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Abstract
We unify two existing approaches to the tau invariants
in instanton and monopole Floer theories, by identi-
fying 𝜏G, defined by the second author via the minus
flavors KHI− and KHM− of the knot homologies, with
𝜏♯
G
, defined by Baldwin and Sivek via cobordism maps

of the 3-manifold homologies induced by knot surgeries.
We exhibit several consequences, including a relation-
ship with Heegaard Floer theory, and use our result to
compute KHI− and KHM− for twist knots.
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1 INTRODUCTION

Among the Floer invariants of 3-manifolds, it is now known that various flavors of Heegaard Floer
homology, monopole Floer homology, and embedded contact homology are isomorphic, while
their relationship with instanton Floer homology remains a major open question.
The relationships between Floer invariants of knots in 3-manifolds are even less understood:

Knot instanton Floer homology is not known to be isomorphic to the other knot homologies, and
while it is known that the usual knot monopole Floer homology is isomorphic to the hat flavor
of knot Heegaard Floer homology (tensored with the mod-2 Novikov field) as graded modules
over [11, 17, 22, 37]:

KHM(𝑌,𝐾;) ≅ ĤFK(𝑌,𝐾; 𝔽2) ⊗ , (1.1)
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no analogous statement is known for the more powerful minus flavor of knot Heegaard Floer
homologyHFK−(𝑌,𝐾; 𝔽2), which is a gradedmodule over 𝔽2[𝑈] rather than 𝔽2. In fact, theminus
flavors KHM− and KHI− of knot monopole and instanton Floer homologies have been defined
only recently by the second author [26] using contact handle attachment maps of sutured man-
ifolds, based on work of Baldwin and Sivek [3] and inspired by work of Etnyre, Vela-Vick, and
Zarev [13]. As such, many basic structural properties of KHM− and KHI− are yet unknown.
For example, a key property ofHFK− for knots𝐾 ⊂ 𝑆3 is its unique 𝔽2[𝑈]-summand, the nega-

tive of whosemaximal Alexanderℤ-grading is a concordance invariant 𝜏H(𝐾). † In fact, 𝜏H defines
a homomorphism 𝜏H ∶  → ℤ from the smooth concordance group . Moreover, |𝜏H(𝐾)| also
gives a lower bound on the smooth 4-genus g4(𝐾). More generally, 𝜏H can be defined for null-
homologous knots 𝐾 in a connected, oriented, closed 3-manifold 𝑌, with a choice of a Seifert
surface 𝑆. Inspired by this, the second author [26] similarly defines 𝜏M(𝑌, 𝐾, 𝑆) and 𝜏I(𝑌, 𝐾, 𝑆) to
be the negative‡ of the maximal Alexander ℤ-grading of the non-𝑈-torsion elements of KHM−

and KHI−. § However, for knots 𝐾 ⊂ 𝑆3, these have not been shown to be concordance invariants
or to give 4-genus bounds.
In a different approach to the tau invariants, Baldwin and Sivek [6] define a concordance invari-

ant 𝜈♯
I
using cobordism maps between the framed instanton Floer homology I♯ of 𝑆3 and of the

integer surgeries 𝑆3
𝑛(𝐾) along 𝐾, and homogenize 𝜈♯

I
to obtain a concordance invariant 𝜏♯

I
. ¶ They

show that |𝜏♯
I
(𝐾)| ⩽ g4(𝐾), and that 2𝜏♯

I
gives a homomorphism 2𝜏♯

I
∶  → ℝ that is, in fact, a

slice-torus invariant, as defined by Lewark [23] following Livingston [27]; however, defined via a
homogenization process, 𝜏♯

I
is not known to be an integer (or even a rational number). Nonethe-

less, these properties of 𝜏♯
I
are sufficient for Baldwin and Sivek to use to determine I♯ of all nonzero

rational surgeries on 20 of the 35 nontrivial prime knots in 𝑆3 through eight crossings, and estab-
lish several other results. While it is not explicitly stated, a concordance invariant 𝜏♯

M
can be

similarly defined in themonopole Floer theory, via the tilde flavor H̃M(𝑆3
𝑛(𝐾);). By construction,

𝜏♯
I
and 𝜏♯

M
are defined only for knots 𝐾 ⊂ 𝑆3.

This article represents the natural first step in understanding the structures ofKHM− andKHI−

and their comparisons with HFK−. In the following, we shall replace the subscriptsM and I (for
“monopole” and “instanton”) in 𝜏M and 𝜏I by the subscript G (for “gauge-theoretic”) in 𝜏G, when
the statement applies to both theories. To begin, our main theorem identifies the tau invariants,
answering the question posed in (a previous version of) [6].

Theorem 1.2. For all knots 𝐾 ⊂ 𝑆3, we have 𝜏G(𝐾) = 𝜏♯
G
(𝐾).

We immediately have the following corollaries in the instanton setting.

Corollary 1.3. For all knots 𝐾 ⊂ 𝑆3, the invariant 𝜏♯
I
(𝐾) is an integer. In other words, 𝜏♯

I
defines a

homomorphism 𝜏♯
I
∶  → ℤ.

† Technically, 𝜏H —usually simply denoted 𝜏 —may depend on the coefficient ring. In this article, we always take 𝜏H(𝐾)

to mean 𝜏H(𝐾; 𝔽2).
‡ There is no negative sign in Definition 2.5 because we have reversed the orientation of the ambient 3-manifold there.
§When 𝑌 = 𝑆3, we abbreviate these by 𝜏M(𝐾) and 𝜏I(𝐾).
¶ In [6], 𝜏♯

I
is simply denoted as 𝜏♯; we add the subscript I to separate it from the monopole version 𝜏♯

M
.
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Corollary 1.4 (cf. [6, Proposition 5.4]). For all knots 𝐾 ⊂ 𝑆3, we have |𝜏I(𝐾)| ⩽ g4(𝐾).

Asmentioned above, Baldwin and Sivek [6, Theorem 1.6] show that 2𝜏♯
I
is a slice-torus invariant,

and use this to show that 𝜏♯
I
(𝐾) agrees with g4(𝐾) when 𝐾 is quasi-positive. Moreover, as Lewark

[23] proves that slice-torus invariants agreewith the negative of the signature for alternating knots,
they obtain 𝜏♯

I
(𝐾) = −𝜎(𝐾)∕2 for such knots.† Lewark also proves that the values of all slice-torus

invariants agree on homogeneous knots, which gives 𝜏♯
I
(𝐾) = 𝜏H(𝐾) for such knots.

In the monopole setting, the statements in the preceding paragraph can be readily proved for
𝜏♯
M
also. Thus, Theorem 1.2 immediately implies the following for knots in 𝑆3.

Corollary 1.5 (cf. [6, Theorem 1.6]). The invariant 2𝜏G is a slice-torus invariant. If 𝐾 is a quasi-
positive knot, then 𝜏G(𝐾) = g4(𝐾). If 𝐾 is an alternating knot, then 𝜏G(𝐾) = −𝜎(𝐾)∕2. If 𝐾 is a
homogeneous knot, then 𝜏G(𝐾) = 𝜏H(𝐾).‡

In fact, in the monopole setting, we can strengthen this last statement to hold for all knots.

Theorem 1.6. For all knots 𝐾 ⊂ 𝑆3, we have 𝜏M(𝐾) = 𝜏H(𝐾).

Proof. Baldwin and Sivek [6, Section 10] detail how the Heegaard Floer 𝜏H invariant can also be
expressed as the homogenization of a concordance invariant coming from surgeries, as explained
to them by Jennifer Hom. (One may reasonably denote such an invariant by 𝜏♯

H
.) They then use

this to show that if

dimℂ I♯(𝑌; ℂ) = dim𝔽2
ĤF(𝑌; 𝔽2)

holds for all 𝑌 obtained via integer surgery along a knot in 𝑆3, then 𝜏♯
I
(𝐾) = 𝜏♯

H
(𝐾) = 𝜏H(𝐾) for

all 𝐾 ⊂ 𝑆3 [6, Proposition 1.24]. The exact same proof can be adapted to show that if

rk H̃M(𝑌;) = dim𝔽2
ĤF(𝑌; 𝔽2) (1.7)

holds for all 𝑌 obtained via integer surgery, then 𝜏♯
M
(𝐾) = 𝜏♯

H
(𝐾) = 𝜏H(𝐾). But (1.7) is simply

the isomorphism between monopole and Heegaard Floer homologies for 3-manifolds [11, 17, 37].
Thus, our claim follows from Theorem 1.2. □

The significance of Theorem 1.6 is that it represents the first step toward proving the
generalization of the isomorphism between KHM and ĤFK in (1.1) to theminus flavor.

Conjecture 1.8. Let 𝑌 be a connected, oriented, closed 3-manifold, and let 𝐾 ⊂ 𝑌 be an oriented,
nullhomologous knot. Then there is an isomorphism of graded modules over[𝑈]:

KHM−(𝑌,𝐾;) ≅ HFK−(𝑌,𝐾; 𝔽2) ⊗ [𝑈].

†We follow the convention where the right-handed trefoil has signature −2.
‡ These facts combined show that 𝜏I = 𝜏H for all prime knots through nine crossings, except possibly 942, 944, and 948.
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Corollary 1.5 has another implication, as pointed out to the authors by Steven Sivek.

Corollary 1.9. Suppose that Λ ⊂ (𝑆3, 𝜉std) is a Legendrian knot of smooth knot type 𝐾, then

𝑡𝑏(Λ) + ||𝑟(Λ)|| ⩽ 2𝜏G(𝐾) − 1.

Proof. Consider the positive and negative transverse push-offs Θ±(Λ), which have self-linking
numbers 𝑠𝑙(Θ±(Λ)) = 𝑡𝑏(Λ) ∓ 𝑟(Λ), respectively. By [6, Theorem 6.1], 𝑠𝑙(Θ) ⩽ 2𝜏♯

G
(𝐾) − 1 for all

transverse representatives Θ of 𝐾. ([6, Theorem 6.1] is a statement for 𝜏♯
I
, but the same argument

works for 𝜏♯
M
.) Thus, the result follows from Theorem 1.2. (Note that [6, Theorem 6.1] is, in fact,

the key ingredient in proving that 𝜏♯
I
(𝐾) = g4(𝐾) for quasi-positive knots 𝐾.) □

Remark 1.10. The analogous statement that

𝑡𝑏(Λ) + ||𝑟(Λ)|| ⩽ 2𝜏H(𝐾) − 1, (1.11)

first proved by Plamenevskaya [35], implies Corollary 1.9 for 𝜏M via Theorem 1.6.

Below, we describe the strategy to prove Theorem 1.2. To simplify our notation, we first set up
some conventions for the rest of the article.

Conventions

The coefficient ring formonopole Floer homologies is always taken to be themod-2 Novikov field,
and that for instanton Floer homologies is always taken to be the field ℂ of complex numbers. In
both cases, we shall denote the coefficient ring by . Similar to 𝜏G, we shall denote both SHM

and SHI by SHGwhen a statement applies to both suturedmonopole and sutured instanton Floer
homologies, and likewise denote by KHG (resp. KHG−) the knot monopole and instanton Floer
homologies KHM (resp. KHM−) and KHI (resp. KHI−).

1.1 Strategy

The astute reader may have noticed that we did not state the concordance invariance of 𝜏G, or
its additivity under connected sum, as a corollary of Theorem 1.2. The reason is that, in order to
prove Theorem 1.2, we shall, in fact, first prove the concordance invariance of 𝜏G.

Proposition 1.12. For all knots 𝐾 ⊂ 𝑆3, the integer 𝜏G(𝐾) is a concordance invariant.

To establish Proposition 1.12, we shall also prove the key property that KHG− has a unique
[𝑈]-summand (also known as an infinite 𝑈-tower) for knots 𝐾 ⊂ 𝑆3, analogous to HFK−:

Proposition 1.13. For all knots 𝐾 ⊂ 𝑆3, KHG−(𝑆3, 𝐾) has a unique[𝑈]-summand.

After establishing Proposition 1.12, we shall turn to the additivity of 𝜏G under connected sum.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 5 of 53

F IGURE 1 The twist knots 𝐾𝑚 and 𝐾𝑚. In Section 6, we shall perform surgery along the curve 𝜁 in the proof
of Theorem 1.16.

Proposition 1.14. For all pairs of knots 𝐾1, 𝐾2 ⊂ 𝑆3, we have 𝜏G(𝐾1 ♯ 𝐾2) = 𝜏G(𝐾1) + 𝜏G(𝐾2).

The rest of the proof of Theorem 1.2 can be described roughly as follows. Recall that KHG−

is defined in terms of a directed system of SHG of the knot complement 𝑆3(𝐾) with sutures
Γ𝑛, over different values of 𝑛, where Γ𝑛 denotes a pair of parallel sutures on the boundary
torus with 𝑛 full twists. First, using bypass and surgery exact triangles involving −𝑆3(𝐾), we
reformulate 𝜏G in terms of the twisting coefficient 𝑛0 for which SHG of −𝑆3(𝐾) with −Γ𝑛0

sutures uniquely attains minimum rank. (This is conceptually similar to Baldwin and Sivek’s
notion of V-shaped knots.) Next, noting that whether the inequality rk SHG(−𝑆3(𝐾), −Γ𝑛+1) >

rk SHG(−𝑆3(𝐾), −Γ𝑛) holds is equivalent to the (non-)vanishing of certain surgery cobordism
maps involving−𝑆3(𝐾), further analysis using surgery exact triangles allows us to relate 𝜏G to the
(non-)vanishing of surgery cobordism maps involving I♯ or H̃M of −𝑆3

−𝑛(𝐾), and thence to 𝜈♯
G
,

giving the inequality

2𝜏G(𝐾) − 1 ⩽ 𝜈♯
G
(𝐾) ⩽ 2𝜏G(𝐾) + 1

whenever 𝜈♯
G
(𝐾) ≠ 0. A homogenization argument, using the fact that 𝜏G is a concordance

homomorphism, completes the proof.

1.2 Examples

Let 𝐾𝑚 ⊂ 𝑆3 be the twist knot with a positive clasp and𝑚 negative full twists (or −𝑚 positive full
twists if𝑚 < 0), and let 𝐾𝑚 denote its mirror image; see Figure 1. (In the notation of Baldwin and
Sivek [6], their 𝐾𝑛 corresponds to our 𝐾−𝑛∕2 when 𝑛 is even, and to our 𝐾(𝑛+1)∕2 when 𝑛 is odd.)
Baldwin and Sivek [6] compute†

𝜈♯
I
(𝐾𝑚) =

{
0 for𝑚 ⩽ 0,

1 for𝑚 > 0,
𝜈♯
I
(𝐾𝑚) =

{
0 for𝑚 ⩽ 0,

−1 for𝑚 > 0,
(1.15)

† They only compute half of these, but the antisymmetry of 𝜈♯
I
under mirroring gives the other half.
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6 of 53 GHOSH et al.

and use it to fully determine dimℂ I♯(𝑆3
𝑝∕𝑞

(𝐾𝑚)). One can also compute 𝜏♯
I
(𝐾𝑚) (and hence 𝜏♯

I
(𝐾𝑚))

as follows: Since twist knots are alternating, [6, Corollary 1.10] says that 𝜏♯
I
(𝐾𝑚) = −𝜎(𝐾𝑚)∕2, and

the signature 𝜎(𝐾𝑚) can be directly computed from the 2 × 2 Seifert matrix. This gives

𝜏♯
I
(𝐾𝑚) =

{
0 for𝑚 ⩽ 0,

1 for𝑚 > 0,
𝜏♯
I
(𝐾𝑚) =

{
0 for𝑚 ⩽ 0,

−1 for𝑚 > 0.

(One can also use (1.15) to compute 𝜏♯
I
(𝐾𝑚) without computing 𝜎(𝐾𝑚), using [6, Theorem 3.7,

Proposition 5.4, and Corollary 1.10].) With this in hand, to illustrate Theorem 1.2, we provide a
direct and complete computation of KHG−(−𝑆3, 𝐾𝑚) and 𝜏G for this infinite family.

