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Abstract

We present the subspace-constrained Tyler’s estimator (STE)

designed for recovering a low-dimensional subspace within a

dataset that may be highly corrupted with outliers. STE is a

fusion of the Tyler’s M-estimator (TME) and a variant of the fast

median subspace. Our theoretical analysis suggests that, under

a common inlier-outlier model, STE can effectively recover the

underlying subspace, even when it contains a smaller fraction of

inliers relative to other methods in the field of robust subspace

recovery. We apply STE in the context of Structure from Motion

(SfM) in two ways: for robust estimation of the fundamental

matrix and for the removal of outlying cameras, enhancing

the robustness of the SfM pipeline. Numerical experiments

confirm the state-of-the-art performance of our method in these

applications. This research makes significant contributions to

the field of robust subspace recovery, particularly in the context

of computer vision and 3D reconstruction.

1. Introduction

In many applications, data has been collected in large quantities
and dimensions. It is a common practice to represent such data
within a low-dimensional subspace that preserves its essential
information. Principal Component Analysis (PCA) is frequently
employed to identify this subspace. However, PCA faces
challenges when dealing with data contaminated by outliers.
Consequently, the field of Robust Subspace Recovery (RSR)
aims to develop a framework for outlier-robust PCA. RSR is
particularly relevant to problems in computer vision, such as
fundamental matrix estimation, which involves recovering a
hidden subspace associated with “good correspondence pairs”
among highly corrupted measurements.

Various algorithms have been proposed to address RSR, em-
ploying methods such as projection pursuit [1, 5, 14, 23, 29, 35,
38], subspace energy minimization (in particular least absolute
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deviations and its relaxations) [9, 24, 27, 33, 34, 42, 43, 51],
robust covariance estimation [50], filtering-based methods
[4, 8, 49] and exhaustive subspace search methods [10, 16]. An
in-depth exploration and comprehensive overview of robust sub-
space recovery and its diverse algorithms can be found in [25].

Methods based on robust covariance estimators, such as the
Tyler’s M-estimator (TME), offer additional useful information
on the shape of the data within the subspace, similarly to PCA
in the non-robust setting. They also offer maximum-likelihood
interpretation, which is missing in many other methods.
Application of the TME [47] to RSR has been shown to be
successful on basic benchmarks [25, 50]. Moreover, under a
model of inliers in a general position on a subspace and outliers
in general position in the complement of the subspace, TME
was shown to recover the subspace within a desirable fraction
of inliers [50]. Below this fraction it was proved to be Small
Set Expansion (SSE) hard to solve the RSR problem [16].

One may still succeed with solving the RSR problem with a
computationally efficient algorithm when the fraction of inliers
is lower than the one required by [16], considering a more
restricted data model or violating other assumptions made in
[16]. For example, some special results in this direction are
discussed in [32]. Also, [33] proposes the generalized haystack
model of inliers and outliers to demonstrate the possibility of
handling lower fractions of inliers by an RSR algorithm. This
model extends the limited standard haystack model [27], where
basic methods (such as PCA filtering) can easily work with low
fractions of outliers. Nevertheless, it is unclear how practical
the above theoretical ideas are for applied settings.

One practical setting that requires a fraction of inliers sig-
nificantly lower than the one stated in [16] arises in the problem
of robust fundamental (or essential) matrix estimation. The
fundamental matrix encompasses the epipolar geometry of two
views in stereo vision systems. It is typically computed using
point correspondences between the two projected images. This
computation requires finding an 8-dimensional subspace within
a 9-dimensional ambient space. In this setting, the theoretical
framework of [16] requires that the fraction of inliers be at least
8/9⇡88.9%, which is clearly unreasonable to require.

To date, the RANdom Sample Consensus (RANSAC)
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method [10] is the only RSR method that has been highly suc-
cessful in addressing this nontrivial scenario, gainingwidespread
popularity in computer vision. RANSAC is an iterative method
that randomly selects minimal subsets of the data and fits mod-
els, in particular subspaces, to identify the best consensus set,
that is, the set in most agreement with the hypothesized model.
There are numerous approaches proposed to improve RANSAC,
especially for this particular application, including locally
optimized RANSAC (LO-RANSAC, [6]), maximum likelihood
estimator RANSAC (MLESAC) [45]), degeneracy-check
enabled RANSAC (DEGENSAC) [7]) and M-estimator guided
RANSAC (MAGSAC) [2]). A near recovery theory for a variant
of RANSAC under some assumptions on the outliers was sug-
gested in [32]. Nevertheless, in general, RANSAC is rather slow
and its application to higher-dimensional problems is intractable.

This work introduces a novel RSR algorithm that is
guaranteed to robustly handle a lower fraction of outliers than
the theoretical threshold proposed by [16], under special settings.
Our basic idea is to adapt Tyler’s M-Estimator to utilize the
information of the underlying d-dimensional subspace, while
avoiding estimation of the full covariance. By using less degrees
of freedom we obtain a more accurate subspace estimator
than the one obtained by TME with improved computational
complexity. We show that STE is a fusion of the Tyler’s
M-estimator (TME) and a variant of the fast median subspace
(FMS) [24] that aims to minimize a subspace-based `0 energy.

