

AAS-PROVIDED PDF

Preliminary Target Selection for the DESI Milky Way Survey (MWS)

To cite this article: Carlos Allende Prieto *et al* 2020 *Res. Notes AAS* **4** 188

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

Preliminary Target Selection for the DESI Milky Way Survey (MWS)

Carlos Allende Prieto ^{1,2} Andrew P. Cooper ³ Arjun Dey, ⁴ Boris T. Gänsicke ⁵ Sergey E. Koposov ^{6,7,8} Ting Li ^{9,10,*} Christopher Manser, ⁵ David L. Nidever, ^{4,11} Constance Rockosi, ^{12,13} Mei-Yu Wang, ^{7,14} David S. Aguado ⁸ Robert Blum ¹⁵ David Brooks, ¹⁶ Daniel J. Eisenstein, ¹⁷ Yutong Duan ¹⁸ Sarah Eftekharzadeh, ¹⁹ Enrique Gaztañaga ^{20,21} Robert Kehoe, ²² Martin Landriau, ²³ Chien-Hsiu Lee ⁴ Michael E. Levi ²³ Aaron M. Meisner ⁴ Adam D. Myers, ²⁴ Joan Najita, ⁴ Knut Olsen, ²⁵ Nathalie Palanque-Delabrouille, ²⁶ Claire Poppett, ^{23,27} Francisco Prada, ²⁸ David J. Schlegel ²³ Michael Schubnell, ²⁹ Gregory Tarlé, ²⁹ Monica Valluri ³⁰ Risa H. Wechsler ^{31,32} and Christophe Yèche²⁶

¹ Instituto de Astrofísica de Canarias, Vía Láctea S/N, 38205 La Laguna, Tenerife, Spain

² Universidad de La Laguna, Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain

³ Institute of Astronomy and Department of Physics, National Tsing Hua University, 101 Kuang-Fu Rd. Sec. 2, Hsinchu 30013, Taiwan

⁴ NSF's NOIRLab, 950 N. Cherry Ave., Tucson, AZ 85719, USA

⁵ Department of Physics, University of Warwick, Coventry, CV4 7AL, UK

⁶ Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

⁷ McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, PA, 15213, USA

⁸ Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

⁹ Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA

¹⁰ Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

¹¹ Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840

¹² Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA

¹³ University of California Observatories

¹⁴ Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15312, USA

¹⁵ Vera C. Rubin Observatory/NSF's NOIRLab, 950 N. Cherry Ave., Tucson, AZ, 85719, USA

¹⁶ Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

¹⁷ Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

¹⁸ Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA

¹⁹ Department of Physics and Astronomy, The University of Utah, 115 South 1400 East, Salt Lake City, UT 84112, USA

²⁰ Institute of Space Sciences (ICE, CSIC), 08193 Barcelona, Spain

²¹ Institut d'Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain

²² Department of Physics, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA

²³ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

²⁴ University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA

²⁵ Community Science and Data Center/NSF's NOIRLab, 950 N. Cherry Ave., Tucson, AZ, 85719, USA

²⁶ IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

²⁷ Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720, USA

²⁸ Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía, s/n, E-18008 Granada, Spain

²⁹ Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

³⁰ Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

³¹ Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA

³² SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

ABSTRACT

The DESI Milky Way Survey (MWS) will observe ≥ 8 million stars between $16 < r < 19$ mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy's 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations

within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public^{a)}.

Keywords: Milky Way Galaxy, Radial velocity, Stellar abundances, White dwarf stars