Theorem 1.16. We abbreviate by the[𝑈]-module[𝑈]∕𝑈, and denote Alexander gradings by
subscripts, and direct sums by superscripts.

(1) For𝑚 ⩽ 0, we have

KHG−(−𝑆3, 𝐾𝑚) ≅ KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]0 ⊕ −𝑚
1 ⊕ −𝑚

0 ,

𝜏G(𝐾𝑚) = 𝜏G(𝐾𝑚) = 0.

(2) For𝑚 > 0, we have

KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]1 ⊕ 𝑚−1
1 ⊕ 𝑚

0 , KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]−1 ⊕ 𝑚
1 ⊕ 𝑚−1

0 ,

𝜏G(𝐾𝑚) = 1, 𝜏G(𝐾𝑚) = −1.

1.3 Future work

As this article represents the first step in our major goal to understand the structures of KHG−,
we present here some open questions that arise naturally from our discussion.
First, while Corollary 1.5 gives 𝜏G(𝐾) for all alternating knots𝐾 ⊂ 𝑆3, onemay reasonably hope

to fully determine KHG−(𝑆3, 𝐾) for such 𝐾. Indeed, we do so in Theorem 1.16 for twist knots,
which are alternating. In knot Heegaard Floer homology, if 𝐾 is alternating with signature 𝜎 =

𝜎(𝐾), and symmetrized Alexander polynomial Δ𝐾(𝑡) =
∑

𝑖 𝑎𝑖 ⋅ 𝑡
𝑖 , then

HFK−(𝑆3, 𝐾; 𝔽2) ≅ 𝔽2[𝑈]𝜎
2
⊕

⎛⎜⎜⎝
⨁
𝑖⩽ 𝜎

2

(𝔽2[𝑈]∕𝑈)
|𝑏𝑖|−1

𝑖

⎞⎟⎟⎠ ⊕
⎛⎜⎜⎝
⨁
𝑖< 𝜎

2

(𝔽2[𝑈]∕𝑈)
|𝑏𝑖|
𝑖

⎞⎟⎟⎠,
where 𝑏𝑖 =

∑
𝑗⩾0 𝑎𝑖+𝑗; see [29], and also [33, Corollary 10.3.2].

Question 1.17. Is there an analogous formula forKHG−(𝑆3, 𝐾) for alternating knots𝐾, or at least
two-bridge knots 𝐾?
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 7 of 53

Another question is the mirroring of knots. It follows from our work that if 𝐾 is the mirror of
𝐾, then 𝜏G(𝐾) = −𝜏G(𝐾). In knot Heegaard Floer homology, one has the following more precise
formula: If

HFK−(𝑆3, 𝐾; 𝔽2) ≅ 𝔽2[𝑈]−𝜏 ⊕

(
𝑘⨁

𝑖=1

(𝔽2[𝑈]∕𝑈)
𝑛𝑖
𝑠𝑖

)
,

then

HFK−(𝑆3, 𝐾; 𝔽2) ≅ 𝔽2[𝑈]𝜏 ⊕

(
𝑘⨁

𝑖=1

(𝔽2[𝑈]∕𝑈)
𝑛𝑖
𝑛𝑖−𝑠𝑖

)
,

where 𝜏 = 𝜏H(𝐾); see [31, Section 3.5], and also [33, Proposition 7.4.3].

Question 1.18. Is there an analogous formula for KHG−(𝑆3, 𝐾) in terms of KHG−(𝑆3, 𝐾)?

Aside from symmetry, there are questions concerning the behavior of KHG− under crossing
changes and with respect to skein relations. In particular, if𝐾− is the result of changing a positive
crossing in 𝐾+ to a negative crossing, then there exists graded 𝔽2[𝑈]-module maps

𝐶−∶ HFK−(𝑆3, 𝐾+) → HFK−(𝑆3, 𝐾−), 𝐶+ ∶ HFK−(𝑆3, 𝐾−) → HFK−(𝑆3, 𝐾+),

such that 𝐶−◦𝐶+ and 𝐶+◦𝐶− is each equal to multiplication by 𝑈. Exploiting this, Alishahi and
Eftekhary [1] define a 𝑈-torsion order invariant 𝔩(𝐾) that gives a lower bound on the unknot-
ting number 𝑢(𝐾). A generalized version is used by Juhász, Miller, and Zemke [16] to obtain an
obstruction to connected knot cobordisms with a given number of local maxima.

Question 1.19. Are there analogous maps for KHG−(𝑆3, 𝐾+) and KHG−(𝑆3, 𝐾−), and conse-
quently a 𝑈-torsion order invariant in knot instanton and monopole Floer theory?

Note that a positive answer to Question 1.19 would imply that 0 ⩽ 𝜏G(𝐾+) − 𝜏G(𝐾−) ⩽ 1, a fact
that can be deduced from Corollary 1.5; see [27, Corollary 3].
In regard to the oriented skein relation, Kronheimer and Mrowka [19, Theorem 3.1] prove that

KHI satisfies an exact triangle relating 𝐾+, 𝐾−, and their oriented resolution 𝐾0. The analogous
relation in knot Heegaard Floer homology is satisfied by both ĤFK and HFK− [32], and like its
instanton counterpart, has proved to be a very useful tool. One may thus ask:

Question 1.20. Does KHI− satisfy an oriented skein relation?

In order to answer Question 1.20, one must necessarily generalize the definition of KHI− to
links with multiple components. This has been carried out by the first and second authors [14,
Section 6.2], who define KHG−(𝑌, 𝐿) for nullhomologous links 𝐿 ⊂ 𝑌.

Question 1.21. Can 𝜏G be generalized to a multiset of values for links 𝐿 ⊂ 𝑌, and if so, what
properties does it satisfy?
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8 of 53 GHOSH et al.

The analogous notion in knot Heegaard Floer theory is that of the 𝜏H-set of a link [10, 15, 33].
Notably, Hedden and Raoux [15, Theorem 2] prove that the 𝜏H-set of a link 𝐿 ⊂ 𝑌 satisfy many
interesting properties previously known for 𝜏H(𝑆3, 𝐾), including concordance invariance in 𝑌,
crossing-change inequalities in 𝑌, 4-genus bounds in 𝑌, and, in the case 𝐿 ⊂ 𝑆3 = 𝜕𝑊 where 𝑊

is a definite 4-manifold, an inequality for surfaces in𝑊 bound by 𝐿.
Finally, we turn to Legendrian knot invariants. For a Legendrian knot Λ ⊂ (𝑌, 𝜉) of smooth

knot type 𝐾, Baldwin and Sivek [5, 7] define a class ̂M(Λ) ∈ KHM(−𝑌,𝐾), and show it to be
equivalent to the LOSS invariant ̂H(Λ) ∈ ĤFK(−𝑌,𝐾).† Notably, their work implies that ̂H

gives an obstruction to the existence of exact Lagrangian cobordisms betweenLegendrian knots—
without adjectives such as decomposable or regular—for which there is currently no proof purely
in Heegaard Floer theory. On the other hand, ̂H has a generalization H(Λ) ∈ HFK−(−𝑌,𝐾),
which is a non-𝑈-torsion class that is mapped to ̂H(Λ) under the natural map HFK−(−𝑌,𝐾) →

ĤFK(−𝑌,𝐾). Etnyre, Vela-Vick, and Zarev [13] place H in the context of HFK− as the limit
of a directed system of SFH; following this strategy, we may also define a Legendrian invariant
M(Λ) ∈ KHM−(−𝑌,𝐾), which is mapped to ̂M(Λ) under the natural map KHM−(−𝑌,𝐾) →

KHM(−𝑌,𝐾). By the naturality in monopole Floer theory [2], M is a well-defined class — and
not only a class defined up to isomorphism— in KHM−(−𝑌,𝐾).

Question 1.22. Is the Legendrian invariant M(Λ) ∈ KHM−(−𝑌,𝐾) effective in distinguishing
Legendrian knots, or in obstructing exact Lagrangian cobordisms?

1.4 Organization

We review the definitions ofKHG−, 𝜏G, and 𝜏♯
G
in Section 2. In Section 3, we prove Proposition 1.13

and Proposition 1.12, establishing that 𝜏G is a concordance invariant; in Section 4, we prove Propo-
sition 1.14, the additivity of 𝜏G. We then carry out the argument described in Section 1.1 to prove
Theorem 1.2, identifying the tau invariants in Section 5. Finally, we compute KHG− and 𝜏G for
twist knots in Section 6, proving Theorem 1.16.

2 PRELIMINARIES

2.1 𝐊𝐇𝐆 and naturality

In this article, we shall focus on oriented, based knots (𝐾, 𝑝) ⊂ 𝑆3 and (𝐾, 𝑝) ⊂ −𝑆3. As in [2,
Section 8], by the knot complement 𝑆3(𝐾) and the meridional sutures Γ𝜇, we mean the following:
Let 𝐷2 be the unit disk in the complex plane with boundary 𝑆1 = 𝜕𝐷2, and let 𝜑∶ 𝑆1 × 𝐷2 → 𝑆3

be an embedding such that 𝜑(𝑆1 × {0}) = 𝐾 and 𝜑({1} × {0}) = 𝑝; then

(𝑆3(𝐾), Γ𝜇) = (𝑆3 ⧵ Int(Im(𝜑)), 𝜇+
𝜑 ∪ −𝜇−

𝜑 ),

where 𝜇±
𝜑 is the oriented meridian 𝜑({±1} × 𝜕𝐷2) on 𝜕𝑆3(𝐾). Of course, this definition does not

quite make sense yet, as it depends on the choice of 𝜑. In work of Kronheimer and Mrowka [20],

† For Λ ⊂ (𝑆3, 𝜉std), the Alexander grading of ̂H(±Λ) is (𝑡𝑏(Λ) ∓ 𝑟(Λ) + 1)∕2, which offers another proof of (1.11).
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 9 of 53

the balanced sutured manifold (𝑆3(𝐾), Γ𝜇) is used to construct the knot instanton and monopole
Floer homologies:†

KHG(𝑆3, 𝐾, 𝑝) = SHG(𝑆3(𝐾), Γ𝜇).

The sutured instanton and monopole Floer homologies SHG(𝑀, 𝛾), defined in general for bal-
anced suturedmanifolds (𝑀, 𝛾), themselves depend on the choice of a closure, a closed 3-manifold
𝑌 obtained by gluing an auxiliary piece to (𝑀, 𝛾) and then identifying the remaining boundary
components, together with a distinguished surface 𝑅 ⊂ 𝑌. Kronheimer and Mrowka assign mod-
ules to each such closure, and show that these modules are all isomorphic. By refining the notion
of closures, Baldwin and Sivek [2] prove that there are, in fact, canonical isomorphisms relating
these modules — well defined up to multiplication by a unit in  — and use them to build a
projectively transitive system𝐒𝐇𝐆 for balanced sutured manifolds. By abuse of notation, whenever
we write SHG in the sequel, we shall mean the canonical module associated to 𝐒𝐇𝐆.‡
Coming back to KHG(𝑆3, 𝐾, 𝑝), while the definition of (𝑆3(𝐾), Γ𝜇) above depends on 𝜑, Bald-

win and Sivek [2, Proposition 8.2] further prove that there are canonical isomorphisms relating
𝐒𝐇𝐆 of the sutured manifolds (𝑆3(𝐾), Γ𝜇) constructed using different embeddings 𝜑 and 𝜑′. This
proof hinges on the fact that the basepoint 𝑝 is fixed, and explains the notation KHG(𝑆3, 𝐾, 𝑝).
Once again, this leads to a projectively transitive system 𝐊𝐇𝐆(𝑆3, 𝐾, 𝑝), and we shall take
KHG(𝑆3, 𝐾, 𝑝) to mean the associated canonical module.

2.2 𝐊𝐇𝐆− and 𝝉𝐆

In this subsection, we recall the construction of KHG− and 𝜏G by the second author [26].
Let 𝑆 ⊂ 𝑆3 be an oriented, minimal-genus Seifert surface of𝐾. The surface 𝑆 induces a framing

on the boundary of the knot complement 𝑆3(𝐾) and hence longitude 𝜆 (whose orientation agrees
with that of𝐾). Let 𝜑∶ 𝑆1 × 𝐷2 → 𝑆3 be as before, with 𝜑(𝑆1 × {0}) = 𝐾 and 𝜑({1} × {0}) = 𝑝; then
define the balanced sutured manifold

(𝑆3(𝐾), Γ𝑛) = (𝑆3 ⧵ Int(Im(𝜑)), 𝜆+
𝜑,𝑛 ∪ −𝜆−

𝜑,𝑛),

where 𝜆+
𝜑,𝑛 is the oriented longitude 𝜑({𝑒𝑖𝑡 × 𝑒𝑖(−𝑛𝑡)}𝑡∈[0,2𝜋)), and 𝜆−

𝜑,𝑛 is the oriented longitude
𝜑({𝑒𝑖𝑡 × 𝑒𝑖(−𝑛𝑡+𝜋)}𝑡∈[0,2𝜋)), on 𝜕𝑆3(𝐾). Note that Γ𝑛 ⊂ 𝜕𝑆3(𝐾) is the union of two disjoint, parallel,
oppositely oriented simple closed curves of slope −𝑛 (or, equivalently, of class ±([𝜆] − 𝑛[𝜇]) ∈

𝐻1(𝜕𝑆
3(𝐾))). Like (𝑆3(𝐾), Γ𝜇), the sutured manifold (𝑆3(𝐾), Γ𝑛) depends on the choice of 𝜑. By

an argument similar to that of [2, Proposition 8.2], there are canonical isomorphisms relating 𝐒𝐇𝐆

of (𝑆3(𝐾), Γ𝑛) constructed using different embeddings 𝜑 and 𝜑′.
Note that, while our exposition so far focuses on (𝑆3(𝐾), Γ𝜇) and (𝑆3(𝐾), Γ𝑛), a similar con-

struction gives the balanced suturedmanifolds (−𝑆3(𝐾), −Γ𝜇) and (−𝑆3(𝐾), −Γ𝑛), which we shall
use extensively.

† The basepoint 𝑝 is omitted in the Kronheimer–Mrowka definition.
‡ Technically, the canonical module is only defined for an honestly (i.e., not projectively) transitive system; for projectively
transitive systems, one would only obtain a module modulo multiplication by a unit in, which is only a set. Instead, we
choose to interpret SHG as an actual-module, whose elements are well defined only up to multiplication by a unit in.
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10 of 53 GHOSH et al.

To define KHG−, maps 𝜓𝑛
±,𝑛+1

are defined in [26],† which fit into a commutative diagram

(2.1)

Each horizontal row forms a directed system of -modules.‡ (Note that we choose to work pri-
marily with (−𝑆3(𝐾), −Γ𝑛) instead of (𝑆3(𝐾), Γ𝑛), because the definition of 𝜓𝑛

±,𝑛+1
makes use of a

contact element 𝜙𝜉 ∈ SHG(−𝑀,−𝛾) [3, 4], defined for a contact structure 𝜉 on (𝑀, 𝛾).)

Definition 2.2 [26, Definition 5.4]. The minus knot monopole or instanton Floer homology
KHG−(−𝑆3, 𝐾, 𝑝) is the direct limit of the directed system in (2.1), which is an-module whose
elements are well defined up tomultiplication by a unit in. The collection ofmaps {𝜓𝑛

+,𝑛+1
}𝑛∈ℤ+

defines a map on the direct limit

𝑈∶ KHG−(−𝑆3, 𝐾, 𝑝) → KHG−(−𝑆3, 𝐾, 𝑝),

which gives KHG−(−𝑆3, 𝐾, 𝑝) an[𝑈]-module structure.