Our theory shows that our proposed subspace-constrained
Tyler’s estimator (STE) algorithm can effectively recover the
underlying subspace, even when it contains a smaller fraction
of inliers relative to other methods. We obtain this nontrivial
achievement first in a generic setting, where we establish when
an initial estimator for STE is sufficiently well-conditioned to
guarantee the desired robustness of STE. We then assume the
asymptotic generalized haystack model and show that under
this model, TME itself is a well-conditioned initial estimator for
STE, and that unlike TME, STE with this initialization can deal
with a lower fraction of inliers than the theoretical threshold
specified in [16].

We demonstrate competitive performance in robust
fundamental matrix estimation, relying solely on subspace
information without additional methods for handling degenerate
scenarios, in contrast to [7, 12, 37]. We also propose a potential
application of RSR for removing bad cameras in order to
enhance the SfM pipeline and show competitive performance
of STE. This is a completely new idea and it may require
additional exploration to make it practical. Nevertheless, it
offers a very different testbed whereN=D is very large and
RANSAC is generally intractable.

The rest of the paper is organized as follows: §2 introduces
the STE framework, §3 establishes theoretical guarantees
of STE, §4 applies STE to two different problems in SfM,
demonstrating its competitive performance relative to existing
algorithms, and §5 provides conclusions and future directions.

2. The STE Algorithm

We present our proposed STE. We review basic notation in §2.1
and Tyler’s original estimator in §2.2. We describe our method
in §2.3, its computational complexity in §2.4, its algorithmic
choices in §2.5 and an interpretation for it as a fusion of TME
and FMS with p=0 in §2.6.

2.1. Notation

We use bold upper and lower case letters for matrices and
column vectors, respectively. Let Ik denote the identity matrix
in Rk⇥k, where if k is obvious we just write I. For a matrix
A, we denote by tr(A) and Im(A) the trace and image (i.e.,
column space) ofA. We denote by S+(D) and S++(D) the
sets of positive semidefinite and definite matrices in RD⇥D,
respectively. We denote byO(D,d) the set of semi-orthogonal
D⇥d matrices, i.e., U 2 O(D,d) if and only if U 2 RD⇥d

andU>U=Id. We refer to linear d-dimensional subspaces as
d-subspaces. For a d-subspace L, we denote byPL theD⇥D

matrix representing the orthogonal projector onto L. We also
arbitrarily fix UL in O(D,d) such that ULU>

L = PL (such
UL is determined up to right multiplication by an orthogonal
matrix in O(d,d)). Throughout the paper, X ={xi}Ni=1⇢RD

is assumed to be a given centered dataset, that is,
PN

i=1xi=0.

2.2. Tyler’s Estimator and its Application to RSR

Tyler’s M-estimator (TME) [47] robustly estimates the covari-
ance⌃⇤ of the dataset X={xi}Ni=1⇢RD by minimizing

D

N

NX

i=1

log(x>
i ⌃

�1xi)+logdet(⌃) (1)

over ⌃2S++(D) such that tr(⌃) = 1. The cost function in
(1) can be motivated by writing the maximum likelihood of the
multivariate t-distribution and letting its degrees of freedom pa-
rameter, ⌫, approach zero [31]. This cost function is invariant to
dilations of⌃, and the constraint on tr(⌃), whose value can be
arbitrarily chosen, fixes a scale. TME also applies to scenarios
where the covariance matrix does not exist. In such cases, TME
estimates the shape (or scatter matrix) of the distribution, which
is defined up to an arbitrary scale. More direct interpretations
of TME as a maximum likelihood estimator can be found in
[11, 46]. When D is fixed and N approaches infinity, TME
is the “most robust” estimator of the shape matrix for data
i.i.d. sampled from a continuous elliptical distribution [47] in a
minimax sense, that is, as a minimizer of the maximal variance.

Tyler [47] proposed the following iterative formula for
computing TME:

⌃(k)=
NX

i=1

xix>
i

x>
i (⌃

(k�1))�1xi
/tr

 
NX

i=1

xix>
i

x>
i (⌃

(k�1))�1xi

!
.

Kent and Tyler [22] proved that if any d-subspace ofRD, where
1 dD�1, contains fewer than Nd/D data points, then
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the above iterative procedure converges to TME. Linear rate
of convergence was proved for the regularized TME in [15] and
for TME in [13].

One can apply the TME estimator to solve the RSR problem
with a given dimension d by forming the subspace spanned
by the top d eigenvectors of TME. Zhang [50] proved that
as long as there are more than Nd/D inliers lying on a
subspace, and the projected coordinates of these inliers on the
d-subspace and the projected coordinates of the outliers on the
(D�d)-dimensional orthogonal complement of the subspace
are in general position, then TME recovers this subspace. Zhang
[50] also showed that in this setting the above iterative formula
converges (note that the condition of convergence in [22] does
not apply in this case). The above lower bound of Nd/D on
the number of inliers coincides with the general bound for the
noiseless RSR problem, beyond which the problem becomes
Small Set-Expansion (SSE) hard [16].

