-
alization theory to other structured NNs. Furthermore, it
is useful to study the training convergence and generaliza-
tion for larger classes of activation functions, such as the
Gaussian error linear unit (Hendrycks and Gimpel, 2016).

Our work has three major limitations. First, our
generalization error bound is not sufficiently small.
Nevertheless, we believe it still indicates some interesting
and relevant phenomena, in particular, the behavior
when stopping at an early epoch. We further improved
our estimates for a special class of datasets, although we
observed that it was not sufficiently small in general. This
is likely due to the fact that the regression setting poses
greater challenges than classification. We also highlighted
the possible implications of Kumar et al. (2023) to a
generalization estimate given tight training error bounds.

Second, the lower bound that we require on the width,
m, is generally unrealistically large and we thus find
it important to extend our theory to lower values of
m. Developing such a theory seems to require a careful
analysis of nonlinear dynamical systems, given that cur-
rent methods aim to linearize the underlying dynamical
system. Nevertheless, for the special class of datasets
discussed in Appendix B.11, we were able to provide a

satisfying linear dependence of the lower bound of m on n.

Lastly, to theoretically guarantee the use of α=−1, we
need to develop respective lower bounds. We are not
aware of useful and generic lower bounds and we find it
rather difficult to develop them. Nevertheless, we still
believe that making predictions based on the carefully
developed upper bound and empirically testing them is
valuable for practitioners. Indeed, our numerical results
indicate the optimality of α=−1 in many scenarios of
overparameterized networks. On the other hand, we are
unaware of much practical guidance that stems from the
many other important and fundamental estimates in the
study of overparameterized NNs. Additionally, Figure 2
shows cases where our upper bound for the convergence
rate aligns with the observed convergence rate.

Acknowledgements
This work was partially supported by NSF award DMS
2124913.

References

Allen-Zhu, Z., Li, Y., and Liang, Y. (2019a). Learning
and generalization in overparameterized neural
networks, going beyond two layers. Advances in neural
information processing systems, 32.

Allen-Zhu, Z., Li, Y., and Song, Z. (2019b). A convergence
theory for deep learning via over-parameterization. In
International Conference on Machine Learning, pages
242–252. PMLR.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Fine-grained analysis of optimization and generalization
for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages
322–332. PMLR.

Banerjee, A., Cisneros-Velarde, P., Zhu, L., and Belkin, M.
(2023). Neural tangent kernel at initialization: linear
width suffices. In Uncertainty in Artificial Intelligence,
pages 110–118. PMLR.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. (2022). Deep neural networks and
tabular data: A survey. IEEE Transactions on Neural
Networks and Learning Systems, pages 1–21.

Bruna, J. and Mallat, S. (2013). Invariant scattering
convolution networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1872–1886.

Cao, Y. and Gu, Q. (2020). Generalization error bounds
of gradient descent for learning over-parameterized deep
relu networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 3349–3356.

Chen, X., Duan, Y., Houthooft, R., Schulman, J.,
Sutskever, I., and Abbeel, P. (2016). Infogan: In-
terpretable representation learning by information
maximizing generative adversarial nets. Advances in
neural information processing systems, 29.

Chen, Z., Cao, Y., Zou, D., and Gu, Q. (2019). How
much over-parameterization is sufficient to learn deep
relu networks? ArXiv, abs/1911.12360.

Chizat, L. and Bach, F. (2020). Implicit bias of gradient
descent for wide two-layer neural networks trained with
the logistic loss. In Conference on Learning Theory,
pages 1305–1338. PMLR.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. (2019).
Gradient descent finds global minima of deep neural
networks. In International conference on machine
learning, pages 1675–1685. PMLR.

Goodfellow, I., Vinyals, O., and Saxe, A. (2015). Qual-
itatively characterizing neural network optimization
problems. In International Conference on Learning
Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving
deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision,
pages 1026–1034.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error
linear units (gelus). arXiv preprint arXiv:1606.08415.

Higham, C. F. and Higham, D. J. (2019). Deep learning:
An introduction for applied mathematicians. SIAM
review, 61(4):860–891.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural
tangent kernel: Convergence and generalization in
neural networks. Advances in neural information
processing systems, 31.

Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
4401–4410.

Krizhevsky, A., Hinton, G., et al. (2009). Learn-
ing multiple layers of features from tiny images.
Available at https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Kumar, R., Majmundar, K., Nagaraj, D., and Suggala,
A. S. (2023). Stochastic re-weighted gradient descent
via distributionally robust optimization. arXiv preprint
arXiv:2306.09222.

Li, Y. and Liang, Y. (2018). Learning overparameterized
neural networks via stochastic gradient descent on
structured data. Advances in neural information
processing systems, 31.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. (2011). Learning word vectors
for sentiment analysis. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA. Association for
Computational Linguistics.

Mallat, S. (2012). Group invariant scattering. Com-
munications on Pure and Applied Mathematics,
65(10):1331–1398.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018).
Foundations of machine learning. MIT press, 2nd
edition.

Oymak, S. and Soltanolkotabi, M. (2020). Toward moder-
ate overparameterization: Global convergence guaran-
tees for training shallow neural networks. IEEE Journal
on Selected Areas in Information Theory, 1(1):84–105.

Pace, R. K. and Barry, R. (1997). Sparse spatial
autoregressions. Statistics & Probability Letters,
33(3):291–297.

Radford, A., Metz, L., and Chintala, S. (2015). Unsuper-
vised representation learning with deep convolutional

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Yinglong Guo, Shaohan Li, Gilad Lerman

generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788.

Ridnik, T., Lawen, H., Noy, A., Ben Baruch, E., Sharir,
G., and Friedman, I. (2021). Tresnet: High performance
GPU-dedicated architecture. In proceedings of the
IEEE/CVF winter conference on applications of
computer vision, pages 1400–1409.

Shamir, O. (2011). A variant of Azuma’s inequality for
martingales with subgaussian tails. arXiv preprint
arXiv:1110.2392.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recognition.

Song, C., Ramezani-Kebrya, A., Pethick, T., Eftekhari, A.,
and Cevher, V. (2021). Subquadratic overparameteriza-
tion for shallow neural networks. Advances in Neural
Information Processing Systems, 34:11247–11259.

Wang, X., Li, Y., Zhang, H., and Shan, Y. (2021). To-
wards real-world blind face restoration with generative
facial prior. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 9168–9178.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical
evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853.

Zhu, Z., Liu, F., Chrysos, G., and Cevher, V. (2022).
Generalization properties of NAS under activation
and skip connection search. Advances in Neural
Information Processing Systems, 35:23551–23565.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. (2020). Gradient
descent optimizes over-parameterized deep relu
networks. Machine learning, 109(3):467–492.

Zou, D. and Gu, Q. (2019). An improved analysis of
training over-parameterized deep neural networks.
Advances in neural information processing systems, 32.

Checklist

1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable] Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable] Not Applicable: Our
theoretical analysis and recommended
choice of hyperparameters do not affect the
computational complexity.

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Yes/No/Not Applicable] Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable] Yes.

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] Yes, see Appendix B.

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable] Yes.

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable] Yes.

(b) All the training details (e.g., data splits, hyper-
parameters, how they were chosen). [Yes/No/Not
Applicable] Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times). [Yes/No/Not Applicable] Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable] Not
Applicable: The computing power is not of
a concern.

4. If you are using existing assets (e.g., code, data, models)
or curating/releasing new assets, check if you include:

(a) Citations of the creator If your work uses existing
assets. [Yes/No/Not Applicable] Yes.

(b) The license information of the assets, if applicable.
[Yes/No/Not Applicable] Yes.

(c) New assets either in the supplemental material or
as a URL, if applicable. [Yes/No/Not Applicable]
Not Applicable: We do not produce new
assets.

(d) Information about consent from data
providers/curators. [Yes/No/Not Applicable] Not
Applicable.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive con-
tent. [Yes/No/Not Applicable] Not Applicable.

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:
(a) The full text of instructions given to participants

and screenshots. [Yes/No/Not Applicable] Not
Applicable.

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Applicable]
Not Applicable.

(c) The estimated hourly wage paid to participants and
the total amount spent on participant compensa-
tion. [Yes/No/Not Applicable] Not Applicable.

Yinglong Guo, Shaohan Li, Gilad Lerman

Appendix
Section A discusses the generalization error bound, established in Theorem 3.4, under different regimes for the number
of training epochs. Section B completes the proofs of the theorems stated in the main text and establishes four
additional theorems: Theorem B.12, which bounds the generalization error when applying SGD; Theorem B.16, which
bounds the convergence rate when using another loss function for regression; and Theorems B.14 and B.15, which
bound the convergence rate and generalization error, respectively, for a special class of datasets. Section C describes
additional numerical experiments and the full details of implementation for both the previous and the new experiments.

A Discussion of the Generalization Error Bound
In this section, we clarify the estimates for generalization error in (7) for different regimes of the number of training
epochs, t.

We first note that the last term in (7) can be sufficiently small for a sufficiently large sample size n, so we may ignore it.
The first bounding term in (7) reflects the training error and the middle two bounding terms represent the NN complexity.
There is a tradeoff between the training and NN-complexity terms, as we explain below; in particular, we cannot make
both of them sufficiently small. We remark that the closest bound on the generalization error for overparameterized
deep NNs was established in the context of classification using GD in Cao and Gu (2020). Their generalization bound
is independent of the training epoch. Instead, their bound is of order Θ(poly(n)·n−1/2) and is typically not small even
for arbitrarily large n. For very special cases (e.g., linear separability) they reduced the term poly(n) so their overall
bound is sufficiently small. In this work, we investigate the dependence of the generalization bound on t for regression
without making assumptions about the data distribution. Nevertheless, one may consider similar special assumptions
as in Cao and Gu (2020) and apply them to our theory in order to better control our generalization bound.

To better understand the bound in (7), we apply the bound on γ from Theorem 3.1 and our choice of m. We first
quickly show that T is at order of Θ((nL)2), from §4, we know that

T=ln(ϵ/L(W (0)))/lnγ≤Θ(ln(ϵ/n
√
lnm)/lnγ),

by using (3) and η=Θ(d/(nmL2)), this upper bound is Θ((nL)2), and when n is large, a lower bound with the same
order can be achieved. We observe two different regions of t≤Θ((nL)2) (in §4, we show that Θ((nL)2) approximates
T). When t=Θ

(
(nL)1−κ

)
, where 0<κ<1, the first 3 terms of R(W (t)) are bounded by

exp

(
−Ω

(
(1−α)2δ

(1+α2)(nL)1+κ

))
O(lnm)+

(1−α)√
1+α2

O

(
d1/6δ2/3

nL11/6(nL)4κ/3

)
+O

(√
dlnm

(nL)κ

)
.

The last two terms above are sufficiently small for sufficiently large n or L and the first training term is of the order
O(lnm) and is thus the dominant one. In practice, it can be reduced through careful initialization. We note that
this dominant term is minimized at α=−1. When n and L are not sufficiently large and the second bounding term
is comparable to the first term, then the bound is minimized at a certain α between −1 and 1. If, on the other hand,
t=Ω((nL)(1+κ)), where 0<κ≤1, then the order of the NN-complexity terms of (7) is O(nmin{κ,1/2+τ}Lmin{κ,2+τ}),
which becomes extremely large when n and L grow. This illustrates the overfitting phenomenon in neural network
training, where the generalization error bound increases significantly as the training error approaches zero. Overall,
we note that a smaller bound is obtained when t=Θ((nL)1−κ) and moreover overfitting occurs when t=Θ((nL)1+κ).
These observations support the benefit of early stopping. We remark that when t=T , which is roughly at Θ((nL)2),
we can express the upper bound in (7), excluding its last term, in terms of ϵ as follows:

ϵ+min

{(
(1−α)11/3

(1+α2)11/6

)
O

(
d1/3δ4/3

m1/6n10/3L10/3
ln4/3(n

√
lnm/ϵ)

)
,O

(
d3/2+τδτn1/2+τ

L1/2−τ lnm

)}
+min

{(
(1−α)2

1+α2

)
O

(
d1/2δ

√
lnm

n3L3

)
ln(n

√
lnm/ϵ),O

(
n1/2+τL2+τd1/2+τ

δ1/2−τ lnm

)}
.

The examination of our above theoretical results on generalization error bounds reveals two weaknesses when compared
to the convergence theorems, that is, Theorems 3.1 and 3.2. Firstly, unlike the convergence rate that guarantees the
training error’s convergence, the generalization error bound doesn’t assure a convergence to zero. Consequently, this
bound may not offer a precise guideline about the optimal choice of α, especially when the number of epochs is large.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Secondly, α=−1 is the optimal choice for the generalization error bound when training terminates early and both
n and L are sufficiently large. In contrast, the convergence theorem asserts that α=−1 consistently ensures the fastest
convergence. Numerical results align with these observations.

B Proofs
We detail the proofs of Lemmas 4.1, 4.2 and 4.3 and the conclusion of Theorems 3.1, 3.2 and 3.4 from these lemmas.
Moreover, we formulate and prove some the following additional theorems: a theorem that bounds the generalization error
when using SGD, which is the analog of Theorem 3.4 for SGD instead of GD; theorems that improve our estimates for for
a special class of datasets; and a theorem for the convergence theory when using a different loss function. Section B.1 intro-
duces notation needed for the proof, § B.2 quantifies the bounds for the initial weights, § B.3 extends the latter bounds to
weights within a small perturbation around the initialization, § B.4 proves the lower and upper bounds for the gradient at
initial weight and within a small perturbation (Lemma 4.2), § B.5 shows the proof of semi-smoothness (Lemma 4.1), § B.6
and § B.7 conclude the main theorem for gradient descent and stochastic gradient descent (Theorem 3.1 and 3.2), §B.8
proves the upper bound of the generalization error for a class of NN functions (Lemma 4.3), §B.9 concludes the generaliza-
tion error bound for GD (Theorem 3.4), §B.10 formulates and clarifies an upper bound of the generalization error for SGD,
§B.11 introduces a special dataset and establishes theorems on the convergence rate bound and generalization error bound
using this dataset, and §B.12 extends Theorem 3.1 and provides bounds of the convergence rate for a special loss function.

For the study of training convergence, we follow the notation and proof framework of Allen-Zhu et al. (2019b), while
incorporating the improvements suggested by Zou and Gu (2019) and some additional ones. For the study of the
generalization error, we follow the proof framework of Cao and Gu (2020) while extending the latter work to the task
of regression. Whenever previous ideas require adaptation to Leaky ReLUs or to some of our technical contributions
(summarized in §4.2), we prefer to repeat and even add more details so the reader can fully follow the current text
and will not need to switch between references. However, when we feel that the ideas of previous works directly extend
to our setting we formulate the analogous lemmas without proving them.

B.1 Notation
Throughout this appendix, we denote the entries of a vector x∈Rm by xj or (x)j, j ∈ [m]. We denote the entries
of a matrix A∈Rm×m by Aij or (A)ij, i,j ∈ [m]. For i∈ [m], the ith row vector of a matrix A is denoted by Ai,·
and its ith column vector is denoted by A·,i. The default norm ∥·∥ is the ℓ2 norm. We denote by 1E the indicator
function of the event E, which equals 1 when E occurs and 0 otherwise. We denote by Bm

1 the unit ball in Rm.

We use the rescaled leaky ReLU introduced in (2) as the activation function of the neural networks under consideration.
When acting on each coordinate of a vector x∈Rp we express its action using the following diagonal matrix Dx:

σ̃α(x)=Dxx, where (Dx)jj=
1xj≥0√
1+α2

+
α1xj<0√
1+α2

and for k≠j (Dx)kj=0. (18)

For i∈ [n] and a data point xi∈Rp, We inductively define

gi,l :=Wlhi,l−1, hi,l := σ̃α(Wlhi,l−1)≡ σ̃α(gi,l), hi,0=Axi (19)

and use the notation hi,l,k :=(hi,l)k and gi,l,k :=(gi,l)k. We denote

Di,l :=Dgi,l
and Di,l,jj :=(Di,l)jj≡

1gi,l,j≥0√
1+α2

+
α1gi,l,j<0√

1+α2
.

We further denote D0 :=I and use the new notation to express the outputs of all hidden layers via matrix products
(where according to the notation of §2 W0≡A and WL+1≡B:

gi,0=hi,0=Axi,

gi,l=WlDi,l−1Wl−1...W2Di,1W1Axi,

hi,l=Di,lWlDi,l−1Wl−1...W2Di,1W1Axi,

gi,L+1 :=Bhi,L≡BDi,LWLDi,L−1WL−1...W2Di,1W1Axi.

We denote the residual and its elements by

ei :=gi,L+1−yi, ei,j=(ei)j

Yinglong Guo, Shaohan Li, Gilad Lerman

and the loss function by

L(W):=
n∑

i=1

loss(xi,yi;W):=
n∑

i=1

1

2
∥yi−gi,L+1(xi;W)∥2≡ 1

2

n∑
i=1

∥ei∥2.

Section 5 in Higham and Higham (2019) presents a comprehensive derivation for the gradient of the loss function
in a neural network. In our case, the activation function derivative can be written as

∂hi,l,j
∂gi,l,k

=δjk ·
(
1gi,l,k≥0√
1+α2

+
α1gi,l,k<0√

1+α2

)
≡Di,l,jk, for l∈ [L].

Denoting Backi,L+1 :=B and Backi,l :=BDi,LWL...Wl (this is the backpropagation operator) we can express the
derivative of the loss with respect to the rt entry of Wl, where r,t∈ [m], as

∇(Wl)rtloss(xi,yi;W)=(BackT
i,l+1ei)rDi,l,rrhi,l−1,t.

Similarly, the gradient of the loss according to the matrix Wl and according to its kth row vector, (Wl)k,·, can be
expressed as

∇Wl
loss(xi,yi;W)=Di,lBackT

i,l+1eih
T
l−1(xi),

∇(Wl)k,·loss(xi,yi;W)=Di,l,kk⟨(Backi,l+1)·,k,ei⟩hl−1(xi).

For a vector v∈Rp, we denote its ℓ2 norm by ∥v∥2 (where ∥v∥22=
∑

j∈[p]v
2
j), ℓ∞ norm by ∥v∥∞=maxj∈[p]|vj|, and ℓ0

“size" by ∥v∥0= |{j∈ [p] :vj ≠0}|. For a matrix X∈Rm×m, we denote its spectral norm by ∥X∥2=maxj∈[m]|λj(X)|,
Frobenius norm by ∥W∥F =

√∑
i,j∈[m]W

2
ij, and ℓ0 “size" by ∥D∥0= |{(i,j)∈ [m]2 :Dij ≠0}|. For a vector of matrices

W =(W1,...,Wl), where W1, ..., Wl∈Rm×m, we define its ℓ2 norm by ∥W∥2 :=maxl∈[L]∥Wl∥2 and Frobenius norm

by ∥W∥F :=
√∑L

l=1∥Wl∥2F . For simplicity of notation we use ∥·∥ instead of ∥·∥2 for vectors, matrices and vectors
of matrices.

Throughout this appendix, we apply Algorithm 1 to initialize the weights W , A, B for the neural network.

We use the big O, Ω and Θ notation. That is, f =O(N) or f =Ω(N) if there exists C > 0 and N0 ∈N such that
f≤CN or f≥CN , respectively, for all N>N0. Also, f=Θ(N) if and only if f=O(N) and f=Ω(N).

Throughout this appendix, we may neglect the subscript i or superscripts (t) or (0) when there is no confusion.

B.2 Initialization
In this section, we focus on properties of the weights initialized by Algorithm 1 without training. We thus denote
W :=W (0) and for any input vector x∈Rp and l∈ [L]

g0=h0 :=Ax,

gl :=W
(0)
l Dgl−1

...W
(0)
2 Dg1

W
(0)
1 Ax,

hl :=Dgl
gl.

For simplicity, we denote Dl :=Dgl
.

We first establish Lemma B.1 which controls the norms of the outputs of the hidden layers with high probability. We
then establish Lemma B.2 that upper bounds maxi̸=j∈[n]⟨hi,l/∥hi,l∥,hj,l/∥hj,l∥⟩ for all l∈ [L]. Lastly, Lemma B.3
summarizes useful bounds of the norms of some relevant matrices.

We remark that the proof of Lemma B.1 adapts ideas of Allen-Zhu et al. (2019b) to the setting of Leaky ReLUs.
The proof of Lemma B.2 follows ideas of Zou and Gu (2019), while assuming that δ <O(1) instead of δ <O(1/L)
and applying minor adaptation to Leaky ReLUs. At last, Lemma B.3 directly follows the same proof argument in
Allen-Zhu et al. (2019b) (while using the conclusion of Lemma B.1) and we thus omit its proof.

Lemma B.1. Assume the setup of §2 and the above notation. If x∈Rp, ∥x∥=1 and ϵ is a fixed number in (Ω(L
m),1), then

∥hl∥∈ [1−ϵ,1+ϵ] for all l∈{0}∪[L] with probability at least 1−e−Ω(mϵ2/L).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Proof. We first prove the lemma for l = 0. Due to the initialization of the input layer by Algorithm 1,
h0=Ax∼N(0,∥x∥2/m)=N(0,1/m). Therefore, m∥h0∥2∼χ2(m), where χ2(m) denotes the chi-square distribution
with m degrees of freedom. Using the tail bound for this sub-Gaussian distribution

P
(∣∣∥h0∥2−1

∣∣> ϵ

2

)
≤2e−mϵ2/32≤e−Ω(mϵ2). (20)

We next prove the lemma for l≥1. For each layer l, we analyze the distribution of each entry of hl, and denote by
hl,j :=(hl)j, j∈ [m], conditioned on the output from the former layer hl−1. We note that the randomness of hl comes
from Wl given the fixed hl−1.

