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ABSTRACT

The Basilar Membrane (BM) is the structural component of
the mammalian cochlea that transmits auditory information as
traveling structural waves, and inner hair cells transduce acous-
tic waves into electrical impulses in the inner ear. These waves
go up towards the cochlea’s apex from its base. The primary
structure at the apex of the cochlea that keeps waves from re-
turning to the base is the helicotrema. People can hear con-
tinuous sound waves without acoustic reflection or overlap be-
cause of this property of the BM. Our research is motivated by
this biological phenomenon and aims to comprehend and pas-
sively reproduce it in engineering structures. By studying the
dynamics of a uniform beam linked to a spring-damper system
as a passive absorber, we can use this characteristic of the inner
ear to explain some of the observed phenomenological behaviors
of the basilar membrane. The spring-damper system’s position
separates the beam into two dynamic regions: one with standing
waves and the other with non-reflecting traveling waves. This
study presents the computational realization of traveling waves
co-existing with standing waves in the two different zones of the
structure. Moreover, this study aims to establish a correlation be-
tween two approaches to analyze the characteristics of the wave
profiles: (i) the absorption coefficient approach and (ii) the cost
function based on the wave envelope. The Basilar Membrane
(BM) serves as the crucial structural conduit for transmitting au-
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ditory information through traveling structural waves, with inner
hair cells in the inner ear transducing these waves into electrical
impulses. These waves ascend from the cochlea’s base towards
its apex, and the helicotrema, positioned at the cochlear apex,
plays a pivotal role in preventing wave reflection and overlap,
thereby facilitating the perception of continuous sound waves.
The intrinsic characteristics of the Basilar Membrane (BM) in-
spire our research as we seek to comprehend and passively repli-
cate this phenomenon in simplified forms. The investigation in-
volves the exploration of the dynamics exhibited by a uniform
beam connected to a spring-damper system acting as a passive
absorber. This chosen system allows us to take advantage of
the unique property of the inner ear, shedding light on some of
the observed phenomenological behaviors of the basilar mem-
brane. The positioning of the spring-damper system engenders
two distinct dynamic regions within the beam: one character-
ized by standing waves and the other by non-reflecting traveling
waves. The comprehensive analysis incorporates analytical and
computational aspects, providing a holistic understanding of the
coexistence of traveling and standing waves within these two dy-
namic zones.
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1 INTRODUCTION

Mechanical waves may be classified according to their capacity
to transmit energy as traveling or standing waves. In the case
of standing waves, the energy is localized to specific regions,
whereas traveling waves can propagate the energy over distances
within the medium. Numerous aquatic animals and microbes
swim in fluid environments using traveling wave-based locomo-
tion. Researchers have been fascinated by this wave-based loco-
motion phenomenon for more than five decades. Thus, traveling
waves extend across various applications, including the advance-
ment of propulsion mechanisms for robotic locomotion, [1-4],
imitation of swimming behaviors [5—7], and the design of biome-
chanical structures such as the cochlea of the inner ear [8—13],
drawing inspiration from microorganisms employing flagella or
cilia [14-18], as well as microorganisms such as fish [19-21].
Moreover, traveling waves facilitate the reduction of skin fric-
tion drag in aerodynamic structures [22, 23], and enable non-
prehensile transportation of macro and micro objects [24-26].
Considering the importance of traveling waves and their many
practical uses, researchers have explored ways to create travel-
ing waves in various finite structures. For instance, they have
investigated how to generate these waves in strings [27-32],
plates [33, 34], rings [35], beams [26, 36-39] and even in cir-
cular acoustic conduits with rigid walls [40, 41]. In their exam-
ination of mechanical wave characterization and identification,
Bucher et al. illustrated that induction of traveling waves within
a structure is feasible through a two-point excitation mechanism
operating at a mean frequency positioned between two modes,
each differing by a 90° phase angle [35]. Malladi and Avi-
rovik et al. employed the previously mentioned two-point excita-
tion approach [26] to generate traveling waves in piezoceramics-
augmented 1d beams subjected to a range of boundary condi-
tions [36, 38]. Their research, which included theoretical mod-
eling and experimental validation of traveling wave generation,
revealed that each frequency corresponds to a specific phase that
contributes to wave formation, thus challenging the notion that
this contribution is restricted to the mean frequency and a 90°
phase difference. Furthermore, Blanchard et al. explored a novel
method for passive motion restriction in fixed strings [30, 31].
Their investigation focused on the dynamics of undamped, uni-
form, linear strings excited harmonically via an attached spring-
dashpot system. Theoretical findings indicate the potential coex-
istence of stationary and traveling waves due to the complexity
of the localized damping-induced mode in the attachment. Ac-
curate estimation of the spring-dashpot system parameters en-
ables passive confinement, facilitating energy transmission to
areas with standing waves via traveling waves. Motaharibid-
goli et al. [39] devised hybrid waves within an Euler-Bernoulli
beam using a single-point excitation technique and integrating
a spring damper system. Through this approach, they success-
fully demonstrated the ability to distinguish between traveling