In the following paragraphs, we describe the grading on KHG−(−𝑆3, 𝐾, 𝑝). Our description
shall be brief; for more details, see [26, Section 3 and 4].
Fix the balanced sutured manifold (−𝑆3(𝐾), −Γ), where Γ is either Γ𝜇 or Γ𝑛 for some 𝑛. Now

realize 𝑆 as a properly embedded surface (𝑆, 𝜕𝑆) ⊂ (−𝑆3(𝐾), −𝜕(𝑆3(𝐾)); then 𝜕𝑆 ∩ Γmust consist
of exactly 2𝑘 points for some 𝑘. The realization of 𝑆 as 𝑆, in fact, involves a choice, corresponding to
the value of 𝑘. By isotoping 𝑆 near its boundary, one could create a new pair of intersection points
with Γ; this is called the positive or negative stabilization of 𝑆 depending on the isotopy. We denote
by 𝑆𝑞 (resp. 𝑆−𝑞) the result of performing 𝑞 positive (resp. negative) stabilizations on 𝑆. (When
𝑞 = 1, we also denote these by 𝑆±.) It is proved [26, Theorem3.4] that (𝑆, 𝜕𝑆) ⊂ (−𝑆3(𝐾), −𝜕𝑆3(𝐾))

induces a ℤ-grading on SHG(−𝑆3(𝐾), −Γ) whenever 𝜕𝑆 intersects Γ at 2𝑘 points, where 𝑘 is odd,
and a formula [26, Proposition 4.9] is given that relates theℤ-gradings associated to Seifert surfaces
related by stabilizations: For all 𝑟 ∈ ℤ, we have

SHG(−𝑆3(𝐾), −Γ, 𝑆𝑞+2𝑟, 𝑖) ≅ SHG(−𝑆3(𝐾), −Γ, 𝑆𝑞, 𝑖 + 𝑟), (2.3)

where SHG(−𝑆3(𝐾), −Γ, 𝑆, 𝑖) denotes the summand in grading 𝑖 ∈ ℤ.
Now fix (−𝑆3(𝐾), −Γ𝑛) for some 𝑛. Since the longitude 𝜆 is the boundary of the Seifert surface 𝑆,

and Γ𝑛 is of class ±([𝜆] − 𝑛[𝜇]), it follows that 𝑆 has a realization (𝑆𝑛, 𝜕𝑆𝑛) ⊂ (−𝑆3(𝐾), −𝜕𝑆3(𝐾))

such that 𝜕𝑆𝑛 ∩ Γ𝑛 consists of exactly 2𝑛 points. Then, for 𝑛 odd (resp. even), we obtainℤ-gradings

† Technically, these maps are well defined only up tomultiplication by a unit in, for the same reason as before. Here and
in the rest of the article, we say that 𝑓 = g if the maps 𝑓 and g on SHG (or consequentlyKHG−) agree up to multiplication
by a unit in. In particular, (2.1) commutes up to multiplication by a unit in.
‡As before, this is really a directed system of “-modules whose elements are well defined only up to multiplication
by a unit in .” One could take the alternative viewpoint of choosing an honest -module representative for each
SHG(−𝑆3(𝐾), −Γ𝑛) by specifying an embedding 𝜑 and a closure (𝑌, 𝑅); however, more work would be necessary to take
care of the fact that 𝜓𝑛

±,𝑛+1
is only well defined (up to multiplication by a unit) for “compatible” closures of (−𝑆3(𝐾), Γ𝑛)

and (−𝑆3(𝐾), Γ𝑛+1), which necessarily have auxiliary pieces of the same genus.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 11 of 53

induced by the surfaces 𝑆𝑛 (resp. 𝑆−
𝑛 ); for brevity, wewrite 𝑆𝜏(𝑛)

𝑛 for 𝑆𝑛 when 𝑛 is odd, and 𝑆−
𝑛 when

𝑛 is even; that is, 𝜏(𝑛) = 0 or−1. For (−𝑆3(𝐾), −Γ𝜇), we obtain aℤ-grading induced by the surface
𝑆𝜇 that intersects Γ𝜇 at exactly 2 points.
It is then proved [26, Propositions 5.5 and 5.6] that, after an appropriate grading shift†

𝜎(𝑛) =
𝑛 − 1 − 𝜏(𝑛)

2
, (2.4)

themaps 𝜓𝑛
−,𝑛+1

in the directed system in (2.1) become grading-preservingmaps, that is, they each
decompose into maps

𝜓𝑛
−,𝑛+1 ∶ SHG

(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , 𝑖

)
[𝜎(𝑛)] → SHG

(
−𝑆3(𝐾), −Γ𝑛+1, 𝑆

𝜏(𝑛+1)
𝑛+1

, 𝑖
)

[𝜎(𝑛 + 1)]

for 𝑖 ∈ ℤ. Thus, the Seifert surface 𝑆 induces a ℤ-grading on KHG−(−𝑆3, 𝐾, 𝑝), known as the
Alexander grading. The maps 𝜓𝑛

+,𝑛+1
, and hence the action of 𝑈 on KHG−, is then of degree −1.

For knots inside 𝑆3 or −𝑆3, the Alexander grading is independent of the choice of the Seifert
surface 𝑆; we shall therefore suppress 𝑆 from the notation. Thus, we obtain a decomposition

KHG−(−𝑆3, 𝐾, 𝑝) =
⨁
𝑖∈ℤ

KHG−(−𝑆3, 𝐾, 𝑝, 𝑖),

where KHG−(−𝑆3, 𝐾, 𝑝, 𝑖) denotes the summand in Alexander grading 𝑖 ∈ ℤ.
Inspired by the tau invariant in knot Heegaard Floer homology defined by Ozsváth and Szabó

[30], we have the following definition.

Definition 2.5 [26, Definition 5.7]. For a knot 𝐾 ⊂ 𝑆3, the instanton or monopole tau invariant is
defined as

𝜏G(𝐾) = max {𝑖 ∈ ℤ | there is a homogeneous, non-𝑈-torsion element 𝑥 ∈ KHG−(−𝑆3, 𝐾, 𝑝, 𝑖)}.

(Here, a non-𝑈-torsion element 𝑥 is one such that 𝑈𝑗𝑥 ≠ 0 for all 𝑗 ⩾ 0.)

In the sequel, we shall often compute the rank of KHG−(−𝑆3, 𝐾, 𝑝, 𝑖) in a specific Alexander
grading 𝑖 ∈ ℤ as an-module. We claim that this completely determines the-module isomor-
phism type of KHG−(−𝑆3, 𝐾, 𝑝, 𝑖): For KHI−, this is clear, since the module is a vector space over
ℂ. For KHM−, our claim is a consequence of the following lemma.

Proposition 2.6. For any based knot (𝐾, 𝑝) in 𝑆3 and any 𝑖 ∈ ℤ, the-moduleKHM−(−𝑆3, 𝐾, 𝑝, 𝑖)

is free and of finite rank.

Proof. From [26, Proposition 5.10], we know that there exists a sufficiently large 𝑛 ∈ ℤ, such that

KHM−(−𝑆3, 𝐾, 𝑝, 𝑖) ≅ SHM(−𝑆3(𝐾), −Γ𝑛, 𝑆
𝜏(𝑛)
𝑛 , 𝑗)

for some 𝑗 ∈ ℤ, which shows that the-module is of finite rank. (Here, 𝑖 might not be equal to 𝑗

because of the grading shift in the definition of KHM− that we mentioned earlier.)

† The difference between this and the formula for 𝜎(𝑛) on [26, p. 1401] is due to a typographical error in the cited article.
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12 of 53 GHOSH et al.

To prove that it is free, recall that by work of Kronheimer and Mrowka [20, Lemma 4.9],
for a balanced sutured manifold (𝑀, 𝛾) and a coefficient ring  of characteristic 0, we have an
isomorphism of-modules

SHM(𝑀, 𝛾;) ≅ SHM(𝑀, 𝛾; Γ𝜂) ≅ SHM(𝑀, 𝛾; ℤ) ⊗ℤ , (2.7)

which respects the grading. (Here, Γ𝜂 denotes a local system whose fiber at every point is, and
is unrelated to the sutures Γ𝜇 and Γ𝑛.) Sivek [36, Section 2.2] extends SHM to mod-2 coefficients,
which gives the isomorphism analogous to (2.7) for the Novikov ring of characteristic 2. □

To simplify notation, we shall omit the basepoint 𝑝 from the notation involving KHG− in the
sequel; however, we emphasize again that the basepoint is a necessary input for naturality results
that allow KHG− to be well defined.

2.3 𝝉♯

𝐆

We now recall the definition of 𝜏♯
G
by Baldwin and Sivek [6]. For simplicity of notation, we first

focus on 𝜏♯
I
. First, for a knot𝐾 ⊂ 𝑆3, let𝑁(𝐾) be the smallest integer𝑛 ⩾ 0 forwhich the cobordism

map
I♯(𝑋𝑛, 𝜈𝑛)∶ I♯(𝑆3) → I♯(𝑆3

𝑛(𝐾))

vanishes, where 𝑋𝑛 is the trace of 𝑛-surgery along 𝐾, and 𝜈𝑛 (unrelated to 𝜈♯
I
) is some properly

embedded surface in 𝑋𝑛.

Definition 2.8 [6, Definition 3.5]. For a knot 𝐾 ⊂ 𝑆3, define 𝜈♯
I
(𝐾) ∈ ℤ by the equation

𝜈♯
I
(𝐾) = 𝑁(𝐾) − 𝑁(𝐾).

It is proved [6, Theorem 3.7] that 𝜈♯
I
(𝐾) depends only on the smooth concordance class of 𝐾,

and satisfies the smooth 4-genus bound|||𝜈♯
I
(𝐾)

||| ⩽ max(2g4(𝐾) − 1, 0).

It is then shown [6, Theorem 5.1] that 𝜈♯
I
defines a quasi-morphism from the smooth concordance

group  to ℤ, that is, that 𝜈♯
I
satisfies

|||𝜈♯
I
(𝐾1 ♯ 𝐾2) − 𝜈♯

I
(𝐾1) − 𝜈♯

I
(𝐾2)

||| ⩽ 1

for all knots 𝐾1, 𝐾2 ⊂ 𝑆3, and subsequently make the following definition:

Definition 2.9. For a knot 𝐾 ⊂ 𝑆3, define 𝜏♯
I
(𝐾) ∈ ℝ as the homogenization

𝜏♯
I
(𝐾) =

1

2
lim
𝑛→∞

𝜈♯
I
(♯ 𝑛𝐾)

𝑛
.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 13 of 53

One then has [6, Proposition 5.4] that this concordance invariant defines a group homomor-
phism 𝜏♯ ∶  → ℝ and satisfies the smooth 4-genus bound

|||𝜏♯
I
(𝐾)

||| ⩽ g4(𝐾).

Finally, 𝜏♯
M
(𝐾) can be defined completely analogously, where 𝑁(𝐾) would instead be the

smallest integer 𝑛 ⩾ 0 such that the cobordism map

H̃M(𝑋𝑛)∶ H̃M(𝑆3) → H̃M(𝑆3
𝑛(𝐾))

vanishes.

3 CONCORDANCE INVARIANCE OF 𝝉𝐆

In this section, we prove the corcordance invariance of 𝜏G, establishing Proposition 1.12. Through-
out the section, we have a knot 𝐾 ⊂ 𝑆3 and the sutures Γ𝑛 and Γ𝜇 on 𝜕𝑆3(𝐾), as described in the
previous section.
Fix 𝑛 ∈ ℤ+; on 𝜕𝑆3(𝐾), we pick ameridional curve 𝛼 such that 𝛼 intersects the sutures Γ𝑛 twice.

Let [−1, 0] × 𝜕𝑆3(𝐾) ⊂ 𝑆3(𝐾) be a collar of 𝜕𝑆3(𝐾) inside the knot complement 𝑆3(𝐾), and endow
a [−1, 0]-invariant tight contact structure on [−1, 0] × 𝜕𝑆3(𝐾), so that each slice {𝑡} × 𝜕𝑆3(𝐾) for
𝑡 ∈ [−1, 0] is convex and the dividing set is (isotopic to) Γ𝑛. By the Legendrian Realization Prin-
ciple, we can push 𝛼 into the interior of the collar [−1, 0] × 𝜕𝑆3(𝐾) and get a Legendrian curve 𝛽.
With respect to the surface framing, the curve 𝛽 has 𝑡𝑏 = −1. (When talking about framings of 𝛽,
we will always refer to the surface framing with respect to 𝜕𝑆3(𝐾).)
Following Baldwin and Sivek [3], since 𝛼 intersects the sutures Γ𝑛 twice, after making 𝛼 Leg-

endrian, we can glue a contact 2-handle to (𝑆3(𝐾), Γ𝑛) along 𝛼, and get a new balanced sutured
manifold (𝑀, 𝛾). Suppose that (𝑌, 𝑅) is a closure of (𝑆3(𝐾), Γ𝑛) in the sense of Kronheimer and
Mrowka [20] such that g(𝑅) is sufficiently large; then, by work of Baldwin and Sivek [5], we know
that a closure (𝑌0, 𝑅) of (𝑀, 𝛾) can be obtained from (𝑌, 𝑅) by performing 0-surgery along the
curve 𝛽. Note that, inside 𝑌, 𝛽 is disjoint from 𝑅, and so, the surgery can be made disjoint from 𝑅;
this means that the surface 𝑅 survives in 𝑌0. Now let (𝑀−1, Γ𝑛) be the balanced sutured manifold
obtained from (𝑆3(𝐾), Γ𝑛) by performing a (−1)-surgery along 𝛽. Note that 𝛽 is contained in the
interior of 𝑆3(𝐾), and so, the surgery does not affect the boundary or the sutures.
Clearly, if we perform (−1)-surgery along 𝛽 on 𝑌, we will get a closure (𝑌−1, 𝑅) of the balanced

suturedmanifold (𝑀−1, Γ𝑛). The surgery exact triangle proved by Kronheimer, Mrowka, Ozsváth,
and Szabó [21, Theorem 2.4], generalized to the sutured setting, gives the exact triangle

Remark 3.1. Compared to the one in [21], the surgery exact triangle here seems to go in the reverse
direction; this is because the orientations on the sutured manifolds have been reversed.
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14 of 53 GHOSH et al.

We now determine that (𝑀, 𝛾) and (𝑀−1, Γ𝑛) are familiar balanced sutured manifolds. First,
(𝑀, 𝛾) is obtained from (𝑆3(𝐾), Γ𝑛) by attaching a contact 2-handle along a meridional curve 𝛼,
and so, it is nothing but (𝑆3(1), 𝛿), where 𝑆3(1) is obtained from 𝑆3 by removing a 3-ball, and 𝛿

is a connected simple closed curve on the spherical boundary of 𝑆3(1). For (𝑀−1, Γ𝑛), note that 𝛽
and 𝐾 are inside the 3-sphere 𝑆3, and 𝛽 is a meridian around 𝐾. Thus, (−1)-surgery along 𝛽 on
𝑆3(𝐾) will result in the same 3-manifold 𝑆3(𝐾), while the framing on its boundary will increase
by 1. In other words, we have (𝑀−1, Γ𝑛) ≅ (𝑆3(𝐾), Γ𝑛−1). (Recall that the slope of Γ𝑛 is −𝑛). Thus,
the above exact triangle becomes

(3.2)

Lemma 3.3. Denote by 𝑡𝑏(𝐾) the maximal Thurston–Bennequin number among all Legendrian
representatives Λ ⊂ (𝑆3, 𝜉std) of the smooth knot type 𝐾. If 𝑛 ⩾ −𝑡𝑏(𝐾), then the map 𝐶ℎ,𝑛 is
surjective, and hence,

rk SHG(−𝑆3(𝐾), −Γ𝑛) = rk SHG(−𝑆3(𝐾), −Γ𝑛−1) + 1. (3.4)

Proof. Since 𝑛 ⩾ −𝑡𝑏(𝐾), we can isotope 𝐾 to a Legendrian Λ ⊂ (𝑆3, 𝜉std) with 𝑡𝑏(Λ) = −𝑛. We
can remove a standard Legendrian neighborhood of Λ; then the dividing set on the boundary of
the complement is the sutures Γ𝑛. Hence, when we glue back a contact 2-handle, we get (𝑆3(1), 𝛿)

with the standard tight contact structure. By work of Baldwin and Sivek [3, 4], we know that the
corresponding contact element is a generator of

SHG(−𝑆3(1), −𝛿) ≅ .