We note the following expression for hl,j, which follows from (18) and (19):

hl,j= σ̃α(gl,j)=1gl,j>0
gl,j√
1+α2

+1gl,j≤0
αgl,j√
1+α2

. (21)

We remark that unlike previous analyses (Allen-Zhu et al., 2019b; Zou and Gu, 2019), we need to deal with two different
terms in the sum in order to address Leaky ReLU and note just ReLU. We observe that due to the initialization
of Wl and (19), gl,j ∼N(0,2

∑
h2l−1,k/m)=N(0,2∥hl−1∥2/m). By the symmetry of the normal distribution, gl,j is

positive with probability 0.5. Thefore, the random variable

Bj :=1gl,j>0

is Bernoulli with probability 0.5, that is, Bj∼B(0.5). We further note that Bjgl,j=Bjgl,j|gl,j>0. We thus rewrite (21) as

hl,j=
1√

1+α2
Bjgl,j|{gl,j>0}− α√

1+α2
(1−Bj)(−gl,j)|{gl,j≤0}. (22)

Conditioning on the event gl,j>0, gl,j
d
=|X|, where X∼N(0,2∥hl−1∥2/m). Therefore,

gl,j

∣∣∣(gl,j>0) ∼|N(0,2∥hl−1∥2/m)|.

Similarly,
−gl,j

∣∣∣(gl,j≤0) ∼|N(0,2∥hl−1∥2/m)|.

Therefore, (22) and the above two equations imply the following distribution law for hij:

hl,j
d
=

1√
1+α2

BjVj,1−
α√
1+α2

(1−Bj)Vj,2,

where Vj,1, Vj,2∼ |N(0,2∥hl−1∥2/m)|, Bj ∼B(0, 12) and Vj,1, Vj,2 and Bj are independent. We further claim that if
the former layer hl−1 is given, then Vj,1 and Vj,2 are independent for j∈ [m]. Indeed, We first observe that conditioned
on hl−1 the entries hl,j, j∈ [m], are independent. Indeed, they depend on different rows in Wl and due to Algorithm 1
for the initialization of the lth layer these rows are independent. We also note that Vj,1 and Vj,2 only rely on hl,j,
and thus conditioned on hl−1 they are independent for j∈ [m].

We next derive an expression that clarifies the distribution of ∥hl∥2 conditioned on hl−1. We denote

Pl :={j∈ [m] : gl,j>0}, Kl := |Pl|,

Hl,1 :=
m

2∥hl−1∥2
∑
j∈Pl

V 2
j,1|hl−1, Hl,2 :=

m

2∥hl−1∥2
∑

j∈[m],j /∈Pj

V 2
j,2|hl−1.

We note that Kl is Bernoulli with m trials and probability 0.5, i.e.,

Kl∼B(m,0.5).

The above observations imply that conditioning on hl−1 and Pl, Hl,1∼χ2(Kl) and Hl,2∼χ2(m−Kl). Therefore, ∥hl∥2
conditioned on hl−1 is given by

∥hl∥2|hl−1
d
=
2∥hl−1∥2

(1+α2)m
Hl,1+

2α2∥hl−1∥2

(1+α2)m
Hl,2. (23)

Yinglong Guo, Shaohan Li, Gilad Lerman

Note that the indices used by Hl,1 and indices used by Hl,2 do not overlap and thus form a partition of [m]. This
partition is determined by Pl and Hl,1 and Hl,2 are conditionally independent given Pl.

We denote ∆l :=
∥hl∥2

∥hl−1∥2 and rewrite ∥hb∥2 (fixing l=b) as follows

ln∥hb∥2=ln∥h0∥2+
b∑

l=1

ln∆l. (24)

Using the distribution of ∥hl∥2 conditioning on hl−1, where 1≤ l≤b, we first derive upper and lower bounds of the
expectation E(ln∆l|hl−1). We then show that given hl−1 and other information, ln∆l is an O(m−1) sub-Gaussian
random variable. With these two properties we conclude the lemma by applying a variant of Azuma’s inequality for
sub-Gaussian random variables on

∑b
l=1ln∆l.

Bounds on the expectation of ln∆l|hl−1: We note that E(Hl,1|Pl) = Kl, E(Hl,1|Pl) = m − Kl and thus
E(Hl,1)=E(E(Hl,1|Pl))=E(Kl)=0.5m. Similarly, E(Hl,2)=0.5m and therefore E(Hl,1)=E(Hl,2). Using the latter
observation and (23) we obtain

E(∆l|hl−1)=
2

m(1+α2)

(
E(Hl,1)+α2E(Hl,1)

)
=1. (25)

Applying the concavity of the log function, Jensen’s inequality and then (23) and (25) yields

E
(

1

1+α2
ln

2

m
Hl,1+

α2

1+α2
ln

2

m
Hl,2

)
≤Eln(∆l|hl−1)≤ lnE(∆l|hl−1)=0. (26)

Using the Chernoff bound for the binomial distribution, we note that

Kl∈ [0.4m,0.6m], or equivalently m−Kl∈ [0.4m,0.6m], with probability 1−e−Ω(m). (27)

We next use the property that if H∼χ2(K) and K∈ [0.4m,0.6m], then Eln 2
mH≥− 4

m (see page 13 in the proof of
Lemma 7.1 in Allen-Zhu et al. (2019b)). This property and (26) imply

E(ln(∆l)|hl−1)∈
[
− 4

m
,0

]
. (28)

Conditional sub-Gaussianity of ln∆l : We derive a tail bound for ln∆l|hl−1 and consequently conclude its
sub-Gaussianity. We denote

El :={|Pl|∈ [0.4m,0.6m]}.

The combination of (23), basic probabilistic manipulations and the conditional independence of Hl,1 and Hl,2 yields

P
(∣∣∣m

2
∆l−

m

2

∣∣∣<t
∣∣∣hl−1,El,Pl

)
=P
(∣∣∣∣ 1

1+α2
Hl,1+

α2

1+α2
Hl,2−

m

2

∣∣∣∣<t
∣∣∣El,Pl

)
≥P
(∣∣∣∣ 1

1+α2
Hl,1−

1

1+α2

m

2

∣∣∣∣<t/2 and
∣∣∣∣ α2

1+α2
Hl,2−

α2

1+α2

m

2

∣∣∣∣<t/2
∣∣∣El,Pl

)
≥P
(∣∣∣∣ 1

1+α2
Hl,1−

1

1+α2

m

2

∣∣∣∣<t/2
∣∣∣El,Pl

)
P
(∣∣∣∣ α2

1+α2
Hl,2−

α2

1+α2

m

2

∣∣∣∣<t/2
∣∣∣El,Pl

)
≥P
(∣∣∣Hl,1−

m

2

∣∣∣<t/2
∣∣∣El,Pl

)
P
(∣∣∣Hl,2−

m

2

∣∣∣<t/2
∣∣∣El,Pl

)
.

Recall that given Pl, Hl,1 and Hl,2 are χ2(|Pl|) and χ2(m−|Pl|), respectively. We thus apply the corresponding tail
bounds of Hl,1 and Hl,2 and (27) to the bound above and obtain that

P
(∣∣∣m

2
∆l−

m

2

∣∣∣<t
∣∣∣hl−1

)
≥
(
1−e−Ω(t2/m)

)2
≥1−Ω

(
e−Ω(t2/m)

)
.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Consequently,

P
(
ln|∆l|<

t

m

∣∣∣hl−1

)
≥1−e−Ω((t

m)2m) for t∈(0,m/4].

Therefore, ln∆l conditioned on hl−1 and Kl∈ [0.4m,0.6m] is O(m−1)-sub-Gaussian.

Conclusion of the proof of the lemma: We define a new variable ∆̃l, where ∆̃l=∆l if Kl∈ [0.4m,0.6m] and ∆̃l=1,
otherwise. From the tail probability of ln∆l and the definition, it is clear that ln∆̃l|hl−1 is O(m−1)-sub-Gaussian. It
follows from (27) that with overwhelming probability ∆=∆̃. We consider the sequence of the following random variables
{(ln∆̃l−Eln∆̃l)|hl−1}bl=1. By Azuma’s inequality for sub-Gaussian variables (see Theorem 2 with c=m in Shamir (2011))

P

(∣∣∣∣∣
b∑

l=1

ln∆l−E(ln∆l|hl−1)

∣∣∣∣∣>bϵ

)
<e−Ω(bϵ2m).

Applying (28) to the above inequality yields

P

(∣∣∣∣∣
b∑

l=1

ln∆l

∣∣∣∣∣>ϵ+O

(
b

m

))
<e−Ω(ϵ2m/b).

We can choose ϵ>Ω(L
m) such that

P

(∣∣∣∣∣
b∑

l=1

ln∆l

∣∣∣∣∣>ϵ/2

)
<e−Ω(ϵ2m/b)

Combining (20), (24) and the above equation we obtain that

P
(∣∣∥hb∥2−1

∣∣>ϵ0
)
<e−Ω(mϵ2/L), for b∈ [L].

Lemma B.2. Assume the setup of §2 and the notation introduced in this section. If δ<O(1) and m>Ω(lnnL4), then

max
i̸=j∈[n]

〈
hi,l

∥hi,l∥
,
hj,l

∥hj,l∥

〉2

≤1−Ω

(
δ2

L2

)
with probability at least 1−e−Ω(δ4m/L4). (29)

Proof. We separate the proof of this lemma into three parts. The first one establishes a useful upper bound of the
expectation of the multiplication of two leaky ReLUs of certain inner products (see (30) below). Given this upper
bound, the second part shows that with high probability,

min
i̸=j∈[n]

∥hi,l−hj,l∥≥Ω(δ/L), for any l∈ [L].

The third part uses the result to conclude this Lemma.

Part 1. We verify the following probabilistic estimate:

Eσ̃α(uThi)σ̃α(u
Thj)≤

1

2

(
1− 1

2
θ2
)
+
(1−α)2

(1+α2)
O(θ3), (30)

where hi,hj∈Rp, for θ>0,⟨hi,hj⟩≤1− 1

2
θ2, and u∼N(0,I)∈Rp.

Since u ∼ N(0,I), Eukuk′ = 0 whenever k ≠ k′. We denote u := (u1, u2 ···up)T , hi := (hi,1, hi,2, ···hi,p)T and
hj :=(hj,1,hj,2,···hj,p)T . We first note that

E
(
uThi

)(
uThj

)
=E

(
p∑

k=1

ukhi,k

)(
p∑

k′=1

uk′hj,k′

)
=E

p∑
k=1

u2khi,khj,k=hT
i hjEuTu≤1− 1

2
θ2.

Yinglong Guo, Shaohan Li, Gilad Lerman

For simplicity, we denote Zi :=uThi and Zj :=uThj and thus express the above equation as

E(ZiZj)≤1− 1

2
θ2. (31)

Using the symmetry of normal distribution, we obtain that

E(ZiZj|Zi,Zj≥0)=E(ZiZj|Zi,Zj<0)

and
E(ZiZj|Zi<0,Zj≥0)=E(ZiZj|Zi≥0,Zj<0).

Consequently, the expectation of σ̃α(Zi)σ̃α(Zj) can be rewritten as

Eσ̃α(Zi)σ̃α(Zj)=
1

1+α2

(
E(ZiZj|Zi,Zj≥0)+αE(ZiZj|Zi≥0,Zj<0)

+αE(ZiZj|Zi<0,Zj≥0)+α2E(ZiZj|Zi,Zj<0)
)

=E(ZiZj|Zi,Zj≥0)+
2α

1+α2
E(ZiZj|Zi≥0,Zj<0). (32)

Similarly, we express EZiZj as follows: (32)

EZiZj=2E(ZiZj|Zi,Zj≥0)+2E(ZiZj|Zi≥0,Zj≤0)

=2Eσ̃α(Z1)σ̃α(Z2)+

(
2− 4α

1+α2

)
E(Z1Z2|Z1≥0,Z2≤0).

Rearranging the above equation yields

Eσ̃α(Z1)σ̃α(Z2)=
1

2
EZ1Z2−

(1−α)2

1+α2
E(Z1Z2|Z1≥0,Z2<0). (33)

Noting that EZ1Z2≤1− 1
2θ

2 and using the proof of Lemma A.3 of Zou et al. (2020) result in

|E(Z1Z2|Z1≥0,Z2<0)|≤O(θ3).

The application of both (31) and the above estimate to (33) results in(30) and thus concludes this part.

Part 2. For l=0,...,L and δl :=
δ

2(l+1) we prove by induction:

min
i̸=j∈[n]

∥hi,l−hj,l∥≥δl with probability at least 1−e−Ω(δ4m/L4). (34)

We first prove (34) when l=0. Recall that hi,0=Axi and note that for any i,j∈ [n],

E
(
∥Axi−Axj∥2

)
=E⟨Axi−Axj,Axi−Axj⟩=E∥Axi∥2+E∥Axj∥2−2E⟨Axi,Axj⟩

=2−2E
m∑

k=1

∑
s,t

Aksxi,sAktxj,t=2−2E
m∑

k,s=1

xi,sxj,sA
2
ks

=2−2
∑
s,k

xi,sxj,sEA2
ks=2−2

∑
s,k

xi,sxj,s
1

m

=2−2xT
i xj. (35)

Recall that Assumption 2.1 implies that ∥xi−xj∥≥δ and thus clearly

xT
i xj≤1−δ2/2.

Applying this estimate in (35) yields the that

E(∥Axi−Axj∥2)≥δ2. (36)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Due to the random initialization, m∥Ax∥2∼χ2(m) and therefore ∥Ax∥2 is (O(1/m,4) sub-exponential. Since

P(∥Axi−Axj∥2>s)≤P(∥Axi∥2>s/2)+P(∥Axj∥2>s/2),

the tail probability of ∥Axi−Axj∥2 is of the same order as the tail probabilities of ∥Axi∥2 and ∥Axj∥2. Therefore,
we conclude that ∥Axi−Axj∥2 is also (O(1/m),4) sub-exponential. Using the assumption δ < c0, where c0 can
be appropriately chosen (here we assume that c0δ < 3/4), (36) and the fact that ∥Axi −Axj∥2 is (O(1/m),4)
sub-exponential) we conclude that

P
(
∥Axi−Axj∥2<

δ2

4

)
≤P
(
∥Axi−Axj∥2<δ2(1−δ)

)
≤P
(
∥Axi−Axj∥2<(1−δ)E∥Axi−Axj∥2

)
≤O(e−δ4m).

Applying a union bound over all distinct i, j∈ [n], we conclude that with probability at least 1−n2e−Ω(δ4m),

min
i̸=j∈[n]

∥hi,0−hj,0∥≥
δ

2
≡δ0.

Next, we fix l ∈ [L], assume that (34) holds for all k ∈ [0, l − 1] and verify (34) for l. Using the fact that
E(∥hi,l∥2|hi,l−1)=∥hi,l−1∥2 and the definition of hi,l we obtain

E(∥hi,l−hj,l∥2|hl−1)

=E(∥hi,l∥2|hi,l−1)+E(∥hj,l∥2|hj,l−1)−2E(⟨hi,l,hj,l⟩|hl−1)

=∥hi,l−1∥2+∥hj,l−1∥2−2E(⟨σ̃α(Wlhi,l−1),σ̃α(Wlhj,l−1)⟩|hl−1). (37)

Applying the induction assumption (i.e., (30) with θ=δl−1) and the fact that (Wl)k,·∼N
(
0, 2mI

)
and denoting by

u a random variable such that u∼N(0,I) so (Wl)
T
k,·

d
=2u/m result in

E(⟨σ̃α(Wlhi,l−1),σ̃α(Wlhj,l−1)⟩|hl−1)=
∑
k

E(σ̃α((Wl)
T
k,·hi,l−1)σ̃α((Wl)

T
k,·hj,l−1)|hl−1)

=
2m

m
E(σ̃α(uThi,l−1)σ̃α(u

Thj,l−1)|hl−1)

≤1− 1

2
δ2l−1+

(1−α)2

1+α2
O(δ3l−1).

Using Lemma B.1, we note for any i∈ [n], ∥hi,l∥2∈(1−O(δ3l−1),1+O(δ3l−1)) with probability at least 1−ne−Ω(δ3l−1m).
Combining this observation with (37) yields for a constant C>0

E(∥hi,l−hj,l∥2|hl−1)≥δ2l−1

(
1−C

(1−α)2

1+α2
δl−1

)
+O(δ3l−1).

It follows from (23) and the fact that Hl,1 ∼ χ2(Kl) and Hl,2 ∼ χ2(m − Kl) that ∥hi,l∥2|hl−1 is (O(1/m), 4)
sub-exponential and thus ∥hi,l−hj,l∥2|hl−1 is also (O(1/m),4) sub-exponential. Thus for i≠j∈ [n]

P
(
∥hi,l−hj,l∥2≤δ2l−1

(
1−
(
C
(1−α)2

1+α2

)
δl−1

)
(1−δl−1)

∣∣∣∣hl−1

)
≤O(exp(−δ4l−1m)).

Applying a union bound for all n(n−1)/2 pairs yields

P
(

min
i̸=j∈[n]

∥hi,l−hj,l∥2≤δ2l−1

(
1−
(
C
(1−α)2

1+α2

)
δl−1

)
(1−δl−1)

∣∣∣∣hl−1

)
≤n(n−1)/2O(exp(−δ4l−1m)). (38)

Yinglong Guo, Shaohan Li, Gilad Lerman

Consequently,

1−n2Ω(exp(−Ω(δ4l−1m)))

≤P
(

min
i̸=j∈[n]

∥hi,l−hj,l∥2≥δ2l−1

(
1−
(
C
(1−α)2

1+α2

)
δl−1

)
(1−δl−1)

∣∣∣∣hl−1

)
=P
(

min
i̸=j∈[n]

∥hi,l−hj,l∥2≥δ2l−1

(
1−
(
C
(1−α)2

1+α2
+1

)
δl−1

)
+C

(1−α)2

1+α2
δ4l−1

∣∣∣∣hl−1

)
≤P
(

min
i̸=j∈[n]

∥hi,l−hj,l∥2≥δ2l−1

(
1−
(
C
(1−α)2

1+α2
+1

)
δl−1

)∣∣∣∣hl−1

)
. (39)

Next, we verify that 1−(C(1−α)2/(1+α2)+1)δl−1≥l2/(l+1)2 for a sufficiently small c0 (recall that δ<c0). We first
note that for l≥1,

l2

(l+1)2
=1− 2l+1

(l+1)2
≤1− l+1

(l+1)2
=1− 1

l+1
≤1− 1

2l
.

Therefore, if δ<1/(C(1−α)2/(1+α2)+1)<c0, then for any l∈ [L]

1−
(
C
(1−α)2

1+α2
+1

)
δl−1=1−

(
C
(1−α)2

1+α2
+1

)
δ

2l
≥1− 1

2l
≥ l2

(l+1)2
.

Thus (39) implies mini̸=j∈[n]∥hi,l−hj,l∥2≥δ2l−1
l2

(l+1)2 ≡δ2l with probability 1−n2e−Ω(δ4m/L4). When m>Ω(lnnL4),

the latter probability can be written as 1−e−Ω(δ4m/L4), which concludes (34).

Part 3. We conclude the lemma as follows. We recall that Lemma B.1 implies that with probability at least
1−e−Ω(mδ3l /L): ∥hi,l∥2∈ [1−O(δ3l),1+O(δ3l)]. Applying this conclusion and (34) we conclude that for any i≠j∈ [n]∥∥∥∥ 1

∥hj,l∥
hj,l−

1

∥hi,l∥
hi,l

∥∥∥∥=∥∥∥∥ 1

∥hj,l∥
hj,l−

1

∥hj,l∥
hi,l+

1

∥hj,l∥
hi,l−

1

∥hi,l∥
hi,l

∥∥∥∥
≥ 1

∥hj,l∥
∥hj,l−hi,l∥−

∣∣∣∣ 1

∥hj,l∥
− 1

∥hi,l∥

∣∣∣∣∥hi,l∥

≥δl(1−δ
1/2
l) with probability at least 1−2e−Ω(mδ4/L4).

We note that for δ<c0<1/2, δl< 1
4 and thus δl(1−δ

1/2
l)≥ 1

2δl. Consequently,〈
1

∥hj,l∥
hj,l,

1

∥hi,l∥
hi,l

〉
=
1

2

(
∥hj,l∥2

∥hj,l∥2
+
∥hi,l∥2

∥hi,l∥2
−
∥∥∥∥ 1

∥hj,l∥
hj,l−

1

∥hi,l∥
hi,l

∥∥∥∥2
)

=1− 1

2

∥∥∥∥ 1

∥hj,l∥
hj,l−

1

∥hi,l∥
hi,l

∥∥∥∥2≤1− 1

8
δ2l with probability at least 1−2e−Ω(mδ4/L4).

Therefore, if δ2l <8, then〈
1

∥hj,l∥
hj,l,

1

∥hi,l∥
hi,l

〉2

≤
(
1− 1

8
δ2l

)2

≤1− 1

8
δ2l with probability at least 1−2e−Ω(mδ4/L4).