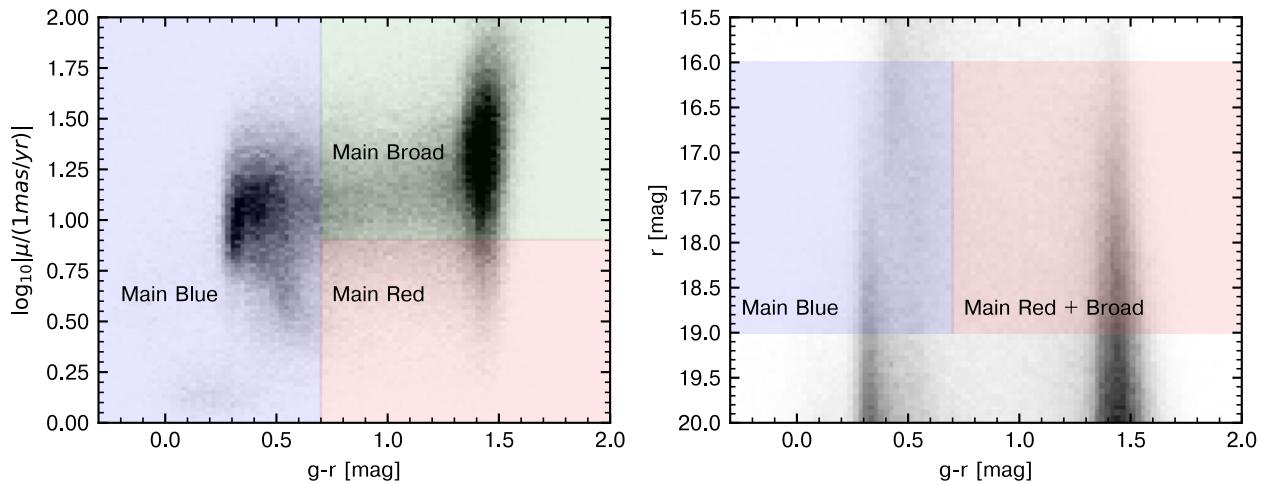
Although DESI is conceived primarily as a cosmological experiment, in bright time the survey will obtain spectra of Milky Way stars within the DESI footprint selected from the *Gaia* DR2 catalog (Gaia Collaboration et al. 2018) and the DESI Legacy Imaging Surveys (LS; Dey et al. 2019). This Milky Way Survey (MWS) at Galactic latitudes $|b| > 22^\circ$ will share the DESI focal plane with the Bright Galaxy Survey (BGS; Ruiz-Macias et al. 2020), using approximately half of the DESI fibers available during bright time. In addition, bright stars across the entire sky (including Galactic plane sources) will be observed in twilight and poor weather conditions.

The MWS target selection is designed to be simple, inclusive, and amenable to forward modeling. It will yield an essentially magnitude-limited random sample of stars over a significant fraction of the sky that can be compared to theoretical predictions, a philosophy similar to that of the SDSS main galaxy sample. Comprised of ~ 8 million sources with *Gaia* parallaxes and proper motions but fainter than the $G = 16$ limit of *Gaia*'s radial velocity spectrograph, MWS will more completely sample stellar kinematics far from the Galactic center.

MWS Main Sample

The MWS Main sample will target all stars (i.e., sources of type “PSF” from LS with *Gaia* DR2 ASTROMETRIC_EXCESS_NOISE < 3 mas) in the range $16 < r < 19$ mag, where r is the LS apparent r -band magnitude corrected for Galactic extinction. A small number of stars with uncorrected magnitude $r_{\text{obs}} < 20$ will be excluded to ensure spectra of sufficient signal-to-noise (the DESI bright-time survey footprint is mostly at high latitude, hence low extinction). Stars will be assigned to one of following three target classes based on their color and *Gaia* DR2 astrometry (Fig. 1).

- **MWS Main Blue:** all stars with $g - r < 0.7$ mag.
- **MWS Main Red:** stars with $g - r \geq 0.7$ mag; good parallaxes (*Gaia* ASTROMETRIC_PARAMS_SOLVED = 31, parallax $\pi < \max(3\sigma_\pi, 1)$ mas); and very small proper motion ($|\mu| < 7$ mas/yr).
- **MWS Main Broad:** stars with $g - r \geq 0.7$ not included in MWS Main Red.


For $g - r < 0.7$, the selection is a magnitude-limited random sampling, valuable for high-resolution kinematic studies of the thick disc and nearby halo using turn-off stars. For $g - r \geq 0.7$, the Main Red astrometric criteria exclude a significant fraction of nearby dwarfs and hence increase the probability of targeting more distant halo giants, useful for studies of kinematic and stellar population gradients to ~ 100 kpc. The Main Blue and Main Red selections are weighted equally in fiber assignment. The remaining stars are included in the Main Broad sample and assigned fibers at lower priority. The completeness and purity of the Main Red sample will be evaluated during the DESI Survey Validation (SV) phase (a precursor to the DESI ‘main’ science survey). The magnitude, color, proper motion, and parallax limits will be adjusted, if necessary, before the survey commences. We will prioritize all known *Gaia* RR Lyrae with $14 < G < 19$ (Clementini et al. 2019), and evaluate a blue horizontal branch (BHB) star selection based on *Gaia* and LS in this range.

The Backup Survey

During poor weather and twilight conditions, when the MWS Main and BGS observations are not possible, DESI will observe an “unbiased” bright star sample ($10.5 < G < 16$ mag) at declination $\delta \geq -30^\circ$. This Backup Survey is expected to yield spectroscopic parameters, abundances, and kinematics for several million stars, creating a rich resource for studies of disk stellar populations, stellar evolution, and Galactic structure.

