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Abstract
In this paper, we generalize the work of the second author in Li (Direct systems
and the knot monopole Floer homology, 2019. arXiv:1901.06679) and prove a grad-
ing shifting property, in sutured monopole and instanton Floer theories, for general
balanced sutured manifolds. This result has a few consequences. First, we offer an
algorithm that computes the Floer homologies of a family of sutured handlebodies..
Second, we obtain a canonical decomposition of suturedmonopole and instanton Floer
homologies and build polytopes for these two theories, which was initially achieved
by Juhász (Geom Topol 14(3):1303–1354, 2010) for sutured (Heegaard) Floer homol-
ogy. Third, we establish a Thurston-norm detection result for monopole and instanton
knot Floer homologies, which were introduced by Kronheimer and Mrowka (J Differ
Geom 84(2):301–364, 2010). The same result was originally proved by Ozsváth and
Szabó for link Floer homology in Ozsváth and Szabó (J AmMath Soc 21(3):671–709,
2008). Last, we generalize the construction of minus versions of monopole and instan-
ton knot Floer homology, which was initially done for knots by the second author in Li
(2019), to the case of links. Along with the construction of polytopes, we also proved
that, for a balanced sutured manifold with vanishing second homology, the rank of
the sutured monopole or instanton Floer homology bounds the depth of the balanced
sutured manifold. As a corollary, we obtain an independent proof that monopole and
instanton knot Floer homologies, as mentioned above, both detect fibred knots in S3.
This result was originally achieved by Kronheimer and Mrowka (2010).
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1 Introduction

Sutured manifold theory and Floer theory are two powerful tools in the study of
3-dimensional topology. Sutured manifolds were first introduced by Gabai [6] and
in subsequent papers. The core of sutured manifold theory is the sutured manifold
hierarchy. This enables one to decompose any taut sutured manifold, in finitely many
steps, into product suturedmanifolds, which are the simplest possible ones. Gabai used
sutured manifolds and sutured manifold hierarchies to prove some important results
about 3-manifolds, including the remarkable property R conjecture.

Sutured (Heegaard) Floer homology was first introduced by Juhász [10], while
some ad hoc versions were studied by Ghiggini [8] and Ni in [21]. In particular, Ni
proved the celebrated result that the knot Floer homology, which was introduced by
Ozsváth and Szábo [23], detects fibred knots. Ni’s result is equivalent to the fact that
sutured Floer homology detects product balanced suturedmanifolds among homology
products, which was then generalized by Juhász in [12], where he proved that the rank
of sutured Floer homology bounds the depth of a balanced sutured manifold with
vanishing second homology.

The combination of sutured manifold theory with gauge theory was done by Kro-
nheimer and Mrowka [17], where they defined sutured monopole and instanton Floer
homologies. These new Floer homologies have many significant applications in the
study of knots and 3-manifolds, including a new and simpler proof of the famous
property P conjecture. In [17], Kronheimer and Mrowka proved the following, in
correspondence to Ni’s result.

Theorem 1.1 (Kronheimer and Mrowka [17] Suppose (M, γ ) is a balanced sutured
manifold and is a homology product. Suppose further that

rk(SHM(M, γ )) = 1 or rk(SHI(M, γ )) = 1.

Then, (M, γ ) is a product sutured manifold.

Theorem 1.1 has many important applications. For instance, this theorem is crucial
in the proof that Khovanov homology detects unknots, by Kronheimer and Mrowka
[14], and that Khovanov homology detects trefoils, by Baldwin and Sivek [4]. In this
paper, we generalize Theorem 1.1 and prove the following:

Theorem 1.2 Suppose (M, γ ) is a taut balanced sutured manifold, H2(M) = 0, and

rk(SHM(M, γ )) < 2k+1 or rk(SHI(M, γ )) < 2k+1.

Then,

d(M, γ ) � 2k.

Here d(M, γ ) is the depth of a balanced sutured manifold, i.e., the minimal number of
taut sutured manifold decompositions making (M, γ ) into a product sutured manifold.
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Remark 1.3 If a balanced sutured manifold is a homology product, then H2(M) = 0.
The converse is not necessarily true. Also, d(M, γ ) = 0 if and only if (M, γ ) is a
product sutured manifold.

As a direct corollary to Theorem 1.2, we offer a new proof to the following well-
known fact.

Theorem 1.4 (Kronheimer andMrowka [17]) The monopole and instanton knot Floer
homologies, K HM and K H I , as defined in [17], both detect fibred knots.

For a balanced sutured manifold (M, γ ) and a tangle T inside (M, γ ), Xie and
Zhang [28] constructed a version of sutured instanton Floer homology on balanced
sutured manifolds with tangles, which they denote SH I (M, γ, T ). In [27], they used
their construction as a tool to fully classify links whose Khovanov homologies have
minimal possible ranks. One crucial step in their proofs is to show that the sutured
instanton Floer homology they constructed detects product tangles inside product
sutured manifolds. In this paper, with Theorem 1.2, we can prove a slightly more
general result than their product-tangle-detection theorem.

Corollary 1.5 Suppose (M, γ ) is a balanced sutured manifold equipped with a verti-
cal tangle T . Suppose further that H2(M\T ) = 0 and SH I (M, γ, T ) ∼= C. Then,
(M, γ, T ) is diffeomorphic to a product sutured manifold equipped with a product
tangle, i.e.,

(M, γ, T ) ∼= ([−1, 1] × F, {0} × ∂F, [−1, 1] × {p1, . . . , pn}).

Here, F is a compact oriented surface-with-boundary, and p1, . . . , pn are distinct
points on F.

Remark 1.6 Note we only need the requirement that H2(M\T ) = 0, instead of the
assumption that H2(M) = 0 in the hypothesis of Theorem 1.2. The latter condition
is stronger when tangles do exist. Our assumption is also weaker than the original
assumption that (M, γ ) must be a homology product in Xie and Zhang [28].

Despite the applications mentioned above, there are many basic aspects of sutured
monopole and instanton Floer theories that remain in mystery. The usual monopole
and instanton theories were defined on closed oriented 3-manifolds, while balanced
sutured manifolds are compact oriented manifolds with non-trivial boundaries. So, to
define the suturedmonopole and instantonFloer homologies,Kronheimer andMrowka
constructed a special class of closed oriented 3-manifolds, called closures, out of the
sutured data. However, the choice of closure is not unique, which lead to the following
two questions:

Question 1.7 In [15], Kronheimer andMrowka proved that different closures give rise
to isomorphic sutured monopole and instanton Floer homologies. Then, to what extent
can we say that all of the essential information of sutured monopole and instanton
Floer homologies is contained in the original balanced sutured manifold rather than
the full closure?
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Question 1.8 The monopole Floer homology on a closed 3-manifold decomposes
along spinc structures (see [16]). Correspondingly, the instanton Floer homology
decomposes along eigenvalue functions (see [17]). Then, do we have a spinc-type
decomposition for sutured monopole or instanton Fleor homology?

Question 1.9 How do sutured monopole and instanton Floer homologies tell us infor-
mation about the Thurston norm on a balanced sutured manifold?

Towards answering the first question, the second author proved in [20] the following
proposition:

Proposition 1.10 (Li [20]) Suppose (M, γ ) is a balanced sutured manifold with a
toroidal boundary, and γ consists of two components. Suppose further that Y is a
closure of (M, γ ), and s1 and s2 are two supporting spinc structures on Y , then there
is a 1-cycle x in M so that

c1(s1) − c1(s2) = P.D.[x] ∈ H2(Y ).

Similar statements hold in the instanton settings.

This theorem is central to the second author’s proof of a grading shifting property
for gradings associated to properly embedded surfaces inside those balanced sutured
manifolds that are described in the hypothesis of Proposition 1.10. The grading shifting
property has two consequences in that paper. The first is to compute the sutured
monopole and instanton Floer homologies of any sutured solid tori. The second is to
construct an Alexander grading on the minus versions of monopole and instanton knot
Floer homologies as well as proving many fundamental properties of them.

However, in the hypothesis of Proposition 1.10, it is required that M has a toroidal
boundary, and that the suture has only two components. These requirements are very
restrictive. For instance, one cannot use Proposition 1.10 to constructminus versions of
monopole and instanton knot Floer homologies for links. This is because the sutured
manifolds arising from links may have more than one boundary component, and,
thus, Proposition 1.10 does not apply. In this paper, we prove the same result, as in
Proposition 1.10, for any balanced suture manifolds.

Theorem 1.11 Suppose (M, γ ) is a balanced sutured manifold. Suppose further that
Y is a closure of (M, γ ), and s1 and s2 are two supporting spinc structures on Y .
Then, there is a 1-cycle x in M so that

c1(s1) − c1(s2) = P.D.[x] ∈ H2(Y ).

Similar result holds in the instanton settings.

Thus, to answer Question 1.7, we could say that, in any closure, the difference of
any two supporting spinc structures, in terms of the Poincaré dual of their first Chern
classes, is contained in the original balanced sutured manifold instead of the whole
closure. Also, Theorem 1.11 leads to a generalization of the grading shifting property,
which was initially discussed in Li [20], as follows.
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Theorem 1.12 Suppose (M, γ ) is a balanced sutured manifold and α ∈ H2(M, ∂M)

is a non-trivial homology class. Pick two surfaces S1 and S2 so that

[S1, ∂S1] = [S2, ∂S2] = α ∈ H2(M, ∂M),

and they are both admissible (seeDefinition2.26) in (M, γ ). Then, there exist constants
lM , lI ∈ Z, so that, for any j ∈ Z, we have:

SHM(−M,−γ, S1, j) = SHM(−M,−γ, S2, j − lM ),

and

SHI(−M,−γ, S1, j) = SHI(−M,−γ, S2, j − lI ).

Note the value lI and lM depends on the surfaces S1 and S2.

The general grading shifting property given by Theorem 1.12 helps compute the
sutured monopole and instanton Floer homology of some families of sutures on a
general handlebody. In Sect. 4, we use a concrete example to present the algorithm.
Theorem 1.12 also leads to a generalization of the minus version of monopole and
instanton knot Floer homologies for links:

Theorem 1.13 Suppose L ⊂ Y is a link so that each component of L is null-
homologous. Suppose further that L has r components and p is an r-tuple, consisting
of one point on each component of L. Then, associated to the triple (−Y , L, p), we
can construct an infinite-rank module KHM−(−Y , L, p) over the rings R, the mod
2 Novikov ring (c.f. [2, Remark 2.19]). Moreover, KHM−(−Y , L, p) is well defined
only up to multiplication by a unit in R and has the following properties.

(1) Suppose {S1, . . . , Sr } is a collection of r Seifert surfaces, one for each compo-
nent of L, then they together induce a Z

r grading on KHM−(−Y , L, p) and
KHI−(−Y , L, p).

(2) For each i ∈ {1, . . . , r}, there is a morphism

Ui : KHM−(−Y , L, p) → KHM−(−Y , L, p),

which drops the grading associated to Si by 1 and preserves all other gradings.
This makes KHM−(−Y , L, p) a module over R[U1, . . . ,Ur ].

(3) There exists N ∈ Z so that if j = ( j1, . . . , jr ) ∈ Z
r is a multi-grading and ji < N

for some i ∈ {1, . . . , r}, then the morphism Ui restricts to an isomorphism

Ui : KHM−(−Y , L, p, j)
∼=−→ KHM−(−Y , L, p, j†),

where j† is obtained from j by replacing ji with ji − 1.
Furthermore, using instanton theory, we can constructKHI−(−Y , L, p), which is
well defined up to a multiplication by a non-zero element in the field of complex
numbers, and properties (1), (2), and (3) all hold.
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To answer Question 1.8, we construct a canonical decomposition of sutured
monopole and instanton Floer homologies, independent of the choices of closures.
To ensure this decomposition is canonical, we need to pre-fix an element of spe-
cial type inside the sutured monopole or instanton Floer homology, which we call a
homogenous element.

Proposition 1.14 Suppose (M, γ ) is a balanced sutured manifold and a ∈ SHM is a
homogenous element. Then there is a canonical decomposition

SHM(M, γ ) =
⊕

ρ∈H2(M,∂M;R)

SHMa(M, γ, ρ).

A similar statement holds in the instanton settings.

Remark 1.15 See Definition 5.1 for details about the definition of homogeneous ele-
ments. Also, from the discussion in Sect. 5.1, as long as the Floer homology group is
non-trivial, homogeneous elements always exist.

Thus, we could define polytopes for suturedmonopole and instanton Floer theories,
to be the convex hulls of sets of ρ so that SHMa(M, γ, ρ) �= 0 or SHIa(M, γ, ρ) �= 0.
The first definition of such a polytope was introduced by Juhász in the context of
sutured Floer theory. In this paper, we also proved the following:

Corollary 1.16 Suppose (M, γ ) is a taut balanced sutured manifold with H2(M) = 0.
Suppose further that (M, γ ) is reduced, horizontally prime, and free of essential
product disks. Then, the polytopes must both have maximal possible dimensions. In
particular, we conclude that

rkR(SHM(M, γ )) � b1(M) + 1, and dimC(SHI(M, γ )) � b1(M) + 1.

The proofs of Corollary 1.16 and Theorem 1.2 both rely on a technical result
proved in Sect. 5, which describes in detail how sutured monopole and instanton Floer
homologies behave under sutured manifold decompositions. It is closely related to the
decomposition theorem, Proposition 6.9, in Kronheimer and Mrowka [17].

The polytopes we defined for sutured monopole and instanton theories are closely
related to the Thurston norms on the original balanced sutured manifold as well as
on the closures. In particular, the canonical decomposition in Proposition 1.14 and
the grading shifting property in Theorem 1.12 enable us to prove a Thurston norm
detection result for monopole and instanton knot Floer homologies. The same result
was previously achieved by Ozsváth and Szábo [24], for the link Floer homology in
Heegaard Floer theory.

Suppose Y is a closed oriented 3-manifold and L ⊂ Y is an oriented link. Let

L = L1 ∪ · · · ∪ Lr

be the components of L . We require the following two conditions to hold for L ⊂ Y .

(1) The link complement, Y (L) = Y\N (L), is irreducible.
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(2) The link complement Y (L) is boundary-incompressible.

Let �μ ⊂ ∂Y (L) be the suture consisting of a pair of oppositely oriented meridians
on each boundary component of Y (L). Then, by Proposition 1.14, there is a decom-
position

KHM(Y , L) = SHM(Y (L), �μ) =
⊕

ρ∈H2(Y (L),∂Y (L);Q)

SHMa(Y (L), �μ, ρ).

We make the following definition.

Definition 1.17 For a class α ∈ H2(Y (L), ∂Y (L)), define

y(α) = max
ρ∈H2(Y (L),∂Y (L);Q)
SHMa(Y (L),�μ,ρ) �=0

{ρ(α)} − min
ρ∈H2(Y (L),∂Y (L);Q)
SHMa(Y (L),�μ,ρ) �=0

{ρ(α)}

Theorem 1.18 Under the above settings,

x(α) +
r∑

i=1

|〈α,μi 〉| = y(α). (1)

Here x(·) is the Thurston-norm defined in Definition 2.5. 〈, 〉 is to take the algebraic
intersection number of a class α ∈ H2(Y (L), ∂Y (L)) with a class [μi ] ∈ H1(Y (L)),
where μi is a meridian of the link component Li .

Remark 1.19 Theorem 1.18 offers a complete answer to Question 1.9 in the case
when the boundary of the balanced sutured manifold consists of tori. Suppose M
is a connected compact oriented 3-manifold so that M is irreducible and boundary-
incompressible, and its boundary consists of tori, then we can performDehn fillings on
each boundary component of M . The cores of the Dehn fillings give us a Link inside
the resulting closed 3-manifold Y , which satisfies the hypothesis of Theorem 1.18.
Since the Dehn surgery can be performed along any non-separating simple closed
curves, Theorem 1.18 covers all the cases when the suture γ on ∂M consists of a
pair of non-separating simple closed curves on each boundary component of M . For a
more general suture, when it may have more than two component on some boundary
component of M , we can modify the coefficients of the terms 〈h, μi 〉 according to the
number of components, and the proof of Theorem 1.18 still applies verbatim.