Finally, we apply a union bound on all the distinct i, j pairs to obtain

max
i,j∈[n]

〈
1

∥hj,l∥
hj,l,

1

∥hi,l∥
hi,l

〉2

≤1− 1

8
δ2l with probability at least 1−n2e−Ω(mδ4/L4).

The proof of the lemma is concluded by the above bound and the following two immediate observations:
δl≡δ/2(l+1)≥Ω(δ/L) and when m>Ω(lnn)L4 the above probability can be expressed as 1−e−Ω(δ4m/L4).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Lemma B.3. Assume the setup of §2 and the notation introduced in this section. If 0≤a<b≤L, then with probability
at least 1−e−Ω(m/L) the following statements hold:

1. ∥Wb+1DbWb...Da∥≤O(
√
L).

2. If d<O(m
Llnm), then ∥Backa∥≡∥BDLWL...DaWa∥≤O(

√
m
d).

3. If v∈Rm and ∥v∥0≤O
(

m
Llnm

)
, then ∥WbDb−1...DaWav∥≤2∥v∥.

For s<O(m/Llnm) and d<O(m
Llnm), with probability at least 1−exp(−Ω(slogm)), the following statement holds:

4. For any vector u∈Rd, v∈Rm such that ∥v∥0≤s, then |uTBDLWL···DaWav|≤O(
√
slnm/d∥v∥∥u∥).

The proof of the lemma follows the same argument of the proof of Lemma 7.3 (a), (b) and Lemma 7.4 (a), (b) in Allen-
Zhu et al. (2019b) and is not directly affected by our use of Leaky ReLU. We remark though that it requires applying
Lemma B.1, which was formulated for any Leaky ReLU function instead of Lemma 7.1 of Allen-Zhu et al. (2019b).

B.3 Perturbation
We establish Lemma B.4 which quantifies the effect of a small perturbation of the randomly initialized parameters
W (0) on the output of the hidden layers. Lemma B.5 uses the former lemma to bound the norms of the perturbed
matrices and the perturbations themselves. The proof of Lemma B.4 directly follows ideas of Lemma 8.2 of Allen-Zhu
et al. (2019b), but adapts them to the setting of Leaky ReLUs. The final conclusion of this lemma is independent
of α since the leading terms turn out to be independent of α. For completeness, we find it useful to include all these
details. Lemma B.5 directly follows arguments of Allen-Zhu et al. (2019b) and we thus omit its proof.

We denote the perturbation matrix by W ′ and the perturbed matrix of parameters by W :=W (0)+W ′. Given an
input vector x such that ∥x∥=1, we denote as follows the variables at the initialization (in first column), the variables
after perturbation (in middle column) and the perturbation themselves (in last column):

h
(0)
0 =Ax h0=Ax h′

0=0

g
(0)
l =W

(0)
l h

(0)
l−1, gl=Wlhl−1 g′l=gl−g

(0)
l

(Dl)
(0)
jj =

1
(g

(0)
l)j≥0

+α1
(g

(0)
l)j<0√

1+α2
, (Dl)jj=

1(gl)j≥0+α1(gl)j<0√
1+α2

, D′
l=Dl−D

(0)
l

h
(0)
l = σ̃α(W

(0)
l h

(0)
l−1)≡ σ̃α(g

(0)
l), hl= σ̃α(Wlhl−1)≡ σ̃α(gl), h′

l=hl−h
(0)
l .

Since we fix A and WL+1≡B in the training, B(0) :=B and A(0) :=A.

Lemma B.4. If ∥W ′∥2=ω<O(1
L9/2ln3/2m

) and m≥Ω(L2), then the following events hold with probability at least

1−e
−Ω

(
m1/2

lnm

)
1. ∥D′

l∥0<O(mω2/3L) and ∥D′
lgl∥< 1−α√

1+α2
O(ωL3/2)

2. there exist vectors g′l,1 and g′l,2 such that g′l=g′l,1+g′l,2, and ∥g′l,1∥=O(ωL3/2) and ∥g′l,2∥∞=O
(
ωL5/2

√
lnm√

m

)
,

3. ∥g′l∥,∥h′
l∥<O

(
ωL5/2

√
lnm

)
.

Proof. We divide the proof into two steps. First, we show that statements 2 and 3 of the lemma imply statement
1 . We then prove statements 2 and 3 of the lemma using an induction argument for l∈{0,1,...L}.

Statements 2 and 3 imply statement 1. We fix l∈{0,1,...L}. In view of Lemma B.1 and the focus on the lth
layer, we assume that h

(0)
l−1 is a fixed vector such that ∥h(0)

l−1∥∈ [0.5,1.5]. More precisely, we can condition on h
(0)
l−1

and we know that with overwhelming probability ∥h(0)
l−1∥∈ [0.5,1.5]. We denote g

(0)
l,j := (g

(0)
l)j (note the difference

between the vector notation gi,l and the scalar notation g
(0)
l,j). We recall that

g
(0)
l =W

(0)
l h

(0)
l−1∼N

(
0,
2∥h(0)

l−1∥2

m
I

)
and thus g

(0)
l,j ∼N

(
0,
2∥h(0)

l−1∥2

m

)
for j∈ [m].

We define the following vector d and express it using the decomposition g′l=g′l,1+g′l,2 in statement 2 of this lemma:

d :=D′
l(W

(0)
l h

(0)
l +g′l)=D′

l(W
(0)
l h

(0)
l +g′l,1+g′l,2).

Yinglong Guo, Shaohan Li, Gilad Lerman

We denote D′
l,jj :=(D′

l)jj, g
′
l,1,j :=(g′l,1)j and g′l,2,j :=(g′l,2)j.

To estimate ∥d∥ and ∥d∥0 we define the following auxiliary sets that partition {j ∈ [m] :dj ≠ 0}, S1 and S2. To do
this we arbitrarily choose a positive number ξ>2∥g′l,2∥∞ and define

S1 :={j∈ [m] : |g(0)l,j |<ξ, dj ≠0}

and
S2 :={j :j∈ [m]/S1,dj ≠0}.

In the rest of the proof we bound |S1|,
∑

j∈S1
d2j , |S2| and

∑
j∈S2

d2j . We then use these estimates to bound ∥d∥ and ∥d∥0.

In order to bound |S1|, we first note that

P(|g(0)l,j |<ξ,dj ≠0)≤P(|g(0)l,j |<ξ)≤Θ

ξ

√
m

∥h(0)
l−1∥2

=Θ(ξ
√
m).

Combining a Chernoff bound for the binomial distribution with the above estimate yields

|S1|<O(ξm3/2) with probability at least 1−e−Ω(m3/2ξ). (40)

For j∈S1, we upper bound the coordinate dj of d:

|dj|≤
∣∣∣∣ 1−α√

1+α2

∣∣∣∣|g(0)l,j +g′l,1,j+g′l,2,j|≤
∣∣∣∣ 1−α√

1+α2

∣∣∣∣(ξ+∥g′2∥∞+|g′l,1,j|).

For each index j∈ [m] such as D′
l,jj ≠0 we note from the definition of D′ that |D′

l,jj|=(1−α)/
√
1+α2. By squaring

both sides of the above inequality, summing over the indices in S1 and applying (40), we conclude that with probability
at least 1−e−Ω(m3/2ξ)

∑
j∈S1

|dj|2≤3
∑
j∈S1

(1−α)2

1+α2
(ξ2+∥g′l,2∥2∞+|g′l,1,j|2)

≤ 3(1−α)2

1+α2
|S1|(ξ2+∥g′l,2∥2∞)+

3(1−α)2

1+α2
∥g′l,1∥2

≤ 3(1−α)2

1+α2
O
(
ξm3/2

)
(ξ2+∥g′l,2∥2∞)+

3(1−α)2

1+α2
∥g′l,1∥2. (41)

We next estimate |S2|. The definitions of the diagonal matrices Dl, D
(0)
l and D′

l imply that if D′
jj ≠0, then g

(0)
l,j and

gl,j have opposite signs, or equivalently, g(0)l,j +g′l,j and g
(0)
i,l have opposite signs, which further implies that |g′l,j|≥|g(0)l,j |.

We further note that by the triangle inequality |g′l,j| ≤ |g′l,1,j|+ |g′l,2,j|. Combining these two observation and then
applying additional basic estimates, we obtain

|g′l,1,j|≥|g(0)l,j |−|g′l,2,j|≥ξ−∥g′l,2∥∞ for j∈S2.

This bound clearly implies

∥g′l,1∥2≥
∑
j∈S2

|g′l,1,j|2≥|S2|(ξ−∥g′l,2∥∞)2

and consequently

|S2|≤
∥g′l,1∥2

(ξ−∥g′l,2∥∞)2
. (42)

For j∈S2, we note as above that g(0)l,j and g′l,j have opposite signs and |g′l,j|> |g(0)l,j |. The combination of both of these

observations imply |g(0)l,j +g′l,j|≤|g′l,j|. The later observation and the partition of gl according to the second statement

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

of the lemma yield the following bound for j∈S2:

|dj|=
|1−α|√
1+α2

|g(0)l,j +g′l,j|≤
|1−α|√
1+α2

|g′l,j| (43)

≤ |1−α|√
1+α2

(|g′l,1,j|+∥g′l,2∥∞). (44)

Squaring both sides of (44), summing over j∈S2 and applying (42) yield

∑
j∈S2

|dj|2≤2
(1−α)2

1+α2

∑
j∈S2

(|g′l,1,j|2+∥g′l,2∥2∞)≤2
(1−α)2

1+α2
(∥g′l,1∥2+|S2|∥g′l,2∥2∞)

≤2
(1−α)2

1+α2

(
∥g′l,1∥2+

∥g′l,2∥2∞∥g′l,1∥2

(ξ−∥g′l,2∥∞)2

)
. (45)

Obtaining these four different estimates we conclude with bounds on ∥d∥0 and ∥d∥. We first note that (40) and (42) yield

∥d∥0≤|S1|+|S2|≤Θ(ξm3/2)+
∥g′l,1∥2

(ξ−∥g′l,2∥∞)2
with probability at least 1−e−Ω(m3/2ξ).

Since ξ>2∥g′l,2∥∞, we can obtain the following bound:

∥d∥0≤Θ(ξm3/2)+
4∥g′l,1∥2

ξ2
.

In order to tighten the above bound, we minimize the right hand side term with respect to ξ and note that its
minimal value is m∥g′l,1∥2/3 and is obtained at ξmin =Θ

(
∥g′l,1∥2/3/m1/2

)
. We note that the assumed conditions:

ω<O
(
L−9/2(lnm)−3/2

)
, ∥g′l,1∥=O(ωL3/2) and ∥g′l,2∥∞<O(ωL5/2

√
lnm/

√
m) imply that ξmin>2∥g′l,2∥∞ so that the

minimum is achieved. Thus, an upper bound of ∥d∥0 is obtained as

∥d∥0≤O(m∥g′l,1∥2/3)≤O(mω2/3L).

Combining (41) and (45) yields

∥d∥2=
m∑
j=1

d2j=
∑
j∈S1

d2j+
∑
j∈S2

d2j

≤ 3(1−α)2

1+α2
O
(
ξm3/2

)
(ξ2+∥gl,2∥2∞)+

5(1−α)2

1+α2
∥g′l,1∥2+2

(1−α)2

1+α2

∥g′l,1∥2∥g′l,2∥2∞
(ξ−∥g′l,2∥∞)2

≤C
(1−α)2

1+α2
(ξ3m3/2+∥g′l,1∥22).

Plugging in ξ=ξmin to the above equation and applying the second statement of this lemma result in

∥d∥2≤O

(
(1−α)2

1+α2
∥g′l,1∥2

)
≤ 1−α√

1+α2
O(ω2L3). (46)

Consequently, our bounds for ∥Dl∥0 and ∥d∥=∥D′
lgl∥ are

∥D∥0≤∥d∥0≤O(m(ωL3/2)2/3)=O(mω2/3L), (47)

∥D′
lgl∥=∥d∥≤O(ωL3/2). (48)

Proof of Statements 2 and 3. We prove statements 2 and 3 of Lemma B.4 by induction on l∈{0,1,···L}. These
statements clearly hold at l=0 because there is no perturbation at l=0 and g′0=h′

0=0. In view of the previous

Yinglong Guo, Shaohan Li, Gilad Lerman

part of the proof, we assume the lemma holds for layers 0≤j≤l−1 and prove that the second and third statements
of the lemma hold at layer l.

Following the given definitions, we expand g′l as follows

g′l=WlDl−1gl−1−W
(0)
l D

(0)
l−1g

(0)
l−1

=(W
(0)
l +W ′

l)(D
(0)
l−1+D′

l−1)(g
(0)
l−1+g′l−1)−W

(0)
l D

(0)
l−1g

(0)
l−1

=W ′
l (D

(0)
l−1+D′

l−1)(g
(0)
l−1+g′l−1)+W

(0)
l D′

l−1(g
(0)
l−1+g′l−1)+W

(0)
l D

(0)
l−1g

′
l−1. (49)

We first expand g′l−1 in the last term of the above equation. Similarly, we then iteratively expand g′l−2, ..., g
′
1 and

obtain the following expression:

g′l=W ′
l (D

(0)
l−1+D′

l−1)(g
(0)
l−1+g′l−1)+W

(0)
l D′

l−1(g
(0)
l−1+g′l−1)

+W
(0)
l D

(0)
l−1

(
W ′

l−1(D
(0)
l−2+D′

l−2)(g
(0)
l−2+g′l−2)+W

(0)
l−1D

′
l−2(g

(0)
l−2+g′l−2)

)
+W

(0)
l D

(0)
l−1W

(0)
l−1D

(0)
l−2g

′
l−2

= ...

=
l−1∑
k=0

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

(W ′
l−k(D

(0)
l−k−1+D′

l−k−1)(g
(0)
l−k−1+g′l−k−1)

+W
(0)
l−kD

′
l−k−1(g

(0)
l−k−1+g′l−k−1)

)
+

l−1∏
j=1

W
(0)
l−j+1D

(0)
l−j

g′0.

Since g′0=0, the last term is 0. We consequently express g′l as a sum of the following two terms:

g′l=
l−1∑
k=0

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

(W ′
l−k(D

(0)
l−k−1+D′

l−k−1)(g
(0)
l−k−1+g′l−k−1)

)
(50)

+
l−1∑
k=0

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

(W (0)
l−kD

′
l−k−1(g

(0)
l−k−1+g′l−k−1)

)
. (51)

We estimate with high probability the above first term (right hand side in (50)) by using the assumption ∥W ′∥<ω

and the first statement in Lemma B.3 (to bound ∥
∏k

j=1W
(0)
l−j+1D

(0)
l−j∥, k=0,1,...l−1). We thus obtain with probability

at least 1−LeΩ(m/L) ∥∥∥∥∥∥
l−1∑
k=0

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

(W ′
l−k(D

(0)
l−k−1+D′

l−k−1)(g
(0)
l−k−1+g′l−k−1)

)∥∥∥∥∥∥
≤Lmax

k

∥∥∥∥∥∥
k∏

j=1

W
(0)
l−j+1D

(0)
l−j

∥∥∥∥∥∥
∥∥∥W ′

l−k(D
(0)
l−k−1+D′

l−k−1)(g
(0)
l−k−1+g′l−k−1)

∥∥∥
≤L·O(

√
L)·max

k
∥W ′

l−k∥·∥Dl−k−1∥·∥g(0)l−k−1+g′l−k−1∥

≤L·O(
√
L)·ω·max(|α|,1)√

1+α2
·max

k
∥g(0)l−k−1+g′l−k−1∥

≤O(ωL3/2)max
k

∥g(0)l−k−1+g′l−k−1∥.

We further use Lemma B.1 to bound ∥g(0)l−k−1∥, k∈{0,1,...l−1}, by a constant and use the induction assumption to
bound ∥g′l−k−1∥, k∈{0,1,...l−1}, by O(ωL5/2

√
lnm). With probability at least 1−O(L)e−Ω(m/L), the first term (right

hand side in (50)) is thus bounded by

O(ωL3/2)(O(1)+O(ωL5/2
√
lnm))=O(ωL3/2). (52)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

In order to bound the second term, which appears in (51), we denote

dk :=D′
l−k−1(g

(0)
l−k−1+g′l−k−1), k=0,1,...l−1

and

yk :=

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

W
(0)
l−kdk.

We show it can be decomposed into yk=yk,1+yk,2, where with probability at least 1−Le−Ω(m/L),

∥yk,1∥≤O

(
(1−α)ωL3/2

(1+α2)1/2
√
m

)
, ∥yk,2∥∞≤O

(
(1−α)ωL3/2

√
lnm

(1+α2)1/2
√
m

)
.

Denoting uk :=D
(0)
l−1W

(0)
l−1,...D

(0)
l−kW

(0)
l−kdk and applying the induction assumption we note that ∥dk∥0<O(mω2/3L).

Next, we apply the third statement of the Lemma B.3 for uk (instead of v) and obtain that with probability at least
1−e−Ω(m/L)

∥uk∥≤4∥dk∥. (53)

We note that yk=W
(0)
l uk and thus yk|uk∼N

(
0,2∥uk∥2

m I
)
.

We denote yk,j :=(yk)j and σ2 :=2∥uk∥2/m and we let b=O(∥uk∥
√
lnm/m). We investigate the tail probability of

the Gaussian random variable yk,j conditioned on uk. It is clear that

P(|yk,j|≥bt|uk)≤
1√

2πbt/σ
e−b2t2/2σ2

∀t∈N. (54)

We denote Rt :={j :yk,j ≥ bt}⊂ [m] and rt :=
√
m/((lnm)2t2). Using the independence of {yk,j}j∈[m] given uk and

applying a union bound for (54) yield

P(|Rt|≥rt|uk)≤
(
m
rt

)
×
(

1√
2πbt/σ

e−b2t2/2σ2

)rt

≤

(
∥uk∥√

πbt
√
m(1+α2)

)rt(
me

rt

)rt

e−Ω(b2t2mrt)

≤O(1)exp

(
−Ω(b2t2mrt)+

(
1

2
lnm−lnb−Ω(1)

)
rt

)
.

Denoting q :=
√
m/ln2m, we simplify the above bound as follows

P(|Rt|≥q/t2)≤e−Ω(b2qm).

We further denote Q :={0,1,2,3,..⌊12 log2q⌋}, NQ := ⌊12 log2q⌋ and T :={2p :p∈Q}. We designate the elements in T

by tp :=2p for p∈Q. Let tNQ+1 :=2⌊
1
2 log2q⌋+1≡2NQ+1 and notice that t2NQ+1>q. Thus, applying the above estimate

and a union bound over t∈T and tNQ+1

|Rt|<q/t2, ∀t∈T, and |RtNQ+1
|<1 with probability at least 1−(|T |+1)e−Ω(b2qm).

By definition, we note that when |RtNQ+1
|=0 and |yk,j|<tNQ+1 for j∈RtNQ

. We also note that for j∈Rtp \Rtp+1
,

Yinglong Guo, Shaohan Li, Gilad Lerman

|yk,j|<tp+1. Thus, for R :=R1≡{j : |yk,j|≥b}, we bound
∑

j∈Ry
2
k,j with high probability as follows∑

j∈R
y2k,j=

∑
j∈R/RtNQ

y2k,j+
∑

j∈RtNQ

y2k,j≤
∑

j∈R/RtNQ

y2k,j+|RtNQ
|(btNQ+1)

2

≤
∑

j∈R/RtNQ
/RtNQ−1

y2k,j+
∑

j∈RtNQ−1
/RtNQ

y2k,j+|RtNQ
|(btNQ+1)

2

≤
∑

j∈R/RtNQ
/RtNQ−1

y2k,j+|RtNQ−1
|(btNQ

)2+|RtNQ
|(btNQ+1)

2

......

≤
∑
p∈Q

|Rtp|(b2p+1)2≤
∑
p∈Q

q/t2p(b2
p+1)2

=
∑
p∈Q

qb222=O(qb2lnq) with probability at least 1−Ω(|T |)e−Ω(b2qm).

Since b=O
(
∥uk∥

√
lnm/m

)
and q=

√
m/ln2m, we express the above bound as

∑
j∈R

y2k,j≤O(∥uk∥2/m) with probability at least 1−e−Ω(m1/2

lnm). (55)

We split vector yk into yk=yk,1+yk,2 using the indices set R as

yk,1=(yk,111∈R,yk,212∈R,...,yk,m1m∈R)
T , (56)

yk,2=(yk,111/∈R,yk,212/∈R,...,yk,m1m/∈R)
T . (57)

Using (55) and the definition of R, and then the induction assumption on the bound of ∥dk∥ and (53) yield the

following estimates with probability at least 1−e
−Ω

(
m1/2

lnm

)
:

∥yk,1∥≤O

(
(
∥u∥
m1/2

)
≤O

(
(

(1−α)ωL3/2

(1+α2)1/2m1/2

)
, (58)

∥yk,2∥∞≤b=O

(
∥u∥

√
lnm√
m

)
≤O

(
(1−α)ωL3/2

√
lnm

(1+α2)1/2
√
m

)
. (59)

Following the later decomposition of yk (with the components in (56) and (57)), we decompose the term in (51) into∑l−1
k=0yk,1 and

∑l−1
k=0yk,2. We denote g′l,2 :=

∑l−1
k=0yk,2 and g′l,1 :=g′l−g′l,2. We note that g′l,1 is the sum of the term

in (50) and
∑l−1

k=0yk,1. By using the bound of (50) given in (52) and (58), we bound g′l,1 as follows

∥g′l,1∥≤

∥∥∥∥∥∥
l−1∑
k=0

 k∏
j=1

W
(0)
l−j+1D

(0)
l−j

(W ′
l−k(D

(0)
l−k−1+D′

l−k−1)(g
(0)
l−k−1+g′l−k−1)

)∥∥∥∥∥∥
+

l−1∑
k=0

∥yk,1∥

≤O(ωL3/2)+
l−1∑
k=0

∥yk,1∥

≤O(ωL3/2)+L max
k∈{0,1,...,l−1}

∥yk,1∥

≤O(ωL3/2)+LO

(
(1−α)ωL3/2

(1+α2)1/2m1/2

)
.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Using the fact that m≥Ω(L2), we show the ℓ2 norm for g′l,1 in the second statement of this lemma holds:

∥g′l,1∥≤O(ωL3/2)+LO

(
(1−α)ωL3/2

(1+α2)1/2m1/2

)
≤O(ωL3/2).