^{a)} Available at <https://data.desi.lbl.gov/public/ets/target/catalogs/> and detailed at <https://desidatamodel.readthedocs.io>

* NHFP Einstein Fellow

Figure 1. *Left:* Source density as a function of $g - r$ color and proper motion for stars in the magnitude range $16 < r < 19$ near the North Galactic Pole. Redward of $g - r = 0.7$, cuts in parallax ($\pi < 3\sigma_\pi + 1$) and proper motion exclude fast-moving nearby dwarfs. Main Red and Main Blue targets are observed at equal priority and constitute the bulk of the MWS main survey sample; Main Broad targets are observed at lower priority. *Right:* Selection in color-magnitude space, illustrating that Main Blue targets are halo/disk main sequence turn-off (MSTO) and BHB stars, while Red/Broad targets are MW giants/dwarfs.

Sparse high-value targets

MWS will also include sparse ($< 10 \text{ deg}^{-2}$) samples of high-value targets. These will be given higher priority for fiber assignment but will not perturb the main sample selection function significantly.

White Dwarfs—White dwarf (WD) stars can constrain the local star formation history, the nature of SN Ia progenitors, and the composition of exo-planetesimals. Selected following Gentile Fusillo et al. (2019), their priority will be the highest of all bright-time targets.

Stars within 100 pc—*Gaia* is complete for stars within 100 pc, and DESI will provide a comprehensive stellar population census of the solar neighborhood. This will establish strong constraints on the initial mass function and local chemical evolution. Target selection: $16 \leq G \leq 20$, $\pi + \sigma_\pi \geq 10 \text{ mas}$. Stars with $G < 16$ are in the Backup Survey.

MWS may include these additional high-value targets:

Distant halo tracers—RR Lyrae, BHB and giant stars are excellent tracers of halo structure because reliable distances can be determined for them. We will target faint ($G > 19$) *Gaia* RR Lyrae and color-selected BHBs, and use DDO51 photometry over 10,000 deg² (Slater et al. 2016) to select a sparse sample of giants.

Close white dwarf binaries—Understanding the evolution of WD binaries, which include SN Ia progenitors and low-frequency gravitational wave sources, requires robust observational constraints (Toloza et al. 2019). These targets will be selected using *Gaia/GALEX* data as follows: $\pi/\sigma_\pi > 5$, $16 \leq G \leq 20$, $FUV + 5 \log 10(\pi'') + 5 > 1.5 + 1.28 \times (FUV - G)$.

Cluster members—We will use proper motion to select likely members of a few bright dwarf galaxies and globular clusters out to ~ 10 times their half-light radius. DESI is ideal for surveying the environs of such objects for signs of tidal interactions and extended halos.

ACKNOWLEDGMENTS

APC is supported by the Taiwan Ministry of Education Yushan Fellowship and MOST grant 109-2112-M-007-011-MY3. SK was partially supported by NSF grants AST-1813881, AST-1909584. TSL is supported by NASA through Hubble Fellowship grant HST-HF2-51439.001. MYW acknowledges the support of the McWilliams Postdoctoral Fellowship. MV is supported by NASA-ATP awards NNX15AK79G and 80NSSC20K0509 and the Michigan Institute for Computational Discovery and Engineering (MICDE).

This research is supported by the Director, Office of Science, Office of High Energy Physics of the DOE under Contract No. DEAC0205CH1123, and by NERSC, a DOE Office of Science User Facility under the same contract; additional support for DESI is provided by NSF, Division of Astronomical Sciences under Contract No. AST-0950945 to the NSFs NOIRLab; the UK STFC; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of Science and Technology of Mexico; the Ministry of Economy of Spain, and by the DESI Member Institutions. The authors are honored to be permitted to conduct astronomical research on Iolkam Duag (Kitt Peak), a mountain with particular significance to the Tohono Oodham Nation.

REFERENCES

Clementini, G., Ripepi, V., Molinaro, R., et al. 2019, *A&A*, 622, A60

Dey, A., Schlegel, D. J., Lang, D., et al. 2019, *AJ*, 157, 168

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, *A&A*, 616, A1

Gentile Fusillo, N. P., Tremblay, P.-E., Gänsicke, B. T., et al. 2019, *MNRAS*, 482, 4570

Slater, C. T., Nidever, D. L., Munn, J. A., Bell, E. F., & Majewski, S. R. 2016, *ApJ*, 832, 206

Toloza, O., Breedt, E., De Martino, D., et al. 2019, *BAAS*, 51, 168