Organization In Sect. 2,we include the basic definitions and known results that sup-
port the proofs in this paper. In Sect. 3, we study the set of supporting spinc structures
on any closure of a balanced sutured manifold. This will be the basis for a generalized
grading shifting result proven in Sect. 4. In Sect. 4, we also offer an algorithm that
could potentially compute the sutured monopole and instanton Floer homologies of a
families of sutured handlebodies by carrying it out on a particular example. In Sect. 5,
we use the generalized grading shifting property to construct a canonical decomposi-
tion of sutured monopole or instanton Floer homology and further construct polytopes
in these two theories. Also, we prove some basic properties of the polytopes as well
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as the results regarding the depth of a sutured manifold. In Sect. 6, we present some
applications to knots and links: The first is to prove the Thurston-norm detection result
for link complements, and the second is to construct minus versions for links.

2 Preliminaries

2.1 Basic definitions of Balanced suturedmanifolds

Definition 2.1 A balanced sutured manifold is a pair (M, γ ) consisting of a compact
oriented 3-manifold M and a closed oriented 1-submanifold γ ⊂ ∂M . On ∂M , let
A(γ ) = [−1, 1] × γ be an annular neighborhood of γ ⊂ ∂M , and let

R(γ ) = ∂M\int(A(γ )).

They satisfy the following requirements.

(1) Neither M nor R(γ ) has closed components.
(2) Ifwe orient ∂R(γ ) = ∂A(γ ) = {±1}×γ in the sameway as γ , thenwe require that

the orientation on ∂R(γ ) induces a unique orientation on R(γ ). This orientation
is called the canonical orientation on R(γ ). We use R+(γ ) to denote the part of
R(γ )whose canonical orientation coincides with the boundary orientation of ∂M ,
and R−(γ ) the rest.

(3) We require that

χ(R+(γ )) = χ(R−(γ )).

Definition 2.2 A balanced sutured manifold (M, γ ) is called a product sutured man-
ifold if M = [−1, 1] × R, A(γ ) = [−1, 1] × ∂R, R+(γ ) = {1} × R, and
R−(γ ) = {−1} × R. Here, R is compact oriented surface with no closed compo-
nents.

Definition 2.3 Suppose M is a compact oriented 3-manifold. M is called irreducible
if every embedded 2-sphere S2 ⊂ M bounds an embedded 3-ball inside M .

Definition 2.4 Suppose M is a compact 3-manifold and R ⊂ M is an embedded
surface. R is called compressible if there is a simple closed curve α ⊂ R so that α

does not bound a disk on R but bounds an embedded disk D ⊂ M with D ∩ R = α.
R is called incompressible if it is not compressible. A 3-manifold is called boundary-
incompressible if its boundary is incompressible.

Definition 2.5 (Thurston norm) Suppose M is a compact 3-manifold, and suppose
U ⊂ ∂M is a submanifold of ∂M . Suppose further that S is a properly embedded
surface inside M so that ∂S ⊂ U . If S is connected, then define the norm of S to be

x(S) = max{−χ(S), 0}.
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In general, suppose the components of S are

S = S1 ∪ · · · ∪ Sn,

where each Si is connected, then define the norm of S to be

x(S) = x(S1) + · · · + x(Sn).

Moreover, suppose α ∈ H2(M,U ) is a non-trivial second relative homology class,
then define the norm of α to be

x(α) = min{x(S) | (S, ∂S) ⊂ (M,U ), [S, ∂S] = α ∈ H2(M,U )}.

Definition 2.6 Suppose M is a compact 3-manifold, and S ⊂ M is a properly embed-
ded surface. S is called norm-minimizing if

x(S) = x(α),

where α = [S, ∂S] ∈ H2(M, N (∂S)). Here, N (∂S) is a neighborhood of ∂S ⊂ ∂M .

Definition 2.7 (Gabai [6]) A balanced sutured manifold (M, γ ) is called taut if the
following is true

(1) M is irreducible.
(2) R+(γ ) and R−(γ ) are both incompressible.
(3) R+(γ ) and R−(γ ) are both norm-minimizing.

Definition 2.8 (Gabai [6]) Let (M, γ ) be a balanced sutured manifold. A product
annulus A in (M, γ ) is an annulus properly embedded in M such that ∂A ⊂ R(γ )

and ∂A ∩ R±(γ ) �= ∅. A product disk is a disk D properly embedded in M such that
∂D ∩ A(γ ) consists of two essential arcs in A(γ ).

Product annuli and product disks can detect where (M, γ ) is locally a product. We
have the following definition following Juhász [12].

Definition 2.9 (Juhász [12]) A balanced sutured manifold (M, γ ) is called reduced if
any product annulus A ⊂ M either bounds a cylinder D2 × I so that ∂D2 × I = A,
or is isotopic to a component of A(γ ) inside M .

Definition 2.10 (Gabai [6]) Let (M, γ )be a taut balanced suturedmanifold.Aproperly
embedded surface S ⊂ M is called horizontal if the following four properties hold.

(1) S has no closed components and is incompressible.
(2) ∂S ⊂ A(γ ), and ∂S is parallel to ∂R+(γ ) inside A(γ ).
(3) [S] = [R+(γ )] in H2(M, A(γ )).
(4) χ(S) = χ(R+(γ )).

We say that (M, γ ) is horizontally prime if every horizontal surface in (M, γ ) is
parallel to either R+(γ ) or R−(γ ).
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Definition 2.11 (Gabai [6]) Suppose (M, γ ) is a taut balanced sutured manifold. The
depth of (M, γ ), which we write d(M, γ ), is the minimal integer n so that there
exists a sequence of sutured manifold decompositions (for definitions, see Gabai [6]
or Scharlemann [25])

(M0, γ0)
S0� (M1, γ1)

S1� . . .
Sn� (Mn+1, γn+1),

so that each (Mi , γi ) is taut, (M0, γ0) = (M, γ ) and (Mn+1, γn+1) is a product sutured
manifold.

Theorem 2.12 (Gabai [6]) For any taut balanced sutured manifold, its depth is finite.

2.2 Monopole and instanton Floer homologies on balanced suturedmanifolds

To define sutured monopole and instanton Floer homologies, one needs to construct
a closed 3-manifold, together with a distinguishing surface, out of a balanced sutured
manifold (M, γ ). To do this, pick T to be a connected oriented surface so that the
following is true.

(1) There is an orientation reversing diffeomorphism

f : ∂T → γ.

(2) T has genus at least 2.
(3) There is a fixed base point p ∈ T .

Then, we can use f to glue T × [−1, 1] to M , along the annuli A(γ ), and let

M̃ = M ∪
id× f

[−1, 1] × T .

The manifold M̃ has two boundary components:

∂ M̃ = R+ ∪ R−,

where

R± = R±(γ )∪
f
{±1} × T .

Let h : R+ → R− be an orientation preserving diffeomorphism so that h({1}×{p}) =
{−1} × {p}, then we can form a closed 3-manifold as follows:

Y = M̃ ∪
id∪h[−1, 1] × R+.

Here, we use h to glue {1} × R+ to R− ⊂ ∂ M̃ and use the identity map to glue
{−1} × R+ to R+ ⊂ ∂ M̃ . Let R = {0} × R+ ⊂ Y , and we make the following
definition.
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Definition 2.13 The manifold M̃ is called a pre-closure of (M, γ ). The pair (Y , R) is
called a closure of the balanced sutured manifold (M, γ ). The choices T , f , and h
are called the auxiliary data. In particular, the surface T is called an auxiliary surface
and h a gluing diffeomorphism.

Definition 2.14 The sutured monopole Floer homology of (M, γ ) is defined as

SHM(M, γ ) = HM(Y |R) =
⊕

s∈S∗(Y |R)

~HM•(Y , s;�η).

Here, η ⊂ R is a non-separating simple closed curve and

S∗(Y |R) = {s spinc structures on Y, c1(s)[R] = 2g(R) − 2, ~HM•(Y , s) �= 0}

is called the set of supporting spinc structures. We use the mod 2 Novikov ringR for
coefficients. The notation �η denotes the local system in [16, Section 2.2].

Remark 2.15 Note from [17], we know that

~HM•(Y , s;�η) ∼= ~HM•(Y , s) ⊗ R

for any spinc structure s on Y so that

c1(s)[R] = 2g(R) − 2.

Definition 2.16 The sutured instanton Floer homology of (M, γ ) is defined as

SH I (M, γ ) = I (Y |R) =
⊕

λ∈H∗(Y |R)

Iω(Y )λ.

Here, ω ⊂ Y is a simple closed curve having a unique transverse intersection with R
(c.f. [17, Section 7]), and the notation Iω(Y )λ follows from [19, Section 6]. The set

H∗(Y |R) = {λ ∈ H2(Y ;Q), λ[R] = 2g(R) − 2, Iω(Y )λ �= 0}

is called the set of supporting eigenvalue functions. We use the field of complex
numbers C for coefficients.

Theorem 2.17 (Kronheimer and Mrowka [17]) The isomorphism classes of
SHM(M, γ ) and SH I (M, γ ) are invariants for a fixed balanced sutured manifold
(M, γ ).

Only knowing that the isomorphism class is an invariant is sometimes not enough.
In [1], Baldwin and Sivek refined the definition of closures and construct canonical
maps between different closures. In particular, they proved the following.
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Theorem 2.18 Suppose (M, γ ) is a balanced sutured manifold. Suppose further that
(Y1, R1) and (Y2, R2) are two closures of (M, γ ). Pick non-separating curves η1 ⊂ R1
and η2 ⊂ R2 to determine local coefficients. Then, there exists a map

�1,2 : HM(Y1|R1;�η1)
∼=−→ HM(Y2|R2;�η2),

which is well-defined up to multiplication by a unit in the base ring. Moreover, it
satisfies the following properties.

(1) If (Y1, R1) = (Y2, R2), then �1,2
.= id. Here,

.= means equal up to multiplication
by a unit.

(2) If there is a third closure (Y3, R3) of (M, γ ), then

�1,3
.= �2,3 ◦ �1,2.

Similar results hold in the instanton settings.

Hence, for a balanced sutured manifold (M, γ ), the sutured monopole or instanton
Floer homologies of closures, together with the canonical maps, form a projective
transitive system, and we can derive a canonical module which we denote by

SHM(M, γ ) or SHI(M, γ ).

They are well defined up to a unit in the corresponding base ring (field). For more
details, readers are referred to Baldwin and Sivek [1].

Floer excision is a very useful tool introduced by Kronheimer and Mrowka [17]
into the context of sutured monopole and instanton Floer homologies. It has several
different versions, but we only present the version that is be useful in later sections.
Suppose (M, γ ) is a balanced sutured manifold and M̃ is a pre-closure of (M, γ ).
Recall that

∂ M̃ = R+ ∪ R−.

Suppose we use two gluing diffeomorphisms, h1 and h2, to obtain two closures
(Y1, R+) and (Y2, R+), respectively. Let h = h−1

1 ◦ h2, and let Y h be the mapping
torus of h : R+ → R+ Then, we can form a cobordism W , which is from Y1 � Y h

to Y2, as follows. Let U be a disk as depicted in Fig. 1, and four parts of its bound-
ary, μ1, μ2, μ3, and μ4, are each identified with the interval [0, 1]. Glue three pieces
[0, 1] × M̃ , U × R+ and [0, 1] × [−1, 1] × R+ together, and let

W = ([0, 1] × M̃) ∪
id∪h−1

1

(U × R+) ∪
id∪h−1

([0, 1] × [−1, 1] × R+).

Here, we use id to glue [0, 1] × R+ to μ1 × R+, use h−1
1 to glue [0, 1] × R− to

μ2 × R+, use h−1 to glue μ3 × R+ to [0, 1] × {1} × R− and use id to glue μ4 × R+
to [0, 1] × {−1} × R+. Note all the gluing maps are identity on the [0, 1] direction.
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Fig. 1 Gluing three parts together to get W . The middle part is U × R+, while the R+ directions shrink to
a point in the figure

Pick a non-separating curve η ⊂ T , and suppose the diffeomorphisms h1 and h2
we choose at the beginning both preserve η:

h1({1} × η) = {−1} × η, and h2({1} × η) = {−1} × η.

Then, we can use η to support local coefficients.

Theorem 2.19 (Kronheimer andMrowka, [17]) The cobordism W induces an isomor-
phism

~HM(W ) : HM(Y1|R+;�η) ⊗ HM(Y h |R+;Z2) → HM(Y2|R+;�η).

There are three basic lemmas that are useful in later sections. Here we only present
them in the monopole settings, but all of them have correspondences in the instanton
settings.

Lemma 2.20 (Kronheimer and Mrowka [17]) The set of supporting spinc structures
S∗(Y h |R+) consists of a unique element sh. Moreover, with Z coefficients,

HM(Y h |R+) = ~HM•(Y h, sh) ∼= Z.

When using local coefficients, pick a non-separating curve η ⊂ R+ and suppose
R be any suitable base ring for local coefficients, then

HM(Y h |R+;�η) = ~HM•(Y h, sh;�η) ∼= R.

Lemma 2.21 (Kronheimer and Mrowka [16]) Suppose Y is a closed oriented 3-
manifold and s is a spinc structure on Y so that there is a embedded oriented surface
R ⊂ Y so that g(R) � 1, and |c1(s)[R]| > 2g(R) − 2. Then, we have

~HM•(Y , s) = 0.
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Similarly, for any local coefficients that could possibly be used,

~HM•(Y , s;�η) = 0.

Lemma 2.22 Suppose (W , ν) is a cobordism from Y to Y ′. Suppose s is a spinc struc-
ture on Y and s′ is a spinc structure on Y ′, so that

~HM(W )(~HM•(Y , s)) ∩ ~HM•(Y ′, s′) �= {0},

then we know that

i∗(P.D.c1(s)) = (i ′)∗(P.D.c1(s')) ∈ H1(W ).

Here i : Y → W and i ′ : Y ′ → W ′ are the inclusions.

2.3 A grading on suturedmonopole and instanton Floer homology

In [20], the second author constructed a gradingon suturedmonopole or instantonFloer
homology, associated to a properly embedded surface with a connected boundary. We
will present the construction in this subsection, while dropping the condition that ∂S
is connected, using some new inputs from Kavi [13].

Definition 2.23 Suppose (M, γ ) is a balanced sutured manifold, and S is a properly
embedded oriented surface. A stabilization of S is an isotopy of S to a surface S′, so
that the isotopy creates a new pair of intersection points:

∂S′ ∩ γ = (∂S ∩ γ ) ∪ {p+, p−}.

We require that there are arcs α ⊂ ∂S′ and β ⊂ γ , which are oriented in the same
way as ∂S′ and γ , respectively, so that the following is true.

(1) We have ∂α = ∂β = {p+, p−}.
(2) The curves α and β cobound a disk D so that int(D) ∩ (γ ∪ ∂S′) = ∅. The

stabilization is called negative if D can be oriented so that ∂D = α∪β as oriented
curves. It is called positive if ∂D = (−α) ∪ β.

Denote by S±k the result of performing k many positive or negative stabilizations
of S (Fig. 2).

Lemma 2.24 Suppose (M, γ ) is a balanced sutured manifold, and S is a properly
embedded oriented surface. Suppose further that S+ and S− are obtained from S
by performing a positive and negative stabilization, respectively. Then, we have the
following.

(1) If we decompose (M, γ ) along S or S+, then the resulting two balanced sutured
manifolds are diffeomorphic.

(2) If we decompose (M, γ ) along S−, then the resulting balanced sutured manifold,
(M ′, γ ′), is not taut, because R±(γ ′) are both compressible.
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Fig. 2 The positive and negative stabilizations of S

Remark 2.25 The positive and negative stabilization on Swill be switched ifwe reverse
the orientation of S, that is, −(S+) is the same as (−S)− and −(S−) is the same as
(−S)+. Accordingly,when changing the orientation of the suture, positive and negative
stabilizations are also switched.

Now we present the construction of the grading. This was originally written down
by Baldwin and Sivek [4] and was then generalized one step further by the second
author in [20], to fit his needs of constructing a Z grading in the minus version of
monopole and instanton knot Floer homologies. In this subsection, we make a further
generalization and introduce the most general setups of constructing such a grading.

Definition 2.26 Suppose (M, γ ) is a balanced sutured manifold, and S is a properly
embedded surface inside M . Suppose further that S intersects with γ transversely. S
is called admissible inside (M, γ ) if every component of ∂S intersects γ and the value
( 12 |S ∩ γ | − χ(S)) is an even integer.