Applying the induction assumption, i.e., ∥g′l−k,1∥≤O(ωL3/2) for k∈{0,1,...,l−1}, and (59), we conclude the second
statement of the lemma for layer l as follows

∥g′l,2∥∞≤
l−1∑
k=0

∥yk,2∥∞≤LO

(
1−α

(1+α2)1/2

√
lnmωL3/2

√
m

)
=O

(√
lnmωL5/2

√
m

)
. (60)

Finally, we note that ∥g′l∥ ≤ ∥g′l,1∥+∥g′l,2∥, and thus the first part ∥g′l,1∥ is bounded by O(ωL3/2). Furthermore,
applying (60), we bound the second part, ∥g′l,2∥, as follows

∥g′l,2∥=
√∑

j∈S2

g2l,2,j≤
√
m
lnmω2L5

m
=
√
lnmωL5/2.

By definition, h′
l = Dg′l + D′g

(0)
l + D′g′l = Dg′l + D′gl. Applying ∥D∥ ≤ 1, ∥g′l∥ ≤ O(ωL5/2

√
lnm) and

∥D′gl∥≤O(ωL3/2), we bound the norm of h′
l in the following way

∥h′
l∥≤O(1)O(ωL5/2

√
lnm)+O(ωL3/2)=O(ωL5/2

√
lnm).

Thus the third statement of this lemma is concluded for layer l.

Lemma B.5. For given integer a,b as 1≤a<b≤L, and if d<O
(

m
Llnm

)
, ∥W ′∥≤ω<O

(
1

L9/2ln3/2m

)
. Then we obtain

that with probability at least 1−e−Ω(m/L)

1. ∥W (0)
b (D

(0)
i,b−1+D′

i,b−1)W
(0)
b−1...(D

(0)
i,a+D′

i,a)W
(0)
a ∥≤O(

√
L).

2. ∥(W (0)
b +W ′

b)(D
(0)
i,b−1+D′

i,b−1)(W
(0)
b−1+W ′

b−1)...(D
(0)
i,a+D′

i,a)(W
(0)
a +W ′

a)∥≤O(
√
L).

3. ∥W (0)
b+1(D

(0)
i,b +D′

i,b)(W
(0)
b +W ′

b)...(D
(0)
i,a+D′

i,a)−W
(0)
b+1D

(0)
i,bW

(0)
b ...W

(0)
a+1D

(0)
i,a∥≤O

(
1−α√
1+α2

L3/2
)
.

4. ∥B(D
(0)
L +D′

L)(W
(0)
L +W ′

L)...(D
(0)
i,a+D′

i,a)−BD
(0)
L W

(0)
L ...W

(0)
a+1D

(0)
i,a∥

≤O
(

1−α√
1+α2

ω1/3L2
√
mlnm√

d

)
.

The proof of this lemma follows the same arguments of the proofs of Lemmas 8.6 and 8.7 in Allen-Zhu et al. (2019b),
but uses instead Lemma B.4 and the fact that ∥D′∥=(1−α)/

√
1+α2.

B.4 Gradient Bounds and Proof of Lemma 4.2
We first introduce two lemmas (Lemmas B.6 and B.7) that provide upper and lower bounds for the Frobenius norm
of a certain matrix-valued function Gi,l(v;W

(0)) with randomly initialized parameters W (0). This function, which
is defined below in (61) equals the gradient of the loss function when v= e

(0)
i ≡Bh

(0)
L,i−yi. At last, we conclude

Lemma 4.2 by applying the perturbation bounds of Lemmas B.4 and B.5 in order to show that the order of the bounds
in Lemmas B.6 and B.7 are not affected by a small perturbation W ′ as long as ∥W ′∥≤ω<O

(
δ3/2

n3/2L15/2ln3/2m

)
.

We remark that the proof of Lemma B.6 is straightforward and follows Allen-Zhu et al. (2019b). The proof of
Lemma B.7 follows ideas of Zou and Gu (2019), while adapting it to Leaky ReLUs and improving the lower bound
of ∥∇WL(W (0))∥2F by quantifying lower bounds for layers before L instead of only using ∥∇WL

L(W (0))∥2F as done
in Zou and Gu (2019). This improvement reduces a factor L in the lower bound, which will eventually make the
learning rate of the desired theory independent of L. The idea of concluding Lemma 4.2 by examining the effect of
a small perturbation on the parameter follows Allen-Zhu et al. (2019b).

We define the matrix-valued function, Gi,l(v;W), for l∈ [L] and i∈ [n] and v∈Rd as follows

Gi,l(v;W):=Di,lBackT
i,lvh

T
i,l−1=(Backi,lDi,l)

TvhT
i,l−1. (61)

Yinglong Guo, Shaohan Li, Gilad Lerman

We note that Gi,l(v;W) is related to the gradient of the loss function as follows:

Gi,l(ei;W)≡∇Wl
loss(xi,yi;W).

Lemma B.6. Assume the setup of §2 with randomly initialized W (0). If d≤O(m
Llnm), then with probability at least

1−e−Ω(m/L)

∥Gi,l(v;W
(0))∥2F ≤O

(m
d

)
∥v∥2. (62)

Proof. The second statement in Lemma B.3 implies that ∥Backi,l∥<O(
√

m
d) with probability at least 1−e−Ω(m/L)

and therefore

∥Gi,l(v;W
(0))∥2F ≤∥Di,lBack(0)T

i,l vh
(0)T
i,l−1∥

2
F

≤∥Di,lBack(0)T
i,l v∥2∥h(0)T

i,l−1∥
2

≤O
(m
d
∥vi∥22

)
.

Lemma B.7. Assume the setup of §2 and with randomly initialized W (0). For any set of vector {vi}ni=1⊂Rd,

∥
n∑

i=1

Gi,l(vi;W
(0))∥2F ≥Ω

(
(1−α)2

(1+α2)

δm

ndL

) n∑
i=1

∥vi∥2 with probability ≥1−e−Ω(mδ2).

Proof. We separate the proof of this lemma into four parts. In the first part, we define a set in Rm (see (63) below)
and show two important properties of this set (see (64) and (66) below). In the second part, we establish a lower
bound for a useful function (as defined in (70) below) with a probability at least 0.5. In the third part, we use this
lower bound to establish a lower bound of the loss function with a positive probability. In the fourth part, we conclude
the lemma by using all the results proved in the former three parts.

Since we assume randomly initialized parameters without training, we simply denote hi,l :=h
(0)
i,l and W :=W (0) across

this proof.

Part 1. We arbitrarily fix l∈ [L] and recall that hi,l is the output of lth layer. We denote

ĥi,l :=hi,l/∥hi,l∥.

We form an orthogonal matrix Qi,l ∈Rm×m whose first column is ĥi,l. We denote the matrix in Rm×(m−1) which
completes this vector by Q̃i,l, that is, Qi,l :=[ĥi,l,Q̃i,l].

For a small constant c1>0 (the choice of c1 will be determined during the proof), we let γ=c1δ/(nL
√
m). For i∈ [n]

and the fixed l∈ [L], we define

Wi,l :={w∈Rm : |ĥT
i,lw|<γ,|⟨Q̃i,lQ̃

T
i,lw,ĥj,l⟩|>2γ,∀j∈ [n],j ≠i}⊂Rm. (63)

We prove that for any choice of γ the sets Wi,l, i∈ [n], have no intersection, that is,

Wi,l∩Wj,l=∅, ∀i≠j∈ [n]. (64)

For any w∈Wi,l, we need to prove that w /∈Wj,l, where j ≠i∈ [n]. We prove this by contradiction. Given w∈Wi,l,
we assume that there exists j ≠i∈ [n] such that w∈Wj,l. Since Q̃j,lQ̃

T
j,l=I−ĥj,lĥ

T
j,l, we rewrite Q̃j,lQ̃

T
j,lw as

Q̃j,lQ̃
T
j,lw=(I−ĥj,lĥ

T
j,l)w=w−⟨w,ĥj,l⟩ĥj,l. (65)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Applying (65) and the fact that ⟨w,ĥi,l⟩<γ and ⟨w,ĥj,l⟩<γ for w∈Wi,l∩Wj,l results in

|⟨Q̃j,lQ̃
T
j,lw,ĥi,l⟩|= |⟨w−⟨w,ĥj,l⟩ĥj,l,ĥi,l⟩|

≤|⟨w,ĥi,l⟩|+|⟨w,ĥj,l⟩⟨ĥj,l,ĥi,l⟩|

<γ+γ|⟨ĥj,L,ĥi,L⟩|
≤2γ.

On the other hand, since w∈Wj,l, |⟨Q̃j,lQ̃
T
j,lw,ĥi,l⟩|>2γ for i≠j, which contradicts the above equation. Therefore,

we conclude (64).

Next, we assume w∼N(0, 2mI) and prove that

P(w∈Wi,l)≥Ω

(
δ

nL

)
. (66)

The orthogonality of Qi,l implies that ĥT
i,lw and Q̃T

i,lw are independent. We thus express the probability (66) as follows

P(w∈Wi,l)=P(|ĥT
i,lw|<γ)P(|⟨Q̃i,lQ̃

T
i,lw,ĥj,l⟩|>2γ, ∀j∈ [n],j ≠i). (67)

We note that ĥT
i,lw∼N(0, 2m) and thus express the first multiplicative term in (67) as

P(|ĥT
i,lw|<γ)=

√
m√
4π

∫ γ

−γ

e−
mx2

4 dx≥Ω
(
γ
√
m
)
, when γ

√
m<1. (68)

To express the second multiplicative term of (67), we first derive the distribution of ĥT
j,lQ̃i,lQ̃

T
i,lw. Since

Q̃i,lQ̃
T
i,l=Im−ĥi,lĥ

T
i,l and Q̃T

i,lQ̃i,l=Im−1,

ĥT
j,lQ̃i,lQ̃

T
i,lw∼N

(
0,

2

m
ĥT
j,lQ̃i,lQ̃

T
i,lQ̃i,lQ̃

T
i,lĥj,l

)
=N

(
0,

2

m
ĥT
j,l(I−ĥi,lĥ

T
i,l)ĥj,l

)
=N

(
0,(1−⟨ĥj,l,ĥi,l⟩2)

2

m

)
.

By Lemma B.2, we recall that with probability at least 1−e−Ω(δ4m/L4),

⟨ĥi,L,ĥj,L⟩2≤1−Ω(δ2/L2), for all i≠j∈ [n].

We thus note that ĥT
j,lQ̃i,lQ̃

T
i,lw∼N(0,τ2), where τ2 is greater than Ω(δ2/mL2). Consequently,

P(|ĥT
j,lQ̃i,lQ̃

T
i,lw|<2γ)=

1√
2πτ2

∫ 2γ

−2γ

exp

(
− x2

2τ2

)
dx≤O

(γ
τ

)
≤O

(
γL

√
m

δ

)
.

Applying a union bound over all j∈ [n], j ≠i, yields

P
(
∃j∈ [n],j ≠i such that |ĥT

j,lQ̃i,lQ̃
T
i,lw|≤2γ

)
≤nO

(
γL

√
m

δ

)
.

Consequently,

P
(
|ĥT

j,lQ̃i,lQ̃
T
i,lw|>2γ ∀j∈ [n],j ≠i

)
≥1−O

(
γnL

√
m

δ

)
. (69)

Plugging (69) and (68) into (67) yields

P(w∈Wi,l)=P(|ui,1|<γ)P(|vi,j|>2γ, ∀j∈ [n],j ≠i)

≥Ω
(
γ
√
m
)(

1−O

(
γnL

√
m

δ

))
.

Yinglong Guo, Shaohan Li, Gilad Lerman

Recall that γ= c1δ/(nL
√
m), we select small c1 such that both O(γnL

√
m

δ)=O(1)·c1<1 and γ
√
m= c1δ/(nL)<1.

We thus conclude this part as follows

P(w∈Wi,l)≥Ω

(
δ

nL

)
.

Part 2. Given integer k∈ [m] and l∈ [L], we define the following vector-valued function for a=(a1,...an)
T ∈Rn and

w∈Rm:

bk,l(w,a):=
n∑

i=1

aiσ̃
′
α(⟨w,hi,l⟩)hi,l. (70)

We prove that conditioning on the event w∈Wi,l, a certain lower bound of ∥bk,l(w,a)∥ is achieved with a probability
at least 0.5, that is,

P

(
∥bk,l(w,a)∥≥ ai

2

(1−α)√
1+α2

∥hi,l∥
∣∣w∈Wi,l

)
>
1

2
.

We rewrite w as w=Qi,lQ
T
i,lw=(ĥT

i,lw)ĥi,l+Q̃i,kQ̃
T
i,kw,

⟨w,ĥj,l⟩=(ĥT
i,lw)⟨ĥi,l,ĥj,l⟩+⟨Q̃i,kQ̃

T
i,kw,ĥj,l⟩ for j ≠i

Using the following two facts: w∈Wi,l and both ĥi,l and ĥj,l are unit vectors, we bound the absolute value of the
first term of the above expression as folows

|(ĥT
i,lw)||⟨ĥi,l,ĥj,l⟩|<γ.

Since w∈Wi,l, the magnitude of the second term is greater than 2γ. We note that the sign of ⟨w,ĥj,l⟩ is the same
as that of ⟨Q̃i,kQ̃

T
i,kw,ĥj,l⟩. This and the piecewise linearity of the Leaky ReLU function imply that for w∈Wi,l

σ̃′
α(⟨w,ĥj,l⟩)= σ̃′

α(⟨Q̃i,kQ̃
T
i,kw,ĥj,l⟩⟩), for j ≠i. (71)

We note (71) implies the following expression for bk,l(w,a) for w∈Wi,l: by ,

bk,l(w,a)=aiσ̃
′
α(ĥ

T
i,lw)hi,l+

∑
j≠i

ajσ̃
′
α(ĥ

T
j,lw)hj,l

=aiσ̃
′
α(ĥ

T
i,lw)hi,l+

∑
j≠i

ajσ̃
′
α(⟨Q̃i,kQ̃

T
i,kw,ĥj,l⟩⟩)hj,l

=ai
(1−α)√
1+α2

1ĥT
i,lw>0hi,l+ai

α√
1+α2

hi,l+
∑
j≠i

ajσ̃
′
α(⟨Q̃i,kQ̃

T
i,kw,ĥj,l⟩⟩)hj,l.

We denote

b1 :=ai
(1−α)√
1+α2

hi,L−1

r :=ai
α√
1+α2

hi,L−1+
∑
j≠i

ajϕ
′
α(⟨Q̃iũi,ĥj,L−1⟩)hj,L−1,

and thus express bk,l(w,a) as follows
bk,l(w,a)=b11ĥT

i,lw>0+r. (72)

By symmetry of normal distribution, we know that ĥT
i,lw>0 with probability 0.5. We also note that ĥT

i,lw and Q̃T
i,lw

are independent and thus 1ĥT
i,lw>0 is independent with r.

We consider two possibility for r:

• When ∥r∥ ≥ 1
2∥b1∥, we know that with probability 0.5, ĥT

i,lw ≤ 0, which implies bk,l(w,a) = r, and thus
∥bk,l(w,a)∥≥ 1

2∥b1∥. We thus note that at least with probability 0.5 that ∥bk,l(w,a)∥≥ 1
2∥b1∥.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

• When ∥r∥ < 1
2∥b1∥, we note that ĥT

i,lw > 0 with probability 0.5, then by triangle inequality, we imply
∥bk,l(w,a)∥≥∥b1∥−∥r∥≥ 1

2∥b1∥.

We conclude that
P

(
∥bk,l(w,a)∥≥ ai

2

(1−α)√
1+α2

∥hi,l∥|
∣∣w∈Wi,l

)
≥ 1

2
. (73)

Part 3. The proof of this part does not depend on a particular choice of i∈ [n]. For simplicity, we thus drop the
subscript i in this part.

For v∈Rd, k∈ [m] and l∈ [L], we define ak,l :=⟨(Backl)·,k,v⟩. We want to show that for any integers k∈ [m] and l∈ [L],

P
(
(ak,l)

2≥O

(
∥v∥2

d

))
>1−exp(−O(1)). (74)

To prove the above statement, we also need an auxiliary statement for l∈{2,3,...L+1},

∥Dl−1BackT
l v∥≥(1−ϵ)

√
m

2d
∥v∥ with probability at least 1−e−Ω(mϵ2/L2). (75)

In order to prove the above two statements (74) and (75), we first prove that Wl

∣∣∣Dl has the same distribution as

Wl, i.e., N(0, 2m). Then we use a similar argument to that in the proof of Lemma B.1 in order to show (75). Finally,
by using the distribution of Wl given Dl, together with (75), we prove (74) and conclude this part.

We prove a more general statement for conditional distributions: given a normal random vector in Rp as w∼N(0,σ2Ip),
and a random vector h∈Rp that satisfies following three properties:

1. h is independent with w
2. The norm ∥h∥ is independent with the direction h/∥h∥
3. The direction h/∥h∥ is uniform distribution in the unit sphere Sp−1

We further define B :=1hTw>0 as a random variable. Then the conditional distribution of w|B is the same as the
unconditional distribution of w, that is

w|B d
=w∼N(0,σ2Ip). (76)

Remark: a normal random vector N(0,σ2I) satisfies the above three properties and thus w also satisfies above three
properties.

We denote the unit vectors ĥ :=h/∥h∥ and ŵ :=w/∥w∥. We first note that B≡1ĥT ŵ>0 only depends on the directions
of h and w. By the former observation and the fact that ∥w∥ is independent with ŵ, we thus note ∥w∥|B=∥w∥.
We denote the probability density function for a random variable Y by fY . We next consider the probability density
function fw|B(w), by independence of the norm and the direction for w, we obtain

fw|B(w)=fw|B(∥w∥,ŵ)=f∥w∥|B(∥w∥)fŵ|B(ŵ)=f∥w∥(∥w∥)fŵ|B(ŵ). (77)

Thus, in order to show (76), it is sufficient suffices to show that ŵ|B d
=ŵ. We prove this by showing that for any

set A⊂Sp−1 in unit sphere, P(ŵ∈A|B=b)=P(ŵ∈A) for any b=0 or 1. Given ĥ is uniform in unit sphere, we know
that for any fixed direction ŵ, P(ĥT ŵ>0)=0.5. By Bayes formula, former observation, and ĥ is uniform in Sp−1

P(ŵ∈A|B=1)=
P(ŵ∈A, B=1)

P(B=1)

=
P(B=1|ŵ∈A)P(ŵ∈A)∫
ŵ
P(ĥT ŵ>0|ŵ)fŵ(ŵ)

=

∫
AP(B=1|ŵ=ŵ)fŵ(ŵ)dŵ∫
Sp−1P(ĥT ŵ>0|ŵ)fŵ(ŵ)dŵ

=
0.5
∫
Afŵ(ŵ)dŵ

0.5
∫
Sp−1fŵ(ŵ)dŵ

=

∫
A
fŵ(ŵ)dŵ=P(ŵ∈A).

Yinglong Guo, Shaohan Li, Gilad Lerman

A similar argument leads to P(ŵ∈A|B=0)=P(ŵ∈A). By (77) and above argument, we conclude (76).

Given the symmetry of normal distribution, we conclude that gl satisfies the three properties we required for h
above. Together with the fact that (Wl)k,· is normal N(0,2/mIm), we thus conclude that (Wl)k,·|(Dl)kk is still normal
N(0,2/mIm).

Next, we estimate the norm of DT
l−1BackT

l v. We define vector zl :=DlBackT
l+1v for l∈ [L] and zL+1 :=v. We first

note zL=DLB
Tv and (BTv)j∼N(0,∥v∥2/d) for j∈ [m]. By denoting Bournulli random variables BL,j :=1(gL)j>0,

each index of zL can be expressed as

(zL)
2
j=

BL,j+α2(1−BL,j)

1+α2
(BTv)2j for j∈ [m].

We denote QL :={j :BL,j=1}. Conditioning on QL, denote two independent random variables HL,1∼χ2(|QL|) and
HL,2∼χ2(m−|QL|) , we note

∥zL∥2
∣∣∣QL

d
=

∥v∥2

d(1+α2)
HL,1+

α2∥v∥2

d(1+α2)
HL,2.

By symmetry of random variables before L layer, we know BL,j ∼Bournulli(0.5) and then by Chernoff bound on
binomial distribution, we note that with probability at least 1−e−Ω(mϵ2), |QL|∈ [(0.5−ϵ/2)m,(0.5+ϵ/2)m]. Given
this even happen, by using tail probability for chi-squared distribution, we note that

P(HL,1<0.5m(1−ϵ))<e−Ω(mϵ2).