Since the contact 2-handle attaching map 𝐶ℎ,𝑛 preserves the contact element, we see that 𝐶ℎ,𝑛 is
surjective. □

We now digress to prove that there is a unique[𝑈]-summand in KHG−(𝑆3, 𝐾).

Proof of Proposition 1.13. Suppose that 𝑆 is a minimal-genus Seifert surface of 𝐾, and let g = g(𝑆).
The main portion of this proof will be to show that a pattern emerges for SHG(−𝑆3(𝐾), −Γ𝑛) for
sufficiently large 𝑛, with gradings taken into account. More precisely, we shall use bypass exact
triangles to show that the rank of SHG(−𝑆3(𝐾), −Γ2g+𝑘) increases by a fixed positive integer 𝑟

whenever the nonnegative integer 𝑘 increases by 1, as expressed in the following: For 𝑘 odd, we
have

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆2g+𝑘, 𝑖)

≅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for 𝑖 > 2g + (𝑘 − 1)∕2,

SHG(−𝑆3, −Γ2g , 𝑆
−
2g

, 𝑖 − (𝑘 − 1)∕2) for (𝑘 + 1)∕2 ⩽ 𝑖 ⩽ 2g + (𝑘 − 1)∕2,

𝑟 for − (𝑘 − 1)∕2 ⩽ 𝑖 ⩽ (𝑘 − 1)∕2,

SHG(−𝑆3, −Γ2g , 𝑆
−
2g

, 𝑖 + (𝑘 + 1)∕2) for − 2g − (𝑘 − 1)∕2 ⩽ 𝑖 ⩽ −(𝑘 + 1)∕2,

0 for 𝑖 < −2g − (𝑘 − 1)∕2;

(3.5)
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 15 of 53

while for 𝑘 even, we have

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
−
2g+𝑘

, 𝑖)

≅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for 𝑖 > 2g + 𝑘∕2,

SHG(−𝑆3, −Γ2g , 𝑆
−
2g

, 𝑖 − 𝑘∕2) for 𝑘∕2 + 1 ⩽ 𝑖 ⩽ 2g + 𝑘∕2,

𝑟 for − 𝑘∕2 + 1 ⩽ 𝑖 ⩽ 𝑘∕2,

SHG(−𝑆3, −Γ2g , 𝑆
−
2g

, 𝑖 + 𝑘∕2) for − 2g − 𝑘∕2 + 1 ⩽ 𝑖 ⩽ −𝑘∕2,

0 for 𝑖 < −2g − 𝑘∕2 + 1.

(3.6)

To begin, as described in [26, p. 1360], the maps 𝜓𝑛
±,𝑛+1

fit into bypass exact triangles proved by
Baldwin and Sivek [8, Theorem 1.21]:

(3.7)

(Note that (3.7) is, in fact, two different bypass exact triangles, one for positive bypasses and one
for negative bypasses, written together. The same is true for (3.8) and (3.9) below.) Examining the
proof of [26, Proposition 5.5], one obtains the graded versions of the exact triangles above: Let 𝑆𝑛

and 𝑆𝜇, as well as their positive and negative stabilizations, be as in Section 2.2; then, for 𝑛 odd,
we have

(3.8)

while for 𝑛 even, we have

(3.9)

We shall in general be applying (3.8) and (3.9) with 𝑛 = 2g + 𝑘, where 𝑘 > 0. The key observa-
tion is that the homology group in the bottom rows of (3.8) and (3.9) is zero for many gradings 𝑖,
which give us an isomorphism in the top row. Precisely, it is well known (e.g., see [20]) that for|𝑖| > g ,

SHG(−𝑆3(𝐾), −Γ𝜇, 𝑆𝜇, 𝑖) = 0,
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16 of 53 GHOSH et al.

and so by the grading shift in (2.3), for 𝑘 odd, we have

SHG(−𝑆3(𝐾), −Γ𝜇, 𝑆
−2g−𝑘+1
𝜇 , 𝑖) = 0 for 𝑖 < −g + (g + (𝑘 − 1)∕2) = (𝑘 − 1)∕2,

SHG(−𝑆3(𝐾), −Γ𝜇, 𝑆
2g+𝑘−1
𝜇 , 𝑖) = 0 for 𝑖 > g + (−g − (𝑘 − 1)∕2) = −(𝑘 − 1)∕2;

thus, the positive (resp. negative) bypass exact triangle in (3.8) splits for 𝑖 < (𝑘 − 1)∕2 (resp. 𝑖 >

−(𝑘 − 1)∕2), and we obtain, for 𝑖 < (𝑘 − 1)∕2,

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆2g+𝑘, 𝑖) ≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆
+
2g+𝑘−1

, 𝑖)

≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆
−
2g+𝑘−1

, 𝑖 + 1),
(3.10)

where the last isomorphism follows also from (2.3), and for 𝑖 > −(𝑘 − 1)∕2,

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆2g+𝑘, 𝑖) ≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆
−
2g+𝑘−1

, 𝑖). (3.11)

Similarly, for 𝑘 even, the positive and negative bypass exact triangles in (3.9), respectively, give,
for 𝑖 − 1 < (𝑘 − 2)∕2 (i.e., for 𝑖 < 𝑘∕2),

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
−
2g+𝑘

, 𝑖) ≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
+
2g+𝑘

, 𝑖 − 1)

≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆
2
2g+𝑘−1

, 𝑖 − 1)

≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆2g+𝑘−1, 𝑖),

(3.12)

and for 𝑖 > −(𝑘 − 2)∕2 = −𝑘∕2 + 1,

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
−
2g+𝑘

, 𝑖) ≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆
−2
2g+𝑘−1

, 𝑖)

≅ SHG(−𝑆3(𝐾), −Γ2g+𝑘−1, 𝑆2g+𝑘−1, 𝑖 − 1).
(3.13)

Now for 𝑘 odd, by setting 𝑛 = 2g + 𝑘 in [28, Theorem 2.21 (1)], we see that the -module
SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆2g+𝑘, 𝑖) is supported only in gradings −2g − (𝑘 − 1)∕2 ⩽ 𝑖 ⩽ 2g + (𝑘 −

1)∕2. This, together with (3.12) and (3.13), implies that for 𝑘 even, SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
−
2g+𝑘

, 𝑖)

is supported only in gradings −2g − 𝑘∕2 + 1 ⩽ 𝑖 ⩽ 2g + 𝑘∕2. We call these the possible gradings.
Therefore, in essence, what (3.10) and (3.12) say is that the summands of SHG(−𝑆3(𝐾), −Γ2g+𝑘)

in the bottom 2g + 𝑘 − 1 possible gradings are respectively isomorphic to the summands of
SHG(−𝑆3(𝐾), −Γ2g+𝑘−1) in the bottom 2g + 𝑘 − 1 possible gradings (possibly with a grad-
ing shift), and (3.11) and (3.13) give the analogous statement for the top 2g + 𝑘 − 1 possible
gradings. (Since SHG(−𝑆3(𝐾), −Γ2g+𝑘−1) has 4g + 𝑘 − 1 possible gradings, this means that
summands in 2(2g + 𝑘 − 1) − (4g + 𝑘 − 1) = 𝑘 − 1 “middle” gradings are “sampled” twice.) As
SHG(−𝑆3(𝐾), −Γ2g+𝑘) has 4g + 𝑘 possible gradings, these isomorphisms completely determine
SHG(−𝑆3(𝐾), −Γ2g+𝑘) in terms of SHG(−𝑆3(𝐾), −Γ2g+𝑘−1), except in the case 𝑘 = 1, wherein the
middle grading SHG(−𝑆3(𝐾), −Γ2g+1, 𝑆2g+1, 0) is not determined. Simply letting

𝑟 = rk SHG(−𝑆3(𝐾), −Γ2g+1, 𝑆2g+1, 0),

we establish (3.5) and (3.6) by inducting on 𝑘.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 17 of 53

Now, taking 𝑘 to be sufficiently large, (3.4) implies that the integer 𝑟 must, in fact, be 1. Thus,
for a fixed grading 𝑖 = −g − 𝑚 ⩽ −g , we have that

SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆
𝜏(2g+𝑘)
2g+𝑘

, 𝑖)[𝜎]

≅

{
SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆

𝜏(2g+𝑘)
2g+𝑘

, −𝑚 + (𝑘 − 1)∕2) if 𝑘 is odd,
SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆

𝜏(2g+𝑘)
2g+𝑘

, −𝑚 + 𝑘∕2) if 𝑘 is even,

≅ 

whenever 𝑘 ⩾ 𝑚 + 1, where the last isomorphism follows from (3.5) and (3.5). By definition, this
means that

KHG−(−𝑆3, 𝐾, 𝑖) ≅ 

for all 𝑖 ⩽ −g . Finally, this together with [26, Corollary 5.11] implies that there is a submodule
(and at most one such submodule) in KHG−(−𝑆3, 𝐾) isomorphic to [𝑈]. Since  is a field in
our context, we conclude that it is, in fact, a unique[𝑈]-summand. □

In the following, we will continue to denote by g the genus g(𝐾) of a knot 𝐾.
Strictly speaking, we did not have to prove Proposition 1.13 for the arguments of this section.

Its significance, however, is that it explains the definition of 𝜏G as a natural, unique definition for
knots in 𝑆3.
Having proved that KHG−(−𝑆3, 𝐾) has a unique[𝑈]-summand, we now return to the main

setup of the section to prove the concordance invariance of 𝜏G. Our next major goal is to rechar-
acterize 𝜏G in terms of the (non-)vanishing of a map onKHG−(−𝑆3, 𝐾) induced by the maps 𝐶ℎ,𝑛.
We begin with the following lemma.

Lemma 3.14. The maps

𝐶ℎ,𝑛 ∶ SHG(−𝑆3(𝐾), −Γ𝑛) → SHG(−𝑆3(1), −𝛿),

which appear in the exact triangle (3.2), induce a surjective map

𝐶ℎ ∶ KHG−(−𝑆3, 𝐾) → SHG(−𝑆3(1), −𝛿).

Furthermore, 𝐶ℎ commutes with the action of𝑈 on KHG−(−𝑆3, 𝐾).

Proof. The lemma follows from Lemma 3.3 and the following two commutative diagrams, one for
positive bypasses and one for negative bypasses:

To prove these commutative diagrams, recall that the maps 𝜓𝑛
±,𝑛+1

are constructed via bypass
attachments, which can be interpreted as contact handle attachments (see [34, Section 3] and
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18 of 53 GHOSH et al.

[3, Section 5]), and so, is 𝐶ℎ,𝑛. The commutativity for the diagrams follows from the observation
that the contact handle attaching regions for 𝜓𝑛

±,𝑛+1
and 𝐶𝑛,ℎ are disjoint from each other. □

As a quick aside, we exhibit an immediate consequence of Lemma 3.14 as follows. Let

Ψ ∶ KHG−(−𝑆3, 𝐾) → KHG−(−𝑆3, 𝐾)

be the map induced by the collection of maps {𝜓𝑛} under the directed system in (2.1), where

𝜓𝑛 ∶ SHG(−𝑆3(𝐾), −Γ𝑛−1) → SHG(−𝑆3(𝐾), −Γ𝑛)

is the map in the exact triangle (3.2). Then we have the following.

Corollary 3.15. There is an exact triangle

Proof. The maps 𝐶ℎ,𝑛 in the exact triangle (3.2) commute with the maps 𝜓𝑛
−,𝑛+1

in the directed
system, and so, we can pass to the direct limit and still have an exact triangle. □

The significance of Corollary 3.15 is the following. There is an exact triangle in Heegaard Floer
theory that involves the modules that are analogous to those appearing in Corollary 3.15:

One key difference is that, in this context, the map in the top row is defined algebraically. Thus,
we are led to ask the following natural question.

Question 3.16. Does Ψ admit an interpretation as 𝑈 − 1, where 𝑈 denotes the action of 𝑈?

We believe that establishing a positive answer to this question would have topological applica-
tions.
In any case, we are now ready to recharacterize 𝜏G.

Proposition 3.17. The invariant 𝜏G(𝐾) admits an alternative definition:

𝜏G(𝐾) = max

{
𝑖 ∈ ℤ

|||| the restriction of 𝐶ℎ to KHG−(−𝑆3, 𝐾, 𝑖) is nontrivial
}

.

Proof. We claim that an element [𝑥] ∈ KHG−(−𝑆3, 𝐾) is not𝑈-torsion if and only if 𝐶ℎ([𝑥]) ≠ 0.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 19 of 53

First, note that the 𝑈 map commutes with the map 𝐶ℎ by Lemma 3.14: 𝐶ℎ◦𝑈 = 𝐶ℎ. It follows
immediately that if 𝐶ℎ([𝑥]) ≠ 0, then [𝑥] is not 𝑈-torsion.
Conversely, let [𝑥] ∈ KHG−(−𝑆3, 𝐾) be a non-𝑈-torsion element; then it is represented by an

element 𝑥 ∈ SHG(−𝑆3(𝐾), −Γ2g+𝑘, 𝑆2g+𝑘, 𝑖 + g + (𝑘 − 1)∕2) such that

𝜓2g+𝑘+𝑙−1
+,2g+𝑘+𝑙

◦⋯◦𝜓2g+𝑘
+,2g+𝑘+1

(𝑥) ≠ 0

for all even 𝑙 ∈ ℤ+. (Note that this implies a statement for odd 𝑙 as well.) Taking into account the
gradings as in the first rows of (3.8) and (3.9), for a given, even 𝑙 ∈ ℤ+, this is an element of

SHG

(
−𝑆3(𝐾), −Γ2g+𝑘+𝑙, 𝑆2g+𝑘+𝑙, 𝑖 + g +

𝑘 − 1

2
− 𝑙

)
.

Now the idea is that, for large 𝑛, the map 𝐶ℎ,𝑛 is an isomorphism when restricted to the “mid-
dle” possible gradings; and we can ensure that our element lies in those “middle” gradings by
taking 𝑙 to be sufficiently large. Precisely, from the proof of [28, Proposition 4.26], 𝐶ℎ,2g+𝑘+𝑙 is an
isomorphism when restricted to SHG(−𝑆3(𝐾), −Γ2g+𝑘+𝑙, 𝑆2g+𝑘+𝑙, 𝑗) for

−
𝑘 − 1

2
− 𝑙 ⩽ 𝑗 ⩽

𝑘 − 1

2
+ 𝑙.

Since we chose 𝑘 ⩾ −g − 𝑖 + 1, we have that

−
𝑘 − 1

2
− 𝑙 ⩽ 𝑖 + g +

𝑘 − 1

2
− 𝑙

for all 𝑙; and if we take 𝑙 ⩾ 2g , then we will have

𝑖 + g +
𝑘 − 1

2
− 𝑙 ⩽ 2g +

𝑘 − 1

2
⩽

𝑘 − 1

2
+ 𝑙.

Then, for these choices, we see that

𝐶ℎ,2g+𝑘(𝑥) = 𝐶ℎ,2g+𝑘+𝑙◦𝜓
2g+𝑘+𝑙−1
+,2g+𝑘+𝑙

◦⋯◦𝜓2g+𝑘
+,2g+𝑘+1

(𝑥) ≠ 0,

which implies that 𝐶ℎ([𝑥]) ≠ 0. The proposition follows immediately. □

Remark 3.18. By the same argument as in the proof of Proposition 2.6, we can show that in
Proposition 3.17, the map 𝐶ℎ being nontrivial is equivalent to it being surjective.

With the alternative definition of 𝜏G, we can now prove that it is a concordance invariant.

Proof of Proposition 1.12. Suppose that 𝐾0 and 𝐾1 are concordant; then there exists a properly
embedded annulus 𝐴 ⊂ [0, 1] × 𝑆3 such that

({0} × 𝑆3, 𝐴 ∩ {0} × 𝑆3) ≅ (𝑆3, 𝐾0), ({1} × 𝑆3, 𝐴 ∩ {1} × 𝑆3) ≅ (𝑆3, 𝐾1).