Suppose (M, γ ) is a balanced sutured manifold, and S ⊂ M is an oriented admis-
sible properly embedded surface. Let n = 1

2 |S∩γ |. We fix an arbitrary ordering of the
boundary components of S and label all the intersection points of S with γ as follows.
On each boundary component of S, index them according to the orientation of ∂S.
For different components of ∂S, we first index points on the boundary component that
comes first in the fixed ordering. Also, the first point to be indexed on each boundary
component of S is chosen to be a positive intersection of S with γ (on ∂M). In this
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way, we can assume that

S ∩ γ = {p1, . . . , p2n}.

In [20], when S has a connected boundary, the second author introduced the notion
of balanced pairings to help construct the grading. In Kavi [13], the notion of balanced
pairings was generalized to accommodate a general S. In this paper, we omit the
detailed definitions of balanced pairings and will use the generalized definition from
[13].

Suppose

P = {(i1, j1), . . . , (in, jn)}

is a balanced pairing of size n. Then, we can pick an auxiliary surface T for (M, γ )

so that the following is true.

(1) The genus of T is large enough.
(2) The boundary of T is identified with the suture γ .
(3) There are properly embedded arcs α1, . . . , αn inside T so that the following two

properties hold.

(a) The classes [α1], . . . , [αn] are linearly independent in H1(T , ∂T ).
(b) For k = 1, . . . , n, we have

∂αk = {pik , p jk }.

Then, we can form a pre-closure M̃ of (M, γ ):

M̃ = M ∪ [−1, 1] × T .

The manifold M̃ has two boundary components:

∂ M̃ = R+ ∪ R−.

The surface S extends to a properly embedded surface S̃ inside M̃ :

S̃ = S ∪ [−1, 1] × α1 ∪ · · · ∪ [−1, 1] × αn .

The definition of the balanced pairing makes sure that S̃ ∩ R+ and S̃ ∩ R− have
the same number of components, and the requirement (a) for αi makes sure that
components of S̃ ∩ R± represent linearly independent classes in H1(R±). Thus, there
exists an orientation preserving diffeomorphism h : R+ → R− so that

h(S̃ ∩ R+) = S̃ ∩ R−.

We can use M̃ and h to obtain a closure (Y , R+) of (M, γ ), and, inside Y , the surface
S extends to a closed surface S̄.
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Definition 2.27 Define

SHM(M, γ, S, i) =
⊕

s∈S∗(Y |R)

c1(s)[S̄]=2i

~HM•(Y , s;�η).

We say that this grading is associated to the surface S ⊂ M . The grading defined
on separate closures also induces a grading on the canonical module SHM(M, γ ), as
stated in Theorem 2.28. We write this grading on the canonical module as

SHM(M, γ, S, i).

Theorem 2.28 (Kavi [13] andLi [20]) Suppose (M, γ ) is a balanced suturedmanifold,
and S ⊂ M is a fixed oriented admissible properly embedded surface. Then, the
grading SHM(M, γ, S, i) is independent of all the choices made in the construction
and, thus, is well-defined.

Using the grading, we can re-formulate Kronheimer and Mrowka’s decomposition
theorem, Proposition 6.9, in [17], as follows.

Lemma 2.29 Suppose (M, γ ) is a balanced sutured manifold and S ⊂ M is an ori-
ented admissible properly embedded surface. Suppose further that S satisfies the
hypothesis of Proposition 6.9 in [14], and (M ′, γ ′) is obtained from (M, γ ) by a
sutured manifold decomposition along S. Let

gc = 1

4
|S ∩ γ | − 1

2
χ(S).

Then, we have

SHM(M, γ, S, gc) ∼= SHM(M ′, γ ′).

Furthermore, the same thing holds for SHI.

2.4 Bypasses

Suppose we have three balanced sutured manifold (M, γ1), (M, γ2) and (M, γ3) so
that the underlining 3-manifolds are the same, but the sutures are different. Suppose
further that γ1, γ2, and γ3 are only different with in a disk D ⊂ ∂M , and, within the
disk D, they are depicted as in Fig. 3.

Theorem 2.30 (Baldwin andSivek [2, 4])There are exact triangles relating the sutured
monopole and instanton Floer homologies of three balanced sutured manifolds as
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Fig. 3 The bypass exact triangle

follows.

SHM(−M,−γ1)
ψ12

SHM(−M,−γ2)

ψ23

SHM(−M,−γ3)

ψ31

SHI(−M,−γ1)
ψ12

SHI(−M,−γ2)

ψ23

SHI(−M,−γ3)

ψ31

In contact geometry, a bypass is a half disk, which carries some special contact struc-
ture, attached along a Legendrian arc to a convex surface. For more details, readers
are referred to Honda [9]. There is a description of the maps in the above bypass
exact triangle as follows. We explain how to obtain the map ψ12, and the other two
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are the same. Let Z = ∂M × [0, 1], and we can pick the suture γ1 on ∂M × {0} as
well as the suture γ2 on ∂M × {1}. Then, there is a special contact structure ξ12 on
Z , which corresponds to the bypass attachment. Hence, we can attach Z to M by the
identification ∂M × {0} = ∂M ⊂ M . The result, (M ∪ Z , γ2), is diffeomorphic to
(M, γ2), and we have

ψ12 = �ξ12 .

Here, �ξ12 is the gluing map associated to ξ12, as constructed by the second author in
[19].

There is a second way to interpret the maps ψ± associated to bypass attachments
based on [22]. In [22], Ozbagci proved that a bypass attachment could be realized by
attaching a contact 1-handle followed by a contact 2-handle. In sutured monopole and
instanton Floer homologies, there are maps associated to the contact handle attach-
ments, due to Baldwin and Sivek [2, 3]. So, we can compose those contact handle
attaching maps to obtain ψ±. This was the original way Baldwin and Sivek con-
structed the bypass maps (when they define bypass maps, there was no construction
of gluing maps) and proved the existence of the exact triangle. The two interpretations
are the same because of the functoriality of the gluing maps. For details, readers are
referred to Li [19]. Both descriptions of the bypass maps are useful in later sections.

3 Difference of supporting spinc structures

3.1 A basic calculation

Suppose (M, γ ) is a balanced sutured manifold, and M̃ is a pre-closure of M with
∂ M̃ = R+ ∪ R−. Suppose further that we pick two gluing diffeomorphisms h1, h2 :
R+ → R− and obtain two closures (Y1, R+) and (Y2, R+) of (M, γ ), respectively.
Let h = h−1

1 ◦ h2, and let Y h be the mapping torus of h. As in Sect. 2.2, we can
construct a Floer excision cobordism W from Y1 � Y h to Y2. Suppose i : Y2 → W is
the inclusion map. In Sect. 4 of Li [19], the map

i∗ : H1(Y2) → H1(W ),

which is induced by the inclusion i : Y2 ↪→ W , has played a very important role
in proving Proposition 1.10. In this subsection we compute the kernel of i∗. A first
observation is that we could just work with Q coefficients, since for grading purpose,
torsion parts have no contributions.

From the description in Sect. 2.2, we know thatW is obtained by gluing three pieces
together. We can compute its first homology by applying Mayer-Vietoris sequences
twice and get the following result.

H1(W ;Q) = [H1(M̃;Q) ⊕ 〈[s1], [sh]〉]/[im(h1,∗ − 1) + im(h∗ − 1)]. (2)
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Here are a few things to be explained. First, recall in Sect. 2, we require that the gluing
diffeomorphism h1 and h2 to fix the same base point p ∈ T . This means that there
are circles s1 ⊂ Y1 and sh ⊂ Y h of the form {p} × S1, respectively. Then, s1 and sh

naturally embed into W , and the class [s1], [sh] ∈ H1(W ) are represented by these
two circles.

Second, recall we have a map h1 : R+ → R−, and, thus, there is a map

( −1 0
(h1)∗ 0

)
: H1(R+) ⊕ H1(R−) → H1(R+) ⊕ H1(R−).

Note H1(R+) ⊕ H1(R−) can be viewed as H1(R+ � R−) and there is an inclusion
j : R+ � R− → M̃ . So, in equation (2), we use im(h1,∗ − 1) to denote the subspace

im

[
j∗ ◦

( −1 0
(h1)∗ 0

)]
⊂ H1(M̃).

Note, from the maps h : R+ → R+ and j : R+ � R− → M̃ , we have a subspace
j∗[im(h∗ − 1)] ⊂ H1(M̃). Abusing the notation, in (2), we use im(h∗ − 1) to denote
j∗[im(h∗ − 1)] and omit j∗ from the notation. The sum im(h1,∗ − 1) + im(h∗ − 1) is
the sum of the two subspaces, as described above, in H1(M̃).

In a similar way, we can compute the first homology of Y2.

H1(Y2;Q) = [H1(M̃;Q) ⊕ 〈[s2]〉]/[im(h2,∗ − 1)]. (3)

Here, the term im(h2,∗ − 1) is similar to the term im(h1,∗ − 1) in (2), and s2 is the
circle S1 ×{p} ⊂ Y2, similar to s1 and sh in (2). Hence, we can deduce the following.

Lemma 3.1 Let i : Y2 → W be the inclusion. Then,

ker(i∗) ⊂ [im(h1,∗ − 1)]/[im(h2,∗ − 1)] ⊂ H1(Y2;Q).

Here, the term im(h1,∗ − 1) is the same as the one appeared in (2), and the term
im(h2,∗ − 1) is the same as the one appeared in (3).

Proof It is straight forward to check that

i∗([s2]) = [s1] + [sh] ∈ H1(W ;Q),

and it is clear that [s1] + [sh] is non-zero in H1(W ;Q) from (2). Hence, from (3), we
know that the kernel must come from the quotient of H1(M̃;Q):

ker(i∗) ⊂ H1(M̃;Q)/[im(h2,∗ − 1)] ⊂ H1(Y2;Q).

Let α ∈ ker(i∗) be any element in the kernel, then, from (3) and (2), we can find
a lift α̃ ∈ H1(M̃;Q) so that α̃ ∈ im(h1,∗ − 1) + im(h∗ − 1). Equivalently, there are
classes β, γ ∈ H1(R+;Q) so that (recall j : R+ � R− → M̃ is the inclusion)

α̃ = j∗[(h1)∗(β) − β] + j∗[h∗(γ ) − γ ].
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Write

α̃′ = h∗(γ ) − γ ∈ H1(R+;Q) ⊂ H1(R+ � R−;Q),

then we know that (recall h2 = h1 ◦ h)

α̃′ = (h1)∗(α̃′) + [α̃′ − (h1)∗(α̃′)]
= (h2)∗(γ ) − (h1)∗(γ ) + [α̃′ − (h1)∗(α̃′)]
= (h2)∗(γ ) − γ + [γ − (h1)∗(γ )] + [α̃′ − (h1)∗(α̃′)].

Hence, we have

α̃ = j∗[(h2)∗(γ ) − γ ]
+ j∗[γ − (h1)∗(γ )] + j∗[α̃′ − (h1)∗(α̃′)] + j∗[(h1)∗(β) − β].

The first term is in im(h2,∗ − 1) and the rest are in im(h1,∗ − 1). So, we know that

α ∈ [im(h1,∗ − 1)]/[im(h2,∗ − 1)] ⊂ H1(M̃,Q)/[im(h2,∗ − 1)] = H1(Y2;Q),

and this concludes the proof of Lemma 3.1. ��

3.2 Adding 1-handles

Definition 3.2 Suppose (M, γ ) is a balanced sutured manifold. A product (or contact)
1-handle is a tuple (φ, S, D3, δ), where S ⊂ ∂D3 is the disjoint union of two embedded
disks on ∂D3, δ is a simple closed curve on ∂D3, which intersects each component of
S in an arc, and φ : S → ∂M is an embedding so that φ(δ ∩ S) = γ ∩ φ(S) ⊂ ∂M .
Then, we can form a new balanced sutured manifold

(M ′, γ ′) = (M ∪
φ
D3, γ ′ = γ \φ(S) ∪ (δ\S)).

Remark 3.3 In Kronheimer andMrowka [17], this process is called attaching a product
1-handle, while in Baldwin and Sivek [2], the same process is called attaching a contact
1-handle.

Lemma 3.4 (Kronheimer and Mrowka [17] or Baldwin and Sivek [2]) When using
auxiliary surfaces of large enough genus, any pre-closure of (M, γ ) is a pre-closure
of (M ′, γ ′), and vice-versa.

Hence, by Lemma 3.4, we can freely add 1-handles to the original (M, γ ) without
changing its closure. A straightforward observation is the following.

Lemma 3.5 For any balanced sutured manifold (M, γ ), there exists a set of 1-handles,
{h1, . . . , hn} so that the following is true.

(1) If (M ′, γ ′) is the resulting balanced sutured manifold after attaching all 1-handles
h1,…, hn, then γ ′ is connected.
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(2) For l = 1, . . . , n, if (Ml , γl) is the resulting balanced sutured manifold after
attaching all 1-handles h1,…, hn except hl , then R±(γl) are both connected.

Remark 3.6 The first condition is used in the proof of Lemma 3.7, and the second is
used in the proof of Lemma 3.9.

Thus, from any balanced sutured manifold (M, γ ), we can find a set of 1-handles,
{h1, . . . , hn}, according to Lemma 3.5. Let (M ′, γ ′) be the resulting balanced sutured
manifold after attaching all those 1-handles, then we have the following lemma.

Lemma 3.7 Suppose (Y , R) is a closure of (M, γ ) with g(R) large enough. Then,
(Y , R) can also be regarded as a closure of (M ′, γ ′) by Lemma 3.4. Suppose further
that s1 and s2 are two supporting spinc structures on Y , then there is a 1-cycle x in
M ′ so that

P.D.c1(s1) − P.D.c1(s2) = [x] ∈ H1(Y ;Q).

Similar results hold in the instanton settings.

Proof Westart by constructing a special reference closure of (M ′, γ ′). Pick an auxiliary
surface T ′, and let

M̃ = M ′ ∪ [−1, 1] × T ′

be a pre-closure of (M ′, γ ′) that is also a pre-closure of (M, γ ). We have

∂ M̃ = R+ ∪ R−, R± = R±(γ ′) ∪ {±1} × T ′.

We can pick a special gluing diffeomorphism hr : R+ → R− so that hr |{1}×T ′ = idT ′ .
Let (Yr , R+) be the closure of (M ′, γ ′) arising from hr and M̃ . We know that hr can
be split into two parts, f r = hr |R+(γ ′) and idT ′ .

Thus, we have an alternative interpretation for Yr . First, we can use f r : R+(γ ′) →
R−(γ ′) to glue R+(γ ′) ⊂ ∂M ′ to R−(γ ′) ⊂ ∂M ′, and M ′ becomes a manifold M ′

1
with a toroidal boundary. Note f r |∂R+(γ ′) = id, so we have a natural framing sr and
γ ′ on ∂M ′

1. Here, s
r is obtained as follows. If q ∈ γ ′ is a point, then we have an arc

[−1, 1]× {q} ⊂ A(γ ). Note f r identifies {1}× {q} with {−1}× {q}, so [−1, 1]× {q}
becomes a circle sr inside ∂M ′

1. Second, we can glue M
′
1 and S1×T ′ together to form

Yr :

Yr = M ′
1 ∪

φ
S1 × T ′,

where φ : ∂M ′
1 → ∂(S1 × T ′) maps s1 to the S1 direction and maps γ ′ to ∂T ′

direction. Let g(T )′ = k, and let {a1, b1, . . . , ak, bk} be a set of generators of H1(T ′)
as in Fig. 4. Then, we can use Mayer-Vietoris sequence to conclude the following:

H1(Y
r ;Q) =

(
H1(M

′;Q)/[im( f r∗ − 1)]
)

⊕ 〈[sr ], [a1], . . . , [bk]〉. (4)
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Fig. 4 A basis for H1(T
′)

Here, the term im( f r∗ − 1) is similar to the term im(h1,∗ − 1) in (2). Suppose s
is a supporting spinc structure on Yr , then we can write P.D.c1(s) in terms of the
description of H1(Yr ) in 4. The coefficient of the class [sr ] can be understood to be
2g(R) − 2 by looking at the pairing

c1(s)[R] = 2g(R) − 2.

The coefficients of [a1], . . . , [bk] are all zero, since we can apply the adjunction
inequality in Lemma 2.21 to the tori b1 × S1, . . . , ak × S1 ⊂ Y . Thus, we conclude
the following.