Similarly,
P(HL,2<0.5m(1−ϵ))<e−Ω(mϵ2).

By taking event |QL|∈ [(0.5−ϵ/2)m,(0.5+ϵ/2)m] and using above probabilities, we conclude the lower bound for ∥zL∥

∥zL∥2≥
m∥v∥2

2d
(1−ϵ) with probability at least 1−Ω(e−Ω(mϵ2)). (78)

We note that zl−1=DT
l−1W

T
l zl. Conditioning on zl, we note that Wl|zl≡Wl|Dl is a random matrix whose entries

are i.i.d N(0,2/m). We denote a random variable Bl,j :=1(gl)j>0, then

∥zl−1∥2|zl=
m∑
j=1

Bl,j+α2(1−Bl,j)

1+α2

(∑
i

(Wl)i,j(zl)i

)2
∣∣∣zl.

We note that (
∑

iWl)i,j(zl)i|zl∼N(0,2∥zl∥2/m). We denote the indices set where Bl,j=1 by Ql :={j :Bl,j=1} and
conditioning on Ql, we further denote two independent random variables Hl,1∼χ2(|Ql|) and Hl,2∼χ2(m−|Ql|). We
note that conditioning on Ql, by similar argument we used above in proof of Lemma B.1, we know that

∥zl−1∥2
∣∣∣zl,Ql

d
=

2∥zl∥2

m(1+α2)
Hl,1+

2α2∥zl∥2

m(1+α2)
Hl,2. (79)

By the same argument to derive (78), we know that by Chernoff bound for binomial distribution, with probability
at least 1−e−Ω(mϵ2), |Ql|∈ [(0.5−ϵ/2)m,(0.5+ϵ/2)m], thus we note that

P(Hl,1<0.5m(1−ϵ))<e−Ω(mϵ2), P(Hl,2<0.5m(1−ϵ))<e−Ω(mϵ2).

Consequently,
∥zl−1∥2≥∥zl∥2(1−ϵ) with probability at least 1−Ω(e−Ω(mϵ2)). (80)

For any positive number ϵ0, when we choose ϵ=ϵ0/L in (78) and (80), and then by (1−ϵ0/L)
L>1−ϵ0, we conclude that

∥zl∥2≥
m

2d
∥v∥2(1−ϵ0) for all l∈ [L], with probability at least 1−Ω(L)e−Ω(mϵ20/L

2). (81)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Finally, recall that ak,l = ⟨(Backl)·,k,v⟩ and by definition of zl in above proof, we note that ak,l ≡ ⟨(Wl)·,k,zl⟩.
We note that (Wl)·,k|zl = (Wl)·,k|Dl, by first statement we proved in this part, we further can derive that
(Wl)·,k|zl∼N(0,2/mI). Thus, we know that conditioning on zl,

ak,l|zl∼N(0,
2∥zl∥2

m
),

By the tail probability of normal, we note that the with a constant probability that ak,l is lower bounded as

P
(
(ak,l)

2≥O

(
2∥zl∥2

m

))
>1−exp(−Ω(1)).

Combining with (81), which holds with an overwhelming probability, with a small constant choice of ϵ0, we conclude

P
(
(ak,l)

2≥O

(
∥v∥2

d

))
>1−exp(−Ω(1)) forl∈ [L].

Lastly, we also show this is also true for l=L+1. Recall that BackL+1≡B and that ak,L+1≡⟨B·,k,v⟩∼N
(
0,∥v∥

2

d

)
.

By using normal distribution property,

P
(
(ak,L+1)

2≥O

(
∥v∥2

d

))
>1−exp(−Ω(1)).

We conclude this part by the final statement that

P
(
(ak,l)

2≥O

(
∥v∥2

d

))
>1−exp(−Ω(1)) for l∈ [L+1]. (82)

Part 4. We denote a vector ak,l∈Rn by denoting its entries as (ak,l)i :=⟨(Backi,l)·,k,vi⟩ for i∈ [n]. By definition (70),
we note that bk,l−1((Wl)k,·,ak,l+1)≡(

∑n
i=1Gi,l(vi;W))k,·, by the definition of Frobenius norm of a vector of matrices,∥∥∥∥∥

n∑
i=1

Gi,l(vi;W)

∥∥∥∥∥
2

F

=

m∑
k=1

∥bk,l−1((Wl)k,·,ak,l+1)∥2. (83)

Due to (64), for any vector w∈Rm and any integer l∈ [L], we note

1≥
n∑

i=1

1w∈Wi,l−1
. (84)

It follows from (83) and (84),∥∥∥∥∥
n∑

i=1

Gi,l(vi;W)

∥∥∥∥∥
2

F

≥
m∑

k=1

∥bk,l−1((Wl)k,·,ak,l+1)∥2
n∑

i=1

1(Wl)k,·∈Wi,l−1

=
m∑

k=1

n∑
i=1

∥bk,l−1((Wl)k,·,ak,l+1)∥21(Wl)k,·∈Wi,l−1

By (73), we know that with probability at least 0.5, conditioning on (Wl)k,·∈Wi,l−1,

∥bk,l−1((Wl)k,·,ak,l+1)∥2≥
(ak,l+1)

2
i

4

(1−α)2

1+α2
∥hi,l−1∥2

We introduce the following new event Vi,l as follows

Vi,l :=
{
(Wl)k,·∈Wi,l−1, (ak,l+1)

2
i ≥

∥vi∥2

2d
, ∥hi,l−1∥≥

1

2

}
.

Yinglong Guo, Shaohan Li, Gilad Lerman

Using this event, the observation Vi,l⊂{(Wl)k,·∈Wi,l−1}, the definition of Vi,l and (73), we obtain the following lower
bound on the squared norm in (83):∥∥∥∥∥

n∑
i=1

Gi,l(vi;W)

∥∥∥∥∥
2

F

≥
m∑

k=1

n∑
i=1

∥bk,l−1((Wl)k,·,ak,l+1)∥21(Wl)k,·∈Wi,l−1

≥
m∑

k=1

n∑
i=1

∥bk,l−1((Wl)k,·,ak,l+1)∥21Vi,l

≥
m∑

k=1

n∑
i=1

∥vi∥2

32d

(1−α)2

1+α2
P(Vi,l).

For simplicity, we denote

Zk :=
n∑

i=1

∥vi∥2

32d

(1−α)2

1+α2
1Vi,l

.

To lower bound the probability P(Vi,l), we note that Wl, ak,l+1 and hi,l−1 are independent because they depend on
Wl+k for k∈ [L−l+1], Wl and Wl−k for k∈ [l]. We note that (ak,l+1)i is corresponding to ak,l+1 with selecting v=vi
in the statement proven in the previous part (74). Then by using (67), (74) and applying Lemma B.1

P(Vi,l)=P((Wl)k,·∈Wi,l−1)P
(
(ak,l+1)

2
i ≥

∥vi∥2

2d

)
P
(
∥hi,l−1∥≥

1

2

)
≥Ω

(
δ

nL

)
×(1−exp(−Ω(1)))×

(
1−e−Ω(m/L)

)
=Ω

(
δ

nL

)
.

By property of indicator function, we note that

EZk=

n∑
i=1

∥ei∥2

32d

(1−α)2

1+α2
P(Vi,l)

and

VarZk=
∥ei∥2

32d

(1−α)2

1+α2
1Vi,l

P(Vi,l)(1−P(Vi,l).

Then, by using Hoeffding inequality, with probability at least 1−e−Ω(mδ2/L2) that

m∑
k=1

Zk≥
m

2

n∑
i=1

∥ei∥2

32d

(1−α)2

1+α2
P(Vi)

≥Cm

2

n∑
i=1

∥vi∥2

32d

(1−α)2

1+α2
Ω

(
δ

nL

)
.

Thus we conclude the Lemma, for all l∈ [L], as follows:∥∥∥∥∥
n∑

i=1

Gi,l(vi;W
(0))

∥∥∥∥∥
2

F

≥
m∑

k=1

Zk≥Ω

(
(1−α)2

(1+α2)

δm

ndL

) n∑
i=1

∥vi∥2.

At last, we conclude the proof of Lemma 4.2.

Proof of Lemma 4.2. In order to prove the lower and upper bounds for the gradient for parameters W close to W (0),
we need leverage Lemma B.5 to show that after perturbation from W (0), the change in gradient has a smaller order
than the upper bound in Lemma B.6 and the lower bound in Lemma B.7. Then the same upper and lower bounds
hold for W such that ∥W (0)−W∥<ω and thus conclude Lemma 4.2.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

We denote a perturbation of the function Gi,l(v;W
(0)) with respect to W (0),

Gi,l(v;W)−Gi,l(v;W
(0))

=(vTBDi,LWL...Di,l+1Wl+1Di,l)
ThT

i,l−1−(vTBD
(0)
i,LW

(0)
L ...D

(0)
i,l+1W

(0)
l+1D

(0)
i,l)

Th
(0)T
i,l−1

=(vTBDi,LWL...Di,l+1Wl+1Di,l)
ThT

li,−1−(vTBD
(0)
i,LW

(0)
L ...D

(0)
i,l+1W

(0)
l+1D

(0)
i,l)

ThT
i,l−1

+(vTBD
(0)
i,LW

(0)
L ...D

(0)
i,l+1W

(0)
l+1D

(0)
i,l)

ThT
i,l−1−(vTBD

(0)
i,LW

(0)
L ...D

(0)
i,l+1W

(0)
l+1D

(0)
i,l)

Th
(0)T
i,l−1

Using ∥uvT∥F ≤∥u∥∥v∥, and denoting vectors vi∈Rd, we derive the bound for the change of the gradient by

∥
n∑

i=1

Gi,l(vi;W)−Gi,l(vi;W
(0))∥F

≤
n∑

i=1

∥vT
i (BDLWL...Dl+1Wl+1Dl−BD

(0)
L W

(0)
L ...D

(0)
l+1W

(0)
l+1)D

(0)
l ∥∥hl−1∥

+∥vT
i BD

(0)
L W

(0)
L ...D

(0)
l+1W

(0)
l+1D

(0)
l ∥∥hl−1−h

(0)
l−1∥. (85)

By Lemma B.5,

∥(vTBDLWL···Dl+1Wl+1)−(vTBD
(0)
L W

(0)
L ···D(0)

l+1W
(0)
l+1)∥

≤O

(
ω1/3L2

√
mlnm√
d

)
∥v∥ with probability at least 1−e−Ω(m/L). (86)

By Lemma B.1,
∥h(0)∥≤1.1 with probability at least 1−e−Ω(m/L). (87)

By Lemma B.4,
∥hl−1−h

(0)
l−1∥≤O(ωL5/2

√
lnm) with probability at least 1−e−Ω(m/L). (88)

We note that the combination of (87), (88) and the bound ω<O
(

1
L5/2

√
lnm

)
(which is a weaker bound than the one

stated in the lemma) imply
∥h∥≤O(1) with probability at least 1−e−Ω(m/L). (89)

By applying (86), (87), (88) and (89) to (85), we conclude that with probability at least 1−e−Ω(m/L)

∥∥∥∥∥
n∑

i=1

Gi,l(vi;W)−Gi,l(vi;W
(0))

∥∥∥∥∥
2

F

≤O

(
ω2/3L4mlnm

d

) n∑
i=1

∥vi∥2. (90)

We note that for l∈ [L], i∈ [n],

∇Wl
loss(xi,yi;W)=Gi,l(ei;W).

and thus

∇Wl
L(W)=

n∑
i=1

Gi,l(ei;W). (91)

Therefore, substituting vi=ei in (90), the left-hand side of (90) becomes the perturbation of the gradient of the loss
function. Since ω<O

(
δ3/2

n3/2L15/2ln3/2m

)
and δ<c0,

ω2/3L4mlnm

d
<O

(
δm

ndL

)
<O

(mn

d

)
. (92)

Yinglong Guo, Shaohan Li, Gilad Lerman

For the upper bound, by Lemma B.6, (91), (90) and then by (92), with probability at least 1−e−Ω(m/L),

∥∇Wl
L(W)∥2F =

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W)

∥∥∥∥∥
2

F

≤2

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W
(0))

∥∥∥∥∥
2

F

+2

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W
(0))−Gi,l(ei;W)

∥∥∥∥∥
2

F

≤
(
O
(mn

d

)
+O

(
ω2/3L4mlnm

d

)) n∑
i=1

∥ei∥2

≤O
(mn

d

) n∑
i=1

∥ei∥2

=O
(mn

d

)
L(W).

By definition, we further conclude that

∥∇WL(W)∥2≤max
l∈[L]

∥∇Wl
L(W)∥2F ≤O

(mn

d

)
L(W).

For the lower bound, by Lemma B.7, (91), (90) and then by (92), with probability at least 1−e−Ω(mδ2),

∥∇Wl
L(W)∥2F =

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W)

∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W
(0))

∥∥∥∥∥
2

F

−

∥∥∥∥∥
n∑

i=1

Gi,l(ei;W
(0))−Gi,l(ei;W)

∥∥∥∥∥
2

F

≥Ω

(
(1−α)2

1+α2

δm

ndL
−O

(
ω2/3L4mlnm

d

)) n∑
i=1

∥ei∥2

≥Ω

(
(1−α)2

1+α2

δm

ndL

)
L(W).

By definition, we conclude that

∥∇WL(W)∥2F =
∑
l∈[L]

∥∇Wl
L(W)∥2F ≥Ω

(
(1−α)2

1+α2

δm

nd

)
L(W). (93)

B.5 Proof of Lemma 4.1
We prove Lemma 4.1 by adapting the arguments of the proof of Theorem 4 in Allen-Zhu et al. (2019b) to Leaky ReLUs.

Let us first introduce some notation. We let W ∗ be a vector of matrices satisfying ∥W ∗−W (0)∥<ω, where we
think of W ∗ as a vector of matrices at an arbitrary training step (we will apply the lemma in this way). We denote
a perturbation of W ∗ by W ′ and the perturbed matrix by W :=W ∗+W ′. Additional notation corresponding to
the original, perturbation and perturbed settings (of W ∗, W and W ′, respectively) is summarized as follows:

g∗i,l=W ∗
l h

∗
i,l−1, gi,l=Wlhi,l−1 g′i,l=gi,l−g∗i,l

(Di,l)
∗
jj=

1(g∗
i,l)j≥0+α1(g∗

i,l)j<0
√
1+α2

, (Di,l)jj=
1(gi,l)j≥0+α1(gi,l)j<0√

1+α2
, D′

i,l=Di,l−D∗
i,l

h∗
i,l= σ̃α(W

∗
l h

∗
l−1)≡ σ̃α(g

∗
i,l), hi,l= σ̃α(Wlhl−1)≡ σ̃α(gi,l), h′

i,l=hi,l−h∗
i,l

e∗i,l=yi−Bh∗
i,L, ei,l=yi−Bh∗

i,L e′i,l=ei,l−e∗i,l.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

The loss functions at W ∗ and W are expressed as

L(W ∗)=
1

2

n∑
i=1

∥e∗i ∥2, L(W)=
1

2

n∑
i=1

∥ei∥2. (94)

We introduce an auxiliary lemma before proving Lemma 4.1.

Lemma B.8. There exists a set of diagonal matrices D′′
i,l∈ [−

√
2,
√
2]m×m so that

h′
i,l=hi,l−h∗

i,l=
l∑

a=1

(D∗
i,l+D′′

i,l)W
∗
l (D

∗
i,l−1+D′′

i,l−1)...W
∗
a+1(D

∗
i,a+D′′

i,a)W
′
ahi,a−1.

Furthermore, the following bounds hold

∥h′
i,l∥≤O(L3/2)∥W ′∥, ∥Bh′

i,L∥≤O(L
√
m/d)∥W ′∥ and ∥D′′

i,l∥0≤O(mω2/3L).

The proof of this lemma is identical to the proof of Claim 11.2 in Allen-Zhu et al. (2019b). It is obtained by replacing
|D′′

k,k|≤1 in the second statement of Proposition 11.3 in Allen-Zhu et al. (2019b) with |D′′
k,k|≤

√
2 in order to fit the

setting of Leaky ReLUs.

The rest of this section provides a detailed proof of Lemma 4.1.

Proof of Lemma 4.1. We first express the loss function at W as follows

loss(xi,yi;W)

=
1

2
∥Bhi,L−yi∥2=

1

2
∥B(hi,L−h∗

i,L)+Bh∗
i,L−yi∥2

=
1

2
∥e∗i+B(hi,L−h∗

i,L)∥2=
1

2
∥e∗i ∥2+

1

2
∥B(hi,L−h∗

i,L)∥2+⟨e∗i ,B(hi,L−h∗
i,L)⟩

= loss∗i+
1

2
∥B(hi,L−h∗

i,L)∥2+e∗Ti B(hi,L−h∗
i,L)= loss∗i+

1

2
∥B(hi,L−h∗

i,L)∥2+e∗Ti Bh′
i,L. (95)

Then we expand ⟨∇L(W ∗),W ′⟩ as

⟨∇L(W ∗),W ′⟩

=
L∑
l=1

⟨∇Wl
L(W ∗),W ′

l ⟩=
L∑
l=1

n∑
i=1

⟨D∗
i,lW

∗T
l+1D

∗
i,l+1...D

∗
i,LB

Te∗ih
∗T
l−1(xi),W

′
l ⟩

=
L∑
l=1

n∑
i=1

⟨D∗
i,lW

∗T
l+1D

∗
i,l+1...D

∗
i,LB

Te∗ih
∗T
l−1(xi),W

′
l ⟩

=
L∑
l=1

n∑
i=1

e∗Ti BD∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

∗
l−1(xi).

Yinglong Guo, Shaohan Li, Gilad Lerman

The above two equations imply the following estimate

L(W ∗+W ′)−L(W ∗)−⟨∇L(W ∗),W ′⟩

=−⟨∇L(W ∗),W ′⟩+
n∑

i=1

(lossi−loss∗i)

=−
L∑
l=1

n∑
i=1

e∗Ti BD∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

∗
l−1(xi)

+
n∑

i=1

(1
2
∥B(hi,L−h∗

i,L)∥2+e∗Ti B(hi,L−h∗
i,L)
)

=
n∑

i=1

e∗Ti B
(
(hi,L−h∗

i,L)−
L∑
l=1

D∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

∗
l−1(xi)

)
(96)

+
1

2

n∑
i=1

∥B(hi,L−h∗
i,L)∥2. (97)

Lemma B.8 provides the following upper bound for (97)

1

2

n∑
i=1

∥B(hi,L−h∗
i,L)∥2≤O(nL2m/d)∥W ′∥2. (98)

We note that (96) can be differently expressed by using Lemma B.8 to replace h−h∗ with some diagonal matrices,
D′′

i,l, and by adding and subtracting the term
∑L

l=1D
∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lhi,l as follows

e∗Ti B
(
(hi,L−h∗

i,L)−
L∑
l=1

D∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

∗
l−1(xi)

)
=e∗Ti B

(L∑
l=1

(D∗
i,L+D′′

i,L)W
∗
L...W

∗
l+1(D

∗
i,l+D′′

i,l)W
′
lhi,l−1

−
L∑
l=1

D∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

∗
l−1(xi)

)
=e∗Ti B

(L∑
l=1

(
(D∗

i,L+D′′
i,L)W

∗
L...W

∗
l+1(D

∗
i,l+D′′

i,l)W
′
l −D∗

i,LW
∗
L...W

∗
l+1D

∗
i,lW

′
l

)
hi,l−1 (99)

−
L∑
l=1

D∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
l

(
hi,l−1−h∗

l−1(xi)
))

. (100)

Next, we upper bound (99) and (100). In order to bound (99), we first use Lemma B.5 to obtain the following bound

∥B(D∗
i,L+D′′

i,L)W
∗
L...W

∗
l+1(D

∗
i,l+D′′

i,l)W
′
l −BD∗

i,LW
∗
L...W

∗
l+1D

∗
i,lW

′
l ∥

≤O

(
1−α√
1+α2

ω1/3L2
√
mlnm√
d

)
∥W ′

l ∥. (101)

Using (94), we note that (
∑n

i=1∥e∗i ∥)2≤n
∑n

i=1∥e∗i ∥2=nL(W ∗). Combining this fact and (101) yields the following
bound for (99):

n∑
i=1

e∗Ti B
(L∑
l=1

(
(D∗

i,L+D′′
i,L)W

∗
L...W

∗
l+1(D

∗
i,l+D′′

i,l)W
′
l −D∗

i,LW
∗
L...W

∗
l+1D

∗
i,lW

′
l

)
hi,l−1

)
≤
√
nL(W ∗)O

(
1−α√
1+α2

ω1/3L2
√
mlnm√
d

)
∥W ′∥. (102)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

In order to bound (100), we apply Lemma B.3 and Lemma B.5 to obtain

∥BD∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,l∥

≤∥BD0
i,LW

0
L...D

0
i,l+1W

0
l+1D

0
i,l∥

+∥BD0
i,LW

0
L...D

0
i,l+1W

0
l+1D

0
i,l−BD∗

i,LW
∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,l∥

≤O(
√
Lm/d)+O

(
1−α√
1+α2

ω1/3L2
√
mlnm√
d

)
. (103)

Lemma B.8 implies that ∥h−h∗∥=∥h′∥≤O(L3/2∥W ′∥). Combining this observation and (103) results in∥∥∥∥∥
n∑

i=1

e∗Ti

L∑
l=1

BD∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

′
i,l−1

∥∥∥∥∥≤
n∑

i=1

∥e∗i ∥O(L2
√
m/d)∥W ′∥2. (104)

In order to bound ∥e∗i ∥, we first note that at initialization

∥e(0)i ∥=∥Bh
(0)
L,i−yi∥≤∥yi∥+∥Bh

(0)
L,i∥,

where

Bh
(0)
L,i∼N

(
0,
∥h∥2

d
Id

)
.