The idea of the proof is that 𝐴 induces a grading-preserving cobordism map
𝐹𝐴 ∶ KHG−(−𝑆3, 𝐾0) → KHG−(−𝑆3, 𝐾1) that commutes with 𝐶ℎ, which will imply the result for
𝜏G via Proposition 3.17.

 17538424, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12346 by Louisiana State U
niversity Lsu, W

iley O
nline Library on [28/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



20 of 53 GHOSH et al.

The first step is to analyze the cobordism map induced by 𝐴 on SHG(−𝑆3(𝐾0), Γ𝑛). For each
𝑛, the pair ([0, 1] × 𝑆3, 𝐴) induces a cobordism 𝑊𝑛 from 𝑌0,𝑛 to 𝑌1,𝑛, where 𝑌𝑖,𝑛 is a closure of
(−𝑆3(𝐾𝑖), −Γ𝑛), and𝑊𝑛 induces a map

𝐹𝐴,𝑛 ∶ SHG(−𝑆3(𝐾0), −Γ𝑛) → SHG(−𝑆3(𝐾1), −Γ𝑛)

as follows. There are twoways to describe𝑊𝑛, which are both useful; below, we briefly recall both
of these descriptions from [25].
First, take a parametrization of𝐴 ≅ [0, 1] × 𝑆1. Then, a tubular neighborhood of𝐴 ⊂ [0, 1] × 𝑆3

can be identified with 𝐴 × 𝐷2 ≅ [0, 1] × 𝑆1 × 𝐷2, with

(𝐴 × 𝐷2) ∩ ({0, 1} × 𝑆3) ≅ {0, 1} × 𝑆1 × 𝐷2.

Thus, we know that

𝜕
(
([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2)

)
≅ −𝑆3(𝐾0) ∪ ([0, 1] × 𝑆1 × 𝜕𝐷2) ∪ 𝑆3(𝐾1). (3.19)

Choosing a closure 𝑌0,𝑛 of (−𝑆3(𝐾0), −Γ𝑛), we can write

𝑊𝑛 ≅ −
(
([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2)

)
∪
(
[0, 1] × (𝑌0,𝑛 ⧵ 𝑆3(𝐾0))

)
,

via a natural identification

[0, 1] × 𝑆1 × 𝜕𝐷2 ≅ [0, 1] × 𝜕𝑆3(𝐾0).

A second description of𝑊𝑛 is as follows. As

𝜕𝑆3(𝐾0) ≅ 𝜕𝑆3(𝐾1) ≅ 𝑆1 × 𝐷2,

from (3.19), ([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2) can be obtained from ([0, 1] × 𝑆3(𝐾1)) by attaching a set of
four-dimensional handles to the interior of {1} × 𝑆3(𝐾0), as in [25, Lemma 3.9]. Thus, as above,
choosing a closure𝑌0,𝑛 of (−𝑆3(𝐾0), −Γ𝑛), we can attach the same set of handles to {1} × 𝑌0,𝑛 ⊂

[0, 1] × 𝑌0,𝑛, and the result is again𝑊𝑛.
We break down the rest of the proof into four claims, as detailed below.

Claim 1. The maps 𝐹𝐴,𝑛 give rise to a map†

𝐹𝐴 ∶ KHG−(−𝑆3, 𝐾0) → KHG−(−𝑆3, 𝐾1).

To prove the claim, it suffices to show that we have a commutative diagram

† The basepoints 𝑝𝑖 for 𝐾𝑖 are specified by 𝑝𝑖 = {𝑖} × 𝑝 in the parametrization 𝐴 ≅ [0, 1] × 𝑆1.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 21 of 53

The commutativity of this diagram follows from the fact that the attaching regions for the han-
dles associated to 𝐹𝐴,𝑛 and to 𝜓𝑛

−,𝑛+1
are disjoint: When constructing 𝐹𝐴,𝑛, we attached handles

to [0, 1] × 𝑌0,𝑛 along the region {1} × Int 𝑆3(𝐾0), while when constructing the map 𝜓𝑛
−,𝑛+1

, we
attached handles to [0, 1] × 𝑌𝑖,𝑛 along the region {1} × [0, 1] × 𝜕𝑆3(𝐾𝑖); see [25, Section 3]).

Claim 2. 𝐹𝐴 commutes with the𝑈map onKHG−. The proof of this claim is completely analogous
to one for Claim 1, with 𝜓+ instead of 𝜓−.
The two claims above show that 𝐹𝐴 is a homomorphism of[𝑈]-modules.

Claim 3. There is a commutative diagram

where 𝐶ℎ is defined as in Lemma 3.14.
To prove the claim, it suffices to prove that the following diagram commutes for all 𝑛:

(3.20)

As above, suppose that we have a closure 𝑌0,𝑛 for (−𝑆3(𝐾0), −Γ𝑛). Let 𝑌1,𝑛 be the corresponding
closure for (−𝑆3(𝐾1), −Γ𝑛) as in the construction of 𝑊𝑛 above. Recall from the construction of
𝐶ℎ,𝑛 that it is the map associated to a 2-handle attached along a meridian curve 𝛼 ⊂ 𝜕𝑆3(𝐾0); we
can push 𝛼 slightly into the interior and get a curve 𝛽. Then we get a closure 𝑌′

0
for (−𝑆3(1), −𝛿)

by performing 0-surgery on 𝑌0,𝑛 along 𝛽. Note that the difference between 𝑆3(𝐾0) and 𝑆3(𝐾1) is
contained in the interior, and so, we also have the curve 𝛽 ⊂ 𝑆3(𝐾1) ⊂ 𝑌1,𝑛. Thus, we can obtain
another closure 𝑌′

1
for (−𝑆3(1), −𝛿). We can form a cobordism 𝑊′

𝑛 from 𝑌′
0
to 𝑌′

1
by attaching

the set of four-dimensional handles as in the proof of Claim 1 to 𝑌′
0
× {1} ⊂ 𝑌′

0
× [0, 1], and the

attaching region is contained in Int(𝑆3(𝐾0)) ⊂ 𝑌′
0
. Hence, there is a commutative diagram just as

in the proof of Claim 1:

where 𝐹′
𝐴
is the map induced by the cobordism𝑊′

𝑛.
So, to prove (3.20), it suffices to show that𝑊′

𝑛 is actually a product [0, 1] × 𝑌′
0
, which will imply

that 𝐹′
𝐴

= Id. To do this, recall that 𝑊′
𝑛 is obtained from [0, 1] × 𝑌′

0
by attaching a set of handles

, while the attachment regions are contained in Int 𝑆3(𝐾0) ⊂ Int 𝑆3(1) ⊂ {1} × 𝑌′
0
. This means
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22 of 53 GHOSH et al.

that we can split𝑊′
𝑛 into two parts

𝑊′
𝑛 ≅ 𝑊′′

𝑛 ∪
(
[0, 1] × (𝑌′

0 ⧵ 𝑆3(1))
)
,

where𝑊′′
𝑛 is obtained from [0, 1] × 𝑆3(1) by attaching the set of handles. Recall that (𝑆3(1), 𝛿)

is obtained from (𝑆3(𝐾0), Γ𝑛) by attaching the contact 2-handle ℎ, and so, topologically,

𝑆3(1) ≅ 𝑆3(𝐾0) ∪ 𝐵3.

Note the 3-ball 𝐵3 is attached to 𝑆3(𝐾0) along part of the boundary, and the set of handles  is
attached to [0, 1] × 𝑆3(1) within the region Int(𝑆3(𝐾0)) ⊂ {1} × 𝑆3(1), and so, the two attaching
regions are disjoint. Thus, we have

𝑊′′
𝑛 ≅ [0, 1] × 𝑆3(1) ∪ 

≅
(
[0, 1] × (𝑆3(𝐾0) ∪ 𝐵3)

)
∪ 

≅ ([0, 1] × 𝑆3(𝐾0)) ∪  ∪ ([0, 1] × 𝐵3)

≅
(
([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2)

)
∪ ([0, 1] × 𝐵3).

Here, [0, 1] × 𝐵3 is glued to ([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2) along a thickened annulus. From here, it is
straightforward to check that the resulting manifold𝑊′′

𝑛 is diffeomorphic to [0, 1] × 𝑆3(1).

Claim 4. The map

𝐹𝐴 ∶ KHG−(−𝑆3, 𝐾0) → KHG−(−𝑆3, 𝐾1)

preserves the grading.
By definition, we know that for any fixed 𝑗 ∈ ℤ, we can pick a large enough odd 𝑛 so that, for

𝑖 = 0, 1,

KHG−(−𝑆3, 𝐾𝑖, 𝑗) ≅ SHG
(
−𝑆3(𝐾𝑖), −Γ𝑖,𝑛, 𝑆𝑖,𝑛, 𝑗 +

𝑛 − 1

2

)
.

(Here, Γ𝑖,𝑛 is a set of sutures on −𝑆3(𝐾𝑖) of slope −𝑛, and 𝑆𝑖,𝑛 is a minimal-genus Seifert surface
of 𝐾𝑖 that intersects Γ𝑖,𝑛 at exactly 2𝑛 points.) Hence, to show that 𝐹𝐴 preserves the grading, we
need only to show that 𝐹𝐴,𝑛 preserves the grading. Note that we can identify the boundaries:

𝜕𝑆3(𝐾0) ≅ 𝜕𝑆3(𝐾1)

via the parametrization 𝐴 ≅ [0, 1] × 𝑆1, and we can assume that under the above identification,

𝑆0,𝑛 ∩ 𝜕𝑆3(𝐾0) ≅ 𝑆1,𝑛 ∩ 𝜕𝑆3(𝐾1).

Now let 𝑌0,𝑛 be a closure of (−𝑆3(𝐾0), −Γ𝑛), and let 𝑆0,𝑛 be the closure of 𝑆0,𝑛 in 𝑌0,𝑛, as in
the construction of gradings; see [26, Section 3]. Then we have a corresponding closure 𝑌1,𝑛 for
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 23 of 53

(−𝑆3(𝐾1), −Γ𝑛), inside which there is the closure 𝑆1,𝑛 of 𝑆1,𝑛. To describe this surface, recall that

𝑌1,𝑛 ≅ −𝑆3(𝐾1) ∪𝜕𝑆3(𝐾0)≅𝜕𝑆3(𝐾1)
(𝑌0,𝑛 ⧵ 𝑆3(𝐾0))

as in the construction of𝑊𝑛 at the beginning of the proof; then concretely, 𝑆1,𝑛 is defined to be

𝑆1,𝑛 = 𝑆1,𝑛 ∪ (𝑆0,𝑛 ⧵ 𝑆3(𝐾0)).

Using the Mayer–Vietoris sequence, we see that

𝐻2(([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2)) = 0.

Therefore, the closed surface −𝑆0,𝑛 ∪ 𝐴 ∪ 𝑆1,𝑛 ⊂ ([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2) bounds a 3-chain 𝑐 ⊂

([0, 1] × 𝑆3) ⧵ (𝐴 × 𝐷2). Now inside𝑊𝑛, let

𝑑 = 𝑐 ∪
(
[0, 1] ×

(
𝑆0,𝑛 ⧵ 𝑆3(𝐾0)

))
,

where the two pieces are glued along

𝐴 ≅ [0, 1] × 𝑆1 ≅ [0, 1] × 𝜕(𝑆0,𝑛 ⧵ 𝑆3(𝐾0)).

It is straightforward to check that

𝜕𝑑 ≅ −𝑆0,𝑛 ∪ 𝑆1,𝑛.

Hence, we conclude that

[𝑆0,𝑛] = [𝑆1,𝑛] ∈ 𝐻2(𝑊𝑛),

whence it follows that 𝐹𝐴,𝑛 preserves the grading.
The four claims above together prove the existence of a grading-preserving homomorphism

𝐹𝐴 ∶ KHG−(−𝑆3, 𝐾0) → KHG−(−𝑆3, 𝐾1) of [𝑈]-modules that commutes with the map 𝐶ℎ. By
Proposition 3.17, 𝜏G is the maximum grading for which 𝐶ℎ is nontrivial, and thus, our proof
is complete. □

Having achieved our main goal of the section, we end it with an application to ribbon concor-
dance, which is a knot concordance that admits a handle decomposition with only 0-, 1-, but not
2-handles. In recent work of Daemi, Lidman, Vela-Vick, and the third author [12], it is proved that
themap onKHI associated to a ribbon concordance is injective.Wemay quickly extend this result
to KHI−.

Corollary 3.21. Suppose that 𝐴 is a ribbon concordance from 𝐾1 to 𝐾2 in [0, 1] × 𝑆3; then the map

𝐹𝐴 ∶ KHG−(−𝑆3, 𝐾0) → KHG−(−𝑆3, 𝐾1)

defined in the proof of Proposition 1.12 is injective.
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24 of 53 GHOSH et al.

F IGURE 2 The contact handles: ℎ2
0
is attached along 𝜇0, ℎ2

1
is attached along 𝜇1, and ℎ2

2
is attached along 𝛼.

Proof. By [12, Theorem 4.4], the map

𝐹𝐴,𝑛 ∶ SHG(−𝑆3(𝐾0), −Γ𝑛) → SHG(−𝑆3(𝐾1), −Γ𝑛)

is injective for all 𝑛 ∈ ℤ. Passing to the direct limit, we see that 𝐹𝐴 is also injective. □

These results may be compared to that of Zemke [38], who first proves the analogous statement
for both ĤFK and HFK−.

4 ADDITIVITY OF 𝝉UNDER CONNECTED SUM

In this subsection, we prove the additivity of the 𝜏G under connected sum, establishing
Proposition 1.14. To begin, we establish the superadditivity of 𝜏G.

Proposition 4.1. Suppose that 𝐾0 and 𝐾1 are two knots in 𝑆3; then

𝜏𝐺(𝐾0 ♯ 𝐾1) ⩾ 𝜏𝐺(𝐾0) + 𝜏𝐺(𝐾1).

Proof. Suppose that 𝐾0 and 𝐾1 are two knots in 𝑆3, and suppose that 𝑚 and 𝑛 are two suffi-
ciently large, odd integers. Suppose further that 𝑆0 and 𝑆1 are minimal-genus Seifert surfaces of
𝐾0 and 𝐾1, respectively. We can attach a 1-handle ℎ1 to connect the two balanced sutured mani-
folds (𝑆3(𝐾0), Γ𝑚) and (𝑆3(𝐾1), Γ𝑛). Let (𝑀0, 𝛾0) be the resulting balanced sutured manifold; then
we have

𝐶ℎ1 ∶ SHG(−𝑆3(𝐾0), −Γ𝑚) ⊗ SHG(−𝑆3(𝐾1), −Γ𝑛)
≅
�→ SHG(−𝑀0,−𝛾0). (4.2)

On (𝑀0, 𝛾0), we can attach a contact 2-handle ℎ2
2
along the curve 𝛼, as depicted in Figure 2, and

the resulting balanced sutured manifold is (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛). (This 𝛼 is not the same as the one
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 25 of 53

F IGURE 3 Left: The strip 𝑃 as the shaded region. Right: Pushing off the interior of 𝑃 into the interior of𝑀0

in the construction of 𝑆.

in Figure 1.) Thus, there is a map

𝐶ℎ2
2
∶ SHG(−𝑀0,−𝛾0) → SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛).

Inside (𝑀0, 𝛾0), there is a surface 𝑆0 ⊔ 𝑆1, whose associated grading is the one we are interested
in. However, the surface 𝑆0 ⊔ 𝑆1 intersects the curve 𝛼, along which we attach the 2-handle ℎ2

2
,

and so, it does not survive in (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛) as a properly embedded surface. To circumvent
this problem, we add to it a strip 𝑃, as described in the next paragraph.
See Figure 3. Pick a strip 𝑃 ⊂ 𝜕𝑀0, which serves as a two-dimensional 1-handle attached to the

surfaces 𝑆0 and 𝑆1. Let 𝑆 be the union 𝑆0 ∪ 𝑆1 ∪ 𝑃, with the interior of 𝑃 being pushed off into the
interior of𝑀0; then 𝑆 is a properly embedded surface inside (𝑀0, 𝛾0) and is disjoint from 𝛼. Thus,
after attaching the contact 2-handle along 𝛼, 𝑆 survives in 𝑆3(𝐾0 ♯ 𝐾1, Γ𝑚+𝑛), and it is obvious that
𝑆 is a Seifert surface of 𝐾0 ♯ 𝐾1. Since 𝛼 ∩ 𝑆 = ∅, the map 𝐶ℎ2

2
preserves the gradings induced by 𝑆

and its stabilizations. To compare the gradings induced by 𝑆0 ⊔ 𝑆1 and 𝑆, note that their difference,
the two-dimensional 1-handle 𝑃, is chosen to be on 𝜕𝑀1. Hence, we know that

[𝑆0, 𝜕𝑆0] + [𝑆1, 𝜕𝑆2] = [𝑆, 𝜕𝑆] ∈ 𝐻2(𝑀0, 𝜕𝑀0).