Numerical experiments in [50] and [25] indicated state-of-
the-art accuracy of TME compared to other RSR algorithms
in various settings. The computational complexity of TME is of
orderO(K(ND

2+D
3)), whereK is the number of iterations.

On the other hand, the cost of faster RSR algorithms is of order
O(KNDd) [24, 25, 33].

2.3. Motivation and Formulation of STE

We aim to use more cleverly the d-subspace information within
the TME framework to form an RSR algorithm, instead of first
estimating the full covariance. By using less degrees of freedom
we can obtain a more accurate subspace estimator, especially
when the fraction of outliers can be large. Furthermore, our
idea allows us to improve the computational cost to become
state-of-the-art for high-dimensional settings.

Many RSR algorithms can be formulated as minimizing a
best orthogonal projector onto a d-subspace [24, 25, 27, 33, 51].
We are going to do something similar, but unlike using an
orthogonal projector, we will still use information from TME
to get the shape of the data on the projected subspace. We will
make the rest of the eigenvalues (i.e., bottomD�d ones) equal
and shrink them by a parameter 0<�<1. We thus use a regu-
larized version of a reduced-dimension covariance matrix. This
parameter � plays a role in our theoretical estimates. Making
� smaller helps with better subspace recovery, whereas making
� bigger enhances the well-conditioning of the estimator.

Following these basic ideas, we formulate our method, STE.
For simplicity, we utilize covariance matrices and their inverses.
Since these covariance matrices are essentially d-dimensional
and include an additional simple regularizing component, our
overall computations can be expressed in terms of the computa-
tion of the top d singular values of anN⇥D matrix (see §2.4).

At iteration k we follow a similar step to that of TME:

Z(k) :=
NX

i=1

xix
>
i /(x

>
i (⌃

(k�1))�1xi).

We compute the eigenvalues {�i}Di=1 of Z(k) and replace each
of the bottom (D�d) of them with � ·�d+1,D, where

�d+1,D :=
1

D�d

DX

i=d+1

�i. (2)

We also compute the eigenvectors of Z(k) and form the matrix
⌃(k) with the same eigenvectors as those of Z(k) and the
modified eigenvalues, scaled to have trace 1. We iteratively
repeat this procedure until the two estimators are sufficiently
close. Algorithm 1 summarizes this procedure. Note that it is
invariant to scaling of the data, similarly to TME.

Algorithm 1 STE: Subspace-Constrained Tyler’s Estimator

1: Input:X=[x1,...,xN ]2RD⇥N : centered data matrix, d:
subspace dimension, K: maximum number of iterations,
⌧,�: parameters.

2: Output: L: d-subspace in RD

3: ⌃(0)=ID/D
4: for k=1,2,... do
5: Z(k) 

PN
i=1xix>

i /(x
>
i (⌃

(k�1))�1xi)
6: [U(k)

,S(k)
,U(k)] EVD(Z(k))

7: �i [S(k)]ii and �d+1,D 
PD

i=d+1�i/(D�d)

8: eS(k) diag(�1,...,�d,� ·�d+1,D,...,� ·�d+1,D),
9: ⌃(k) U(k)eS(k)(U(k))>/tr

�
U(k)eS(k)(U(k))>

�

10: Stop if k�K or k⌃(k)�⌃(k�1)kF <⌧

11: end for

12: L = Span of the first d columns ofU(k)

2.4. Computational Complexity

Setting w
(k)
i = (x>

i (⌃
(k�1))�1xi)�1, we can express Z(k)

as Z(k) = eXeX>, where eX= [(w(k)
1 )1/2x1,...,(w

(k)
N )1/2xN ].

With some abuse of notation we denote by �1, ... ,�D the
eigenvalues of⌃(k�1) (and not⌃(k)). Since they are scaled to
have trace 1, �d+1,D=(1�

Pd
j=1�j)/(D�d). We thus only

need the top d eigenvectors and top d eigenvalues of⌃(k�1) to
update ew(k)

i . Therefore, the complexity of STE can be of order
O(KNDd) if a special fast algorithm is utilized for computing
only the top d eigenvectors.

2.5. Implementation Details

STE depends on the parametersK, ⌧ and � and the initialization
of⌃(0). The first two parameters are rather standard in iterative
procedures and do not raise any concern.

Our theory sheds some light on possible choices of � and in
particular it indicates that the algorithm can be more sensitive to
choices of � when the quantity defined later in (3) is relatively
small. In this case, it may be beneficial to try several values of �.
We propose here a constructive way of doing it. We first form
a sequence of 0<�1, e.g., �k=1/k, k=1,...,m. In order to

14577

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on December 28,2024 at 20:10:48 UTC from IEEE Xplore.  Restrictions apply. 



determine the best choice of �, we compute the distance of each
data point x to each subspace Lk, corresponding to the choice
of �k, where dist(x,Lk)=kx�PLkxk. We set set a threshold
⇣, obtained by the median among all points and all subspaces
and for each subspace, Lk, we count the number of the inliers
with distance below this threshold. The best �k is determined
according to the subspace yielding the largest number of inliers.
We describe this procedure in Algorithm 2.