For this Gaussian distribution and d<O(1),

P
(
∥(Bh

(0)
L,i)∥

2>

√
m√
d

)
≤e−Ω(m

d)=e−Ω(m).

Therefore, with probability at least 1−e−Ω(m),

∥e(0)i ∥≤O

(√
m√
d

)
.

For general e∗i , ∥e∗i ∥=
∥∥∥B(h(0)

i,L+(h∗
i,L−h

(0)
i,L)
)
−yi

∥∥∥. Lemma B.8 implies that if ω≤O(1/L)

∥e∗i ∥≤∥e(0)i ∥+∥B(h∗
i,L−h

(0)
i,L)∥≤O

(√
m√
d

)
. (105)

The combination of (105) and (104) results in the following bound on the term specified in (100)∥∥∥∥∥
n∑

i=1

e∗Ti

L∑
l=1

BD∗
i,LW

∗
L...D

∗
i,l+1W

∗
l+1D

∗
i,lW

′
lh

′
i,l−1

∥∥∥∥∥≤O

(
nL2m

d

)
∥W ′∥2 (106)

Combining the bounds in (98), (102) and (106) we bound the terms in (96) and (97) with the above specified probability.
We thus conclude the desired result, that is, if W ∗ is such that ∥W ∗−W (0)∥<ω, then with probability at least 1−e−Ω(m)

L(W ∗+W ′)−L(W ∗)−⟨∇L(W ∗),W ′⟩

≤
√
nL(W ∗)O

(
1−α√
1+α2

ω1/3L2
√
mlnm√
d

)
∥W ′∥+O(nL2m/d)∥W ′∥2.

Yinglong Guo, Shaohan Li, Gilad Lerman

B.6 Conclusion of the Proof of Theorem 3.1
Most of the proof of Theorem 3.1 was given in §4. The only part that remains unverified is to show that during training

∥W t−W (0)∥<ω<O

(
δ3/2

n3/2L15/2ln3/2m

)
.

For this purpose, we establish Lemma B.9 below.

Lemma B.9. Assume the setup of §2, where the learning rate satisfies η< δ3/2d1/2

n3L15/2m1/2ln2m
and the width m of the

neural network satisfies m
ln4m

>Ω
(

1+α2

(1−α)2
n5L15d

δ4

)
. Then in the training stage described by Algorithm 2

∥W (t)−W (0)∥<O

(
δ3/2

n3/2L15/2ln3/2m

)
with probability at least 1−e−Ω(lnm). (107)

Proof. We first establish the bound

L(W (0))<O(nln1/2m) with probability at least 1−e−Ω(lnm). (108)

We note that Bhi,L∼N
(
0,

∥hi,L∥2
d

)
and thus d

∥hi,L∥2∥Bhi,L∥2|hi,L∼χ2(d). Applying this observation and Lemma B.1

(i.e., ∥hi∥∈ [0.5,1.5], with probability at least 1−e−Ω(m/L)) yields

P
(

d

∥hi,L∥2
∥Bhi,L∥2>(1+ϵ)d

)
<e−Ω(dϵ2).

Choosing ϵ =
√
lnm and applying a union bound over i ∈ [n] (but noting that since m > Ω(n) the probability

1−ne−Ω(dlnm) is of the same order as 1−e−Ω(dlnm)), we obtain the bound

∥Bhi,L∥2≤O(
√
lnm) with probability at least 1−e−Ω(dlnm). (109)

Therefore, we conclude (108) as follows:

L(W (0))=
n∑

i=1

∥yi−Bhi,L∥2≤n(O(1)+O(
√
lnm))=O(n

√
lnm).

Next, we prove (107) by induction on t=1,···. It is trivial that the statement holds for t=0.

To prove the induction step we follow ideas that were introduced in the proof of Lemma 4.1 in Zou and Gu (2019).
Using the induction assumption, we can apply (16) and then (14) (indeed, the conditions for these bounds are
guaranteed by the induction assumption) and consequently obtain√

L(W (s))−
√
L(W (s+1))=

L(W (s))−L(W (s+1))√
L(W (s))+

√
L(W (s+1))

≥Ω(1)
η∥∇L(W (s))∥2F√

L(W (s))

≥ (1−α)√
1+α2

Ω

(√
δm

nd

)
η∥∇L(W (s))∥F ,

or equivalently,

η∥∇L(W (s))∥F ≤
√
1+α2

(1−α)
Ω

(√
nd

δm

)(√
L(W (s))−

√
L(W (s+1))

)
. (110)

Combining the training procedure with (110) yields

∥W (t)−W (0)∥≤η
t−1∑
s=0

∥∇WL(W (s))∥

≤
√
1+α2

(1−α)
Ω

(√
nd

δm

)(√
L(W (0))−

√
L(W (t))

)

≤
√
1+α2

(1−α)
Ω

(√
nd

δm

)√
L(W (0)). (111)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Applying (108) to the bound above we conclude that when m
ln4m

> 1+α2

(1−α)2Ω(n
5L15d/δ4),

∥W (t)−W (0)∥≤O

(
δ3/2

n3/2L15/2ln3/2m

)
with probability at least 1−e−Ω(lnm).

B.7 Proof of Theorem 3.2
Throughout this proof we assume that ∥W (t) −W (0)∥ ≤ O(δ3/2

n3/2L15/2ln3/2m
) during training, which is a sufficient

condition for some of the propositions used, such as for Lemma 4.1. After finalizing the proof under this assumption,
we establish Lemma B.10 that guarantees this assumption.

Applying Lemma 4.1 and taking expectations yield

EL(W (t+1))=EL(W (t)−η∇WLB(W
(t)))

≤EL(W (t))−Eη⟨∇WL(W (t)),∇WLB(W
(t))⟩

+
η(1−α)ω

1
3L2
√
mnL(W (t))lnm√

d(1+α2)
EO
(
∥∇WLB(W

(t))∥
)

(112)

+
η2nL2m

d
EO
(
∥∇WLB(W

(t))∥2
)
.

Applying the following basic observations:

E⟨∇WL(W (t)),∇WLB(W
(t))⟩= b

n
∥∇WL(W (t))∥2F ,

∥∇WL(W (t))∥=max
l∈[L]

∥∇Wl
L(W (t))∥≤max

l∈[L]
∥∇Wl

L(W (t))∥F ≤∥∇WL(W (t))∥F ,

while selecting ω< δ3/2

n3L6ln3/2m
and η< d

bL2m , to (112) results in

EL(W (t+1))≤L(W (t))− ηb

n
∥∇WL(W (t))∥2F ≤

(
1−Ω

(
(1−α)2

1+α2

ηδmb

n2d

))
L(W (t)). (113)

For simplicity, we define

γ :=

(
1−Ω

(
(1−α)2

1+α2

ηδmb

n2d

))
,

and (113) becomes
EL(W (t+1))≤γL(W (t)). (114)

Next, we establish a bound for L(W (t+1)) without expectation. We note that (9) implies

∥∇Wl
LB(W

(t))∥2F ≤(bm/d)L(W (t)),

and consequently

∥∇WLB(W
(t))∥2F ≤ bmL

d
L(W (t)) and ∥∇WLB(W

(t))∥2≤ bm

d
L(W (t)). (115)

The application of Lemma 4.1, (115) and our choice of η results in

L(W (t+1))≤L(W (t))+η∥∇WLB(W
(t))∥F∥∇WL(W (t))∥F+η

b2mn

d
L(W (t))

≤

(
1+O

(
ηmL

√
nb

d

))
L(W (t)). (116)

For simplicity, we define β :=1+O(ηmL
√
nb/d), and (116) becomes

L(W (t+1))≤βL(W (t)). (117)

Yinglong Guo, Shaohan Li, Gilad Lerman

We denote
Lt :=L(W (t))

and define the filtration
Ft :=σ(W (0),..W (t)).

We further define
Yt :=lnLt−lnLt−1−E(lnLt−lnLt−1|Ft−1)

and

Xt :=
t∑

s=1

Ys.

We note that {Xt} is a martingale.

We will use Azuma’s inequality to bound Xt. We thus need to show that {Xt} is c−Lipschitz (i.e., |Yt|≤ct,). We
verify the c−Lipschitz property by applying the definition of Yt, (117) and (114) as follows:

|Yt+1|= |lnL(t+1)−lnL(t)−ElnL(t+1)−lnL(t)|Ft|

≤ lnβ−lnγ=ln
β

γ
.

Then by Azuma’s inequality,

P(|Xt−EXt|≥λ)≤2exp

(
− λ2

2tln2β/γ

)
. (118)

Choosing λ=
√
tln(β/γ)lnm in (118) yields

|Xt|≤
√
tln(β/γ)lnm with probability at least 1−e−Ω(ln2m).. (119)

Applying the definition of Yt and (114) results in

lnLt=Xt+lnL(0)+
t∑

s=1

E(Ys−Ys−1|Fs−1)≤Xt+lnL(0)+tlnγ.

We further apply the above observation and (119) to conclude that with probability at least 1−e−Ω(ln2m)

lnL(t)≤ lnL(0)+tlnγ+
√
tln

(
β

γ

)
lnm

≤ lnL(0)+
ln2
(
β
γ

)
ln2m

4|lnγ|
−

(√
|lnγ|

√
t−

lnβ
γ lnm

2
√
|lnγ|

)2

.

We note that for f(x)=(ax+b)2 and x>4b/a, f(x)≥ 1
2a

2x2. Using this fact, we conclude that when
√
t>

2lnβ
γ lnm

|lnγ| ,

or equivalently, when t>
4ln2 β

γ ln2m

ln2γ
,

lnL(t)≤ lnL(0)+
ln2 β

γ ln
2m

4|lnγ|
+t×1{

t>
4ln2

β
γ

ln2m

ln2γ

}lnγ with probability ≥1−e−Ω(ln2m). (120)

This implies that when t>
4ln2 β

γ ln2m

ln2γ
we achieve linear convergence with a convergence rate of γ. By our choice of

η, the additional term in (120) is bounded as follows

:
ln2(β/γ)ln2m

|lnγ|
≤O

(
(β−1)2

1−γ
ln2m

)
=O

(
η
mn3L2ln2m

dδ

)
<O(1).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

The above lower bound of t that guarantees linear convergence can be further simplified. Since x
1+x ≤ ln(1+x)≤x,

we note t≥
((β−1)2+

(γ−1)2

γ2)γ2ln2m

(γ−1)2 and thus

t≥ ln2m×
(
1+

(β−1)2

(γ−1)2

)
.

Recalling the expressions for β and γ, we conclude that linear convergence is achieved when

t>Ω

(
(1+α2)2

(1−α)4
n5L2

δ2b
ln2m

)
. (121)

The above argument holds for one training step with probability at least 1−e−Ω(m). It extends to T steps with
probability at least 1−Te−Ω(m). We note that the number of epochs T can be bounded using the bound ϵ on the
training error, the convergence rate in (6), and (108), as follows:

T=ln(ϵ/C0L(W (0)))/lnγ<Θ(ln(ϵ/C0n
√
lnm)/lnγ)≤O

(
ηbδm

n2d
(lnϵ−1+ln(C0n

√
lnm))

)
.

Therefore, the probability that ensures T -steps training with training error lower than ϵ is at least

1−O

(
ηbδm

n2d
(lnϵ−1+ln(C0n

√
lnm))

)
e−Ω(m).

Because m>Ω(poly(n,L,d,δ−1,b)) and also m>Ω(lnlnϵ−1), this probability is of order 1−e−Ω(m).

Lemma B.10. Assume the setup of §2 with learning rate η< δ3/2d1/2

b1/2n3L15/2m1/2ln2m
and neural network width m satisfying

m
ln4m

> (1+α2)4

(1−α)8 Ω
(
n8L15d
δ5b

)
. Then during training according to Algorithm 3,

∥W (t)−W (0)∥<O

(
δ3/2

n3/2L15/2ln3/2m

)
with probability at least 1−e−Ω(lnm).

Proof. The proof is similar to Lemma B.9, but with different bounds in this SGD setting. We first show bound the
perturbation at initialization as follows:

∥W (1)−W (0)∥=η∥∇WLB(W
(0))∥≤ηO

(√
mnb

d

)
L(W (0))<O

(
δ3/2

n3/2L15/2ln3/2m

)
.

We denote T0 :=Ω
(
(1+α2)2

(1−α)4
n5L2

δ2b ln2m
)
. Combining the SGD update step, (115), (120), (121) and our choice of η yields

∥W (t)−W (0)∥≤η
t−1∑
s=0

∥∇WLB(W
(s))∥≤η

t−1∑
s=0

√
mb

d

√
L(W (s))

≤
√

mb

d
η

(
1

1−√
γ
+T0

)√
L(W (0))

≤O(1)

√
mb

d
η

(
1+α2

(1−α)2
n2Lη

δmb
+Ω

(
(1+α2)2

(1−α)4
n5L2

δ2b
ln2m

))√
L(W (0))

≤O(1)

√
mb

d
ηΩ

(
(1+α2)2

(1−α)4
n5L2

δ2b
ln2m

)√
L(W (0))

≤O(1)

√
mb

d

dδ

mn3L2ln2m
Ω

(
(1+α2)2

(1−α)4
n5L2

δ2b
ln2m

)√
L(W (0))

=O(1)
(1+α2)2

(1−α)4

√
dn2

√
mbδ

√
L(W (0)).

It is thus clear that when m
ln4m

>
(

1+α2

(1−α)2

)4
Ω
(
n8L15d
δ5b

)
, ∥W (t)−W (0)∥≤O

(
δ3/2

n3/2L15/2ln3/2m

)
.

Yinglong Guo, Shaohan Li, Gilad Lerman

B.8 Proof of Lemma 4.3
To simplify the proof, we study the generalization error of each output coordinate separately. We denote the k−th
row of the matrix B by Bk,· and treat it as a column vector. For k∈ [d], we define function

fk(x;W):=BT
k,·hL(x),

that is, fk(x;W) is the k−th coordinate of the NN output vector. The loss function can be written as
lossk(x,y;W) := (fk(x;W)− yk)

2. Recall that the underlying measurable function F(x) (i.e., yi = F(xi)) is a
d−dimensional vector-valued function and we denote by Fk(x) the k−th coordinate of F(x). The generalization error
is similarly defined as Rk(W):=Ex∼DX

(fk(x;W)−Fk(x))
2. We also denote

Bω(W
(0)):={W :∥W−W (0)∥<ω}.

From Lemma B.9 and Lemma B.10, with high probability, W (t) is close to W (0) during the training. Therefore, we
just need to only consider NN functions whose parameters W fall in a small ball around W (0), i.e. ∥W−W (0)∥<ω,
where ω<O

(
δ3/2

n3/2L15/2ln3/2m

)
. For a given k∈ [d], we denote the corresponding function class as

Gk,ω :={g :(x,y) 7→fk(x;W):∥W−W (0)∥<ω}

We introduce the empirical Rademacher complexity on the dataset {xi,yi}ni=1 as follows:

R̂(Gk,ω):=Eσ sup
g∈Gk,ω

n∑
i=1

σig(xi,yi)

For k∈ [d], we first bound the generalization error on the k−th coordinate of the output vector.

We first note that by (109) and Lemma B.4, with high probability that fk(xi;W)<O(ln1/4m) for all i∈ [n] and
∥W−W (0)∥<ω. We apply Theorem 11.3 in Mohri et al. (2018) with function class Gk,ω, and thus bound Rk(W)
with probability at least 1−Ω(1/m) by

Ex∼DX
lossk(x,F(x);W)≤ 1

n

n∑
i=1

lossk(xi,yi;W)+2O
(
ln1/4m

)
R̂(Gk,ω)+O

(
ln1/4m

)
O

(√
ln2m

2n

)
. (122)

We note that the first term in (122) is bounded by the previously discussed training error, and the third term in (122)
is very small when we collect a sufficiently large dataset since m is polynomially dependent on n. Next, we estimate
the bound for the second term, the empirical Rademacher complexity.

R̂(Gk,ω)=Eσ sup
W∈Bω(W (0))

1

n

n∑
i=1

σi

(
fk(xi,yi;W)−fk(xi,yi;W

(0))−⟨∇W fk(xi,yi;W
(0)),W−W (0)⟩

+fk(xi,yi;W
(0))+⟨∇W fk(xi,yi;W

(0)),W−W (0)⟩
)

≤ sup
W∈Bω(W (0))

sup
i

∣∣∣fk(xi,yi;W)−fk(xi,yi;W
(0))−⟨∇W fk(xi,yi;W

(0)),W−W (0)⟩
∣∣∣ (123)

+Eσ sup
W∈Bω(W (0))

1

n

n∑
i=1

σifk(xi,yi;W
(0)) (124)

+Eσ sup
W∈Bω(W (0))

1

n

n∑
i=1

σi⟨∇W fk(xi,yi;W
(0)),W−W (0)⟩. (125)

We first consider (124), since there is no dependence on W , it is clear that

Eσ sup
W∈Bω(W (0))

1

n

n∑
i=1

σifk(xi,yi;W
(0))=

1

n

n∑
i=1

fk(xi,yi;W
(0))Eσσi=0. (126)

In order to help bound (123), which is the first term in our bound of the empirical Rademacher complexity for the
NN function class, we introduce the following lemma.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Lemma B.11. If ω < O
(

δ3/2

n3/2L15/2ln3/2m

)
and ∥W −W (0)∥ < ω, then for any x ∈ Rp, with probability at least

1−exp(−Ω(
√
m/lnm),∣∣∣fk(x;W)−fk(x;W

(0))−⟨∇W fk(x;W
(0)),W−W (0)⟩

∣∣∣< 1−α√
1+α2

O(ω4/3L2
√
mlnm). (127)

We prove Lemma B.11 at the end of this section after we finalize the proof of Lemma 4.3 (while applying Lemma B.11).

Using Lemma B.11, the term (123) can be bounded as

sup
i

∣∣∣fk(xi,yi;W)−fk(xi,yi;W
(0))−⟨∇W fk(xi,yi;W

(0)),W−W (0)⟩
∣∣∣

≤ 1−α√
1+α2

ω4/3L2
√
mlnm.

Applying Cauchy-Schwarz inequality and Jessen’s inequality to (125) and using Lemma 4.2, we conclude∣∣∣∣∣Eσ sup
W∈Bω(W (0))

1

n

n∑
i=1

σi⟨∇W fk(xi,yi;W
(0)),W−W (0)⟩

∣∣∣∣∣
≤ωEσ sup

W∈Bω(W (0))

1

n

n∑
i=1

L∑
l=1

∥∇Wl
fk(xi,yi;W

(0))∥F

≤ ω

n

L∑
l=1

√√√√ n∑
i=1

∥∇Wl
fk(xi,yi;W (0))∥2F

≤ ω

n
L
√
mn≤ ωL

√
m√

n

Using the bound for (123), (124) and (125) in (122), it follows that with probability at least 1−e−Ω(lnm)

Rk(W)≤ 1

n
lossk(xi,yi;W)+

1−α√
1+α2

O
(
lnm

√
mL2ω4/3

)
+ωO

(
L
√
mlnm/n

)
+O

(√
lnm

n

)
.

Summing over k∈ [d], we conclude Lemma 4.3 as follows

R(W)≤ 1

n
loss(xi,yi;W)+

1−α√
1+α2

O
(
dlnm

√
mL2ω4/3

)
+O
(
d
√
mlnm/nLω

)
+O

(
d

√
lnm

n

)
.

Finally, we complete this section by presenting the proof of Lemma B.11.

Proof of Lemma B.11. Using the notation of §B.3 (in particular, hl and h
(0)
l) and the definitions of fk(x;W (0)) and

fk(x;W) and recalling that h0=h
(0)
0 and hl=DlWlhl−1 we derive the following expression:

fk(x;W)−fk(x;W
(0))=BT

k,·

(
DLWL···D1W1−D

(0)
L W

(0)
L ···D(0)

1 W
(0)
1

)
Ax

=BT
k,·

(
DLWLhL−1−D

(0)
L W

(0)
L hL−1

+D
(0)
L W

(0)
L hL−1−D

(0)
L W

(0)
L D

(0)
L−1W

(0)
L−1hL−2

+D
(0)
L W

(0)
L D

(0)
L−1W

(0)
L−1hL−2−D

(0)
L W

(0)
L D

(0)
L−1W

(0)
L−1D

(0)
L−2W

(0)
L−2hL−3

··· ··· (128)

+D
(0)
L W

(0)
L ···D(0)

2 W
(0)
2 h1−D

(0)
L W

(0)
L ···D(0)

2 W
(0)
2 D

(0)
1 W

(0)
1 h0

)
.

Yinglong Guo, Shaohan Li, Gilad Lerman

Let a and b be two integers in [1,L]. If b≤a, we denote

(D(0)W (0))a7→b :=D(0)
a W (0)

a D
(0)
a−1W

(0)
a−1···D

(0)
b W

(0)
b .

If a<b, we denote
(D(0)W (0))a7→b :=I.