Lemma 3.8 Suppose s is a supporting spinc structure on Y r , then there is a 1-cycle
[x] in M ′ so that

P.D.c1(s) = [x] + (2g − 2)[sr ] ∈ H1(Y
r ;Q).

Similar statement (Replacing c1(s) by a supporting eigenvalue function λ, c.f. Def-
inition 2.16) holds in the instanton settings.

Now suppose h : R+ → R− is any gluing diffeomorphism, and (Y , R) is the
resulting closure of (M ′, γ ′). Let ψ = (hr )−1 ◦ h : R+ → R+ be a diffeomorphism,
and let Yψ be the mapping torus of ψ . We can form an excision cobordism W from
Yr � Yψ to Y , as in Sect. 2.2. Then, we can compute via Mayer-Vietoris sequences
that

H1(Y
ψ ;Q) =

(
H1(R+;Q)/[im(ψ∗ − 1)]

)
⊕ 〈[sψ ]〉. (5)

Here, sψ is the same as the term sh in (2). Let i : Y → W , ir : Yr → W , and
iψ : Yψ → W be the inclusions. Suppose s is a supporting spinc structure on Y , then,
from Lemma 2.22, we know that there is a supporting spinc structure sr on Yr so that

i∗[P.D.c1(s)] = ir∗[P.D.c1(s
r)] + iψ∗ [P.D.c1(s

ψ)] ∈ H1(W ;Q).

Here, sψ is the unique spinc structure on Yψ , as in Lemma 2.20. To find all possible
values of P.D.c1(s), we first find a class [z] ∈ H1(Y ;Q) so that

i∗([z]) = ir∗[P.D.c1(s
r)] + iψ∗ [P.D.c1(s

ψ)] ∈ H1(W ;Q),
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and then

P.D.c1(s) ∈ [z] + ker(i∗) ⊂ H1(Y ;Q).

Note ker(i∗) has been understood by Lemma 3.1.
To find the class [z], by Lemma 3.8, we know that there exists a 1-cycle x in M ′ so

that

P.D.c1(s
r ) = [x] + (2g − 2)[sr ] ∈ H1(Y

r ;Q).

For sψ , we can check similarly (or see Subsection 4.2 in Li [20]) that there is a 1-cycle
y in R+ so that

P.D.c1(s
ψ) = [y] + (2g − 2)[sψ ] ∈ H1(Y

ψ ;Q).

InsideW , there are annuli x ×[0, 1] and y ×[0, 1] and a pair of pants from sr � sψ ⊂
Yr � Yψ to s ⊂ Y . Hence, we can take z to be the 1-cycle in Y , of the form

z = x + y + (2g − 2)s.

Note x is in M ′ and y is in R+, so there are natural ways to regard them as 1-cycles
in Y . Thus, we know that

i∗([z]) = ir∗[P.D.c1(s
r)] + iψ∗ [P.D.c1(s

ψ)] ∈ H1(W ;Q)

and, hence,

P.D.c1(s) ∈ [x] + [y] + (2g − 2)[s] + ker(i∗) ⊂ H1(Y ;Q). (6)

From Lemma 3.1, we know that

ker(i∗) ⊂ [im(hr∗ − 1)]/[im(h∗ − 1)].

Note that hr∗ − 1 = f r∗ − 1 since h|T ′×{1} = idT ′ . By construction, [im( f r∗ − 1)] is
contained in H1(M ′), and, thus, we know that ker(i∗) can only contribute to the part
[x] in (6). As a result, we conclude that there is a 1-cycle x ′ in M ′ so that

P.D.c1(s) = [x ′] + [y] + (2g − 2)[s] ∈ H1(Y ;Q).

Note [y] + (2g − 2)[s] is independent of the choice of the supporting spinc structure
on Y , so we conclude the proof of Lemma 3.7. ��
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3.3 Dropping 1-handles

Recall we have a balanced sutured manifold (M, γ ), and we have a set of 1-handles,
{h1, . . . , hn}, as in Lemma 3.5. Recall further that (M ′, γ ′) is the resulting balanced
sutured manifold after attaching all of those 1-handles. In Lemma 3.7, we prove that,
in terms of the Poincaré dual of the first Chern classes, the difference of two supporting
spinc structures on Y is contained in M ′. In this subsection, we sharpen the result and
prove that the difference must lie in M instead of the whole M ′, which is exactly the
statement of Theorem 1.11.

Suppose, for l = 1, . . . , n, (Ml , γl) is the resulting balanced sutured manifold after
attaching all 1-handles h1, . . . , hn except hl . Then, (M ′, γ ′) is obtained from (Ml , γl)

by attaching hl . Recall, from Sect. 3.2, we have an auxiliary surface T ′ for M ′ and
a pre-closure M̃ . Then, from Lemma 3.4, M̃ is also a pre-closure for (Ml , γl). Thus,
any closure (Y,R) arising from M̃ is also a closure for (Ml , γl).

Lemma 3.9 For any fixed l, suppose (Y , R) is a closure of (M, γ ) with g(R) large
enough, then (Y , R) is also a closure for (Ml , γl) by Lemma 3.4. Suppose further that
s1, s2 are two supporting spinc structures on Y , then there is a 1-cycle x in Ml so that

P.D.c1(s1) − P.D.c1(s2) = [x] ∈ H1(Y ;Q).

Similar result holds in the instanton settings.

Proof of Theorem 1.11. Note (M ′, γ ′) and (Ml , γl) are obtained from (M, γ )by attach-
ing 1-handles. So, there are injections

H1(M;Q) ↪→ H1(Ml;Q) ↪→ H1(M
′;Q).

Also, inside H1(M ′;Q), we have

H1(M) =
n⋂

l=1

H1(Ml).

So, Lemma 3.9, together with Lemma 3.4, implies Theorem 1.11. ��
Proof of Lemma 3.9. By Lemma 3.7, we know that there is a 1-cycle x is in M ′ which
satisfies the statement of the lemma, but our goal is to show that x can be chosen
inside Ml . Recall, in the proof of Lemma 3.7, we pick a special reference closure Yr

by requiring hr |T ′×{1} = idT ′ (and f r = hr |R+(γ ′)). To prove the current lemma, we
will need an even more special closure, by making further restrictions on f r . Though
we will keep using the notations Yr , hr and f r , etc.

To explain the further restriction on f r , recall that (M ′, γ ′) is obtained from (Ml , γl)

by attaching the 1-handle hl . We can write

H1(M
′;Q) = H1(Ml;Q) ⊕ 〈αl〉,
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Fig. 5 The one handle hl

where αl consists of the core of the 1-handle hl together with an arc inside Ml . Let
Dl be the co-core of the 1-handle hl . It is a properly embedded disk Dl ⊂ M ′ that
intersects αl transversely at one point, and ∂Dl intersects R±(γ ′) in arcs βl,±. See
Fig. 5. Note, by the condition (2) in Lemma 3.5, the arcs βl,± are non-separating inside
R±(γ ′). Thus, from Lemma 3.6 in Li [19], we can find a map f r which sends βl,+ to
β,−.

Now we can use the new hr to obtain the closure (Yr , R+). It not only satisfies
all requirements needed to conclude the proof of Lemma 3.7, but also has some new
features. Suppose the co-core Dl intersects γ ′ at two points pl , ql and let η ⊂ T ′ be a
simple arc with end points pl , ql . Then, we know that

D̃l = Dl ∪ (η × [−1, 1])

is a properly embedded surface in M̃ so that

∂ D̃l ∩ R± = C± = βl,± ∪ η × {±1}.

From the above construction, we know that hr (C+) = C−. Hence, D̃l becomes a
torus Tl ⊂ Yr . (It is straightforward to compute the Euler characteristic to see that
it is indeed a torus.) Note this torus Tl intersects αl transversely at one point, but is
disjoint from all other generators of

H1(M
′; Q) = H1(Ml; Q) ⊕ 〈[αl ]〉.

Asa result,we canuse the adjunction inequality inLemma2.21 tomake a refinement
of Lemma 3.8 as follows.

Lemma 3.10 Suppose s is a supporting spinc structure on Y r , then there is a 1-cycle
x in Ml so that

P.D.c1(s) = [x] + (2g − 2)[sr ] ∈ H1(Y
r ;Q).

Similar results hold in the instanton settings.
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Suppose (Y , R+) is an arbitrary closure of (M, γ ), arising from the pre-closure M̃
and a gluing diffeomorphism h. We can form the diffeomorphism ψ = (hr )−1 ◦ h,
the mapping torus Yψ , and the excision cobordism W , as in the proof of Lemma 3.7.
Suppose further that s is a supporting spinc structure on Y , then we know from (6)
that

P.D.c1(s) ∈ [x] + [y] + (2g − 2)[s] + ker(i∗) ⊂ H1(Y ;Q),

where i : Y → W is the inclusion, y is a 1-cycle on R+, s is the curve {p} × S1 ⊂ Y ,
and x is a 1-cycle in Ml guaranteed by Lemma 3.10.

From Lemma 3.1, we know that

ker(i∗) ⊂ [im(hr∗ − 1)]/[im(h2,∗ − 1)].

By construction, we know that

im(hr∗ − 1) = im( f r∗ − 1) ⊂ H1(M
′;Q).

To conclude the proof of Lemma 3.9, we need to show that

im(hr∗ − 1) = im( f r∗ − 1) ⊂ H1(Ml;Q),

and this is equivalent to show that, under the decomposition

H1(M
′;Q) = H1(Ml;Q) ⊕ 〈[αl ]〉,

any element [z] ∈ im( f r∗ − 1) can not have a non-zero [αl ] component.
To prove this final statement, suppose [z] ∈ im( f r∗ − 1) is of the form

[z] = a · [αl ] + H1(Ml;Q)

for some a ∈ Q, then we need to show that a = 0. Note, from (4), we know that [z] =
0 ∈ H1(Yr ). Also, inside Yr , [z] · [T 2

l ] = a, since, by construction, [αl ] · [T 2
l ] = 1,

and T 2
l ∩ Ml = ∅. Thus, we know that a = 0, and this concludes the proof of lemma

3.9. As mentioned above, this also concludes the proof of Theorem 1.11. ��

4 General grading shifting formula

In this section, we prove the generalized grading shifting formula, Theorem 1.12,
as stated in the introduction. We also use it to compute the sutured monopole and
instanton Floer homologies of some particular sutured handlebodies.

Proposition 4.1 Suppose (M, γ ) is a balanced sutured manifold, and S ⊂ M is a
properly embedded surface. Pick i ∈ Z so that the surface Si , which is obtained from
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Fig. 6 Pushing off Si+2k

S by performing i stabilizations, is admissible (see Definition 2.26). Pick any k ∈ Z.
Then, there exist constants lM , lI ∈ Z so that, for any j ∈ Z, we have:

SHM(−M,−γ, Si+2k, j) = SHM(−M,−γ, Si , j − lM ),

and

SHI(−M,−γ, Si+2k, j) = SHI(−M,−γ, Si , j − lI ).

Moreover, if the sutured manifold decompositions of (M, γ ) along S and −S are both
taut, then lM = lI = k.

Proof We now prove the first part of the proposition, namely the existence of l and the
fact that it is independent of j . As usual, we argue this in themonopole settings, but the
same is true for the instanton settings. Suppose (M, γ ) and S are defined the same as in
the hypothesis of the proposition.We follow the idea in Sect. 2.3, to construct a closure
(Y , R) of (M, γ ) so that both Si and Si+2k extend to closed surfaces. To do this, put
both Si and Si+2k in M so that they are transverse and ∂Si ∩∂Si+2k = ∅ in Y . Note we
can always achieve this. If ∂S intersects γ , then the positive and negative stabilizations
can be performed in an arbitrarily small neighborhood of S∩γ , so we can simply start
with two parallel copies of S and perform i and i + 2k stabilizations respectively. If
∂S ∩ γ = ∅, then positive and negative stabilizations happen on different sides of S,
and we can always perturb them to be distinct. See Fig. 6.

Now we pick a connected auxiliary surface T for (M, γ ), which is of large enough
genus. For both Si and Si+2k , we can apply the construction of gradings as in Sect. 2.3.
If the genus of T is chosen to be large enough, then we could arrange the arcs,
which come from both ∂Si and ∂Si+2k , all represent linearly independent classes in
H1(T , ∂T ). We can then form the pre-closure M̃ = M ∪ [−1, 1] × T and it has
two boundary components ∂ M̃ = R+ ∪ R−. As in Sect. 2.3, we know that Si and
Si+2k both extend to properly embedded surfaces S̃i , S̃i+2k ⊂ M̃ , and there are equal
number of boundary components on R+ and on R−.
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Thus, we can pick an orientation preserving diffeomorphism h : R+ → R− so that

h(S̃i ∩ R+) = S̃i ∩ R−, and h(S̃i+2k ∩ R+) = S̃i+2k ∩ R−.

Using h and M̃ , we obtain a closure (Y , R+) of (−M,−γ ) so that there are closed
surfaces �Si ⊂ Y and �Si+2k ⊂ Y . Pick a non-separating simple closed curve η which
is disjoint from �Si ∪ �Si+2k . Then, as in Sect. 2.3, we know that

SHM(−M,−γ, Si , j) =
⊕

s∈S∗(Y |R+)

c1(s)[�Si ]=2 j

~HM•(Y , s;�η),

and

SHM(−M,−γ, Si+2k, j) =
⊕

s∈S∗(Y |R+)

c1(s)[�Si+2k ]=2 j

~HM•(Y , s;�η).

Now, suppose s1, s2 ∈ S∗(Y |R+) are two supporting spinc structures, then, from
Theorem 1.11, we know that there is a 1-cycle x ⊂ M so that

[c1(s1) − c1(s2)] = P.D.[x] ∈ H2(Y ).

Since x ⊂ M and Si is isotopic to Si+2k in M , we know that

[c1(s1) − c1(s2)][�Si ] = [c1(s1) − c1(s2)][�Si+2k].

Thus, the number

lM = 1

2
(c1(s1)[�Si ] − c1(s1)[�Si+2k]) = 1

2
(c1(s2)[�Si ] − c1(s2)[�Si+2k])

is the desired constant in the statement of the proposition.
When the decomposition of (M, γ ) along S and −S are both taut, then we can

settle down the value of l by looking at the top or bottom non-vanishing grading and
conclude l = k. This part of the proof is exactly the same as the proof of Proposition
4.3 in Li [20]. ��
Conjecture 4.2 In general, we always have l = k.

Corollary 4.3 Suppose (M, γ ) is a taut balanced suturedmanifold and D ⊂ M isadisk
so that D intersects γ transversely four times. Suppose further that the decompositions
of (M, γ ) along D and −D are (M ′, γ ′) and (M ′′, γ ′′), respectively. If at least one
of the two decompositions is taut, then

SHM(M, γ ) ∼= SHM(M ′, γ ′) ⊕ SHM(M ′′, γ ′′).

Similar results holds for the instanton settings.
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Proof Without loss of generality, we can assume that (M ′, γ ′) is taut. We can perform
a positive stabilization on D to make it admissible. Then, it induces a grading

SHM(M, γ, D+, i).

D+ is a disk intersecting the suture six times. From the construction of grading in
Sect. 2.3, it becomes a genus-two closed surface inside a suitable closure of (M, γ ).
The adjunction inequality in Lemma 2.21 then tells us that there are only three poten-
tially non-trivial gradings, being i = −1, 0, 1. Lemma 2.24 and Lemma 2.29 then
imply that

SHM(M, γ, D+, 1) ∼= SHM(M ′, γ ′),
SHM(M, γ, D+,−1) = 0.

Applying Proposition 4.1 and Lemma 2.29, we know that

SHM(M, γ, D+, 0) = SHM(M, γ, D−,−1)

= SHM(M, γ, (−D)+, 1)
∼= SHM(M ′′, γ ′′)

Hence, we are done. ��
This gives an affirmative answer to Conjecture 4.3 in Li [18].

Corollary 4.4 Suppose V is a solid torus, and γ 4 consists of four longitudes. When
using Z coefficients, we have

SHM(V , γ 4) ∼= Z
2.

Proof We apply Corollary 4.3: There is a meridian disk D intersecting the suture γ 4

four times. The decomposition of (V , γ ) along D and −D both result in a 3-ball with
a connected suture on the boundary, whose Floer homology is simply Z. ��

With the help of Proposition 4.1, we can prove the general grading shifting property,
Theorem 1.12, as stated in the introduction.