For simplicity, we initialize with⌃(0)=ID/D and note that
with this choice ⌃(1) reflects the trimmed covariance matrix
and thus reflects the PCA subspace. One can also initialize
with TME or other subspaces (see §3 where the theory of STE
is discussed). One can further try several initialization (with
possible random components) and use a strategy similar to
Algorithm 2 to choose the best one.

At last, we remark that when computing Z(k) we want to
ensure that x>

i (⌃
(k�1))�1xi cannot be zero and we thus add

the arbitrarily small number 10�15 to this value.

Algorithm 2 Estimating best � for STE

1: Input:X=[x1,...,xN ]2RD⇥N : centered data matrix, d:
subspace dimension, {�1,...,�m}: a set of pre-selected �’s.

2: Output: �
⇤: optimal � among {�1,...,�m}

3: for j=1,2,...,m do

4: L
(j) STE(X,d,�j)

5: D(j) {dist(xi,L
(j)) |xi2X}.

6: end for

7: Set ⇣=median({D(1),. . . ,D(m)})
8: j⇤=argmax1jm|D(j)

<⇣|
9: �⇤=�j⇤

2.6. STE fuses TME and a Variant of FMS

STE is formally similar to both TME and FMS. Indeed,
at each iteration these algorithms essentially compute
⌃(k+1) =

PN
i=1wixix>

i , where wi ⌘wi

�
⌃(k)

�
. We summa-

rize the formal weights for FMS (with any choice of p for
minimizing an `p energy in [24]), TME and STE. We ignore
an additional scaling constant for TME and STE, obtained
by dividing wixix>

i above by its trace, and a regularization
parameter � for FMS. We express these formulas using the
eigenvalues �1, ... , �D and eigenvectors u1, ... ,uD of the
weighted sample covariance,

PN
i=1wixix>

i for each method
and � :=� ·�d+1,D (see (2)) as follows:

w
FMS
i =

1
⇣PD

j=d+1(x
>
i uj)2

⌘(2�p)/2
,

w
TME
i =

1
PD

j=1�
�1
j (x>

i uj)2
,

w
STE
i =

1
Pd

j=1�
�1
j (x>

i uj)2+��1
PD

j=d+1(x
>
i uj)2

.

These weights aim to mitigate the impact of outliers in
different ways. For FMS,

PD
j=d+1(x

>
i uj)2 is the squared

distance of a data point xi to the subspace L. Thus for p<2,
w

FMS
i is smaller for “subspace-outliers”, where the robustness

to such outliers increases when p�0 decreases.
The weights of TME are inversely proportional to the

squaredMahalanobis distance ofxi to the empirical distribution.
They mitigate the effect of “covariance-outliers”. If the dataset
is concentrated on a k-subspace where k < d, then TME
can provide smaller weights to points lying away from this
subspace, unlike FMS that does not distinguish between points
within the larger d-subspace.

We note that the weights of STE fuse the above two weights.
Within a d-subspace, they use the shape of the data. They can
thus avoid outliers within this d-subspace. Within the orthogonal
component of this subspace, they use a term proportional to
that of FMS with p=0. We remark that such `0 minimization
has a clear interpretation for RSR, though is generally hard to
guarantee. Indeed, [24] has no guarantees for FMS with p=0.
It can also yield unwanted spurious stationary points [26].

3. Theory

We review a theoretical guarantee for STE, whose proof is given
in [28]. It requires some conditions and we verify they hold
with high probability under the asymptotic generalized haystack
model. We assume a noiseless inliers-outliers RSR model. Let
L⇤ denote the underlying d-subspace in RD, Xin=X\L⇤ and
Xout=X\Xin be the set of inliers and outliers, respectively, and
n1= |Xin| and n0= |Xout| be the number of inliers and outliers.
Our first assumption is a mild one on how well-conditioned the
inliers are in L⇤ (compare e.g., other assumptions in [25, 32]).
Assumption 1: Any k-subspace of L⇤, 1kd, contains at
most n1k/d points.

Motivation for Assumption 2: The ratio of inliers per
outliers, n1/n0, in RSR is often referred to as the SNR
(signal-to-noise ratio) [25, 32, 33]. The smaller it is, the best
the subspace recovery is. We define the dimension-scaled SNR
(DS-SNR) as the SNR obtained when scaling n1 and n0 by
their respective dimensions (of L⇤ and L?

⇤ ):

DS-SNR :=
n1/d

n0/(D�d)
. (3)

Zhang [50] showed that exact recovery by TME is guaranteed
whenever DS-SNR>1 (assuming general position assumptions
on the inliers and outliers) and Hardt and Moitra [16] showed
that when considering general datasets with general position
assumptions on the inliers and outliers, the RSR problem is
SSE hard if the DS-SNR is lower than 1. We aim to show that
under the following weaker generic condition, STE can obtain
exact recovery with DS-SNR, strictly lower than 1.
Assumption 2:DS-SNR>�, where �<1 is the STE parameter.