Applying hl=DlWlhl−1 for the first term in each line of (128), (128) can be written as

fk(x;W)−fk(x;W
(0))

=BT
k,·

(
(DLWL−D

(0)
L W

(0)
L)hL−1

+(D(0)W (0))L7→L(DL−1WL−1−D
(0)
L−1W

(0)
L−1)hL−2

+(D(0)W (0))L7→L−1(DL−2WL−2−D
(0)
L−2W

(0)
L−2)hL−3

··· ···

+(D(0)W (0))L7→2(D1W1−D
(0)
1 W

(0)
1)h0

)
=BT

k,·

L∑
l=1

(D(0)W (0))L7→l+1(DlWl−D
(0)
l W

(0)
l)hl−1

=BT
k,·

L∑
l=1

(D(0)W (0))L7→l+1(Dl−D
(0)
l)Wlhl−1 (129)

+BT
k,·

L∑
l=1

(D(0)W (0))L7→l+1D
(0)
l (Wl−W

(0)
l)(hl−1−h

(0)
l−1) (130)

+BT
k,·

L∑
l=1

(D(0)W (0))L7→l+1D
(0)
l (Wl−W

(0)
l)h

(0)
l−1. (131)

According statement 1 in Lemma B.4, with probability at least 1−e−Ω(
√
m/lnm),∥D′

lgl∥< (1−α)/
√
1+α2O(L3/2ω)

and ∥D′
l∥0≤O(mω2/3L). Combining this with statement 4 in Lemma B.3 with v=(1,1,···,1)T ∈Rd, we bound the

norm ∥(BT
k D

(0)W (0))L7→l+1∥ by O(ω1/3
√
mLlnm) with probability at least 1−exp(−Ω(mω3/2Llnm). Then (129)

can be bounded (with the same probability) by

1−α√
1+α2

O(ω4/3L2
√
mlnm). (132)

By using statement 3 in Lemma B.4, i.e., ∥hl−h
(0)
l ∥<O(ωL5/2lnm) with probability at least 1−e−Ω(

√
m/lnm), we

note the norm of the summation in (130) is bounded by O(ω2L5/2lnm) (with the latter probability), which is much
smaller than (132) when ω is small as given.

By noting that the gradient of fk(x;W) with respect to Wl can be written as

∇Wl
fk(x;W

(0))=(BT
k,·D

(0)
L W

(0)
L ···W (0)

l+1D
(0)
l)Th

(0)T
l−1 ,

we express the summands in (131) as follows

⟨∇Wl
fk(x;W

(0)),Wl−W
(0)
l ⟩≡BT

k,·D
(0)
L W

(0)
L ···W (0)

l+1D
(0)
l (Wl−W

(0)
l)h

(0)
l−1. (133)

Using (133) and bounding (129) and (130) by (132), we conclude that with probability at least 1−e−Ω(
√
mlnm)

∣∣∣fk(x;W)−fk(x;W
(0))−⟨∇W fk(x;W

(0)),W−W (0)⟩
∣∣∣< 1−α√

1+α2
O(ω4/3L2

√
mlnm).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

B.9 Proof of Theorem 3.4
The key idea of the proof of this theorem is to establish a bound for ω, such that ∥W (t)−W∥<ω during training.
Considering the learning rate η and training steps t, we first establish a simple bound for ω as

∥W (t)−W (0)∥≤
t−1∑
t=0

η∥∇WL(t)∥≤η

√
mn

d

t∑
t=0

√
L(t)≤ηt

√
nmlnm

d
.

Furthermore, in the proof of Lemma B.9, the following universal bound of ω was introduced:

∥W (t)−W (0)∥≤O

(√
nd

δm

)√
L(0).

By combining these two bounds with the universal bound ω<O(δ3/2

n3/2L15/2ln3/2m
) and using Lemma 4.3, we conclude

the theorem.

B.10 Generalization Error Bound for SGD
We present a theorem similar to Theorem 3.4 that establishes the upper bound of the generalization error for SGD.

Theorem B.12. Assume the setup of §2 with SGD, where m=Θ
(
n13+2ϵL15+2ϵd1+2ϵ

bδ5−2ϵ

)
for ϵ>0 and η=Θ(dδ

n3L3mln2m
).

Assume further that m is larger than its lower bound and η is smaller than its upper bound in Theorem 3.2 (by an
appropriate choice of the hidden constants in Θ and in comparison to the constants hidden in the lower bound of m
and the upper bound of η in Theorem 3.2). Then at a given training epoch t, with probability at least 1−e−Ω(lnm),
the generalization error is bounded as follows

R(W (t))≤γtO(lnm)+min

{(
1−α√
1+α2

)
O

(
d1/3t4/3

m1/6n10/3L2ln8/3m

)
,O

(
d3/2+ϵn2+ϵ

b1/2δ1/2−ϵL1/2−ϵlnm

)}
+

min

{
O

(√
d t

n3L2ln3/2m

)
,O

(
n2+ϵL2+ϵd1/2+ϵ

b1/2δ1−ϵlnm

)}
+O

(
d

√
lnm

n

)
.

(134)

The proof is similar to the proof of Theorem 3.4. We estimate the bound of ω when t is small as

∥W (t)−W (0)∥<O

(
mnηt

d

)√
L(0).

Also, the bound of ω in the entire training for SGD can be obtained in the proof of Lemma B.10 as

∥W (t)−W (0)∥<O

(
d
√
n

δ
√
mb

√
L(0)

)
.

Then combining these two bounds of ω and using Lemma 4.3, we could conclude the theorem.

B.11 Special dataset
In this section, we consider a special class of datasets and improve our theory for datasets from this class. We first
introduce the special dataset and establish the assumption, then present theorems to bound the convergence rate
and generalization error under this assumption. The proof will be given in Appendix B.13.

First, with the parameters W (0) before the l−th layer, we denote the output at the l−th layer as

Nl(x;A,W
(0)
1 ,W

(0)
2 ,···W (0)

l−1,u)= σ̃α(u
T σ̃α(W

(0)
l−1σ̃α(W

(0)
l−2···σ̃α(W

(0)
1 Ax)))),

and define the following class of functions:

Fl :=
{
f(x)=(f1(x),···,fd(x))T :Rp 7→Rd, where

fj(x)=Eucj(u)Nl(x;A,W
(0)
1 ···W (0)

l−1,u) for u∈Rm∼N

(
0,

2

m

)
and

cj :Rm 7→R such that |cj(·)|≤1 for j∈ [d]
}
.

(135)

Yinglong Guo, Shaohan Li, Gilad Lerman

We note that this function class Fl includes functions defined by an l−layer leaky ReLU neural network, where the
first l−1 layers use the initialized parameters W (0) and only the parameters of the l−th layer are tuned with a certain
regularization condition (∥cj∥∞<1). Given this function class, we restrict our discussion to datasets satisfying the
assumption below. For such datasets, we can improve the upper bound for the convergence rate, the lower bound
for the width m, and the upper bound for the generalization error.

Assumption B.13. For any small constant 0<λ< 1
2
√
nd

, there exists f∈FL−1 such that

∥f(xi)−(yi−ŷi)∥<λ, for all i∈ [n].

Theorem B.14. Assume the setup in §2 with a dataset satisfying Assumption B.13, where both m/ln4m>Ω(d5nL12)
and m>Ω(lnlnϵ−1) , and the NN is trained according to Algorithm 2, with learning rate η≤O(d

nL2m). Then with
probability at least 1−e−Ω(lnm)

L(W (T))<ϵ and L(W (t))≤γtL(W (0)), ∀t≤T,

where

γ=1−Ω

(
(1−α)2

1+α2

ηm

d2

)
and T=

ln
(
ϵ/L(W (0))

)
lnγ

.

Theorem B.15. Assume the setup of §2 with GD, a dataset satisfying Assumption B.13, m=Θ(n1+2τL12+2τd5+2τ)
for τ > 0 and η=Θ(d

nL2m). Assume further that m is larger than its lower bound and η is smaller than its upper
bound in Theorem B.14 (by an appropriate choice of the hidden constants in Θ and compared to the constants hidden
in the lower bound of m and in the upper bound of η in Theorem B.14). Then at a given training epoch t≤T (see
(4) for T), with probability at least 1−e−Ω(lnm), the generalization error is bounded as follows

R(W (t))≤γtL(W (0))+min

{
O

(
d3/2+τn1/2+τLτ

lnm

)
,O

(
1−α√
1+α2

d1/3t4/3

m1/6n2/3L2/3

)}
+min

{
O

(√
dlnm t

nL

)
,O

(
nτL1+τd2+τ

lnm

)}
+O

(
d

√
lnm

n

)
.

We notice that for datasets satisfying Assumption B.13 several significant improvements from the previous estimates are
obtained. Firstly, the lower bound for m is improved to linear dependence on n, whereas in the general scenario the lower
bound grows as n5. Secondly, the bound of 1−γ is improved in Theorem B.14 by a factor of n

δd . Thirdly, several terms
in the generalization error bound in Theorem B.15 are improved from Theorem 3.4, including the first term in the first
minimum is improved by a factor of 1

L and the second term in the second minimum is improved by a factor of
√
d3δ

L
√
n

. On the
other hand, the optimal choice of α remains the same as the dependence on α is the same as that in Theorems 3.1 and 3.4.

B.12 Convergence Theorem for General Convex Loss Functions
We extend our convergence theory, in particular Theorem 3.1, to convex loss functions, i.e., loss functions of the form

Lconvex(W)=
n∑
i

l(yi,ŷi), where l(yi,·) is convex. (136)

These include common loss functions for classification, such as the binary cross entropy and categorical cross entropy.
Furthermore, it also includes the following loss function suggested in (Kumar et al., 2023):

Lexp(W):=
1

2

n∑
i

eλ∥yi−ŷi∥2., (137)

Kumar et al. (2023) obtained a special bound for the generalization error when using this loss function. We later use
the following theorem and the proposition of Kumar et al. (2023) to infer that α=−1 is also optimal for generalization
when using re-weighted gradient descent and overparameterized neural networks.

We next formulate the main theorem using the following definition. Let W ∗ denote the matrix of parameters
minimizing the loss function and define

E(t) :=Lconvex(W
(t))−Lconvex(W

∗).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Theorem B.16. Assume the setup of §2 with the convex loss function defined in (136), where the width m satisfies
both m/ln4m≥ 1+α2

(1−α)2Ω(
n6L16d

δ4) and m>Ω(ln(ϵ−1lnϵ−1)) and the training is according to Algorithm 2 with learning
rate η≤O(d

nL2m). Then with probability at least 1−exp−Ω(lnm),

E(T)<ϵ and E(t+1)≤γ(t)E(t), ∀t≤T, where (138)

where

γ(t)=1−E(t)Ω

(
(1−α)2

(1+α2)

δηm

n2dL

)
and T≤O

(
1+α2

(1−α)2
n2dL

ηδmϵ
(lnϵ−1+ln(n

√
lnm))

)
. (139)

Combining (138) and the expression for γ(t) in (139), we note that the rate of convergence is slower than the one
in (3) and that α=−1 corresponds to the smallest upper bound for the number of epochs needed for the training
error to be smaller than ϵ.

Proposition 3.1 in Kumar et al. (2023) implies that minimizing the generalization error bound is equivalent to
minimizing the training error when using the modified loss function given in (137). Applying (139) of Theorem B.16,
we conclude that when using the modified loss function in (137) for training, the choice of α=−1 yields the smallest
bound for the required number of training epochs to achieve a bound ϵ on the training error. Using this observation
with arbitrarily small ϵ and the above discussed theory of Kumar et al. (2023) we can conclude that α=−1 minimizes
the generalization error bound with the smallest upper bound on the number of training epochs for which the training
error is guaranteed to be less than ϵ. Nevertheless, this discussion involves an upper bound we obtained for the number
of epochs and does not apply to the actual number of epochs. Consequently, the above stated prediction may not
be precise, that is, it is possible that at a smaller number of epochs than the bound, one may obtain an error less
than ϵ by α≠−1. For a synthetic dataset, we empirically verified the predicted optimal choice of α=−1 (see Figure 6).

Proof of Theorem B.16. We consider the modified loss function defined in (136), and, for simplicity, we let γ=1 in
this section, while the proof can be easily extended for any γ > 0. By introducing the convex function l(y,z), the
loss function for each data point i∈ [n] can be written as

lossconvex(xi,yi;W):=l(yi,gi,L+1(xi;W))

We denote the following notation in this subsection,

ei :=∇zl(yi,gi,L+1(xi;W)). (140)

We will establish similar gradient bounds as in Lemma 4.2 and a similar semi-smoothness inequality as in Lemma 4.1
for the loss function defined in (136), and then we will prove the convergence theory with this loss function using
some of the above established results.

For the first part, in order to achieve the gradient bound, we follow the proof of Lemma 4.2 with the modified loss
function defined in (136). The proof is mostly the same as the one in Appendix B.4. The only difference is the use of
the previous definition in (61). We remark that it is straightforward to verify that Gi,l(ei;W)≡∇Wl

lossconvex(xi,yi;W)
by using the definition of ei in (140). By Lemma B.6 and Lemma B.7

∥∇Wl
Lconvex(W)∥2F ≤

n∑
i=1

∥ei∥2O
(mn

d

)
, for l∈ [L] (141)

∥∇WLconvex(W)∥2F ≥
n∑

i=1

∥ei∥2Ω
(
(1−α)2

(1+α2)

δm

nd

)
. (142)

Remark: In the above bounds, when we use the MSE loss function,
∑n

i=1∥ei∥2≡L, which yields the original bounds
provided in Lemma 4.2.

In order to show the semi-smoothness, we follow the proof of Lemma 4.1 in Appendix B.5, where most parts are exactly
the same. By using (142) and (141), and plugging the notation of ei (defined in (140)) into (95), the semi-smoothness

Yinglong Guo, Shaohan Li, Gilad Lerman

inequality becomes

Lconvex(W+W ′)≤Lconvex(W)+⟨∇WLconvex(W),W ′⟩+nL2m

d
O(∥W ′∥22)

+
(1−α)ω1/3L2

√
mn
∑n

i=1∥e
(t)
i ∥2lnm√

d(1+α2)
O(∥W ′∥2).

(143)

Lastly, we prove the convergence for this loss function. By using (143) and the same argument discussed in §4.1, the
inequality (16) still holds. Then using the lower bound of the gradient in (142), (16) becomes

Lconvex(W
(t+1))≤Lconvex(W

(t))−Ω

(
(1−α)2

(1+α2)

δηm

nd

) n∑
i=1

∥e(t)i ∥2. (144)

By convexity of l(y,z), we first establish that for any i∈ [n] and any y,z∈Rd,

l(yi,y)−yyi,z≤⟨∇yl(yi,y),y−z⟩≤∥∇yl(yi,y)∥∥y−z∥.

We denote by W ∗ the optimal parameter that minimizes Lexp(W). Letting y :=gi,L+1(xi;W
(t)) and z :=gL+1(xi;W

∗)
and using the above inequality result in

∥e(t)i ∥≥ l(yi,gi,L+1(xi;W
(t)))−l(yi,gL+1(xi;W

∗))

∥gi,L+1(xi;W (t))−gL+1(xi;W ∗)∥
. (145)

Using Lemma B.5, yields that, with probability at least 1−e−Ω(lnm),

∥gi,L+1(xi;W
∗)−gi,L+1(xi;W

(t))∥≤∥gi,L+1(xi;W
∗)−gi,L+1(xi;W

(0))∥
+∥gi,L+1(xi;W

(t))−gi,L+1(xi;W
(0))∥

≤(∥W (0)−W ∗∥+ω)∥∇Wgi,L+1(xi;W
(0))∥≤O(

√
L). (146)

Applying (146) to (145) results in

∥e(t)i ∥≥
(
l(yi,gi,L+1(xi;W

(t)))−l(yi,gL+1(xi;W
∗))
)
/O(

√
L). (147)

Applying (147) to (144), we derive that

Lconvex(W
(t+1))−Lconvex(W

∗)

≤Lconvex(W
(t))−Lconvex(W

∗)−Ω

(
(1−α)2

(1+α2)

δηm

n2dL

)(
Lconvex(W

(t))−Lconvex(W
∗)
)2

.
(148)

In order to derive a bound for the number of training epoch T that is required for L(T)−L∗<ϵ, for t<T , by assuming
L(t)−L∗>ϵ, the above equation is bounded by

Lconvex(W
(t+1))−Lconvex(W

∗)≤
(
1−ϵΩ

(
(1−α)2

(1+α2)

δηm

n2dL

))(
Lconvex(W

(t))−Lconvex(W
∗)
)
.

The lower bound for m becomes mln4m> 1+α2

(1−α)2Ω(n
6L16d/δ4) to ensure the same perturbation bound in Lemma B.9.

Denoting γ :=
(
1−ϵΩ

(
(1−α)2

(1+α2)
δηm
n2dL2

))
, it follows that

T=
lnϵ−1+ln(Lconvex(W

(0))−Lconvex(W
∗))

lnγ−1
≤O

(
n2dL

ηδmϵ
(lnϵ−1+ln(n

√
lnm))

)
.

We follow the exact same steps in the proof of Lemma B.9 in Appendix B.6 and verify that when m> ln(ϵ−1lnϵ−1),
the probability that (148) holds for T−steps is at least 1−e−Ω(lnm).

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

B.13 Proofs for a special class of datasets
This section includes the proof of Theorems B.14 and B.15 in Appendix B.11. We first present several lemmas and
their proofs, then use these lemmas to prove those theorems.

Lemma B.17. Consider a dataset {xi,yi}i∈[n] satisfying Assumption B.13, where m≥Ω(nd), then there exists a
vector ul,j∈Bm

1 ⊂Rm, such that

|⟨ul,j,h
(0)
i,L−1⟩−(yi,j−ŷi,j)|≤O(λ), for all i∈ [n],j∈ [d], with probability at least 1−e−Ω(λ2m).

Proof. We complete the proof by constructing the following unit vector uj:

uj=
1√
2m

(
cj(
√
m/2(W

(0)
L−1)1,·),cj(

√
m/2(W

(0)
L−1)2,·),···,cj(

√
m/2(W

(0)
L−1)m,·)

)T
.

One can easily verify that uj∈Bm
1 by using the fact that |cj|<1, which is guaranteed by the definition of the function

class in (135).

The inner product of uj and h
(0)
i,L−1 is given by

⟨uj,h
(0)
i,L−1⟩=

1√
2m

m∑
k=1

cj(
√
m/2(W

(0)
L−1)k,·)NL−1(x;A,W

(0)
1 ,···W (0)

L−2,W
(0)
L−1)

=
1√
2m

m∑
k=1

cj(
√
m/2(W

(0)
L−1)k,·)

√
2

m
NL−1(x;A,W

(0)
1 ,···W (0)

L−2,
√
m/2W

(0)
L−1)

=
1

m

m∑
k=1

cj(
√
m/2(W

(0)
L−1)k,·)NL−1(x;A,W

(0)
1 ,···W (0)

L−2,
√
m/2W

(0)
L−1)

For simplicity, we denote that Zk,i,j := cj(
√
m/2(W

(0)
L−1)k,·)NL−1(x;A,W

(0)
1 , ···W (0)

L−2,
√
m/2W

(0)
L−1), and above

equation becomes

⟨uj,h
(0)
i,L−1⟩=

1

m

m∑
k=1

Zk,i,j. (149)

Noting that
√
m/2(W

(0)
L−1)k,·∼N(0,1), by using (135), it implies that EW (0)Zk,i,j((WL−1)

(0)
k,·)=fj(xi).

Since |cj(·)|<1 is bounded, Zk,i,j is a sub-Gaussian random variable, therefore we can apply Hoeffding’s inequality
and conclude that ∣∣∣∣∣ 1m

m∑
k=1

Zk,i,j−fj(xi)

∣∣∣∣∣≤λ, with probability at least 1−e−Ω(λ2m). (150)

Using (149), (150) and Assumption B.13, it follows that with probability at least 1−(nd)e−Ω(λ2m)

|⟨ul,j,h
(0)
i,L−1⟩−(yi,j−ŷi,j)|≤|⟨ul,j,h

(0)
i,L−1⟩−fj(xi)|+|fj(xi)−(yi,j−ŷi,j)|≤2λ. for all i∈ [n], j∈ [d].

We conclude the Lemma by noting that the probability is at least 1−e−Ω(λ2m) when m≥Ω(nd).

Lemma B.18. Under Assumption B.13, when m≥Ω(nd), the lower bound for the gradient of the loss function becomes

∥∇WL(W (0))∥2F ≥Ω

(
(1−α)2

1+α2

m

d2

)
L(W (0)), with probability at least 1−e−Ω(m).