Proof of Theorem 1.12 Wefirst sketch the proof of the theoremas follows:wefirst find a
closure (Y , R) of (M, γ ) so that, after some suitable isotopies, S1 and S2 both extend
to some closed surfaces. Next, when we want to compare the gradings associated
to surfaces S1 and S2, we need only to compare the difference of the first Chern
classes of different supporting spinc structures evaluated on the fundamental classes
of the extensions of the two surfaces S1 and S2. By Proposition 1.10, the difference of
supporting spinc structures are due to a 1-cycle inside the sutured manifold M . Since
S1 and S2 represent the same relative homology class in M , we could conclude the
result of an overall grading shift.
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Now assume that S1 and S2 are transverse to each other. We need to isotope S1

and S2 into S
i1,i ′1
1 and S

i2,i ′2
2 , respectively. Here, i1, i2 � 0 indicate the number of

positive stabilizations on S1 and S2, respectively. Similarly, i ′1, i ′2 � 0 correspond to
the negative stabilizations. We require the following six conditions to hold.

(1) Both S
i1,i ′1
1 and S

i2,i ′2
2 are admissible, and no more intersection points are created

during the stabilizations.

(2) Any positive intersection of S
i1,i ′1
1 with S

i2,i ′2
2 is contained in R+(γ ), and any

negative intersection is contained in R−(γ ).

(3) If θ1 is a component of ∂S
i1,i ′1
1 and θ1 ∩ S

i2,i ′2
2 �= ∅, then θ1 ∩ γ �= ∅.

(4) If θ2 is a component of ∂S
i2,i ′2
2 and θ2 ∩ S

i1,i ′1
1 �= ∅, then θ2 ∩ γ �= ∅.

(5) . If δ1 is a component of ∂S
i1,i ′1
1 ∩ R(γ ), then δ intersects S

i2,i ′2
2 at most once.

(6) . If δ2 is a component of ∂S
i2,i ′2
2 ∩ R(γ ), then δ intersects S

i1,i ′1
1 at most once.

Pick a connected auxiliary surface T of large enough genus, and form the pre-
closure M̃ = M ∪ [−1, 1] × T . It has two boundary components:

∂ M̃ = R+ ∪ R−.

We can carry out the construction of gradings in Subsection 2.3 on both S
i1,i ′1
1 and

S
i2,i ′2
2 . Suppose

n1 = 1

2
|Si1,i ′11 ∩ γ |, and n2 = 1

2
|Si2,i ′22 ∩ γ |.

Pick two balanced pairings P1 and P2, as introduced in Subsection 2.3, for the

two surfaces S
i1,i ′1
1 and S

i2,i ′2
2 , respectively. Inside T , pick a set of disjoint properly

embedded arcs {α1, . . . , αn1 , β1, . . . , βn2} so that the end points ofαk are identified

with the intersection points of S
i1,i ′1
1 ∩ γ , according to the balanced pairing P1,

and the end points of β j are identified with the intersection points of S
i2,i ′2
2 ∩ γ ,

according to the balanced pairing P2. There is one special requirement for P1:

(7) If δ1 is a component of ∂S
i1,i ′1
1 ∩ R(γ ), which intersects S

i2,i ′2
2 non-trivially, then

there is an arc αk0 so that ∂αk0 is identified with ∂δ1
Strictly speaking, ∂δ ⊂ ∂R(γ ), but we could regard ∂δ1 to be on γ , since ∂R(γ )

is parallel to γ . Similarly, we require the following for P2.

(8) If δ2 is a component of ∂S
i2,i ′2
2 ∩ R(γ ), which intersects S

i1,i ′1
1 non-trivially, then

there is an arc β j0 so that ∂β j0 is identified with ∂δ2.

Note when we perform enough positive and negative stabilizations, the balanced pair-
ing satisfying the constraints (7) and (8) always exist. When the genus of T is large
enough, we can choose the arcs, α1, . . . , αn1 , β1, . . . , βn2, to represent linearly inde-

pendent classes in H1(T , ∂T ). Then, inside M̃ , S
i1,i ′1
1 and S

i2,i ′2
2 extend to properly

embedded surfaces S̃
i1,i ′1
1 and S̃

i2,i ′2
2 , respectively. From the construction, we know that
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∂ S̃
i1,i ′1
1 ∩ R+ and ∂ S̃

i1,i ′1
1 ∩ R− have equal number of boundary components. Thus, let

∂ S̃
i1,i ′1
1 ∩ R+ = C+,1 ∪ · · · ∪ C+,s, and ∂ S̃

i1,i ′1
1 ∩ R− = C−,1 ∪ · · · ∪ C−,s .

Similarly, we can assume

∂ S̃
i2,i ′2
2 ∩ R+ = D+,1 ∪ · · · ∪ D+,t , and ∂ S̃

i2,i ′2
2 ∩ R− = D−,1 ∪ · · · ∪ D−,t .

Note the intersection points of S̃
i1,i ′1
1 and S̃

i2,i ′2
2 are in one-to-one-correspondence to

the intersection points of S1 and S2 by requirement (1). We claim that ∂S1 ∩ ∂S2 con-
sists of an even number of positive and negative points. Indeed, ∂Si ∩∂S j = ∂Si ∩ S j ,
and it is clear that the algebraic intersection number of ∂Si and S j is zero. Hence,
on R±, we have a collection of circles C±,1, . . . ,C±,s, D±,1 . . . D±,t . They repre-
sent linearly independent classes in H1(R+). There might be intersections between
C±,k with D±, j , but, by requirement (5), (6), (7), and (8), each C±,k intersects with
at most one D±, j , and each D±, j intersects with at most one C±,k . Hence, the pat-
tern of C+,1, . . . ,C+,s, D+,1, . . . , D+,t on R+ is exactly the same as the pattern of
C−,1, . . . ,C−,s, D−,1, . . . , D−,t on R−. As a result, there exists an orientation pre-
serving diffeomorphism h : R+ → R− so that

h(∂ S̃
i1,i ′1
1 ∩ R+) = ∂ S̃

i1,i ′1
1 ∩ R−, and h(∂ S̃

i2,i ′2
2 ∩ R+) = ∂ S̃

i2,i ′2
2 ∩ R−.

Hence, we can obtain a closure (Y , R+) of (M, γ ) from M̃ and h. Inside Y there

are two closed surfaces S̄
i1,i ′1
1 and S̄

i2,i ′2
n , and they induce gradings on SHM(M, γ ) that

are associated to S
i1,i ′1
1 and S

i2,i ′2
2 , respectively. The rest of the proof is then exactly the

same as the proof of Proposition 4.1. ��
Next, we present one example to demonstrate the usage of the techniques devel-

oped above. The simplest sutured manifolds having non-trivial Floer homology are
sutured handlebodies. All genus-one sutured handlebodies have been dealt with in
the second author’s previous paper [20]. So we will work with a genus-two handle
body. In particular, we want to compute the sutured monopole and instanton Floer
homologies of the following balanced sutured manifold (M, γ ), as depicted in Fig. 7.
(Strictly speaking, they are the sutured monopole and instanton Floer homologies of
(−M,−γ ).)

The idea is to apply the by-pass exact triangles repeatedly. There is a graded ver-
sion of by-pass exact triangles, as in Li [20], generalizing the by-pass exact triangle
introduced in Subsection 2.4.

SHM(−M,−γ, D, i) SHM(−M,−γ1, D
−2
1 , i)

SHM(−M,−γ2, D
+1
2 , i)

(7)
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Fig. 7 The sutured manifold (M, γ ). The three curves (red, blue and green) are the sutures. The disk D is
used to construct a grading. (Color figure online)

Fig. 8 The sutured manifold (M, γ2). The three curves (red, blue and green) are the sutures. (Color figure
online)

Here, the surfaces D is chosen as in Fig. 7 so that it has six transverse intersection
with the suture γ . The surfaces D1, D2 ⊂ M are isotopic to D, but having minimal
possible transverse intersection with γ1 (two intersections) and γ2 (four intersections)
respectively. The superscripts in D+1

2 and D−2
1 imply the number of positive or negative

stabilizations performed on the surfaces D1 ⊂ M and D2 ⊂ M , as introduced in
Subsection 2.3. A direct check shows that (M, γ1) is a product sutured manifold and
the suture γ2 is depicted as in Fig. 8.

Now we know that

SHM(−M,−γ1) = SHM(−M,−γ1, D1, 0) = R.

As a result, by Lemma 2.24 and Lemma 2.29, we know that

SHM(−M,−γ1, D
−2
1 , i) =

{R i = 1
0 others

(8)
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Fig. 9 The sutured manifold (M, γ3). The three curves (red, blue and green) are the sutures. (Color figure
online)

Note D1 is a disk intersecting the suture six times. So it becomes a genus-two closed
surface inside some suitable closure as in Subsection 2.3. From the adjunction inequal-
ity in Lemma 2.21, we know that

SHM(−M,−γ2, D
+1
2 , i) = 0

for i > 1 or i < −1. From Lemma 2.24 and Lemma 2.29, we know that

SHM(−M,−γ2, D
+1
2 , 1) = 0.

Note from above discussions, we know that for each i , either

SHM(−M,−γ1, D
−2
1 , i) = 0

or

SHM(−M,−γ2, D
+1
2 , i).

So from the graded exact triangle in (7), we conclude that

SHM(−M,−γ ) = R ⊕ SHM(−M,−γ2). (9)

To compute the sutured monopole Floer homology of (M, γ2), we perform the
same trick once more (or equivalently apply Corollary 4.3) and conclude that

SHM(−M,−γ2) = R ⊕ SHM(−M,−γ3), (10)

where (M, γ3) is the balanced sutured manifold as depicted in Fig. 9.
To compute the sutured monopole Floer homology of (M, γ3), we could perform

a sutured manifold decomposition along the disk D as depicted in Fig. 9. Suppose
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Fig. 10 The sutured manifold (M, γ4). The three curves (red, blue and green) are the sutures. (Color figure
online)

(M4, γ4) is the resulting balanced sutured manifold, then, from Kronheimer and
Mrowka [17], we know that

SHM(−M,−γ3) ∼= SHM(−M4,−γ4).

Furthermore, the balanced sutured manifold (M4, γ4) is a solid torus equipped with
two curves of slope 1

3 as the suture, as depicted in Fig. 10, so from Li [20, Proposition
1.3], we know that

SHM(−M,−γ3) ∼= SHM(−M4,−γ4) ∼= R3.

Finally, we conclude that

Proposition 4.5 If (M, γ ) is the sutured manifold as shown in Fig.7, then

SHM(−M,−γ ) ∼= R5.

The same type of arguments in instanton theory yields the following.

Corollary 4.6 If (M, γ ) is the sutured manifold as shown in Fig.7, then

SHI(−M,−γ ) ∼= C
5.

5 Polytopes

5.1 Constructing the polytope

Suppose (M, γ ) is a balanced sutured manifold, and α ∈ H2(M, ∂M) is a second
relative homology class. From Theorem 1.12, there is a grading on SHM(M, γ ) or
SHI(M, γ ) associated to α, which is well-defined up to an overall grading shifting.
Hence, we can define the following.
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Definition 5.1 An element a in SHM(M, γ ) or SHI(M, γ ) is called homogenous if
for any homology class α ∈ H2(M, ∂M), the element a is homogenous with respect
to the grading associated to α.

Lemma 5.2 For any taut balanced manifold (M, γ ), there exist non-zero homogenous
elements in SHM(M, γ ) and SHI(M, γ ).

Proof Pick a basis α1, . . . , αn for H2(M, ∂M). Pick admissible properly embedded
surfaces S1, . . . , Sn to representα1, . . . , αn , respectively. In the proof ofTheorem1.12,
for two surfaces S1 and S2 inside (M, γ ), we constructed a closure (Y , R+) of (M, γ )

where (suitable isotopies of) S1 and S2 both extend to closed surfaces inside Y . we can
carry out a similar construction here, though this time we have n surfaces instead of
two. As a result, we obtain a special closure (Y , R) of the balanced sutured manifold
(M, γ ) so that, inside Y , the surfaces S1, . . . , Sn extends to closed surfaces S̄1, . . . , S̄n ,
respectively, and the surfaces S̄1, . . . , S̄n are the ones used to define gradings on
SHM(M, γ ) associated to S1, . . . , Sn , respectively. Also, pick some suitable non-
separating simple closed curves η on R to support local coefficients. On Y , the surfaces
S̄1, . . . , S̄n induces a Z

r -grading on HM(Y |R;�η) by looking at the evaluation of
the first Chern classes of spinc structures on those closed surfaces. Suppose s0 is a
supporting spinc structures (see Definition 2.14) on Y , and a ∈ ~HM•(Y , s0;�η) is
a non-zero element, then we know that the element a is homogenous with respect to
all the gradings induced by S̄1, . . . , S̄n . We claim that it is a homogenous element as
defined in Definition 5.1.

To prove the claim, supposeα ∈ H2(M, γ ) is any homology class. Sinceα1, . . . , αn

form a basis of H2(M, γ ), α is a linear combination of α1, . . . , αn . Thus, we can
perform a sequence of double curve surgeries (for definition, see Scharlemann [25]) on
a fewparallel copies of S1, . . . , Sn ,with thenumber of copies dependingoncoefficients
of α, to obtain a properly embedded surface S that represents the class α ∈ H2(M, γ ).
Correspondingly, we can perform the same set of double curve surgeries on S̄1, . . . , S̄n
to obtain a closed surface S̄ ⊂ Y , which extends S and which induces the grading
associated to S. Then, we know that the element a is a homogenous element with
respect to the grading associated to S, and this concludes the proof of lemma 5.2. ��
Definition 5.3 Suppose (M, γ ) is a balanced suturedmanifold, anda, b ∈ SHM(M, γ )

are two homogenous elements. Then, we define an element ρ(a, b) ∈ H2(M, ∂M;Q)

associated to the (ordered) pair (a, b) as follows: We first construct the map

ρ(a, b) : H2(M, ∂M) → Z.

For any class α ∈ H2(M, ∂M), we pick a surface S that represents the class α and is
admissible. Define

ρ(a, b)(α) = difference between a and b under the grading associated to S.

This is well defined by Theorem 1.12. This map is linear by essentially the same type
of argument as in the proof of Lemma 5.2. Then, we can regard ρ(a, b) as an element
in H2(M, ∂M;Q).
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We can carry out a similar construction in the instanton setups.

Definition 5.4 Suppose (M, γ ) is a balanced sutured manifold, and a ∈ SHM(M, γ )

is a homogenous element. For an element ρ ∈ H2(M, ∂M;R), define

SHMa(M, γ, ρ) = {b ∈ SHM(M, γ ), ρ(a, b) = ρ ∈ H2(M, ∂M;R)},

and

SHIa(M, γ, ρ) = {b ∈ SHI(M, γ ), ρ(a, b) = ρ ∈ H2(M, ∂M;R)}.

Let

SMa(M, γ ) = {ρ ∈ H2(M, ∂M;R), SHMa(M, γ, ρ) �= 0}

and

SIa(M, γ ) = {ρ ∈ H2(M, ∂M;R), SHIa(M, γ, ρ) �= 0}.

Define the polytopes PMa(M, γ ) and P Ia(M, γ ) to be the convex hull of SMa(M, γ )

and SIa(M, γ ), respectively.

Lemma 5.5 Suppose a and b are two homogenous elements in SHM(M, γ ), then
the polytopes PMa(M, γ ) ⊂ H2(M, ∂M;R) is a translate of PMb(M, γ ) ⊂
H2(M, ∂M;R). The same result holds in the instanton setups.

Proof It is straightforward from the construction. ��

5.2 Dimension formula

Lemma 5.6 Suppose (M, γ ) is a taut balanced sutured manifold with H2(M) = 0,
and A is an incompressible product annulus. Then, we can pick an orientation of A
so that the sutured manifold decomposition of (M, γ ) along the oriented A yields a
taut balanced sutured manifold (M ′, γ ′), that SHM(M ′, γ ′) is a direct summand of
SHM(M, γ ), and that SH I (M ′, γ ′) is a direct summand of SH I (M, γ ).