Our last assumption requires a sufficiently good initialization
for STE, but also implicitly involves additional hidden

14578

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on December 28,2024 at 20:10:48 UTC from IEEE Xplore.  Restrictions apply. 



assumptions on the inliers and outliers. This is expected, since
Assumption 1 does not require anything from the outliers and
also has a very weak requirement from the inliers. To formulate
the new assumption we define below some some basic condition
numbers for good initialization (which are more complicated
than the one for initialization by PCA suggested by [33] and
[32]) and also quantities similar to the ones used to guarantee
landscape stability in the theory of RSR [25, 27, 33, 51].

Definitions required for Assumption 3: Recall that⌃(0)

denotes the initial value in Algorithm 1, and denote

⌃(0)
L1,L2

=U>
L1
⌃(0)UL2.

We define the following condition number

1=
�d

⇣
⌃(0)

L⇤,L⇤
�⌃(0)

L⇤,L?
⇤
⌃(0)�1

L?
⇤ ,L?

⇤
⌃(0)

L?
⇤ ,L⇤

⌘

�1

⇣
⌃(0)

L?
⇤ ,L?

⇤

⌘ .

To get a better intuition to this primary quantity of Assumption
3, we first express the initial estimator⌃(0), using basis vectors
for L⇤ and L?

⇤ , as a 2⇥2 block matrix
 
⌃(0)

L⇤,L⇤
⌃(0)

L⇤,L?
⇤

⌃(0)
L?

⇤ ,L⇤
⌃(0)

L?
⇤ ,L?

⇤

!
.

Defining ⌃0 =⌃(0)
L⇤,L?

⇤
⌃(0)�1

L?
⇤ ,L?

⇤
⌃(0)

L?
⇤ ,L⇤

, we decompose this
block matrix as

 
⌃0 ⌃(0)

L⇤,L?
⇤

⌃(0)
L?

⇤ ,L⇤
⌃(0)

L?
⇤ ,L?

⇤
,

!
+

 
⌃(0)

L⇤,L⇤
�⌃0 0

0 0

!
.

We note that the numerator of 1 is the d-th eigenvalue of the
second matrix in the above sum. We show in [28] that this
eigenvalue is positive if⌃(0) is positive definite, which can be
easily enforced. The condition number is thus the ratio between
the smallest positive eigenvalue of the second matrix of the sum
and the largest eigenvalue of the component of the first matrix
associated with L

?
⇤ . Therefore, 1 expresses a ratio between

a quantifier of a d-dimensional component of⌃(0), associated
with L⇤, and a quantifier of the projection onto L

?
⇤ of a full

rank component of⌃(0).
We also define⌃in,⇤ as the TME solution to the set of the

projected inliers {UL⇤x |x2Xin}⇢Rd and the following two
condition numbers

2=
�1

⇣
⌃(0)

L?
⇤ ,L?

⇤

⌘

�D(⌃(0))
and in=

�1(⌃in,⇤)

�d(⌃in,⇤)
.

We note that in is analogous to the condition number in
(25) of [32], where we replace the sample covariance by the
TME estimator. An analog to the alignment of outliers statistic
[27, 33] for STE is

A=
���
X

x2Xout

xx>

kUL?
⇤
xk2

���.

An analog to the stability statistic [27, 33] for STE is

S=�d+1,D

⇣X

x2X

xx>

kxk2
⌘
,

where �d+1,D(X) was defined in (2).
Assumption 3: There exists C=C(�,DS-SNR)>0 such that

1�C
dinA
n1

 
in+

A
n1
d ��

n0
D�d

+
2A
�S (1+in)

!
. (4)

The exact technical requirement on C is specified in [28]. In
general, the larger the RHS of (4), the more restricted the choice
of⌃(0) is. In particular, when 1=1, the definition of 1 im-
plies that Im(⌃(0))=L⇤, so the subspace is already recovered
by the initial estimate. Therefore, reducing the lower bound
of 1 may allow some flexibility, so a marginally suboptimal
initialization could still work out. In [28], we show that under
the asymptotic generalized haystack model, Assumption 3 can
be interpreted as an upper bound on the largest principal angle
between the initial and ground truth subspaces.

Generic Theory: The next theorem suggests that under
assumptions 1-3, STE nicely converges to an estimator that
recovers L⇤. The main significance of this theory is that
its assumptions can allow DS-SNR lower than 1 for special
instances of datasets (for which the assumptions hold), unlike
the general recovery theories of [16] and [50].

Theorem 1. Under assumptions 1-3, the sequence⌃(k)
gen-

erated by STE converges toUL⇤⌃in,⇤U>
L⇤
, the TME solution

for the set of inliers Xin. In addition, let L
(k)

be the subspace

spanned by the top d eigenvectors of ⌃(k)
, then the angle

between L
(k)

and L⇤, \(L(k)
, L⇤) = cos�1(kU>

L(k)UL⇤k),
converges r-linearly to zero.

We discuss insights of this theory on choices of the
algorithms and further verify the above stated advantage of STE
over TME assuming a common probabilistic model.