Proof. We first note that by definition, ∥∇WL∥F ≥ ∥∇WL
L∥. Then by definition of matrix F−norm and (61),

it follows that ∥∇WL
L(W (0))∥2F =

∑m
k=1

∥∥∑n
i=1(Gi,L(ei;W

(0)))k,·
∥∥2
2
. We write that the k−th row of the matrix∑n

i=1Gi,L(ei,W
(0)) by ∥∥∥∥∥

n∑
i=1

(Gi,L(ei;W
(0)))k,·

∥∥∥∥∥
2

2

=

∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥
2

2

. (151)

Yinglong Guo, Shaohan Li, Gilad Lerman

Using the vector uj ∈ Bm
1 chosen in Lemma B.17, and denoting u := 1

d

∑d
j=1uj, we note that ∥u∥ ≤ 1. Thus we

conclude that ∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥
2

2

≥

∣∣∣∣∣
〈

n∑
i=1

BT
k,·eiDi,L,kkhi,L−1,u

〉∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

BT
k,·eiDi,L,kk⟨hi,L−1,u⟩

∣∣∣∣∣
2

=
1

1+α2

∣∣∣∣∣
n∑

i=1

BT
k,·ei(α+(1−α)1hi,L,k>0)⟨hi,L−1,u⟩

∣∣∣∣∣
2

=
1

1+α2

∣∣∣∣∣(1−α)
n∑

i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩+α

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

∣∣∣∣∣
2

(152)

By Jensen’s inequality, we note that the expectation of (152) becomes

EhL−1

∣∣∣∣∣(1−α)
n∑

i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩+α

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

∣∣∣∣∣
2

≥

∣∣∣∣∣EhL−1

(
(1−α)

n∑
i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩+α

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

)∣∣∣∣∣
2

. (153)

Since 1hi,L,k>0 is independent with hi,L−1, for any integer N , the conditional expectation can be given as

EhL−1

(
n∑

i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩

∣∣∣∑1hi,L,k>0=N

)
=
N

n
EhL−1

(
n∑

i=1

BT
k,·ei⟨hi,L−1,u⟩

)
(154)

Moreover, since 1hi,L,k>0 a Bernoulli random variable B(0.5), when n>100, using an approximation of the probability
by the central limit theorem, we know that∑

i

1hi,L,k>0>n/2+
√
n, with probability at least 0.1, (155)∑

i

1hi,L,k>0<n/2−
√
n, with probability at least 0.1. (156)

To find a lower bound for (153), we consider two cases for the second term, when |EhL−1
α
∑n

i=1B
T
k,·ei⟨hi,L−1,u⟩|>

n
2 |EhL−1

(BT
k,·ei⟨hi,L−1,u⟩)|, then by (156) and (154), we know that with probability at least 0.1 that∣∣∣∣∣EhL−1

(
(1−α)

n∑
i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩+α

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

)∣∣∣∣∣
≥ 1√

n

∣∣∣∣∣EhL−1

(
n∑

i=1

(1−α)BT
k,·ei⟨hi,L−1,u⟩

)∣∣∣∣∣. (157)

Using similar argument, when |EhL−1
α
∑n

i=1B
T
k,·ei⟨hi,L−1,u⟩| ≤ n

2 |EhL−1
(BT

k,·ei⟨hi,L−1,u⟩)|, by using (155), it also
follows that with probability at least 0.1 that (157) holds. Thus we conclude that∣∣∣∣∣EhL−1

(
(1−α)

n∑
i=1

BT
k,·ei1hi,L,k>0⟨hi,L−1,u⟩+α

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

)∣∣∣∣∣
≥ 1√

n

∣∣∣∣∣EhL−1

(
n∑

i=1

(1−α)BT
k,·ei⟨hi,L−1,u⟩

)∣∣∣∣∣, with probability at least 0.1. (158)

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Combining (152), (153), and (158), it follows that

EhL−1

∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥≥ (1−α)2

n(1+α2)

∣∣∣∣∣EhL−1

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

∣∣∣∣∣
2

, with probability at least 0.1. (159)

By using the lower bound of |BT
·,ka| derived in (74), we obtain that with at least a constant probability

p0 :=1−exp(−Ω(1))∣∣∣∣∣EhL−1

n∑
i=1

BT
k,·ei⟨hi,L−1,u⟩

∣∣∣∣∣
2

=

∣∣∣∣∣BT
k,·

(
EhL−1

n∑
i=1

ei⟨hi,L−1,u⟩

)∣∣∣∣∣
2

≥
d∑

j=1

∣∣∣∣∣EhL−1

n∑
i=1

ei,j⟨hi,L−1,u⟩

∣∣∣∣∣
2

. (160)

We thus conclude that by (151), Hoeffding inequality, (159) and (160), with probability at least 1−e−Ω(m)

m∑
k=1

∥∥∥∥∥
n∑

i=1

(Gi,L(ei;W
(0)))k,·

∥∥∥∥∥=
m∑

k=1

EhL−1

∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥≥ 0.1p0m

2

(1−α)2

n(1+α2)

d∑
j=1

∣∣∣∣∣EhL−1

n∑
i=1

ei,j⟨hi,L−1,u⟩

∣∣∣∣∣
2

.

(161)

Using (161), Assumption B.13 and the fact that Eei,jei,j′ =0 if j ≠j′, when L>1 imply

d∑
j=1

∣∣∣∣∣EhL−1

n∑
i=1

ei,j⟨hi,L−1,u⟩

∣∣∣∣∣= 1

d

∣∣∣∣∣E
n∑

i=1

ei,j(⟨hi,L−1,uj⟩−yi,j+ŷi,j+yi,j−ŷi,j)

∣∣∣∣∣
≥ 1

d

d∑
j=1

∣∣∣∣∣
n∑

i=1

ei,j(yi,j−ŷi,j)

∣∣∣∣∣− 1

d

d∑
j=1

∣∣∣∣∣
n∑

i=1

ei,j(⟨hi,L−1,uj⟩−(yi,j−ŷi,j))

∣∣∣∣∣
≥ 1

d

d∑
j=1

∣∣∣∣∣
n∑

i=1

e2i,j

∣∣∣∣∣−λ

d

d∑
j=1

∣∣∣∣∣
n∑

i=1

ei,j

∣∣∣∣∣≥ 1

d
L−λ

√
n√
d
L≥ 1

2d
L.

Applying (161) and (162), we conclude that

m∑
k=1

∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥
2

2

≥ m

nd2
(1−α)2

1+α2
L2, with probability at least 1−e−Ω(m). (162)

Considering at initial parameter W (0),

L(W (0))=
n∑

i=1

∥yi−Bhi,L∥2=
n∑

i=1

∥yi∥2+∥Bhi,L∥2−2⟨yi,Bhi,L⟩.

Using the fact that E⟨yi,Bhi,L⟩=0 and Lemma B.1, we establish a lower bound for L(W (0)),

L(W (0))≥Ω(n). (163)

Applying the definition of the gradient norms, and (162) with the lower bound of L(W (0)) in (163), we conclude that

∥∇WL(W (0))∥2F ≥
m∑

k=1

∥∥∥∥∥
n∑

i=1

BT
k,·eiDi,L,kkhi,L−1

∥∥∥∥∥
2

2

≥Ω

(
(1−α)2

1+α2

m

d2

)
L(W (0)), with probability at least 1−e−Ω(m).

Lemma B.19. Assume the setup of §2 and the dataset satisfy Assumption B.13, when ∥W − W (0)∥ < ω <
O(1

d3/2L6ln3/2m
), with probability at least 1−e−Ω(m),

∥∇WL(W)∥≥Ω

(
(1−α)2

1+α2

m

d2

)
L(W).

Yinglong Guo, Shaohan Li, Gilad Lerman

Proof. For W such that ∥W (0)−W∥<ω, we use the same argument in the proof of Lemma 4.2. It is straightforward
to verify that ω2/3L4m lnm/d (this is the right hand side of (90)) is smaller than O(m/d2) by plugging in
ω<O(1

d3/2L6ln3/2m
). We conclude that for W such that ∥W−W (0)∥<ω, with probability at least 1−e−Ω(m)

∥∇WL(W)∥≥Ω

(
(1−α)2

1+α2

m

d2

)
L(W). (164)

Compared to the conclusion in Lemma 4.2 with Lemma B.19, the lower bound is improved by a factor of n
δd when

the dataset satisfies Assumption B.13.

Proof of Theorem B.14. We follow the exact same proof of Theorem 3.1, with the lower bound of the gradient given
in Lemma B.19. It is straight-forward to derive the same inequality (16), and by the lower bound in (164), we obtain
that with probability 1−e−Ω(m)

L(t+1)≤
(
1−Ω(

(1−α)2

1+α2

ηm

d2
)

)
L(t).

We conclude the theorem by verifying that during the training process, we always have |W (0) −W (0)| < ω <
O(1

d3/2L6ln3/2m
), which satisfies the condition for both Lemmas B.19 and 4.1. Following the same argument that

derives (111) and using the lower bound in (164), we achieve that

∥W (t)−W (0)∥≤
√
1+α2

1−α
Ω

(
d√
m

)√
LW (0). (165)

By further applying (108), we verify that when m/ln4m> 1+α2

(1−α)2Ω(d
5nL12), we can derive that

∥W (t)−W (0)∥≤O

(
1

d3/2L6ln3/2m

)
. (166)

Proof of Theorem B.15. The universal bound of ∥W (t)−W (0)∥ is improved as shown in (165) and (166). Then, we can
conclude the theorem by following exactly the same as the proof of Theorem 3.4 which is shown in Appendix B.9.

C Supplemental numerical experiments and details for the previous experiments
Section C.1 provides the full details of implementation for both the previous and the new experiments. Section C.2
describes new numerical experiments.

C.1 Details of Implementation
We provide some general implementation details and also details specific to the different datasets. Two datasets are
new to this section. For completeness, we repeat some information that was provided in Section 5.1.

General implementation details: Throughout the numerical experiments, we applied Algorithm 1 to initialize
the parameters of the neural networks. In order to implement the rescaled leaky ReLU as given in (2), we introduce
a MULTIPLIER(c) layer, which simply does element-wise multiplication with a given constant c. By combining
Leaky ReLU(α) and MULTIPLIER

(
1/
√
1+α2

)
, we replicate the rescaled Leaky ReLU with parameter α.

In the experiments, we train the NN on the training set and report the error on a reserved testing set (we view it
as an approximation for the generalization error). For the synthetic dataset, we generated additional 500 synthetic
data points for the testing set. For the real dataset, we performed a standard training-testing split for each dataset.

Synthetic dataset: The architecture of the NNs that we used for the synthetic dataset is shown in Table 2. We
generate 1,000 data points as the training dataset and 500 data points as the testing dataset (following the model
and sampling procedure described in the main text). We train the NN with GD and a learning rate of 10−4.

California housing: We use an updated version of the California housing dataset, which can be downloaded
from Kaggle (https://www.kaggle.com/datasets/camnugent/california-housing-prices) and is licensed by CC0.

https://www.kaggle.com/datasets/camnugent/california-housing-prices

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

This dataset was drawn from the 1990 U.S. Census and contains 20,640 observations with 10 different characteristics.
Nine of them are numerical ones (e.g., the median income for households and the median value of the houses within a
block) and are given in the original dataset Pace and Barry (1997). An additional categorical characteristic is the ocean
proximity. Borisov et al. (2022) used this dataset as a benchmark for regression, where one needs to predict the value of
the house given the other numerical characteristics. The last characteristic, which is the median house value for households
within a block, provides labels for the dependent variable. We follow a similar setting of regression, but we also use the
categorical feature of the updated dataset. We standardize the 9 numerical characteristics using the respective means
and standard deviations of the training data. We generated a one-hot coding vector for the feature "ocean proximity",
including 5 categories, <1H OCEAN, INLAND, NEAR OCEAN, NEAR BAY, and ISLAND. In total, the input x is a
13−dimensional vector. The training data contains 15,480 data points and the testing data contains 5,160 data points.

We built NNs to predict the median housing value in the dataset. The architecture of the NNs is given in Table 3.
We applied Algorithm 3 with a batch size of 512 and a learning rate of 10−5 to train the NNs.

Table 2: Architecture of the NNs with Leaky ReLU parameter α used for the synthetic dataset.

Layer Parameter

Linear (5, 5000)

Repeat
5

times

Linear (5000, 5000)
Leaky Relu α

Multipler 1/(1+α2)1/2

Linear (5000, 1)

MNIST: We used the MNIST dataset of 28 × 28 images of handwritten digits in order to classify handwritten digits.
This dataset is licensed by CC BY-SA 3.0. We flattened each image to a vector of length 784. We randomly sample
2,100 data points from the training set of MNIST as our training set, and use the rest as our testing set. We normalized
the training data with 0.5 mean and 0.5 standard deviation. We applied SGD with batch size 64 and a learning rate of
10−3. The architecture of the NN is presented in Table 4 and we use leaky ReLUs with α∈{−2,−1,0,0.01,0.05}. MNIST
was also used to test the Transformer networks. In this case, we normalized the training set with 0.1307 mean and
0.3081 standard deviation. Furthermore, we used the Vision Transformer (ViT) (Dosovitskiy et al., 2020) architecture
and applied SGD with batch size 100 and learning rate 10−4. The details of this architecture are shown in Table 5.

F-MNIST: We used the F-MNIST dataset of 28 × 28 images of clothing or accessory items for classification. This
dataset is licensed by MIT. We flattened each image to vectors of length 784. We randomly sample 3000 data points
from the training set of F-MNIST as the training set, and use the rest for testing. We normalized the training data
with 0.5 mean and 0.5 standard deviation. We applied SGD with batch size 64 and a learning rate of 10−5. The
architecture of the NN is presented in Table 6 and we use leaky ReLUs with α∈{−2,−1,0,0.01,0.05}.

CIFAR-10: We used the CIFAR-10 dataset of 32×32 RGB images with 10 categories for classification. This dataset
is licensed by MIT. We randomly sample 2560 data points from the training set of CIFAR-10 as our training set,
and randomly sample 2560 data points from the testing set of CIFAR-10 as our testing set. We normalized the training
data with 0.5 mean and 0.5 standard deviation. Then we applied SGD with batch size 64 and a learning rate of 10−6.
The architecture of the NN is presented in Table 7.

IMDB movie reviews dataset: This is a dataset of highly popular movie review paragraphs and it is used
for positive or negative sentiment classification (Maas et al., 2011). We downloaded it from the following URL:
http://ai.stanford.edu/~amaas/data/sentiment/. We randomly sample 5,000 data points from the IMDB movie
reviews as the training dataset and use the rest as the testing dataset. We processed the data as follows. We first
recorded the words that appeared at least once in the training dataset. For each word, a unique integer was assigned
to index it. Then we mapped each paragraph to a vector, whose i-th entry is the assigned index of the i-th word
of the paragraph. Finally, we padded each vector with zeros, so that each vector was of the same length. We used
the zero-padded vectors as the input of our neural network. After preprocessing, we applied SGD with batch size
50 and learning rate 10−5 with an LSTM network, whose architecture is presented in Table 8.

C.2 Additional numerical results

We describe here two additional experiments.

http://ai.stanford.edu/~amaas/data/sentiment/

Yinglong Guo, Shaohan Li, Gilad Lerman

Table 3: Architecture of the NNs with Leaky ReLU parameter α used for California housing.

Layer Parameter

Linear (13,5000)

Repeat
7

times

Linear (5000,5000)
Leaky Relu α

Multipler 1/(1+α2)1/2

Linear (5000,1)

Table 4: Architecture of the neural networks with α Leaky ReLU parameter used for MNIST.

Layer Parameter

Linear (784, 2000)
Linear (2000, 2000)
Leaky ReLU α
Multiplier 1√

1+α2

Linear (2000, 2000)
Leaky ReLU α
Multiplier 1√

1+α2

Linear (2000, 10)

Table 5: Architecture of the Transformer neural networks with α Leaky ReLU parameter used for IMDB movie reviews.

Layer Parameter

Positional Embedding (49, 64)
head dim = 64,

Transformer output dim = 64,
Encoder number of heads = 8

number of layers = 6
mlp dim = 8192

Linear (64,8192)
Leaky ReLU α
Multiplier 1√

1+α2

Linear (8192, 10)

Table 6: Architecture of the neural networks with α Leaky ReLU parameter with width of m and depth of L used
for Fashion MNIST.

Layer Parameter

Linear (784,m)

Repeat
L

times

Linear (m,m)
Leaky Relu α

Multipler 1/(1+α2)1/2

Linear (m,10)

Additional experiments using MNIST and California housing: We ran the same experiments done in Section
5.1, but with MNIST and California housing. Figure 3 demonstrates the training errors (top) and testing errors (bottom)
for the two datasets. For MNIST (left) we used the cross entropy loss and for California housing (right) the MSE loss.
For the training errors, we note that the convergence rate is the fastest at α=−1 for both datasets and this observation
aligns with our theoretical prediction and the previous experiments. The testing errors are rather similar for different
choices of α. For the California housing dataset, we note that α=−1 achieves the smallest testing error at an early
epoch (about t=20), but the advantage is marginal compared to other α’s. For MNIST, we note that α=−1 gets to the

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Table 7: Architecture of the neural networks with α Leaky ReLU parameter used for CIFAR-10.

Layer Parameter

CNN conv3-512
Leaky ReLU α
Multiplier 1√

1+α2

CNN conv3-512
Leaky ReLU α
Multiplier 1√

1+α2

Max Pooling 2×2
CNN conv3-512
Leaky ReLU α
Multiplier 1√

1+α2

CNN conv3-512
Leaky ReLU α
Multiplier 1√

1+α2

Max Pooling 2×2
Flatten
Linear (32,768, 512)
Leaky ReLU α
Multiplier 1√

1+α2

Linear (512, 10)

Table 8: Architecture of the neural networks with α Leaky ReLU parameter used for IMDB movie reviews dataset

Layer Parameter

Embedding (1000, 64)
input dim = 64,

LSTM hidden dim = 256,
number of layers = 2

Dropout 0.3
Linear (256,4096)
Leaky ReLU α
Multiplier 1√

1+α2

Linear (4096, 1)

same level of testing error as the other αs from a much larger initial testing error. We note that α=−1 is not optimal
for the testing error. This might happen because the number of samples and the depth are not sufficiently large enough.

Experiments with Long Short-Term Memory (LSTM) and Transformer networks: We ran the same
experiment done in Section 5 on MNIST and IMDB with Transformer and LSTM networks, respectively. These
architectures are described in Section C.1. Figure 4 demonstrates the training errors (top) and testing errors (bottom).
For MNIST (right) we used the negative log likelihood loss and for IMDB (left) we used the binary cross entropy loss.
For both algorithms, the training errors converge fastest with α=−1. This observation agrees with our theoretical
findings and previous experiments. The testing error for IMDB decreases during the first 100 epochs and then increases
for the rest of the training. This is because of severe overfitting that is due to the following property of IMDB: the
training dataset is small (we used randomly sampled 5,000 data points to be able to deal with sufficiently large widths for
overparameterization) compared to the input data dimension (we have 1,000 unique words). The testing error on MNIST,
on the other hand, is also the lowest for α=−1, but there’s no overfitting phenomenon since MNIST is a simple dataset.

Dependence on m and L: We demonstrate the dependence of the training error on m and the testing error on
L. We thus ran additional experiments on F-MNIST with different choices of L and m and α∈{−2,−1,0,0.01,0.05}.
First, we fixed L=2 and tested m∈{1,000,2,000,5,000,10,000}. Next, we fixed m=5,000 and tested L∈{2,3,4}. The
architectures of thes NNs were given in Table 6, but with the latter choices of m and L.

Figure 5 shows the dependence of training errors on m and the dependence of testing errors on L. We note that the

Yinglong Guo, Shaohan Li, Gilad Lerman

Figure 3: Log-scale training and testing errors using different datasets and different α’s. Left: cross entropy errors
for MNIST; Right: MSE for California housing. Top row: training errors. Bottom row: testing errors.

training error is monotonically decreasing w.r.t. the width m. We also note that the minimal training error is always
achieved at α=−1 for different choices of m. This matches our theoretical predictions. We note that the testing
error is decreasing for L≤4. This aligns with equation (134) when t is small. Moreover, when L=4, we observe that
the minimal testing error is achieved at α=−1.

Results using the loss function given in (137): We perform numerical experiments using the exponential loss
function in the two datasets for the regression task, the synthetic dataset and the California housing dataset. Figure 6
reports the results. We observe that α=−1 achieves both the optimal training error and the optimal generalization
error in the synthetic dataset. Furthermore, α=−1 achieves optimal training error and second optimal generalization
error for the California housing dataset, though the difference in the testing error is small.

The effect of Leaky ReLUs on the training and generalization of overparameterized networks

Figure 4: Log-scale training and testing errors using different datasets and different α’s. Left: binary entropy errors
for IMDB; Right: negative log likelihood errors for Transformer on MNIST. Top row: training errors. Bottom row:
testing errors.

Figure 5: Log-scale errors on F-MNIST with different α’s. Left: training errors at the last epoch with L=2 and
different widths (ms); Right: testing errors at the epoch t=300 with m=5000 and different depths (Ls).

Yinglong Guo, Shaohan Li, Gilad Lerman

Figure 6: Log-scaled mean square errors for the synthetic dataset with different α’s using the loss function of (137).
Left: MSE for the synthetic dataset. Right: MSE for California housing dataset. Top row: training errors. Bottom
row: testing errors.

	INTRODUCTION
	PROBLEM SETUP
	MAIN RESULTS
	IDEAS OF PROOFS
	Sketch of Proofs
	Discussion of Innovation

	NUMERICAL EXPERIMENTS
	Setup
	Results

	DISCUSSION
	Discussion of the Generalization Error Bound
	Proofs
	Notation
	Initialization
	Perturbation
	Gradient Bounds and Proof of Lemma 4.2
	Proof of Lemma 4.1
	Conclusion of the Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma 4.3
	Proof of Theorem 3.4
	Generalization Error Bound for SGD
	Special dataset
	Convergence Theorem for General Convex Loss Functions
	Proofs for a special class of datasets

	Supplemental numerical experiments and details for the previous experiments
	Details of Implementation
	Additional numerical results