Proof Since A is incompressible, we know that no components of ∂A ⊂ R(γ ) bound
a disk. Note that [26, Lemma 4.2] makes sure that no matter which orientation of A
we choose, the balanced sutured manifold after the decomposition is taut. There are
three cases:

Case 1 Both components of ∂A are homologically essential on R(γ ).
Case 2 Both components of ∂A are homologically trivial on R(γ ). Then, there are

V+ ⊂ R+(γ ) and V− ⊂ R−(γ ) so that ∂V+ ∪ ∂V− = ∂A (as unoriented curves).
Thus, we have a closed surface V+∪A∪V−. The fact that H2(M) = 0 implies that this
closed surface is separating, or equivalently, A separates M into two parts, of which
one has boundary V+ ∪ A ∪ V−. Thus, this part is disjoint from γ .
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Fig. 11 Adding a product 1-handle

For the above two cases, the lemma follows fromProposition 6.7 ofKronheimer and
Mrowka [17]. Actually in these two cases SH I (M ′, γ ′) is isomorphic to SH I (M, γ ).

Case 3One component of ∂A is homologically essential, and the other is inessential.
Then we can choose a suitable orientation of A to make ∂A being boundary coherent,
in the sense of Kronheimer and Mrowka [17], so that Proposition 6.9 in that paper
applies, and, thus, we conclude the proof of Lemma 5.6. ��
Lemma 5.7 Suppose (M, γ ) is a taut balanced sutured manifold and S ⊂ M is a
properly embedded decomposing surface. Suppose p, q ⊂ S ∩ γ are two points of
different signs. Then, we can attach a product 1-handle, in the sense of Definition 3.2,
to obtain a new taut balanced suturedmanifold (M1, γ1) and a new properly embedded
surface S1 ⊂ M1 so that the decomposition

(M, γ )
S� (M ′, γ ′)

is taut if and only if the decomposition

(M1, γ1)
S1� (M ′

1, γ
′
1)

is taut. Furthermore, there is a commutative diagram

SHM(M ′, γ ′)

=

SHM(M, γ )

=

SHM(M ′
1, γ

′
1) SHM(M1, γ1).

A similar statement holds in the instanton settings.

Proof This is how Kronheimer and Mrowka proved Proposition 6.9 in [17]. S1 is
obtained from S by attaching a 2-dimensional 1-handle inside the 3-dimensional prod-
uct 1-handle. See Fig. 11.

��
Proposition 5.8 Suppose (M, γ ) is a balanced sutured manifold with H2(M) = 0 and
is taut, reduced, horizontally prime, and free of non-separating essential product disks.
Suppose α ∈ H2(M, ∂M) is a non-zero class. Then, we can find properly embedded
surfaces S and S′ in M so that



Decomposing sutured monopole and instanton Floer homologies Page 39 of 60 40

(1) [S] = −[S′] = α ∈ H2(M, ∂M).
(2) The sutured manifold decompositions

(M, γ )
S� (M ′, γ ′) and (M, γ )

S′
� (M ′′, γ ′′)

are both taut.
(3) SHM(M ′, γ ′) and SHM(M ′′, γ ′′) are direct summands of SHM(M, γ ), (by [17,

Proposition 6.9]) and

SHM(M ′, γ ′) ∩ SHM(M ′′, γ ′′) = 0

in SHM(M, γ ).
(4) The same result holds for SH I .

Proof This will be a very long proof, so we first sketch the proof as follows. First,
The proof is parallel to the proof of [12, Theorem 6.1], though we make some major
modifications to adapt to themonopole and instanton setups.We start with a non-trivial
class α ∈ H2(M, ∂M). Gabai [6] introduced a way to find well-groomed surfaces S
and S′, representing the class α and −α, respectively, so that the decompositions
of (M, γ ) along S and S′ are both taut. From [17, Proposition 6.9], these two taut
decompositions provides two summands of SHM(M, γ ). To un-package the proof
of [17, Proposition 6.9], we will find a closure (Y , R) of (M, γ ) so that S and S′
both extend to some closed surfaces S̄ and S̄′, respectively. In order to show that
these two summands from two taut decompositions are distinct [conclusion (3) of the
proposition], we need to show that there is no spinc structure on Y whose first Chern
class has the desired evaluating on both S̄ and S̄′. This is done via the adjunction
inequality in 2.21 and an inequality from [12], see 5.9. In the construction of S̄ and S̄′,
for some technical reasons, we need balance two values s and t . The idea is to study
some basic pieces (V , δ) of a solid torus with two longitudinal sutures. By adding
enough copies of this standard piece, we can make s equals to t and complete the
construction of S̄ and S̄′.

Now suppose α is a non-trivial class in H2(M, ∂M). From Lemma 0.7 in Gabai
[7], we can pick an S so that the following holds

(i) S represents the class α ∈ H2(M, ∂M).
(ii) For any component V of R(γ ), if S ∩ V has a closed component, then S ∩ V

consists of parallel, parallel oriented non-separating simple closed curves.
(iii) For any component δ of ∂R(γ ), all the intersection points of S with δ are of the

same sign.
(iv) S intersects A(γ ) in parallel and coherently oriented essential arcs.
(v) The sutured manifold decomposition

(M, γ )
S� (M ′, γ ′)

is taut.
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Fig. 12 The smoothing inside A(γ )

To find S′, we proceed as follows, according to Gabai [6], Scharlemann [26] or Juhasz
[12]. Pick U = N (∂S) ∪ A(γ ) ⊂ ∂M . Pick a large enough k ∈ Z+ so that

x(−α + (k + 1)[R(γ )]) = x(−α + k[R(γ )]) + x(R(γ )),

where x(·) is the Thurston norm for classes in H2(M,U ). Pick a norm-minimizing
embedded surface which represents the class −α + k[R(γ )], and disregard all com-
ponents of it, which represent the zero homology class, then the remaining surface S′
is the desired one. Note

[∂S′] = −[∂S] + 2k · [γ ] ∈ H1(U ).

Here, it is 2k rather than k, because each copy of R(γ ) contributes 2[γ ].We can arrange
so that ∂S′ is obtained from −∂S and 2k copies of γ by an oriented smoothing as in
Fig. 12. From construction of S′, we know that the sutured manifold decomposition

(M, γ )
S′
� (M ′′, γ ′′)

is taut.
From the above construction of S′, we know that S ∩ γ = S′ ∩ γ . So, assume that

n = 1

2
|S ∩ γ | = 1

2
|S′ ∩ γ |.

Also, assume that ∂S ∩ R(γ ) (and thus ∂S′ ∩ R(γ )) has m closed components. Write
them as

B1 ∪ · · · ∪ Bm ⊂ ∂S ∩ R(γ ),

and orient Bi by the boundary orientation of S.Write S0 the surface obtained from S by
performing one negative stabilization on each Bi , and let S† be the surface obtained by
performing one positive stabilization on each Bi . By [11, Lemma 4.5], both S0 and S†

exist (i.e., the negative and positive stabilizations do exist). We also want to modify S′
correspondingly. Note part of ∂S′ is coming from −∂S, so positive stabilizations near
this part of ∂S′ corresponds to negative stabilizations on S. Thus, we perform positive
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Fig. 13 A positive stabilization on S′ followed by a double curve surgery

stabilizations on S′, in correspondence to the negative stabilizations performed on
S. Since ∂S′ contains many copies of ∂R(γ ) ⊂ A(γ ), when performing the positive
stabilizations to create intersections of Bi with γ , the isotopy also creates self intersec-
tions of S′. We then perform double curve surgeries, in the sense of Scharlemann [26],
to resolve all self intersections created by the positive stabilizations, and let S′

0 be the
resulting surface. See Fig. 13. On A(γ ), this double curve surgery behaves exactly in
the same way as the oriented smoothing that is depicted in Fig. 12. It is important that
we choose positive stabilizations to perform on S′, so the decomposition of (M, γ )

along S′
0 gives the same result as decomposing along S′:

(M, γ )
S′
0� (M ′′, γ ′′).

We can attach m + n copies of product 1-handle, as in Lemma 5.7, along the
intersections of S0 with γ . We require that the pair of intersection points created by
a negative stabilization on S are paired together by a product 1-handle. Let (M1, γ1)

be the resulting balanced sutured manifold. The surface S0 extends to a properly
embedded surface S1 ⊂ M1 as in Lemma 5.7.

The surface S′
0 can also extend, though in a slightly complicated way. As in Fig. 14,

in each product 1-handle, there is one (vertical) 2-dimensional 1-handle to be glued to
the part of ∂S′

0 that comes from −∂S, and 2k copies of (horizontal) 2-dimensional 1-
handles to be glued to the part of ∂S′

0 that corresponds to the k copies of ∂R(γ ).We can
perform a double curve surgery on those two collections of 2-dimensional 1-handles,
as in Fig. 14, and then glue the resulting surface to S′

0,when gluing the product 1-handle
to (M, γ ). In this way, S′

0 extends to a properly embedded surface S′
1 in (M1, γ1). Let

(M ′
1, γ

′
1) and (M ′′

1 , γ ′′
1 ) be obtained from (M1, γ1) by decomposing along S1 and S′

1,
respectively. (M ′′

1 , γ ′′
1 ) is taut by Lemma 5.7, since it is obtained from (M ′′, γ ′′) by

attaching a few product 1-handles, as indicated in Fig. 14. After decomposing along
S′
1, each product 1-handle is decomposed into (2n + 1) many product 1-handles that

are attached to (M ′′, γ ′′). In that figure, n = 3, and the six arcs in the right-subfigure
divides the original product 1-handle into 7 parts.

From the construction, we also know that

S′
1 ∩ R±(γ1) = −S1 ∩ R±(γ1),
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Fig. 14 Double curve surgery on a cross section of the product 1-handle. On the right: the 2-dimensional
1-handles after the double curve surgery will cut the original product 1-handle into 2k + 2 small ones

and S′
1 ∩ A(γ1) consists of 2k parallel copies of γ1. Now let

S1 ∩ R+(γ1) = B+,1 ∪ · · · ∪ B+,m ∪ C+,1 ∪ · · · ∪ C+,s (11)

S1 ∩ R−(γ1) = B−,1 ∪ · · · ∪ B−,m ∪ C−,1 ∪ · · · ∪ C−,t (12)

Here, B±,i are the boundary components of S1 that comes from attaching a product
1-handle along the pair of intersection points created by a negative stabilization on S
near Bi . Note s and t are not necessarily equal. Without loss of generality, we could
assume that s � t .

Note in order to obtain a closed surface from S1 inside a suitable closure of (M, γ ),
we need to require that s = t as in Sect. 2.3. However, we might have the possibility
that s > t . As explained at the beginning, we need to add (s − t) many copies of the
following standard piece (V , δ) into consideration.

Pick (V , δ) be a balanced sutured manifold where V = S1 × D2 is a solid torus
and δ consists of two longitudes. Let D ⊂ V be a standard meridian disk in V ,
which has two intersections with the suture δ. Let D0 be the surface obtained from D
by performing a negative stabilization, as shown in Fig. 15. It has four intersections
with the suture δ. Attach two product 1-handle along two pairs of points (p1, p4)
and (p2, p3), as labeled in the figure, and let the resulting balanced sutured manifold
be (V1, γ1). D0 extends to a properly embedded surface D1 as in Lemma 5.7. Note
D1 ∩ R+(δ1) has one components and D1 ∩ R−(δ1) has two components. Now we
want to construct another surface D′

1 inside V1. First, let D
′ be the result of a double

curve surgery of −D0 with k copies of R(δ). It is crucial that our choice of D0 makes
the sutured manifold decomposition

(V , δ)
D′
� (V ′′, γ ′′)

taut. We can check directly that V ′′ is a 3-ball and γ ′′ is a simple closed curve on
∂V ′′, and, hence, it is a product sutured manifold. Next, when attaching two product
1-handles to (V , δ), we repeat the procedure explained above, with whichwe construct
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Fig. 15 The balanced sutured manifold (V , δ) together with the surfaces D0 and D†

S′
1 out of S

′
0, and thus construct a properly embedded surface D′

1 inside V1 out of D
′
0.

It is straightforward to check that the decomposition of (V1, γ1) along D′
1 yields a

product sutured manifold (V ′′
1 , γ ′′

1 ).
So, we could form the disjoint union

(M2, γ2) = (M1, γ1) � (s − t)(V1, δ1), S2 = S1 ∪ (s − t)D1, S′
2 = S′

1 ∪ (s − t)D′
1.

Since the decomposition of (M1, γ1) along S′
1 is taut (as we have explained) and the

decomposition of (V1, γ1) along D′
1 is also taut (by a direct check), we know that the

decomposition of (M2, γ2) along S′
2 is taut. However, the decomposition along S2 is

not, as we will explain later.
Pick a connected auxiliary surface T for (M2, γ2) and form a pre-closure

M̃ = M2 ∪ [−1, 1] × T , ∂ M̃ = R+ ∪ R−, R± = R±(γ2) ∪ {±1} × T .

Since (M1, γ1) is obtained from (M, γ )by attachingproduct 1-handles, and (V1, δ1)
is itself a product sutured manifold, we know that M̃ is also a pre-closure of (M, γ ).
By construction, we know that

S2 ∩ R± = −S′
2 ∩ R±,

and there are same number of components of S2 ∩ R+ and S2 ∩ R−. Moreover, since
T is connected, the components of S2 ∩ R± represent linearly independent classes in
H1(R±). Thus, we could find an orientation preserving diffeomorphism h : R+ → R−
so that

h(S2 ∩ R+) = S2 ∩ R−,

and we can use M̃ as well as h to construct a closure (Y , R+) for both (M, γ ) and
(M2, γ2). Inside Y , S2 becomes a closed surface S̄.

Though there is no sutures on the boundary of M̃ , the theory of balanced sutured
manifolds in Kronheimer and Mrowka [17] extends to M̃ effectively. In particular, we
could define

SHM(M̃) = HM(Y |R+) = SHM(M, γ ) = SHM(M2, γ2).
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The surface S′
2 extends to a surface S̃′

2 ⊂ M̃ as the union of S′
2 with 2k copies of T .

Suppose (M̃ ′′, γ̃ ′′) is the result of the sutured manifold decomposition of M̃ along S̃′
2,

then (M̃ ′′, γ̃ ′′) can be obtained from (M ′′
2 , γ ′′

2 ) by attaching 2k+1 copies of the product
region T × [−1, 1]. Recall that (M ′′

2 , γ ′′
2 ) is obtained from (M2, γ2) by decomposing

along S′
2 and thus is the disjoint union of (M ′′

1 , γ ′′
1 ) with (s − t) copies of product

sutured manifolds (V ′′
1 , γ ′′

1 ). Furthermore, (M ′′
1 , γ ′′

1 ) is obtained from (M ′′, γ ′′) by
attaching a few product 1-handles, so we finally conclude that

SHM(M̃ ′′, γ̃ ′′) ∼= SHM(M ′′, γ ′′),

since attaching product regions (or product 1-handles), disjoint union with product
manifolds will never change the sutured monopole Floer homology.

Back to the point that (M̃ ′′, γ̃ ′′) is the decomposition of M̃ along S̃′
2. The decom-

position theorem, Proposition 6.9 in Kronheimer and Mrowka [17], continues to hold
in this case, and we conclude that SHM(M̃ ′′, γ̃ ′′) is a direct summand of SHM(M̃).
More precisely, S̃′

2 becomes a closed surface S̄′ ⊂ Y , and we have

SHM(M ′′, γ ′′) = SHM(M̃ ′′, γ̃ ′′) =
⊕

s∈S∗(Y |R+)

c1(s)[S̄′]=2g(S̄′)−2

~HM•(Y , s). (13)

We also want to identify the summand SHM(M ′, γ ′) inside SHM(M̃) =
SHM(M, γ ). We cannot proceed directly as we did for SHM(M ′′, γ ′′), since the
decomposition of M̃ along S2 is not taut. This is because the decomposition of (M, γ )

along S0 and (V , γ ) along D0 are both not taut, since, at the beginning, we picked
S0 and D0 by performing negative stabilizations (see Lemma 2.24). Let S† and D†

be obtained from S and D performing positive stabilizations instead of negative ones.
We can repeat the whole construction again with S0 and D0 replaced by S† and D†,
respectively. Attach m + n product 1-handle along the intersection points of ∂S† with
γ , and let (M†

1 , γ
†
1 ) be the result. There is a properly embedded surface S†1 ⊂ M†

1 .