Choice of � for subspace recovery: In order to avoid too
large lower bound for 1 in (4), which we motivated above, it is
good to find ✏1 and ✏2>0, such that � lies in (✏1,DS-SNR�✏2)
(to notice this, observe the terms involving � in the denomina-
tors of the last two additive terms in (4)). We thus note that if
the DS-SNR is expected to be sufficiently larger than 1, we can
use, e.g., �=0.5, but when the DS-SNR can be close to 1 or
lower (e.g., in fundamental matrix estimation), it is advisable
to choose small values of � according to Algorithm 2 and their
sizes may depend on the expected value of the DS-SNR.

Possible ways of Initialization: If one expects an initial es-
timated subspace L̂ to have a sufficiently small angle ✓ with L⇤,
where ✓=\(L̂,L⇤), then for⌃(0) :=⇧L̂+✏I it can be shown
that 1>O(1/(✏+✓)) and 2<O(1+ ✓

✏ ). Thus one may use a
trusted RSRmethod, e.g., FMS. As discussed in §2.5, the choice
⌃(0)=I (or a scaled version of it) corresponds to L̂ being the

14579

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on December 28,2024 at 20:10:48 UTC from IEEE Xplore.  Restrictions apply. 



PCA subspace (obtained at iteration 1). Also, using the TME
solution for⌃(0) corresponds to using the TME subspace as L̂.

Theory under a probabilistic model:We show that under
a common probabilistic model, the assumptions of Theorem
1, where⌃(0) is obtained by TME, hold. Moreover, we show
that STE (initialized by TME) can recover the correct subspace
in situations with DS-SNR<1, whereas TME cannot recover
the underlying subspace in such cases. We follow [33] and
study the Generalized Haystack Model, though for simplicity,
we assume Gaussian instead of sub-Gaussian distributions and
an asymptotic setting. We assume n1 inliers i.i.d. sampled from
a Gaussian distribution N(0,⌃(in)

/d), where ⌃(in) 2S+(D)
and L⇤ = Im(⌃(in)) (so ⌃(in) has d nonzero eigenvalues),
and n0 outliers are i.i.d. sampled from a Gaussian distribution
N(0,⌃(out)

/D), where ⌃(out)
/D2S++(D). We define the

following condition numbers of inliers (in L⇤) and outliers:

in=
�1(⌃(in))

�d(⌃(in))
and out=

�1(⌃(out))

�D(⌃(out))
.

Clearly, Assumption 1 holds under this model, and
Assumption 2 constrains some of its parameters. Our next
theorem shows that Assumption 3 holds under this model when
the initial estimate⌃(out) for STE is obtained by TME. It also
shows that in this case STE can solve the RSR problem even
when DS-SNR<1, unlike TME. For simplicity, we formulate
the theory for the asymptotic case, where N ! 1 and the
theorem holds almost surely. It is possible to formulate it for
a very large N with high probability, but it requires stating
complicated constants depending on various parameters.

Theorem 2. Assume data generated from the above generalized

haystack model. Assume further that for 0 < µ < 1, which
can be arbitrarily small, d < (1� µ)D� 2. Then, for any

chosen 0<c0< 1, which is a lower bound for �, there exists

⌘ :=⌘(in,out,c0,µ)<1 such that if DS-SNR�⌘ and⌃(0)
is

obtained by TME, then Assumption 3 for⌃(0)
is satisfied with

c0 < �< ⌘�c0 almost surely as N !1. Consequently, the

output of the STE algorithm, initialized by TME and with the

choice of c0<�< ⌘�c0, recovers L⇤. On the other hand, if

⌃(out)
L⇤,L?

⇤
6= 0 and DS-SNR< 1, then the top d eigenvectors of

TME do not recover L⇤.

There are three different regimes that the theorem covers.
When DS-SNR� 1, both TME+STE (i.e., STE initialized
by TME) and TME solve the RSR problem. When ⌘ DS-
SNR< 1, TME+STE solves the RSR problem and TME
generally fails. When �DS-SNR<⌘, TME+STE might also
fail, but STE with extremely good initialization (that satisfies
Assumption 3) can still solve the problem.

To get a basic idea of the dependence of ⌘ on its parameters,
we remark that ⌘! 1 if either c0 ! 0, in !1, out !1
or µ! 0, where the parameter µ is somewhat artificial and
might be removed with a tighter proof. Therefore, successful

performance of TME+STE requires a DS-SNR that is close to 1
when � is close to either 0 or ⌘ (so that c0 is very small) or when
either the inlier or outlier distribution is highly non-symmetric,
that is, either in or out is large.

4. Applications to Structure fromMotion

We apply STE to problems relevant to SfM: robust estimation
of fundamental matrices (see §4.1), and initial screening of
undesirable cameras (see §4.2).

4.1. Robust Fundamental Matrix Estimation

Fundamental matrix estimation from noisy and inexact keypoint
matches is a core computer vision problem. It provides a
challenging setting for applying RSR methods.