and standing waves while also optimizing wave quality through
the utilization of various spring-damper combinations. Further-
more, Xiao et al. [40, 41] used a damped side branch in a circular
duct with stiff walls to differentiate between standing and trav-
eling waves. They discovered that the branch efficiently breaks
up these waves, transferring or dispersing sound energy without
reflecting it to the source. As a result, the technology allows
control over energy transmission within the duct by acting as an
acoustic confinement mechanism. Denis et al. [42] have demon-
strated that traveling waves within a beam can be effectively ab-
sorbed by applying a thin layer of damping material to one end of
the beam, an effect known as the "Acoustic Black Hole effect."”
In their study, they investigated the reflection coefficient of the
beam under this phenomenon.

Recent studies have highlighted the generation of steady-
state traveling waves (SSTW) by adjusting phase differences be-
tween several harmonic forces acting on a structure. Although
these studies have mostly focused on modal analysis and two-
mode excitation to understand the fundamentals of SSTW, one
needs to understand further the effect of the spring-dashpot com-
bination in tailoring the two propagating waveforms in a beam.
Thus, using finite element (FE) simulations, the main goal of this
work is to understand the wave characteristics using the reflec-
tion coefficient of SSTW and its relationship to the cost function
of hybrid traveling waves produced by a spring damper system
attached to a Timoshenko beam.

y(t)

FIGURE 1: Schematic of Cantilever Beam with an attached
spring-damper and harmonic force: a) 3D schematic and b) 2D
schematic
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2 BEAM FORMULATION

A beam of Al 6061-T6 material having a rectangular cross-
section of 1.5875 x 12.7 mm? and length of 1.5812 m is con-
sidered in this study. Using Timoshenko beam formulation, the
governing equation of a beam is described as,

ow(x,t)  3%*y(x,1) %y(x,1)
GAK( ox e )TPATGe —awn, ()
ay(x,1) Pylrn) Py
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where G is the shear modulus, A is the area of cross-section,
y(x,7) and y(x,t) are the transverse displacement and the angle
of rotation at location x and time ¢, g is the load, E is the Young’s
Modulus, p is the density, and 7 is the moment of inertia. This
section provides a concise overview of the modeling approach
used to analyze a beam incorporating a spring-damper (SD) sys-
tem that functions as a passive absorber (PA). The schematic
representation of the cantilevered beam, incorporating a discrete
spring-damper with stiffness denoted by & [N/m] and damping
denoted by ¢ [Ns/m], is shown in Figure 1. The beam is sub-
jected to a harmonic force, F(t), characterized by a driving fre-
quency of @ and an amplitude of Fy, applied at its free end to
induce system excitation. Boundary conditions dictate that the
displacement y(x,) and the rotation angle y/(x,¢) are zero at the
clamped end of the beam. A MATLAB-based FE model com-
prising 200 quadratic shape functions has been thoroughly tested
and validated in previous research endeavors [43].

M5 +Cx+Kx = B/ £(1) 3)

where the mass, stiffness, and damping matrices are given by
M,K,C e R800x800 " Also, C can be written in terms of M&K as
shown below Equation (4).