In [14, Section 4], the first and second authors prove that the gradings induced by 𝑆0 ⊔ 𝑆1 and 𝑆

differ by an overall grading shift. To pin down the exact grading shift, observe that the decom-
position of (𝑀, 𝛾) along 𝑆0 ⊔ 𝑆1 and 𝑆 are both taut; this fact allows us to identify the maximal
nonvanishing gradings. Thus, combining with the fact that 𝐶ℎ2

2
preserves the grading, we have

the following lemma.

Lemma 4.3. Suppose that 𝑚 and 𝑛 are sufficiently large, odd integers. Then, for all 𝑖, 𝑗 ∈ ℤ, the
map 𝐶ℎ2

2
◦𝐶ℎ1 shifts the grading as follows:

𝐶ℎ2
2
◦𝐶ℎ1 ∶ SHG(−𝑆3(𝐾0), −Γ𝑚, 𝑆0, 𝑖) ⊗ SHG(−𝑆3(𝐾1), −Γ𝑛, 𝑆1, 𝑗)

→ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛, 𝑆
−, 𝑖 + 𝑗 + 1). □
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26 of 53 GHOSH et al.

Let 𝜇0 ⊂ 𝜕𝑆3(𝐾0) and 𝜇1 ⊂ 𝜕𝑆3(𝐾1) be meridians of 𝐾0 and 𝐾1, respectively. See Figure 2. We
can attach contact 2-handles ℎ2

0
and ℎ2

1
along 𝜇0 and 𝜇1, respectively; the resulting balanced

sutured manifolds are both (𝑆3(1), 𝛿). Thus, we have maps

𝐶ℎ2
0
∶ SHG(−𝑆3(𝐾0), −Γ𝑚) → SHG(−𝑆3(1), −𝛿),

𝐶ℎ2
1
∶ SHG(−𝑆3(𝐾1), −Γ𝑛) → SHG(−𝑆3(1), −𝛿).

The curves 𝜇0 and 𝜇1 are disjoint from the contact handles ℎ1 and ℎ2
2
, and so, they survive in

(𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛). Both 𝜇0 and 𝜇1 become meridians of 𝐾0 ♯ 𝐾1, and so, the contact 2-handle
attaching maps associated to them (viewed as attachment maps from (−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛)) are
the same:

𝐶♯ = 𝐶ℎ2
0
= 𝐶ℎ2

1
∶ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛) → SHG(−𝑆3(1), −𝛿).

The commutativity of contact handle attachments then gives us the following commutative
diagram:

(4.4)

Here and below, for the sake of space, we often denote SHG(−𝑆3(1), −𝛿) by (𝑆3(1), 𝛿), denote
SHG(−𝑆3(𝐾), −Γ) by (𝐾, Γ), and denote SHG(−𝑀0,−𝛾0) by (𝑀0, 𝛾0):
Since 𝑚 and 𝑛 are chosen to be odd and sufficiently large, by [26, Proposition 5.10], ele-

ments in KHG−(−𝑆3, 𝐾0) and KHG−(−𝑆3, 𝐾1) of sufficiently large gradings can be found in
SHG(−𝑆3(𝐾0), −Γ𝑚) and SHG(−𝑆3(𝐾1), −Γ𝑛) respectively, as in the previous section. In par-
ticular, let 𝑥0 ∈ SHG(−𝑆3(𝐾0), −Γ𝑚) be an element representing a non-𝑈-torsion element in
KHG−(−𝑆3, 𝐾0) of maximal grading; then, by Proposition 3.17,

gr𝑆0
(𝑥0) = 𝜏𝐺(𝐾0) +

𝑚 − 1

2
, 𝐶ℎ2

0
(𝑥0) ≠ 0,

where gr𝑆0
means the grading with respect to 𝑆0, and the term (𝑚 − 1)∕2 represents the grading

shift in the definition of KHG−. Similarly, we can pick 𝑦0 ∈ SHG(−𝑆3(𝐾1), −Γ𝑛) to represent a
non-𝑈-torsion element in KHG−(−𝑆3, 𝐾1) of maximal grading; then

gr𝑆1
(𝑦0) = 𝜏𝐺(𝐾1) +

𝑛 − 1

2
, 𝐶ℎ2

1
(𝑦0) ≠ 0.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 27 of 53

Let

𝑧0 = 𝐶ℎ2
2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦0) ∈ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛);

then we know from Lemma 4.3 that

gr𝑆−(𝑧0) = 𝜏𝐺(𝐾0) + 𝜏𝐺(𝐾1) +
𝑚 + 𝑛

2
.

From the commutative diagram (4.4), we know that

𝐶♯(𝑧0) = 𝐶♯◦𝐶ℎ2
2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦0) = 𝐶ℎ2

0
◦𝐶ℎ1◦(Id⊗𝐶ℎ2

1
)(𝑥0 ⊗ 𝑦0) = 𝐶ℎ2

0
(𝑥0) ≠ 0, (4.5)

where the third equality uses the fact that 𝐶ℎ2
1
(𝑦0)

≠ 0. Hence, by Proposition 3.17, we have

𝜏𝐺(𝐾0 ♯ 𝐾1) +
𝑚 + 𝑛

2
⩾ g𝑟𝑆−(𝑧0) = 𝜏𝐺(𝐾0) + 𝜏𝐺(𝐾1) +

𝑚 + 𝑛

2
,

from which the proposition follows.
We now upgrade the inequality in Proposition 4.1 to an equality.

Proof of Proposition 1.14. We keep all notation from the proof of Proposition 4.1. In particular, we
have an element

𝑧0 = 𝐶ℎ2
2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦0) ∈ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛),

where 𝑥0 ∈ SHG(−𝑆3(𝐾0), −Γ𝑚) and 𝑦0 ∈ SHG(−𝑆3(𝐾1), −Γ𝑛) represent non-𝑈-torsion ele-
ments in KHG−(−𝑆3, 𝐾0 and KHG−(−𝑆3, 𝐾1) of maximal gradings, respectively.
By (4.5), we see that 𝑧0, in fact, corresponds to a non-𝑈-torsion element

𝑧−
0 ∈ KHG−(−𝑆3, 𝐾0 ♯ 𝐾1).

If we assume the contrary of the proposition, that is,

𝜏𝐺(𝐾0 ♯ 𝐾1) > 𝜏𝐺(𝐾0) + 𝜏𝐺(𝐾1),

then we are assuming that 𝑧−
0
is not the starting point of the unique infinite 𝑈-tower; in other

words, it has a preimage under 𝑈. Translating back to SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛), this means
that there is an element

𝑧1 ∈ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛−1)

such that

𝜓𝑚+𝑛−1
+,𝑚+𝑛 (𝑧1) = 𝑧0.
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28 of 53 GHOSH et al.

F IGURE 4 The arcs 𝛽0 and 𝛽1, along which bypasses are attached, viewed in (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛).

By the positive bypass exact triangle in (3.7), we see that

𝜓𝑚+𝑛
+,∞ (𝑧0) = 0.

We claim that this will lead to a contradiction.
Indeed, consider the maps

𝜓𝑚
+,𝜇 ∶ SHG(−𝑆3(𝐾0), −Γ𝑚) → SHG(−𝑆3(𝐾0), −Γ𝜇),

𝜓𝑛
+,𝜇 ∶ SHG(−𝑆3(𝐾1), −Γ𝑛) → SHG(−𝑆3(𝐾1), −Γ𝜇),

which each fit into the positive bypass exact triangle in (3.7). Let 𝛽0 ∈ 𝜕𝑆3(𝐾0) and 𝛽1 ∈ 𝜕𝑆3(𝐾1)

be the arcs along which bypasses corresponding to these maps are attached; we may view 𝛽0 and
𝛽1 in (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛), as in Figure 4. (Since 𝛽0 and 𝛽1 are both disjoint from the 1-handle ℎ1

and the 2-handle ℎ2
2
, they survive in (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛).)

Inside (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛), the arcs 𝛽1 and 𝛽2 are isotopic; thus, they both correspond to the
bypass map

𝜓𝑚+𝑛
+,𝜇 ∶ SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝑚+𝑛) → SHG(−𝑆3(𝐾0 ♯ 𝐾1), −Γ𝜇).

For concreteness, suppose that this bypass map is constructed via a bypass attached along 𝛽2.
Since 𝛽2 is disjoint from ℎ1 and ℎ2

2
, there is a commutative diagram as follows:

(Here, we are using the simplified notation as in (4.4).)
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 29 of 53

From the commutativity, we know that

𝜓𝑚+𝑛
+,𝜇 (𝑧0) = 𝜓𝑚+𝑛

+,𝜇 ◦𝐶ℎ2
2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦0)

= 𝐶ℎ2
2
◦𝐶ℎ1◦(Id⊗𝜓𝑛

+,𝜇)(𝑥0 ⊗ 𝑦0)

= 𝐶ℎ2
2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦𝜇),

where 𝑦𝜇 = 𝜓𝑛
+,𝜇(𝑦0). Since 𝑦0 corresponds to a non-𝑈-torsion element in KHG−(−𝑆3, 𝐾1) of

maximal grading, we know that 𝑦0 ∉ Im𝜓𝑛−1
+,𝑛 , and so, by the exactness of (3.7), we know that

𝑦𝜇 ≠ 0.
Now we claim that the following diagram commutes:

(4.6)

(The isomorphism in the right column arises from the fact that the two sutured manifolds have
the same closure; the same is true for 𝐶ℎ1 on the left column, but we display it explicitly so
that 𝐶ℎ2

2
makes sense.) Since 𝑥𝜇 = 𝜓𝑚

+,𝜇(𝑥0) ≠ 0 (as 𝑥0 represents a non-𝑈-torsion element in
KHG−(−𝑆3, 𝐾0) of maximal grading), this will show that

𝜓𝑚+𝑛
+,𝜇 (𝑧0) = 𝐶ℎ2

2
◦𝐶ℎ1(𝑥0 ⊗ 𝑦𝜇) = 𝜓𝑚

+,𝜇(𝑥0) ⊗ 𝑦𝜇 = 𝑥𝜇 ⊗ 𝑦𝜇 ≠ 0,

giving us the desired contradiction.
The rest of the proof is devoted to proving the commutativity of (4.6). Let (𝑀1, 𝛾1) be the result

of attaching the handle ℎ1 to (𝑆3(𝐾0), Γ𝑚) ⊔ (𝑆3(𝐾1), Γ𝜇). (This gives us a map

𝐶ℎ1 ∶ SHG(−𝑆3(𝐾0), −Γ𝑚) ⊗ SHG(−𝑆3(𝐾1), −Γ𝜇) → SHG(−𝑀1,−𝛾1),

similar to (4.2), but with sutures −Γ𝜇 instead of −Γ𝑛 on −𝑆3(𝐾1).) Our strategy is to analyze the
contact 2-handle attachment along 𝛼, corresponding to 𝐶ℎ2

2
and viewed in (−𝑀1,−𝛾1), and com-

pare it to the bypass attachment along 𝛽0, corresponding to 𝜓𝑚
+,𝜇. A bypass attachment is, in fact,

the composition of a contact 1-handle and a contact 2-handle (see, for example, [3, Section 5]);
in our context, we shall work with the preclosures of the sutured manifolds (see [3, Section 4.2]
for details of the relevant constructions), where the contact 1-handle associated to 𝜓𝑚

+,𝜇 will be
identified with a part of the auxiliary surface associated to (𝑀1, 𝛾1), and the attaching curve of the
contact 2-handle associated to 𝜓𝑚

+,𝜇 will be identified with an isotopic copy of 𝛼.
See Figure 5. Because we have the sutures Γ𝜇 on 𝜕𝑆3(𝐾1), we see that after the 1-handle ℎ1 is

added, one component of 𝛾1 is simply a meridian on the 𝜕𝑆3(𝐾1) part of the boundary (of 𝑆3(𝐾0 ♯

𝐾1)), while the other component, which intersects the 𝜕𝑆3(𝐾0) part of the boundary, also wraps
around the 𝜕𝑆3(𝐾1) part of the boundary like a meridian. We may thus view a part of this latter
component, an arc 𝛾̂1, as isotopic to a part of 𝛼, which we call 𝛼̂, relative to their endpoints. More
precisely, while the arcs 𝛾̂1 and 𝛼̂ do not have the same endpoints; however, from Figure 5, one
can pair up the endpoints obviously by short arcs 𝜁.
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30 of 53 GHOSH et al.

F IGURE 5 The arcs 𝛾̂1 and 𝛼̂, which we think of as isotopic relative to their endpoints. Their endpoints are
denoted by the red and blue dots, respectively. The short arcs 𝜁 are omitted.

F IGURE 6 Constructing an auxiliary surface 𝑇2 for (𝑀2, 𝛾2), from an auxiliary surface 𝑇1 for (𝑀1, 𝛾1). In the
second diagram, only a part of 𝛼̂ is on 𝑇; we isotope all of 𝛼̂ onto 𝑇 in the third diagram. As shown, the auxiliary
surfaces may have nonzero genus; their irrelevant boundary components are omitted.

Suppose that 𝑇1 is a connected auxiliary surface of (𝑀1, 𝛾1); then we can form the preclosure

𝑀̃ = 𝑀1 ∪ [−1, 1] × 𝑇1.

From [3, Section 4.2.2], there is an auxiliary surface 𝑇 for (𝑆3(𝐾0), Γ𝑚) ⊔ (𝑆3(𝐾1), Γ𝜇), obtained

from 𝑇1 by attaching a two-dimensional 1-handle ℎ
1
, which corresponds to the three-dimensional

1-handle ℎ1, as in Figure 6, so that we also have

𝑀̃ =
(
𝑆3(𝐾0) ⊔ 𝑆3(𝐾1))

)
∪ ([−1, 1] × 𝑇).

In this description, we can think of ℎ1 as a thickening of ℎ
1
⊂ 𝑇.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 31 of 53

From [3, Section 4.2.3], attaching the contact 2-handle ℎ2
2
along 𝛼 corresponds to performing

a 0-surgery along a push-off of 𝛼 on the level of preclosures. Since 𝛼̂ is isotopic to 𝛾̂1 relative to
their endpoints, we can isotope 𝛼̂ onto 𝛾̂1 (using 𝜁) and hence onto 𝑇, to give a properly embedded
arc 𝛼̂𝑇 ⊂ 𝑇, as depicted in Figure 6. The product neighborhood of 𝛼̂𝑇 corresponds to a contact 1-
handle ℎ1

0
attached to (𝑆3(𝐾0), Γ𝑚) ⊔ (𝑆3(𝐾1), Γ𝜇); this is the contact 1-handle associated to 𝜓𝑚

+,𝜇.
Let (𝑀2, 𝛾2) be the balanced sutured manifold obtained by attaching ℎ1

0
, and let 𝑇2 = 𝑇 ⧵ 𝛼̂; then

𝑇2 is an auxiliary surface for (𝑀2, 𝛾2), and thus,

𝑀̃ = (𝑀2, 𝛾2) ∪ [−1, 1] × 𝑇2.