We review this setting as follows. Let (x,x0) 2 R3⇥R3

be a correspondence pair of two points in different images
that are projections of the same 3D point in the scene, where
x and x0 are expressed by homogeneous coordinates of
planar points. The fundamental matrixF2R3⇥3 relates these
corresponding points and the epipolar lines they lie on as
follows: x0>Fx=0 [17], or equivalently,

vec(F)·vec(xx0>)=0. (5)

where vec(·) denotes the vectorized form of a matrix. Therefore,
ideally, the set of all vectors inR9 of the form vec(xx0>), where
(x,x0)2R3⇥R3 is a correspondence pair, lies on an 8-subspace
in R9 and its orthogonal complement yields the fundamental
matrix. In practice, the measurements of correspondence pairs
can be highly corrupted due to poor matching. Moreover, some
choices of correspondence pairs and the corruption mechanism
may lead to concentration on low-dimensional subspaces within
the desired 8-subspace. Furthermore, the corruption mechanism
can lead to nontrivial settings of outliers. Lastly, since d=8 and
D=9, the theoretical threshold of [16] translates to having the
fraction of inliers among all data points be at least 8/9⇡88.9%.

Therefore, this application is often a very challenging setting
for direct RSR methods. The best performing RSR methods
to date for fundamental matrix estimation are variants of
RANSAC [10]. RANSAC avoids any subspace-modeling as-
sumptions, but estimates the susbspace based on testing myriads
of samples, each having 7 or 8 point correspondences [17].

We test the performance of STE in estimating the fundamen-
tal matrix on the Photo Tourism database [41], where the image
correspondences are obtained by SIFT feature similarities [30].
We compare STE with the following 3 top RSR performers
according to [25]: FMS [24], spherical FMS (SFMS) [24] and
TME [47, 50]. We also compared with vanilla RANSAC [10]
and two of its specialized extensions, which are state-of-the-art
performers for estimating fundamental matrices: locally
optimized RANSAC (LO-RANSAC) [6] and degeneracy-check
enabled RANSAC (DEGENSAC) [7]. For the RSR methods
we used codes from the supplementary material of [25]
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Figure 1. Median (relative) rotation errors obtained by seven algorithms for the 14 datasets of Photo Tourism.

with their default options. We further used the Python
package pydegensac for implementing LO-RANSAC and
DEGENSAC with the inlier threshold ⌘=0.75. For STE, we
used Algorithm 2 to estimate the best � from {(2i)�1}5i=1.

We measure the accuracy of the results according to the me-
dian and mean errors of relative rotation and direction vectors
directly obtained by the fundamental matrices for each method.
For computing these errors, we compared with ground-truth
values provided by [41, 48]. Figure 1 describes the result of the
mean errors for relative rotation per dataset of Photo Tourism,
where the other three errors andmAA(10�) are in the supplemen-
tal material. STE is significantly better than top RSR performers
(TME, FMS and SFMS). Overall, it appears that STE performs
better than vanilla RANSAC, except for the Ellis Island and
Vienna Cathedral datasets, where RANSAC outperforms STE.
STE is still competitive when compared with LO-RANSAC and
DEGENSAC, except for Notre Dame and the latter two datasets.

4.2. Initial Camera Removal for SfM

We propose a novel application of RSR for SfM and test STE for
this application. Even though our framework is not sufficiently
practical at this point, it allows testing STE in a different setting
whereN=D is very large and d=6. Our idea is to use RSR
within the SfM pipeline right after estimating the fundamental
matrices, in order to remove some cameras that result in inaccu-
rate estimated fundamental matrices. The hope is that eventually
such methods may reduce corruption and speed up the costly
later computationally intensive stages of the global SfM pipeline.

There are two main reasons to question such a process. One
may first question the gain in improving accuracy. Indeed,
since the rest of the pipeline already identifies corrupted
pairwise measurements, this process may not improve accuracy
and may even harm it as it removes whole cameras and not
pairs of cameras. That is, it is possible that a camera, which
results in bad pairwise measurement, also contributes to some
other accurate pairwise estimates that can improve the overall
accuracy. The second concern is in terms of speed. In general,

the removal of cameras may result in higher or comparable
speed. Indeed, the LUD global pipeline [36], which we follow,
examines the parallel rigidity of the viewing graph and extracts
the maximal parallel rigid subgraph. Thus earlier removal
of cameras may worsen the parallel rigidity of the graph and
increase the computation due to the need of finding a maximal
parallel rigid subgraph. For example, [40] removes cameras in
an earlier stage of the LUD pipeline, but results in higher com-
putational cost than the LUD pipeline. Therefore, improvement
of speed for the LUD pipeline by removing cameras is generally
non-trivial. Moreover, currently we use scale factors obtained by
first running LUD, so we do not get a real speed improvement.
Nevertheless, the proposedmethod is insightful whenever it may
indicate clear improvement in accuracy for a dataset, since one
can then infer that the current pipeline is not effective enough
in handling corrupted measurements, which can be easily
recognized by a simple method. Furthermore, improvement
in “speed” can be indicative of maintaining parallel rigidity.