Amplitude, [m]
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Length of Beam, [m]

FIGURE 2: Modified Modeshapes of the Beam after adding
Spring-Damper

C=oaM+BK 4)

here, o = le3 and B = 1e~% are FE constants used from the FE
model from previous research [43]. In particular, a thorough
analysis verified that natural frequencies converged within the
applicable frequency range. The spring-damper assembly is at-
tached at position Ly = 0.05L, and the resulting modified mode-
shapes are illustrated in Figure 2.

a) b)  Max. Amp. = Min. Amp.
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FIGURE 3: Illustration of wave types by (CF): (a) Pure Standing
wave (CF=1), (b) Pure Traveling wave (CF=0), and (c) Hybrid
wave (0<CF<1)

3 WAVE CATEGORIZATION

To assess the quality of a wave generated within a structural con-
text and to delineate its waveform characteristics, a cost function
(CF) is used, based on the wave envelope [37].

_ MaxAmp — MinAmp
"~ MaxAmp + MinAmp

CF &)

Within this framework, the parameters MaxAmp and MinAmp
denote the maximal and minimal amplitudes of the wave enve-
lope within a predetermined time interval, as shown in Figure 3.
The CF, as illustrated in Figure 3and formulated by Equation (5),
assumes values ranging between zero and one, where a CF of
zero signifies a purely propagating wave, while a CF of one indi-
cates a purely standing wave. A wave exhibiting a CF within the
interval (0, 1) denotes a composite of propagating and standing
wave components. It is pertinent to acknowledge that attaining
a CF value of precisely zero within mechanical media, as ex-
amined herein, may not be feasible. A hypothetical situation,
which serves as an example but is not realistically achievable, in-
volves envisioning a scenario where a string with no constraints
experiences forces acting on both ends. Consequently, as the CF
approaches zero, a hybrid wave progressively resembles a prop-
agating rather than a standing wave.
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(a) Hybrid Wave generated in the system for @ = 1700 Hz, Ly = 0.05L
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(b) Surface Plot for the above traveling wave

4 NUMERICAL SIMULATIONS AND OPTIMIZATION

MATLAB software is utilized to solve the equation of motion
Equation (6) employing the inverse matrix technique.

M+ (C+cByy)X+ (K +kByg)x = By f(t) (6)

where, x is the displacement vector of the beam, M, C and K
are global mass, damping and stiffness matrices, ¢ and k are the
damping and stiffness coefficient of the SD, respectively, f(¢) is
the input force applied to the free end of the beam, By is the force
influence matrix and By, is the spring-damper influence matrix.
Once the displacement has been computed, Equation (5) is ap-
plied to obtain the Cost Function for the traveling wave. Fig-
ure 4a depicts a hybrid wave applied to the clamped-free beam
at an excitation frequency 1300 Hz while Figure 4b illustrates a
contour plot showcasing the presence of both standing wave and
traveling wave across the length of the beam.

Additionally, the parameters k and ¢ are optimized so that
the cost function corresponding to a specific excitation frequency
is minimized. As illustrated in Figure 5, a contour plot elucidates

the correlation between the cost function and the span of ¢ and k.
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FIGURE 5: Cost Function contour for the system excited at @ =
1300 Hz for a range of k and ¢
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FIGURE 6: Wave Number v/s Frequency

5 WAVE FIELD SOLUTION AND ESTIMATION OF RE-
FLECTION COEFFICIENT FOR BEAM

Given the identical beam model incorporating a spring-damper
system that resembles an acoustic black hole affixed to the ex-
tremity, located at x = 0.05L, where L represents the beam
length. Under the Timoshenko beam assumptions the equation
of the flexural motion Equation (7), W(x, @) of such a beam in
the absence of excitation and harmonic motion with time depen-
dency e~/ is

El

I E 1
pAkf4——<1+—)kf2w2—w2+p o*=0 (7

A Gk GAx

where x is the Timoshenko Coefficient, w is the angular fre-
quency, p is the density, E is the Young’s Modulus, G is the
shear modulus, A is the area of cross-section, / is the Moment of

Copyright © 2024 by ASME



Cost Function v/s Frequency |
T T

1 1 * T

08 ——Y- =

T T T

0.7 [

Cost Function

1

0 0.5 1 1.5 2

25 3 3.5 4 4.5 5

FIGURE 7: Cost Function v/s Frequency for Ly = 0.05L

Inertia for the beam respectively.