Because 𝛼̂𝑇 is isotopic to 𝛼̂, we can think of ℎ1
0
as attached to (𝑆3(𝐾0), Γ𝑚) ⊔ (𝑆3(𝐾1), Γ𝜇) along the

two end points of 𝛼 ⧵ 𝛼̂ on Γ𝑚 ⊂ 𝜕𝑆3(𝐾0). We further isotope 𝛼̂𝑇 to an arc 𝛼̂ℎ1
0
, on the boundary of

ℎ1
0
, that intersects 𝛾2 exactly once, and let

𝛼′ = (𝛼 ⧵ 𝛼̂) ∪ 𝛼̂ℎ1
0
⊂ 𝜕𝑀2.

Then, the 0-surgery (with respect to the surface framing) along a push-off of 𝛼 corresponds to
a 0-surgery along a push-off of 𝛼′, and hence to a contact 2-handle attachment along 𝛼′. The
1-handle ℎ1

0
and the 2-handle attached along 𝛼′ together correspond to a bypass attached along

𝛼 ⧵ 𝛼̂.
Now under the same identification of the endpoints as before — by the short arcs 𝜁 —we see

that 𝛼 ⧵ 𝛼̂ is isotopic to the arc 𝛽0 relative to their endpoints (if we allow the endpoints to move
along Γ𝑚), viewed on (𝑆3(𝐾0), Γ𝑚); compare Figure 4 and Figure 5. (They are not isotopic when
viewed on (𝑆3(𝐾0 ♯ 𝐾1), Γ𝑚+𝑛).) Thus, we see that the map 𝐶ℎ2

2
corresponds to the map associated

to a bypass attached along 𝛽0, which is 𝜓𝑚
+,𝜇, and the proposition follows. □

Having achieved our goal of the section, we end it by spelling out an immediate corollary.

Corollary 4.7. For all knots 𝐾 ⊂ 𝑆3, we have 𝜏𝐺(𝐾) = −𝜏𝐺(𝐾), where 𝐾 is the mirror image of 𝐾.

Proof. This is a direct consequence of Proposition 1.12 and Proposition 1.14. □

5 IDENTIFYING THE TAU INVARIANTS

In this section, we identify the invariants 𝜏G and 𝜏♯
G
, proving Theorem 1.2. While the instanton

and monopole Floer theories are formally similar, there are some differences in their defini-
tions. For example, the definition of SHM(𝑀, 𝛾) involves a decomposition into Spin𝑐 structures
of 𝑌 (where (𝑌, 𝑅) is a closure of (𝑀, 𝛾)), which are in bijection with 𝐻2(𝑌) (see [18]); the def-
inition of SHI(𝑀, 𝛾) involves a generalized eigenspace decomposition by actions of surfaces,
corresponding to 𝐻2(𝑌)∕ Tors (see, e.g., [20, Corollary 7.6]). To identify 𝜏G with 𝜏♯

G
, we have to

work directly with these objects above. As 𝜏♯
G
is defined only in the instanton setting in [6], we

focus on 𝜏I and 𝜏♯
I
throughout the section, and discuss the changes necessary for the monopole

setting.
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32 of 53 GHOSH et al.

5.1 A conjugation symmetry for 𝐒𝐇𝐈(−𝑺𝟑(𝑲), −𝚪𝒏)

One key ingredient we shall need is a symmetry on SHI(−𝑆3(𝐾), −Γ𝑛) that is analogous to the
Spin𝑐 conjugation symmetry in monopole and Heegaard Floer theories. In particular, this will
give us an isomorphism between the homology in grading 𝑖 with the homology in grading −𝑖.

Proposition 5.1. Suppose that 𝑛 is odd, which implies that 𝜏(𝑛) = 0. For any 𝑖 ∈ ℤ, we have an
isomorphism

SHI
(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , 𝑖

)
≅ SHI

(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , −𝑖

)
.

Proof. If (𝑌, 𝑅) is a closure of (−𝑆3(𝐾), −Γ𝑛) such that 𝑆
𝜏(𝑛)
𝑛 extends to a closed surface 𝑆𝑛, then

(𝑌, −𝑅) is a closure of (−𝑆3(𝐾), Γ𝑛). Denote by Eig(𝜇(𝑅), 𝑖) the generalized 𝑖-eigenspace of 𝜇(𝑅).
Then,

SHI
(
−𝑆3(𝐾), −Γ𝑛

)
= Eig(𝜇(𝑅), 2g(𝑅) − 2);

taking gradings into consideration,

SHI
(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , 𝑖

)
= Eig(𝜇(𝑅), 2g(𝑅) − 2) ∩ Eig(𝜇(𝑆𝑛, 2𝑖).

Similarly,

SHI(−𝑆3(𝐾), Γ𝑛, 𝑆
𝜏(𝑛)
𝑛 , 𝑖) = Eig(𝜇(−𝑅), 2g(𝑅) − 2) ∩ Eig(𝜇(𝑆𝑛, 2𝑖).

Since

Eig(𝜇(𝑅), 2g(𝑅) − 2) = Eig(𝜇(−𝑅), 2 − 2g(𝑅))

holds in general, we have

SHI
(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , 𝑖

)
= Eig(𝜇(𝑅), 2g(𝑅) − 2) ∩ Eig(𝜇(𝑆𝑛), 2𝑖)

= Eig(𝜇(−𝑅), 2 − 2g(𝑅)) ∩ Eig(𝜇(𝑆𝑛), 2𝑖)

≅ Eig(𝜇(−𝑅), 2g(𝑅) − 2) ∩ Eig(𝜇(𝑆𝑛), −2𝑖)

= SHI(−𝑆3(𝐾), Γ𝑛, 𝑆
𝜏(𝑛)
𝑛 , −𝑖).

where the isomorphism in the third line follows from [9, Lemma 2.3]. The isomorphisms above
commute with cobordism maps.
Now since 𝜕𝑆3(𝐾) is a torus, we can isotope Γ𝑛 to −Γ𝑛. Hence, there is a diffeomorphism

𝑓∶ (𝑆3(𝐾), Γ𝑛) → (𝑆3(𝐾), −Γ𝑛),
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 33 of 53

which restricts to the identity outside a collar of the boundary. Hence, under this diffeomor-
phism, the surface 𝑆𝜏(𝑛)

𝑛 = 𝑆𝑛 is preserved: 𝑓(𝑆𝑛) = 𝑆𝑛. Thus, this diffeomorphism induces an
isomorphism

SHI(−𝑆3(𝐾), Γ𝑛, 𝑆𝑛, −𝑖) ≅ SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, −𝑖).

Combining this with the paragraph above, we have

SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, 𝑖) ≅ SHI
(
−𝑆3(𝐾), Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , −𝑖

)
≅ SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, −𝑖),

which is what we wanted to prove. □

We have the following corollary, which is analogous to the fact that HFK−(−𝐾) is isomorphic
to HFK−(𝐾), where −𝐾 denotes the reverse of 𝐾. We shall not need this corollary in the sequel.

Corollary 5.2. We have KHI−(−𝑆3, 𝐾) ≅ KHI−(−𝑆3, −𝐾). In particular, 𝜏I(𝐾) = 𝜏I(−𝐾).

Proof. The longitude and meridian for −𝐾 are the same as those for 𝐾 with their orientations
reversed; this means that given a sutured manifold (−𝑆3(𝐾), −Γ𝑛) in the directed system associ-
ated to 𝐾, the corresponding sutured manifold for −𝐾 is (−𝑆3(𝐾), Γ𝑛). Also, if 𝑆

𝜏(𝑛)
𝑛 is a Seifert

surface for 𝐾, then −𝑆𝜏(𝑛)
𝑛 is a Seifert surface for −𝐾. As in the proof of Proposition 5.1, by [9,

Lemma 2.3], for odd 𝑛, we have that

SHI
(
−𝑆3(𝐾), −Γ𝑛, 𝑆

𝜏(𝑛)
𝑛 , 𝑖

)
≅ SHI

(
−𝑆3(𝐾), Γ𝑛, −𝑆𝜏(𝑛)

𝑛 , 𝑖
)

.

A similar argument can bemade for even 𝑛, with themodification that we need to switch between
negative and positive stabilizations under the symmetry. Fitting these into the directed systems,
one also needs to switch between positive and negative bypass maps under the symmetry. In any
case, the isomorphisms above commute with the bypass cobordism maps, and so, we have an
isomorphism of the directed systems, meaning that KHI−(−𝑆3, 𝐾) ≅ KHI−(−𝑆3, −𝐾). □

5.2 𝝉𝐈 revisited

Recall that the tau invariant was defined in Definition 2.5 and subsequently reformulated in
Proposition 3.17. Below, we give yet another reformulation; roughly speaking, we translate the
characterization of 𝜏I in Proposition 3.17 from the KHI− context to the SHI context, and then use
the symmetry in Proposition 5.1 to switch to viewing 𝜏I as aminimal rather thanmaximal grading.
Recall from Section 3 that 𝛼 is a meridian of 𝐾 on 𝜕𝑆3(𝐾) that intersects the sutures Γ𝑛 twice.

Let 𝛽 ⊂ int(𝑆3(𝐾)) be a push-off of 𝛼 into the interior of (𝑆3(𝐾), Γ𝑛), and let (𝑁, Γ𝑛) be obtained
from (𝑆3(𝐾), Γ𝑛) by performing a 0-surgery along 𝛽.
Our first key observation is that, by [3, Section 4.2.3], the map

𝐶ℎ,𝑛 ∶ SHI(−𝑆3(𝐾), −Γ𝑛) → SHI(−𝑀,−𝛾) = SHI(−𝑆3(1), −𝛿)
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34 of 53 GHOSH et al.

in (3.2) associated to a 2-handle attachment along 𝛼 in Section 3 can be identified with the map

𝐹𝛽,𝑛 ∶ SHI(−𝑆3(𝐾), −Γ𝑛) → SHI(−𝑁,−Γ𝑛)

associated to 0-surgery along 𝛽. Here, (−𝑆3(1), −𝛿) is not diffeomorphic to (−𝑁,−Γ𝑛), but they
differ by a 1-handle attachment along two points on 𝛿, and hence have the same closures; thus,
their sutured instanton Floer homologies are canonically identified. In particular, we know that

SHI(−𝑁,−Γ𝑛) ≅ ℂ.

From now on, we shall often refer to (3.2) but have in mind 𝐹𝛽,𝑛 in place of 𝐶ℎ,𝑛. We may now
state the reformulation of 𝜏I.

Proposition 5.3. For 𝑛 odd and sufficiently large,

𝜏I(𝐾) = max

{
𝑖 ∈ ℤ

|||| the restriction of 𝐹𝛽,𝑛 to SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, 𝑖) is nontrivial
}

−
𝑛 − 1

2
,

𝜏I(𝐾) = −min

{
𝑖 ∈ ℤ

|||| the restriction of 𝐹𝛽,𝑛 to SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, 𝑖) is nontrivial
}

−
𝑛 − 1

2
.

Proof. The first statement follows directly from Proposition 3.17, with the grading shift of (𝑛 −

1)∕2 coming from (2.4) in the definition of KHI−. Since the diffeomorphism 𝑓 in the proof of
Proposition 5.1 restricts to the identity outside a collar of 𝜕𝑆3(𝐾), we can take 𝛽 to be inside the
region where 𝑓 is the identity. Hence, the isomorphism

SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, 𝑖) ≅ SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, −𝑖)

in Proposition 5.1 intertwines the maps 𝐹𝛽,𝑛. This implies that the maximum grading for which
the restriction of 𝐹𝛽,𝑛 is nontrivial is minus theminimum grading for which the restriction of 𝐹𝛽,𝑛

is nontrivial. □

5.3 The sutured manifold (𝑺𝟑(𝑲), 𝚪𝒏)

Let us nowdiscuss the strategy of identifying 𝜏Iwith 𝜏♯
I
. Recall that 𝜏♯

I
is 1∕2 times the homogeniza-

tion of 𝜈♯
I
. Baldwin and Sivek explain in [6, p. 16] that the sequence of integers (dimℂ I♯(𝑆3

𝑛(𝐾)))𝑛∈ℤ

satisfies the following:

∙ consecutive values always differ by ±1, that is, | dimℂ I♯(𝑆3
𝑛(𝐾)) − dimℂ I♯(𝑆3

𝑛−1
(𝐾))| = 1; and

∙ either the sequence is unimodal, with a unique minimum at 𝑛 = 𝜈♯
I
(𝐾), which they call V-

shaped, or 𝜈♯
I
(𝐾) = 0 and there are two minima at 𝑛 = ±1, which they callW-shaped.

Our goal is to study, analogously, the sequence (dimℂ SHI(−𝑆3(𝐾), −Γ𝑛))𝑛∈ℤ, which turns out
to be similar to the sequence above and but is always V-shaped. In this subsection, we prove
this assertion, and relate 𝜏I with the slope 𝑛0 at which the unique minimum occurs. In the next
subsection, we shall use 𝑛0 to relate 𝜏I with 𝜈♯

I
and pass to the homogenization to get 𝜏♯

I
.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 35 of 53

For brevity, for a given 𝐾, let us denote

𝑑𝑛 = dimℂ SHI(−𝑆3(𝐾), −Γ𝑛).

First, we prove that 𝑑𝑛 differs from 𝑑𝑛−1 by ±1.

Lemma 5.4. For all 𝑛 ∈ ℤ, |𝑑𝑛 − 𝑑𝑛−1| = 1.

Proof. This follows directly from (3.2) and the fact that SHI(−𝑆3(1), −𝛿) ≅ ℂ. □

Next, we prove that (𝑑𝑛)𝑛∈ℤ is 𝑉-shaped.

Lemma 5.5. For all 𝑛 ∈ ℤ, if 𝑑𝑛 > 𝑑𝑛−1, then 𝑑𝑛+1 > 𝑑𝑛; if 𝑑𝑛 < 𝑑𝑛−1, then 𝑑𝑛−1 < 𝑑𝑛−2.
Consequently, the sequence (𝑑𝑛)𝑛∈ℤ has a unique minimum.

Proof. First, consider the surgery exact triangle (3.2), with 𝐹𝛽,𝑛 in place of 𝐶ℎ,𝑛:

(5.6)

Here, as in Section 5.2, (𝑁, Γ𝑛) is obtained from (𝑆3(𝐾), Γ𝑛) by 0-surgery along 𝛽. Since
SHI(−𝑁,−Γ𝑛) ≅ SHI(−𝑆3(1), −𝛿) ≅ ℂ, we see that the condition 𝑑𝑛 > 𝑑𝑛−1 is equivalent to
𝐹𝛽,𝑛 ≢ 0, and also to 𝐺𝛽,𝑛−1 ≡ 0; similarly, the condition 𝑑𝑛 < 𝑑𝑛−1 is equivalent to 𝐹𝛽,𝑛 ≡ 0, and
also to 𝐺𝛽,𝑛−1 ≢ 0.
The idea now is to combine this surgery exact triangle with either one of the two bypass exact

triangles associated to 𝜓𝑛
+,𝑛+1

and 𝜓𝑛
−,𝑛+1

:

Since 𝛽 lies in the interior of 𝑆3(𝐾), the triangle above is intertwined by the maps 𝐹𝛽,𝑛:
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36 of 53 GHOSH et al.