Similarly, attach two product 1-handles to (V , γ ), and let (V †
1 , γ

†
1 ) be the result. Then,

there is a properly embedded surface D†
1 ⊂ V †

1 . We can form the disjoint union

(M†
2 , γ

†
2 ) = (M†

1 , γ
†
1 ) � (s − t)(V †

1 , γ
†
1 ), S†2 = S†1 ∪ (s − t)D†

1 .

Pick an auxiliary surface T † that has the same genus as T and form a pre-closure M̃†.
We can pick a suitable gluing diffeomorphism h† and obtain a closure (Y †, R†

+). Inside

Y †, the surface S†2 becomes a closed surface S̄†.The decomposition of M̃† along S†2
is taut. The argument that concludes (13) applies again, and we have

SHM(M ′, γ ′) =
⊕

s∈S∗(Y †|R†
+)

c1(s)[S̄†]=2g(S̄†)−2

~HM•(Y †, s). (14)
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Since g(T †) = g(T ), we know that g(R†
+) = g(R+). Thus, as in Subsection 2.2,

there is an excision cobordismW , from Y † ∪YT to Y , which induces an isomorphism

� : HM(Y †|R†
+) → HM(Y |R+).

Here, YT is a mapping torus of a diffeomorphism on R†
+, arising from h†, h, and

a suitable identification R†
+ = R+. The difference between the surfaces S̄† and S̄

originates from whether we performed positive or negative stabilizations. So, the
proof of Proposition 4.1 in Li [20] applies to the present context, and we know that
inside W ,

[S̄†] = [S̄] + [�1] + · · · [�m] + [�′
1] + · · · + [�′

s−t ].

Here, each�i or�′
j is a connected closed oriented surface of genus 2.�i corresponds

to a positive or negative stabilization on S, and�′
j corresponds to a positive or negative

stabilization on D. As a result of the adjunction inequality in Lemma 2.21, we have

SHM(M ′, γ ′) ⊂
⊕

s∈S∗(Y |R+)

c1(s)[S̄]�2g(S̄)−2−2(s−t)−2m

~HM•(Y , s). (15)

Finally, we argue that

SHM(M ′, γ ′) ∩ SHM(M ′′, γ ′′) = {0}.

Suppose not, then, from (13) and (15), there is a supporting spinc structure s ∈
S∗(Y |R+) so that

c1(s)[S̄] � 2g(S̄) − 2 − 2(s − t) − 2m, and c1(s)[S̄′] = 2g(S̄′) − 2.

From the construction, we know that

[S̄′] = −[S̄] + 2k · [R+] ⊂ H2(Y ).

Hence, the above equalities and inequalities imply

2g(S̄) − 2 − 2(s − t) − 2m + 2g(S̄′) − 2

� c1(s)[S̄] + c1(s)[S̄′] = 2k · [2g(R+) − 2],

which is equivalent to

χ(S̄) + χ(S̄′) + 2(s − t) + 2m � 2k · χ(R+). (16)

Now let us compute each of the three terms in (16) regarding the Euler characteristics.
First,χ(S̄) = χ(S2), and, by construction, S2 = S1�(s−t)D1. Furthermore, we know
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that S1 is obtained from S0 by attaching m + n copies of 2-dimensional 1-handles,
that S0 is isotopic to S, and that D1 is obtained from a disk D by attaching two copies
of 2-dimensional 1-handles. Thus, we conclude that

χ(S2) = χ(S) − (m + n) + (s − t)(−1) = χ(S) − (m + n) − (s − t).

Second, we know that χ(S̄′
2) = χ(S̃′

2), and

S̃′
2 = S′

1 ∪ D′
1 ∪ (2k) · T .

Note that there are m + n product 1-handles attached to (M, γ ), and, inside each
product 1-handle, there are (2k+1) copies of 2-dimensional 1-handles attached to S′.
Thus, we have that

χ(S′
1) = χ(S′) − (2k + 1)(m + n).

Similarly, we conclude that

χ(D′
1) = χ(D′) − 2(2k + 1).

Also, D′ is obtained by a double curve surgery on −D, which is a disk, with k copies
of R(δ), which is the disjoint union of two annuli. Thus, we conclude that

χ(S̄′) = χ(S′) − (m + n) − (s − t) + 2k · χ(T ) − 2k(m + n) − 4k(s − t).

Third, we know that

R+ = R+(γ1) ∪ (s − t) · R+(δ1) ∪ T .

Here, R+(γ1) is obtained from R+(γ ) by attaching m + n copies of 2-dimensional
1-handles, and R+(δ1) is obtained from R+(δ) (an annulus) by attaching 2 copies of
2-dimensional 1-handles. Thus, we know that

χ(R+) = χ(R+(γ )) + χ(T ) − (m + n) − 2(s − t).

Putting everything together, (16) is equivalent to

χ(S) + χ(S′) − 2n � 2k · χ(R+(γ )).

This directly contradicts Lemma 5.9, since, by definition, we have

n = 1

2
|S ∩ γ |.

��
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Lemma 5.9 Suppose (M, γ ), S and S′ are as above in Proposition 5.8, then

χ(S) + χ(S′) − |S ∩ γ | < 2k · χ(R+(γ )).

Proof This is exactly the inequality

χ(S) + χ(S′) + I (S) + I (S′) < r(S, t) + r(S′, t)

in the proof of [12, Theorem 6.1] by Juhász. It is by definition that

I (S) = I (S′) = −1

2
|S ∩ γ |,

and Juhász also proved in Theorem 6.1 that

r(S, t) + r(S′, t) = 2k · χ(R+(γ )).

Note 2k in this paper corresponds to k in his paper. ��
Remark 5.10 Note the assumption in Proposition 5.8 is slightly stronger than the
hypothesis of Theorem 6.1 in Juhász [12], i.e., we require both being reduced and
containing no essential product disks, while Juhász only required being reduced. The
difference between the two setups is some special family of balanced sutured mani-
folds, which are reduced but also contain essential product disks. By Lemma 2.13 in
[12], there are only two such balanced sutured manifolds, namely the product sutured
manifolds ([−1, 1] × F, {0} × ∂F), where F is a sphere with two or three disks
removed. It is also worth mentioning that the requirement of containing no essential
product disks. Clearly, the two special product sutured manifolds described above are
counterexamples to Theorem 6.1 in Juhász [12]. The small error made in the proof
of Theorem 6.1 in his paper is that, at some point, he used the assumption of being
reduced and applied Lemma 2.13 in [12] to rule out essential product disks from the
discussion, but he didn’t exclude the two special product sutured manifolds from the
hypothesis, where clearly Lemma 2.13 in [12] failed.

Corollary 5.11 Suppose (M, γ ) is a balanced sutured manifold with H2(M) = 0.
Suppose further that (M, γ ) is taut, horizontally prime, reduced, and free of essential
product disks. Then, the dimensions of PMa(M, γ ) and P Ia(M, γ ) (see Definition
5.4) are both dimQH2(M, ∂M;Q).

Proof We prove in the monopole settings. Pick any α ∈ H2(M, ∂M) so that α �= 0.
As in the proof of Proposition 5.8, we can find two properly embedded surfaces S and
S′ in M representing α and −α, a closure Y of (M, γ ) and suitable closed surfaces
S̄ and S̄′ originate from S and S′, respectively. Let b be a homogenous elements in
the top grading induced by S̄ and let c be a homogenous elements in the top grading
induced by S̄′. Suppose further that they are supported by spinc structures sb and sc
on Y . We know from the definition that

ρ(b, c)(α) = 1

2
[c1(sb) − c1(sc)](α).
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We claim that ρ(b, c)(α) �= 0. Suppose the contrary, then we know that

c1(sc)[S̄] = c1(sb)[S̄] � 2g(S̄) − 2 − 2(s − t) − 2m, (17)

and

c1(sc)[S̄′] = 2g(S̄′) − 2. (18)

Here, s, t,m are constants in the construction of S̄ and S̄′, as in the proof of Proposition
5.8. Then, formulae (17) and (18) lead to exactly the same contradiction as in the proof
of Proposition 5.8.

Since ρ(b, c)(α) �= 0 and α ∈ H2(M, ∂M) is chosen arbitrarily, we conclude that
the polytope PMa(M, γ ) must have maximal possible dimension. ��
Corollary 5.12 Suppose (M, γ ) is a taut balanced sutured manifold with H2(M) = 0.
Suppose further that (M, γ ) is free of essential horizontal surfaces, and is free of
non-trivial product disks or product annuli. Then

rk(SHM(M, γ )) � dimRH
2(M, ∂M;R) + 1

and

dimC(SHI(M, γ )) � dimRH
2(M, ∂M;R) + 1

Proof To have dimension d = dimRH2(M, ∂M;R), there must be at least d + 1
points inside the polytope and we are done. ��

Now we are ready to prove Theorem 1.2 as stated in the introduction.

Proof of Theorem 1.2 This is essentially the proof of Proposition 7.6 in Juhasz [12] but
carried out in the monopole or the instanton settings. We will present the proof in the
monopole settings, and the instanton case follows from a similar argument.

First suppose k = 0. By Proposition 2.16 and Proposition 2.18 in Juhász [12], we
can perform a sutured manifold decomposition on (M, γ ) to obtain (M ′, γ ′) that is
taut, reduced, and horizontally prime. By Lemma 5.1 in Juhász [12], H2(M ′) = 0. By
Proposition 6.6 in Kronheimer and Mrowka [17] and Lemma 5.6 in this paper,

1 � rk(SHM(M ′, γ ′)) � rk(SHM(M, γ )) < 2.

Hence, rk(SHM(M ′, γ ′)) = 1. By Proposition 5.8, this implies that H2(M ′, ∂M ′) =
0 and consequently, H1(∂M ′) = 0, which means ∂M ′ is a sphere. (H2(M ′) = 0
implies that ∂M ′ is connected.) Since M ′ is irreducible, M ′ must be a 3-ball, and γ ′
must be connected due to tautness. So, (M ′, γ ′) is a product sutured manifold and so
is (M, γ ). This implies that d(M, γ ) = 0.

Now we assume that the conclusion of the proposition holds for k − 1, and next,
we prove it for k. This part of the proof is exactly the same as in Juhász [12], so we
only sketch as follows: if (M, γ ) is not horizontally prime, then we could decompose
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along non-boundary-parallel horizontal surfaces and get a disjoint union of balanced
sutured manifolds. Each component has a sutured monopole Floer homology of rank
at most 2k , and thus inductive hypothesis applies and we conclude that d(M, γ ) � 2k.
If (M, γ ) is horizontally prime we can perform a sutured manifold decomposition to
make it reduced, and applying Proposition 5.8 to choose a suitable decomposition
surface so that a (second) sutured manifold decomposition along the chosen surface
will reduce the dimension by at least a half. Then, the inductive hypothesis applies,
and again we conclude that d(M, γ ) � 2k. This concludes the proof of theorem 1.2.

��
As a corollary to the above proposition, we offer a new proof to the fact that the

monopole and instanton knot Floer homology constructed byKronheimer andMrowka
[17] detects fibred knots in S3.

Corollary 5.13 Suppose K ⊂ S3 is a knot. Then, the following three things are equiv-
alent.

(1) rk(K HM(S3, K , g(K ))) = 1.
(2) rk(K H I (S3, K , g(K ))) = 1.
(3) K is a fibred knot.

Proof We only prove that (1) and (3) are equivalent. From Kronheimer and Mrowka
[17], we know that

K HM(S3, K ) = SHM(S3(K ), �μ)

where S3(K ) is the knot complement and �μ is the suture consisting of two meridians
on ∂S3(K ). Pick a minimal genus Seifert surface, S ⊂ S3 of K . We know that the
decomposition

(S3(K ), �μ)
S� (M, γ )

is taut, and

K HM(S3, K , g(K )) ∼= SHM(M, γ ).

Thus, the corollary follows from Theorem 1.2. ��
Proof of Corollary 1.5. By Lemma 7.10 in Xie and Zhang [28], we have an isomor-
phism

SHM(M, γ, T ) ∼= SH I (MT , γT ),

where (MT , γT ) is some balanced sutured manifold arising from the triple (M, γ, T )

as explained in Section 7 in [28], and SH I (MT , γT ) is the usual sutured instanton
Floer homology defined by Kronheimer and Mrowka in [17]. From the description of
MT in [28], we know that H2(MT ) = H2(M\T ) and hence Theorem 1.2 applies. ��
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6 Application to knots and links

6.1 Thurston-norm detection

In this subsection, we prove Theorem 1.18.We only work in themonopole settings and
the proof in the instanton settings is exactly the same. First, we need some preparations.

Lemma 6.1 Suppose (M, γ ) is a taut balanced sutured manifold so that M is
boundary-incompressible and the boundary of M consists of a few tori. Suppose fur-
ther that α ∈ H2(M, ∂M) is a non-zero second relative homology class. Then, there
is a properly embedded surface S ⊂ M with the following properties.

(1) [S, ∂S] = α ∈ H2(M, ∂M).

(2) χ(S) = −x(α).
(3) For any component � of ∂M, S ∩ � consists of a disjoint union of coherently

oriented non-separating simple closed curves on �.
(4) S is incompressible.

Proof Pick a surface S so that [S, ∂S] = α ∈ H2(M, ∂M), and x(S) = x(α). Since
M is irreducible, we can assume that there is no spherical component of S. We have
assumed that M is boundary-incompressible, so we can also assume that there is no
disk component of S. Thus, we have x(α) = x(S) = −χ(S).

To achieve condition (3) in the conclusion of the lemma, if a component α of ∂S
bounds a disk on ∂M , then we can cap off α using the disk it bounds on ∂M . Capping
off by a disk does not increase the norm, so we can assume that the surface S does not
have a boundary component that bounds a disk on ∂M .

Pick a component � of ∂M . By assumption, � is a torus. Since no component
of S ∩ � bounds a disk, we know that S ∩ � consists of a disjoint union of parallel
non-separating simple closed curves. If two components of S ∩ � are adjacent on �

but are oriented reversely, we can glue the annulus, which they co-bound on �, to
S. After possible compressions and throwing away any spherical or disk components
arising from the compression, we still call the resulting surface S. Note gluing annuli,
performing compressions, and throwing away spherical and disk components do not
increase the norm. Thus, we conclude the proof of Lemma 6.1. ��
Lemma 6.2 Suppose (M, γ ) is a taut balanced sutured manifold so that M is
boundary-incompressible, and the boundary of M consists of a few tori. Suppose
α ∈ H2(M, γ ) is a non-zero second relative homology class, and S is a properly
embedded surface inside M satisfying conditions (1)–(3) in Lemma 6.1. Then, the
decomposion of (M, γ ) along S is taut.

Proof Suppose the suturedmanifold decomposition of (M, γ ) along S yields (M ′, γ ′),
then we can regard M ′ as a submanifold of M . Suppose � is a component of ∂M ,
then by assumption, � is a torus. If � ∩ S = ∅, then � is also a component of ∂M .
Thus, we have

γ ′ ∩ � = γ ∩ �, and R±(γ ′) ∩ � = R±(γ ) ∩ V .
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Fig. 16 Left, before the decomposition. The vertical (blue) curves represent S, and the horizontal curves
represent �. The (red) dots represent the suture γ . Right, after the decomposition. The (red) dots represent
the suture γ ′. (Color figure online)

If�∩ S �= ∅, then ∂M ′ ∩� consists of a disjoint union of annuli, which, regardless
of the orientations, are bounded by pairs of parallel curves in ∂S ∩ �. Let A ⊂ � be
a component of ∂M ′ ∩ �. There are two cases, depending on the intersection of the
suture γ with the surface S. In both cases, it is straightforward to check how γ ′ looks
like.

Case 1. (S ∩ �) ∩ (γ ∩ �) = ∅. In this case, the annulus A possibly contains
multiple components of γ , and they remains in γ ′. Thus, A may contain either one or
three components of γ ′ (note γ ∩ � has two components), and each component of γ ′
is parallel to ∂A. See Fig. 16.

Case 2 (S ∩ �) ∩ (γ ∩ �) �= ∅. In this case, γ ∩ A consists of an even number of
essential arcs in A, and adjacent arcs are oriented oppositely. Then, after the decom-
position, A contains exactly one components of γ ′, and this component is parallel to
∂A. See Fig. 17.