The overall solution for the displacement can be expressed
as the summation of four distinct waves [44]:

W(x) = Ae 5 4 Be k¥ Ce™* " - D(w)e ™ (8)

where kg is the spatial frequency, i.e., wave number. The roots
of the wave number vary with the angular frequency as shown
in Figure 6. The wave number for a particular frequency is de-
termined by solving the dispersion relationship shown in Equa-
tion (7).

This is subsequently employed in the determination of scalar
coefficients. A, B, C, and D signify the complex amplitudes of
backward and forward propagating waves, respectively. At the
extremities, the boundary conditions associated with the equa-
tion of motion Equation (7) can be formulated in the form of a
reflection matrix denoted as R, [42] such that

][5 0

where

(10)

with R;; being the reflection coefficient between incident wave
i and reflected wave j; i and j symbolize p and a standing for
propagating and attenuating, respectively. Considering 25 points
along the beam, the displacement measured for all x;(i € [0,N])
can be related to the coefficients A, B, C, D through the matrix
equation

W()C(), (D) efjkfxo e+jkfx0 e*kfx() eJrkfxO
W(X[ , (J)) efjkj)q e+jkfx1 e*kf)q eJrkfxl A(a))
W(Xz, U)) efjkfxz e+jkfx2 e*kfxz e+kfx2 B((D)
. C()
W(xzs, a)) e Ikpxas ptikpxas p—kpxas ptkpxos
(11)
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M is the Moore-Penrose generalized inverse [42] of M and M*
is the conjugate transpose of M

Then, the Reflection coefficient

R(0) == (14)
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FIGURE 8: Reflection Coefficient when SD is at Ly = 0.05L
6 DISCUSSION & CONCLUSION

Our research has yielded a significant discovery: Depicted in
Figure 7, our analysis reveals distinct troughs in the cost function
spanning a wide frequency spectrum. Specifically, we examine a
spring-damper system situated at Lo = 0.05*L, with L denoting
the normalized length, and tailor it for a frequency of 1340 Hz
in Figure 7. This optimization underscores the pronounced dips
in the cost function. This revelation hints at an extraordinary
prospect: a singular system might concurrently sustain traveling
waves across multiple frequencies, which is a novel observation

and not previously documented. In particular, in Figure 7, we set
a threshold for the cost function at 0.8, revealing several peaks
below this criterion. Intriguingly, these troughs manifest between
two natural frequencies, challenging conventional assumptions
and beckoning a deeper examination of the mechanisms govern-
ing wave propagation dynamics.

Expanding on this revelation, our investigation uncovers a
compelling correlation between dips in the cost function and cor-
responding decreases in the reflection coefficient across diverse
frequency bands (Figure 8). We discern that both metrics ex-
hibit a dip at the same natural frequency optimized for the spring-
damper system. This intriguing correlation underscores an inher-
ent link between the system’s wave propagation characteristics
and dynamic behavior. Beyond enriching our understanding of
wave phenomena, this insight holds significant implications for
engineering disciplines, offering new avenues for system design
and optimization.

7 FUTURE SCOPE

In future studies, there exists a promising avenue for actively
manipulating these observed dips to enhance system efficiency.
Rather than merely accommodating dips, the aim would be to
minimize the cost function to a singular minimum across a
wide frequency spectrum. Exploring this prospect could yield
valuable insights into optimizing system performance. More-
over, delving into potential applications within cutting-edge
wave-based technologies and materials design holds substantial
promise.

Furthermore, it is imperative to delve deeper into the un-
derlying mechanisms driving the correlation between system dy-
namics and wave propagation characteristics. Clarifying these
intricacies would not only enrich our fundamental understanding
but also lay the groundwork for future innovation and advance-
ment in the field. By embarking on these paths of inquiry, we can
unlock novel opportunities for pushing the boundaries of scien-
tific exploration and practical application.
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