Our RSR formulation is based on a fundamental observation
by Sengupta et al. [39] on the low-rank of the n-view essential
(or fundamental) matrix. The n-view essential matrix E of
size 3n⇥3n is formed by stacking all

�n
2

�
essential matrices,

while being appropriately scaled. That is, the ij-th block of
E is the essential matrix for the i-th and j-th cameras, where
eachEij is scaled by a factor �ij in accordance with the global
coordinate system (see [20, 21, 39]). It was noticed in [39] that
E has rank 6. Moreover, [39] characterized the set of n-view
essential matrices whose camera centers are not all collinear by
the satisfaction of a few algebraic conditions, where the major
one is rank(E)=6. Further explanation appears in [20].

We propose a straightforward application of RSR, utilizing
these ideas to initially eliminate cameras that introduce
significant corruption to the essential matrices. For this purpose,
we compute the essential matrices (by computing first the
fundamental matrices and then using the known camera
calibration) and scale each matrix according to the factor
obtained by the LUD pipline [36] (note that this is the initial
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Figure 2. Mean (absolute) rotation errors (in degrees, left) and mean translation errors (in degrees, right) of LUD and four RSR methods used
to initially screen bad cameras within LUD applied to the 14 datasets of Photo Tourism.

scaling applied in [20, 21, 39] before applying a non-convex
and nontrivial optimization procedure that refines such scales).
Using these appropriately scaled essential matrices, we form the
n-view essential matrixE of size 3n⇥3n. We denote the 3n⇥3
column blocks ofE byE:,1, ...,E:,n (sinceE is symmetric they
are the same as the row blocks transposed). We treatE as a data
matrix withD=N=3n, where the columns ofE are the data
points. We apply RSR with d=6, recover a d-dimensional ro-
bust subspace and identify the outlying columns whose distance
is largest from this subspace. To avoid heuristic methods for the
cutoff of outliers we assume a fixed percentage of 20% outlying
columns. If a column block,E:,i contains an outlying column,
we remove its corresponding camera i. Consequently, a smaller
percentage of cameras (about 10�15%) will be eliminated.

We use the Photo Tourism database [41] with precomputed
pairwise image correspondences provided by [39] (they were
obtained by thresholding SIFT feature similarities). To compute
scale factors for the essential matrices we use the output of
the LUD pipeline [36] as follows (following an idea proposed
in [39] for initializing these values): Given the essential matrix
for cameras i and j computed at an early stage of our pipeline,
Eij, and the one obtained by the full LUD pipeline,ELUD

ij , the
scaling factor is �ij = hEij,[ELUD

ij ]i/k[ELUD
ij ]k2F . Since many

values ofEij are missing, we also apply matrix completion.
We compare the LUD pipeline with the LUD pipeline com-

binedwith the filtering processes achieved by STE, FMS, SFMS,
and TME. For STE we fix �=1/3, though any other value we
tried yielded the same result. We report both mean and median
errors of rotations and translations and runtime of the standard
LUD and the RSR+LUDmethods with initial screening of cam-
eras. Figure 2 shows the mean rotation and translation errors,
where the rest of the figures and a summarizing table are in the
supplementary material. In general, STE demonstrates slightly
higher accuracy compared to other RSR methods. Improved
accuracy is particularly notable when matrix completion is not
utilized, as demonstrated in the supplementary material. We
observe that LUD+STE generally improves the estimation of
camera parameters (both rotations and translations) over LUD.

The improvement of LUD+STE is noticeable in Roman Forum
and Gendarmenmarkt. In the supplementary material we show
further improvement for Gendarmenmarkt with the removal of
45% outlying columns. While the resulting errors are still large,
their improvement shows some potential in dealing with difficult
SfM structure by initially removing cameras in a way that may
help eliminate some scene ambiguities, which are prevalent in
Gendarmenmarkt. In terms of runtime, both LUD+STE and
LUD+SFMS demonstrate significant improvements, where
LUD+SFMS is even faster than LUD+STE. While this does
not yet imply faster handling of the datasets (as we use initial
scaling factors obtained by LUD), it indicates the efficiency of
the removal of outliers in maintaining parallel rigidity.

5. Conclusions

We introduce STE, a meticulously crafted adaptation of
TME designed to address challenges within RSR. Theoretical
guarantees demonstrate its ability to recover the true underlying
subspace reliably, even with a smaller fraction of inliers
compared to the well-known theoretical threshold. Under the
generalized haystack model, we show that this initialization
can be chosen as TME itself, leading to improved handling of
a smaller fraction of inliers compared to TME. Our exploration
extends to practical applications, where STE proves effective
in two 3D vision tasks: robust fundamental matrix estimation
and screening of bad cameras for improved SfM.

Several avenues for future research include: • Exploring
adaptations of other robust covariance estimation methods to
RSR. • Studying effective initialization for STE both in theory
and in practice. • In-depth theoretical exploration of the optimal
choice of the parameter �. • Study of alternative ways of adapt-
ing TME to RSR problems. • Improving STE for fundamental
matrix estimation following ideas similar to those in [7, 12, 37]
for addressing challenging degeneracies. • Enhancing our initial
idea of initial removal of bad cameras, specifically attempting
to use it to rectify challenging scene ambiguities. • Testing our
methods for SfM usingmore recent feature matching algorithms.
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