Suppose A1, . . . , An are all the annular components of ∂M ′ ∩ ∂M that contain
three components of γ ′. Push the interiors of Ai into the interior of M ′ to make
them properly embedded. Then, we can perform a sutured manifold decomposition
on (M ′, γ ′), along the surface A1 ∪ · · · ∪ An , after the pushing off. The resulting
balanced sutured manifold (M ′′, γ ′′) is a disjoint union:

(M ′′, γ ′′) = (M ′′′, γ ′′′) ∪ (V1, γ
4
1 ) ∪ · · · ∪ (Vn, γ

4
n ).

Here, for i = 1, . . . , n, Vi is a framed solid torus and γ 4
i is the suture on ∂V consisting

of four longitudes. With Q coefficients, we know from Li [18] that

SHM(Vi , γ
4
i ) ∼= Q

2.
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Fig. 17 Left, before the decomposition. The two (blue) circles are the boundary of A. The (red) arcs
represent the suture γ . Right, after the decomposition. The two dashed circles are the boundary of A, and
the (red) solid curve represent the suture γ ′. (Color figure online)

From Proposition 6.9 in Kronheimer and Mrowka [17], we know

SHM(M ′, γ ′) ∼= SHM(M ′′, γ ′′) ∼= SHM(M ′′′, γ ′′′) ⊗Q Q
2n .

Thus, (M ′, γ ′) is taut if and only if (M ′′′, γ ′′′) is.
It is then suffice to prove that (M ′′′, γ ′′′) is taut. Note we can regard M ′′′ = M ′,

and, thus, we can assume

M ′′′ = M\int(N (S)).

Let S± be parallel copies of S in ∂N (S), then S± are part of the boundary of M ′′′.
Let �∂ be the union of components of ∂M which are disjoint from S, and let

F± = �∂ ∩ R±(γ ).

Then, we can describe R±(γ ′′′) as follows:

R±(γ ′′′) = F± � S±.

By assumption, both F± and S± are incompressible and norm-minimizing in M ,
hence they are also incompressible and norm-minimizing in M ′′′. The fact that M is
irreducible implies that M ′′′ is the same. Thus, we conclude the proof of lemma 6.2.

��
Corollary 6.3 Suppose (M, γ ) and S are the same as in the hypothesis of Lemma 6.2.
Then the decomposition of (M, γ ) along −S is also taut.

Proof of Theorem 1.18 For any α ∈ H2(M, ∂M), pick a surface S as in Lemma 6.1.
Then, by Corollary 6.3, the decomposition of (Y (L), �μ) along S and −S are both
taut. Suppose

n = 1

2
|S ∩ γ |,
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then we know, from condition (3) in the statement of Lemma 6.1, that

n =
r∑

i=1

|〈α,μi 〉|.

We possibly need to perform a stabilization on S to achieve admissibility. Suppose
the S+m is obtained from S by perform m many positive stabilizations on S. Here,
m = 0 or 1. Note m = 0 means that the original S is admissible, and we take S0 = S.
From Lemmas 2.21, 2.24, and 2.29, we know that

SHM(Y (L), �μ, S+m, gc) �= 0, and SHM(Y (L), �μ, S+m, i) = 0 for i > gc.

Here, we have gc = 1
2 (−χ(S) + n + m).

Similarly, we have

SHM(Y (L), �μ, (−S)+m, gc) �=0, and SHM(Y (L), �μ, (−S)+m, i) = 0 for i>gc.

Note (−S)+m = −(S−m), and, hence,

SHM(Y (L), �μ, S−m,−gc) = SHM(Y (L), �μ, (−S)+m, gc) �= 0,

and

SHM(Y (L), �μ, S−m, i) = 0 for i < −gc.

Applying proposition 4.1, we know that

SHM(Y (L), �μ, S+m,m − gc) = SHM(Y (L), �μ, (−S)−m, gc − m)

= SHM(Y (L), �μ, (−S)+m, gc)

�= 0,

and

SHM(Y (L), �μ, S+m, i) = 0 for i < m − gc.

From the definition of the function y(·) in Definition 1.17 and the construction of
the canonical decomposition of sutured monopole Floer homology in 5.4, we know
that

y(α) = max{i | SHM(Y (L), �μ, S+m , i) �= 0} − min{i | SHM(Y (L), �μ, S+m , i) �= 0}
= gc − (m − gc)

= 2gc − m

= −χ(S) + n + m − m

= x(α) +
r∑

i=1

|〈α,μi 〉|.
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This concludes the proof of Theorem 1.18. ��

Suppose L ⊂ S3 is a linkwith r components. Thenweknow thatH2(S3(L), ∂S3(L))
∼= Z

r . Thus there is aZr grading on K HM(S3, K ) and K H I (S3, K ), according to the
proof of lemma 5.2. Here K HM and K H I are the monopole and instanton knot Floer
homologies introduced by Kronheimer and Mrowka [17]. This leads to the following
question.

Question 6.4 Can we recover the multi-variable Alexander polynomial using the Zr

grading on K HM or K H I?

6.2 Minus version for links

Suppose Y is a closed oriented 3-manifold and L ⊂ Y is an oriented link. Let L1,
L2,…,Lr be the components of L . We assume further that each component of L is
null-homologous in Y . Thus, for i = 1, . . . , r , we can find (and fix) a Seifert surface
Si ⊂ Y for Li . Note Si possibly intersects with L j , for j �= i . Also, for i = 1, . . . , r ,
let pi ∈ Li be a fixed base point. Let p = (p1, . . . , pr ). In this subsection, we
construct minus versions of monopole and instanton knot Floer homologies for the
triple (−Y , L,p).

Remark 6.5 Here, we require that each component of L to be null-homologous, to fix
a Seifert surface for each component of the link. It is possible to weaken this condition
by simply requiring that the whole link L represents the zero class in H1(Y ) and fix
a Seifert surface S for it. The construction in this subsection can be easily adapted to
the more general setup.

LetY (L) = Y\N (L) be the knot complement and let Ti be the boundary component
of Y (L) corresponding to the knot Li . The Seifert surface Si induces a framing on Ti .
We call the longitude λi and the meridian μi . Note λi is oriented in the same way as
Li and μi is oriented so that λi · μi = 1 on ∂Y (L). For n = (n1, . . . , nr ) ∈ Z

r , let �n
be the suture on ∂Y (L) so that �n ∩ Ti consists of two parallel simple closed curves
of class ±[μi − nλi ]. We have the following lemma.

Remark 6.6 It seems that the choice of base points p does not appear in the above
set up. However, p helps to resolve the ambiguity arising from the choice of the link
complements. Since this issue is fully clarified in Baldwin and Sivek [1] and Li [20],
we won’t discuss on it anymore in this paper.

Remark 6.7 The construction in this subsection originates from [5]. The authors work
with knots and Heegaard Floer theory in their paper. A parallel construction for knots
was made in monopole and instanton theory by the second author in [20].

Lemma 6.8 Suppose n = (n1, . . . , nr ) ∈ (Z+)r . Let n′ be obtained from n by replac-
ing ni with ni + 1, and let n′′ be obtained from n by replacing ni with +∞, then there
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are exact triangles: (when all signs are positive or all signs are negative)

SHM(−Y (L),−�n)
ψ±,n,i

SHM(−Y (L),−�n′)

ψ±,n′,i
SHM(−Y (L),−�n′′)

ψ±,n′′,i

Here, ψ±,n,i are the map associated to a positive or negative by-pass attached to
Y (L), �n, which is performed on the boundary component Ti of Y (L). (See Sect. 2.4.)

There are similar exact triangles in the instanton settings.

Proof This is a direct application of Theorem 2.30. For more details, readers are
referred to Sect. 2 of Li [20]. ��

To use a better notation, for i = 1, . . . , r , let ei = (0, . . . , 1, . . . , 0) ∈ Z
r be the

vector whose entries are all 0 except of being 1 on the i-th place.

Lemma 6.9 For any n ∈ (Z+)r and i, j ∈ {1, . . . , r}, we have the following commu-
tative diagram:

SHM(−Y (L),−�n)
ψ−,n,i

ψ−,n, j

SHM(−Y (L),−�n+ei )

ψ−,n+ei , j

SHM(−Y (L),−�n+e j )
ψ−,n+e j ,i

SHM(−Y (L),−�n+ei+e j )

Proof When i = j , the diagram commutes obviously. Assume i �= j . As explained
in Subsection 2.4, the by-pass maps, ψ±,n,i , ultimately come from contact handle
attaching maps. Since the by-passes corresponding to vertical and horizontal maps
happen on different boundary components of Y (L), the corresponding contact handle
attachments commute, and so do the by-pass maps. ��

Definition 6.10 We define the minus version of monopole link Floer homology of a
based link L ⊂ −Y , which is denoted by KHM−(−Y , L,p), to be the direct limit of
the direct system

{ψ−,n,i : SHM(−Y (L), �n) → SHM(−Y (L), �n+ei ),n ∈ (Z+)r , i ∈ 1, . . . , r}.

We define KHI−(−Y , L,p) in a similar manner.
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Lemma 6.11 For any n ∈ (Z+)r and i, j ∈ {1, . . . , r}, we have the following com-
mutative diagram:

SHM(−Y (L),−�n)
ψ−,n,i

ψ+,n, j

SHM(−Y (L),−�n+ei )

ψ+,n+ei , j

SHM(−Y (L),−�n+e j )
ψ−,n+e j ,i

SHM(−Y (L),−�n+ei+e j )

There are similar commutative diagrams in the instanton settings.

Proof If i �= j , this follows from exactly the same argument as in the proof of Lemma
6.9. If i = j , this follows from the proof of the same type of commutative diagram in
the construction of minus versions for knots by the second author. See Corollary 2.22
in Li [20]. ��
Definition 6.12 For any fixed i ∈ {1, . . . , r}, The set of maps

{ψ+,n,i : SHM(−Y (L),−�n) → SHM(−Y (L),−�n+ei )}

induces a map

Ui : KHM−(−Y , L,p) → KHM−(−Y , L,p),

which we call the i-th. U map.
We define

Ui : KHI−(−Y , L,p) → KHI−(−Y , L,p)

in a similar manner.

Proposition 6.13 For any i, j ∈ {1, . . . , r}, the maps Ui and U j commute with each
other.

Proof The proof is exactly the same as the proof of Lemma 6.9. ��
Next, we construct a Zr grading on KHM−(−Y , L,p), based on the chosen Seifert

surfaces S1, . . . , Sr of L1, . . . , Lr .
Recall that L ⊂ Y has components L1, L2, . . . , Lr , and Li has a Seifert surface

Si that could possibly intersect other components of the link. By a slight abuse of
notation, let Si also denote the intersection of the original Seifert surface with the
link complement Y (L). Thus, the boundary of Si consists of a longitude on Ti and
a few (possibly none) meridians on Tj , for j �= i . For fixed i ∈ {1, . . . , r} and
n = (n1, . . . , nr ) ∈ (Z+)r , let Si,n be the isotopy of Si so that ∂Si,n has the least
possible intersections with the suture �n ⊂ ∂Y (L). This means that the longitudinal
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boundary component of Si,n intersects�n at 2ni points, and eachmeridional boundary
component of Si,n intersects �n at two points. Applying the construction of gradings
in Subsection 2.3, the surface Si,n, or its stabilizations, give rise to a grading on
SHM(−Y (L),−�n). We then have the following proposition.

Proposition 6.14 Fix any i ∈ {1, . . . , r} and n ∈ (Z+)r . If ni is even, then, for any
j ∈ Z, we have

ψ±,n,i (SHM(−Y (L),−�n, S
±
i,n, j)) ⊂ SHM(−Y (L),−�n+ei , Si,n+ei , j)

If ni is odd, then, for any j ∈ Z,

ψ±,n,i (SHM(−Y (L),−�n, S
±2
i,n , j)) ⊂ SHM(−Y (L),−�n+ei , S

±
i,n+ei

, j)

Furthermore, for any k �= i , the maps ψ±,n,k preserve the gradings associated to
Si,n and its stabilizations.

Similar statements hold for the instanton settings.

Proof For ψ±,n,i , the proof is exactly the same as the proof of Proposition 5.5 in Li
[20]. For ψ±,n,k with k �= i , note Si,n has a few meridional components on the Tk , so
the by-passes, which corresponds to the maps ψ±,n,k , can actually be made disjoint
from Si,n. ��

Similar to the constructions in Section 5 of Li [20], if ni is odd, let Sτ
i,n be just Si,n,

and if ni is even, let Sτ
i,n be a negative stabilization of Si,n performed near Ti . We can

use Sτ
i,n to define a grading on SHM(−Y (L), �n). We also need to perform a grading

shift. Let

SHM(−Y (L),−�n, S
τ
i,n, j){σi } = SHM(−Y (L),−�n, S

τ
i,n, j + �n

2
�),

where �x� is to take the maximal integer which is no larger than x .

Proposition 6.15 Using the grading SHM(−Y (L),−�n, Sτ
i,n, j){σi }, we can con-

struct a Z-grading on KHM−(−Y , L, p). The i-th U map, Ui , drops the grading
by 1, and all other U maps, Uk with k �= i , preserve the grading.

Furthermore, all Seifert surfaces, S1, . . . , Sr , together induce a Z
r grading on

KHM−(−Y , L, p), which we write as

KHM−(−Y , L, p, j).

Here, j ∈ Z
r denote a multi-grading. As a result, together with the commutativity

of all U maps in Proposition 6.13, there is an R[U1, . . . ,Ur ] module structure on
KHM−(−Y , L, p).

Similar results hold in the instanton settings.

Proof The first half of the proposition follows from Proposition 6.14, and the second
half of the proposition follows from the proof of Lemma 5.2. ��
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The first computable example is the case of unlinks.

Proposition 6.16 Suppose Y is a closed oriented 3-manifold and L ⊂ Y is an unlink
of r components, i.e., there exists an embedded disk Si ∼= D2, for each i ∈ {1, . . . , r},
so that ∂Si = Li , and all Si are disjoint from each other. Then,

KHM−(−Y , L, p) ∼= SHM(−Y (r),−δr ) ⊗R R[U1, . . . ,Ur ].

Here, p is a chosen set of base points, and (Y (r), δr ) is the balanced sutured manifold
obtained from Y by removing r disjoint 3-balls and picking one simple closed curve
on each spherical boundary of Y (r) as the suture.

Similar statements hold in the instanton settings.

Proof For any n ∈ (Z+)r , we know that (Y (L), �n) can be obtained from the disjoint
union

(Y (r), δr ) � (S3(L1), �n1) � · · · � (S3(Lr ), �nr )

by attaching r many contact 1-handles (see Definition 3.2). Each 1-handle connects
some (S3(Li ), �ni ) to (Y (r), δr ). As in Subsection 2.4, the by-pass maps ψ±,n,i can
be realized as contact handle attaching maps and those contact handles are disjoint
form the contact 1-handles just described above. Hence, under the isomorphism

SHM(−Y (L), �n) ∼= SHM(Y (r), δr )

⊗SHM(S3(L1), �n1) ⊗ · · · ⊗ SHM(S3(Lr ), �nr ),

we have an identification

ψ±,n,i = id ⊗ · · · ⊗ ψ±,ni ⊗ · · · ⊗ id,

where

ψ±,ni : SHM(−S3(Li ),−�ni ) → SHM(−S3(Li ),−�ni+1).

Hence, we are done. ��
Proposition 6.17 Under the above setups, the direct system stabilizes, that is, for any
fixed j ∈ Z, there exists N ∈ Z, so that for all i ∈ {1, . . . , r} and n = (n1, . . . , nr ) ∈
(Z+)r such that ni > N, we have an isomorphism

ψ−,n,i : SHM(−Y (L),−�n, S
τ
i,n, j){σi } ∼= SHM(−Y (L),−�n+ei , S

τ
i,n+ei , j){σi }.

Proof This follows from exactly the same argument as in the proof of Proposition 5.10
in Li [20]. ��
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Proposition 6.18 Under the above setups, there exists an integer N0, so that for any
fixed i ∈ {1, . . . , r} and any multi-grading j = ( j1, . . . , jr ) ∈ Z

r with ji < N0, the
map Ui restricts to an isomorphism

Ui : KHM−(Y , L, p, j) ∼= KHM−(Y , L, p, j − ei ).

Proof This follows from exactly the same argument as in the proof of Corollary 5.11
in Li [20]. ��
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