Note that 𝑁 ≅ 𝑆1 × 𝑆2(𝐾) is a solid torus with meridional disk 𝐷, where 𝜕𝐷 = 𝛼 ⊂ 𝜕(𝑆1 ×

𝑆2(𝐾)) = 𝜕𝑆3(𝐾). In other words,𝐷 is a boundary-compressing disk, and so (−𝑁,−Γ𝜇) is not taut.
Therefore,

SHI(−𝑁,−Γ𝜇) = 0,

and we have the following commutative diagram:

Thus, if 𝐹𝛽,𝑛 ≢ 0, then 𝐹𝛽,𝑛+1 ≢ 0. This means that if 𝑑𝑛 > 𝑑𝑛−1, then 𝑑𝑛+1 > 𝑑𝑛.
Similarly, the bypass exact triangles are intertwined by the maps

𝐺𝛽,𝑛 ∶ SHI(−𝑁,−Γ𝑛+1) → SHI(−𝑆3(𝐾), −Γ𝑛),

which appear in (5.6), from which we get the following commutative diagram:

(5.7)

From this, we conclude that if 𝐺𝛽,𝑛−1 ≢ 0, then 𝐺𝛽,𝑛−2 ≢ 0. This means that if 𝑑𝑛 < 𝑑𝑛−1, then
𝑑𝑛−1 < 𝑑𝑛−2.
Finally, the inequalities imply that (𝑑𝑛)𝑛∈ℤ has at most oneminimum. Since 𝑑𝑛 is a dimension,

we have 𝑑𝑛 ⩾ 0 for all 𝑛, which means that (𝑑𝑛)𝑛∈ℤ does indeed have a unique minimum. □

Let 𝑛0 be the index at which the sequence (𝑑𝑛)𝑛∈ℤ attains its unique minimum. We now turn
to relating 𝑛0 with 𝜏I.
Consider the map 𝐺𝛽,𝑛 ∶ SHI(−𝑁,−Γ𝑛+1) → SHI(−𝑆3(𝐾), −Γ𝑛) in (5.6). Using again the fact

that SHI(−𝑁,−Γ𝑛+1) ≅ ℂ, we define the element

𝑥𝑛 = 𝐺𝛽,𝑛(𝟏𝑛+1) ∈ SHI(−𝑆3(𝐾), −Γ𝑛),

where 𝟏𝑛+1 is a generator of SHI(−𝑁,−Γ𝑛+1). Recall that SHI(−𝑁,−Γ𝑛+1) is well defined only up
to a unit; if we like, we could choose concrete representatives of each term, and choose 𝟏𝑛 so that
𝐼𝑛(𝟏𝑛) = 𝟏𝑛+1, where 𝐼𝑛 ∶ SHI(−𝑁,−Γ𝑛) → SHI(−𝑁, Γ𝑛+1) is the map in (5.7). That commutative
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 37 of 53

diagram ensures that

𝑥𝑛+1 = 𝜓𝑛
±,𝑛+1(𝑥𝑛). (5.8)

Note that there are two assertions here, one for 𝜓𝑛
+,𝑛+1

and one for 𝜓𝑛
−,𝑛+1

, and each one holds up
to multiplication by a (possibly different) unit in ℂ. We will need both assertions later.
We are interested in the “width” of 𝑥𝑛 in terms of the grading. Precisely, writing

𝑥𝑛 =
∑
𝑖∈ℤ

𝑥𝑛,𝑖,

where 𝑥𝑛,𝑖 ∈ SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆
𝜏(𝑛)
𝑛 , 𝑖), we define the “width” to be the maximum supported

grading of 𝑥𝑛 less the minimum supported grading:

𝑙𝑛 =

{
max{𝑖 ∈ ℤ |𝑥𝑛,𝑖 ≠ 0} − min{𝑖 ∈ ℤ |𝑥𝑛,𝑖 ≠ 0} + 1 if 𝑥𝑛 ≠ 0;

0 if 𝑥𝑛 = 0.

The reason we are interested in 𝑙𝑛 is the following. On the one hand, for large, positive, odd 𝑛, the
value of 𝑙−𝑛 is related to 𝜏I(𝐾) via Proposition 5.3. (Here, 𝐾 denotes the mirror of 𝐾; the appear-
ances of the mirror and the negative sign before 𝑛 are related to the fact that there is a duality
between themaps 𝐹𝛽,𝑛 and𝐺𝛽,−𝑛.) On the other hand, as−𝑛 increases, 𝑙−𝑛 strictly decreases until
it reaches zero, and the value of −𝑛 when 𝑙−𝑛 reaches zero determines 𝑛0. We first prove the first
assertion.

Lemma 5.9. For 𝑛 odd and sufficiently large,

𝑙−𝑛 = 2𝜏I(𝐾) + 𝑛.

Here, 𝐾 is the mirror of 𝐾.

Proof. First, the unimodality of (𝑑𝑛)𝑛∈ℤ from Lemma 5.5 implies that, for 𝑛 sufficiently large,
𝑑−𝑛+1 < 𝑑−𝑛 must hold, or equivalently, 𝐺𝛽,−𝑛 ≢ 0; this implies that 𝑥−𝑛 ≠ 0, and so, 𝑙−𝑛 =

max{𝑖 ∈ ℤ |𝑥−𝑛,𝑖 ≠ 0} − min{𝑖 ∈ ℤ |𝑥−𝑛,𝑖 ≠ 0} + 1.
There is an orientation-preserving diffeomorphism

(−𝑆3(𝐾), −Γ−𝑛, 𝑆𝑛) ≅ (𝑆3(𝐾), Γ𝑛, 𝑆𝑛).

Hence, we have the following commutative diagram:
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38 of 53 GHOSH et al.

Here, the bar on 𝐺
′

𝛽,𝑛,𝑖 reminds us that it is a map associated to 𝐾, and 𝐺𝛽,−𝑛,𝑖 is the component

of 𝐺𝛽,−𝑛 that lands in the grading-𝑖 summand (and similarly for 𝐺
′
). From [25, Theorem 1.7], we

have natural isomorphisms

SHI(𝑆3(𝐾), Γ𝑛, 𝑆, 𝑖) ≅ SHI(−𝑆3(𝐾), Γ𝑛, 𝑆, 𝑖)
∨, SHI(𝑁, Γ𝑛) ≅ SHI(−𝑁, Γ𝑛)

∨,

where 𝑉∨ denotes the vector space dual to 𝑉. These isomorphisms fit into a commutative
diagram:

Here, the map 𝐹
∨

𝛽,𝑛,𝑖 is the dual of the map

𝐹𝛽,𝑛,𝑖 ∶ SHI(−𝑆3(𝐾), Γ𝑛, 𝑆, 𝑖) → SHI(−𝑁, Γ𝑛).

The reason that the diagram above commutes is that 𝐺
′

𝛽,𝑛 and 𝐹𝛽,𝑛 are induced by the same
cobordism with opposite orientations. Thus, we have

max

{
𝑖 ∈ ℤ

||||𝑥−𝑛,𝑖 ≠ 0

}
= max

{
𝑖 ∈ ℤ

||||𝐺𝛽,−𝑛,𝑖 ≢ 0

}
= max

{
𝑖 ∈ ℤ

||||𝐺′

𝛽,𝑛,𝑖 ≢ 0

}
= max

{
𝑖 ∈ ℤ

||||𝐹∨

𝛽,𝑛,𝑖 ≢ 0

}
= max

{
𝑖 ∈ ℤ

||||𝐹𝛽,𝑛,𝑖 ≢ 0

}
= 𝜏I(𝐾) +

𝑛 − 1

2
,

where the last equality follows from Proposition 5.3. Similarly,

−min

{
𝑖 ∈ ℤ

||||𝑥−𝑛,𝑖 ≠ 0

}
= 𝜏I(𝐾) +

𝑛 − 1

2
.

Summing these and adding 1, we get

𝑙−𝑛 = max

{
𝑖 ∈ ℤ

||||𝑥−𝑛,𝑖 ≠ 0

}
− min

{
𝑖 ∈ ℤ

||||𝑥−𝑛,𝑖 ≠ 0

}
+ 1 = 2𝜏I(𝐾) + 𝑛,

as claimed. □

Next, we prove the folowing lemma.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 39 of 53

Lemma 5.10. For 𝑛 ∈ ℤ, if 𝑙𝑛 > 0, then 𝑙𝑛+1 ⩽ 𝑙𝑛 − 1; if 𝑙𝑛 = 0, then 𝑙𝑛+1 = 0.

Proof. The second claim follows directly from the definition, since if 𝑥𝑛 = 0, then 𝑥𝑛+1 =

𝜓𝑛
±,𝑛+1

(𝑥𝑛) = 0. We focus on the first claim, where we assume 𝑥𝑛 ≠ 0. First, if 𝑥𝑛+1 = 0, then
𝑙𝑛+1 = 0 and the inequality holds; thus, we may also assume that 𝑥𝑛+1 ≠ 0.
Recall, from the discussion following (2.4), that with the ℤ-gradings on SHI(−𝑆3(𝐾), −Γ𝑛)

induced by 𝑆𝜏(𝑛)
𝑛 , the map 𝜓𝑛

−,𝑛+1
preserves grading while 𝜓𝑛

+,𝑛+1
decreases grading by 1. Thus,

for 𝑗 > max{𝑖 ∈ ℤ |𝑥𝑛,𝑖 ≠ 0} − 1, the graded version of (5.8) becomes

𝑥𝑛+1,𝑗 = 𝜓𝑛
+,𝑛+1(𝑥𝑛,𝑗+1) = 𝜓𝑛

+,𝑛+1(0) = 0,

while for 𝑗 < min{𝑖 ∈ ℤ |𝑥𝑛,𝑖 ≠ 0},

𝑥𝑛+1,𝑗 = 𝜓𝑛
−,𝑛+1(𝑥𝑛,𝑗) = 𝜓𝑛

−,𝑛+1(0) = 0.

This means that

𝑙𝑛+1 ⩽

(
max

{
𝑖 ∈ ℤ

||||𝑥𝑛,𝑖 ≠ 0

}
− 1

)
− min

{
𝑖 ∈ ℤ

||||𝑥𝑛,𝑖 ≠ 0

}
+ 1 = 𝑙𝑛 − 1,

as claimed. □

We now combine the two claims to relate 𝑛0 with 𝜏I(𝐾).

Corollary 5.11. We have the inequality

𝑛0 ⩽ 2𝜏I(𝐾).

Proof. From its definition, it is clear that 𝑙𝑛 > 0 whenever 𝑥𝑛 ≠ 0. Fix some 𝑛 that is odd and
sufficiently large, so that Lemma 5.9 holds and 𝑙−𝑛 = 2𝜏I(𝐾) + 𝑛. Letting𝑚 = 2𝜏I(𝐾) + 𝑛, wemay
inductively apply Lemma 5.10𝑚 times to conclude that

𝑙2𝜏I(𝐾) ⩽ max {𝑙−𝑛 − 𝑚, 0} = max
{
2𝜏I(𝐾) + 𝑛 − (2𝜏I(𝐾) + 𝑛), 0

}
= 0.

Thus, we see that 𝑥2𝜏I(𝐾) = 0, or equivalently, 𝐺𝛽,2𝜏I(𝐾) ≡ 0. As explained in the text following
(5.6), this is equivalent to the condition that 𝑑2𝜏I(𝐾)+1 > 𝑑2𝜏I(𝐾). This can occur onlywhen 2𝜏I(𝐾) ⩾

𝑛0. □

5.4 Identifying 𝝉𝐈 with 𝝉♯

𝐈

Lemma 5.12. If 𝜈♯(𝐾) ≠ 0, then

𝜈♯(𝐾) > −2𝜏I(𝐾) − 2.

Proof. To simplify the notation, we set 𝑛 = 2𝜏I(𝐾) + 2 throughout this proof. By Corollary 5.11, we
have 𝑑𝑛−1 > 𝑑𝑛−2, or equivalently, 𝐹𝛽,𝑛−1 ≢ 0, as explained in the text after (5.6).
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40 of 53 GHOSH et al.

Our goal is to relate 𝐹𝛽,𝑛−1 to a cobordismmap in the definition of 𝜈♯(𝐾). To do so, take a curve
of class 𝑛𝜇 − 𝜆 on 𝜕𝑆3(𝐾), and push it off into the interior of 𝑆3(𝐾) to obtain a curve 𝜂, such that
𝜂 has linking number 1 with 𝛽 (meaning that it is closer to 𝜕𝑆3(𝐾) than 𝛽). Consider the surgery
exact triangle associated to 𝜂:

Here, (𝑌0, Γ𝑛−1) (resp. (𝑌−1, Γ𝑛−1)) is obtained from (𝑆3(𝐾), Γ𝑛−1) by 0-surgery (resp.−1-surgery)
along 𝜂, where the surgery coefficient is taken with respect to the surface framing induced by
𝜕𝑆3(𝐾).
We can, in fact, determine these Floer homology groups: First, as explained in Section 5.2,

we can identify 𝐹𝜂,𝑛−1 with a map 𝐶ℎ,𝑛−1 ∶ SHI(−𝑆3(𝐾), Γ𝑛−1) → SHI(−𝑃(1), −𝛿) associated to
a 2-handle attachment along 𝑛𝜇 − 𝜆 (of which 𝜂 is a push-off). Again, (−𝑃(1), −𝛿) is not diffeo-
morphic to (−𝑌0, −Γ𝑛−1), but they have the same closures and hence the same Floer homologies.
Here, 𝑃 is obtained from 𝑆3(𝐾) by performing a Dehn filling along 𝑛𝜇 − 𝜆, and so, it is nothing
but 𝑆3

−𝑛(𝐾). After attaching the 2-handle, the boundary becomes a sphere, which is why we have
𝑃(1); the sutures become connected, which is why we have 𝛿. Thus,

SHI(−𝑌0, −Γ𝑛−1) ≅ SHI(−𝑃(1), −𝛿) ≅ I♯(−𝑆3
−𝑛(𝐾)).

Second, since 𝜂 is boundary parallel, performing a (−1)-surgery along 𝜂 is equivalent to per-
forming a Dehn twist along 𝑛𝜇 − 𝜆 on 𝜕𝑆3(𝐾). This means that (𝑌−1, Γ𝑛−1) is diffeormorphic to
(𝑆3(𝐾), Γ𝜇). Combining, we have the following exact triangle:

We can also perform a 0-surgery along 𝛽 and obtain a commutative diagram:
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 41 of 53

Note that themap𝑉−𝑛 on I♯ really does coincide with themap on SHI of the 0-surgeries, since the
sutured manifolds involved have the same closures. Here, 𝑁 is the manifold we encountered in
Section 5.2. We have that SHI(−𝑁,−Γ𝜇) = 0, because 𝑁 is irreducible and (−𝑁,−Γ𝜇) is not taut.
Thus, we obtain the commutative diagram:

This implies that, since 𝐹𝛽,𝑛−1 ≢ 0, we have that 𝑉−𝑛 ≢ 0. (Recall that 𝑛 = 2𝜏I(𝐾) + 2.)
Finally, we note that 𝑉−𝑛, a cobordism map associated to the 0-surgery along 𝛽, is dual to the

map
𝑊−𝑛 ∶ I♯(𝑆3) → I♯(𝑆3

−𝑛(𝐾))

associated to the same cobordism upside down. Hence,𝑊−𝑛 ≢ 0. Recall from Definition 2.8 that
𝜈♯
I
(𝐾) = 𝑁(𝐾) − 𝑁(𝐾), where 𝑁(𝐾) is the smallest nonnegative integer for which the cobordism

𝑊𝑁(𝐾) ∶ I♯(𝑆3) → I♯(𝑆3
𝑁(𝐾)

(𝐾)) vanishes. By [6, Proposition 3.3], if 𝜈♯
I
(𝐾) ≠ 0, then precisely, one

of 𝑁(𝐾) and 𝑁(𝐾) is nonzero, and (
dimℂ I♯

(
𝑆3
𝑚(𝐾)

))
𝑚∈ℤ

is unimodal with minimum precisely at 𝑚 = 𝜈♯
I
(𝐾). By [6, (3.1) and the proof of Proposition 3.2],

this means that𝑊𝑚 ∶ I♯(𝑆3) → I♯(𝑆3
𝑚(𝐾)) vanishes exactly when𝑚 ⩾ 𝜈♯

I
(𝐾). Thus, we obtain that

−2𝜏I(𝐾) − 2 = −𝑛 < 𝜈♯
I
(𝐾),

as claimed. □

Corollary 5.13. If 𝜈♯
I
(𝐾) ≠ 0, then

2𝜏I(𝐾) − 2 < 𝜈♯
I
(𝐾) < 2𝜏I(𝐾) + 2.

Proof. Since 𝜏I is a concordance homomorphism, we know that 𝜏I(𝐾) = −𝜏I(𝐾). Hence, the first
inequality follows directly from Lemma 5.12. For the second inequality, we use the fact from [6,
Section 3] that −𝜈♯

I
(𝐾) = 𝜈♯

I
(𝐾) and use Lemma 5.12 on 𝐾 to get

𝜈♯
I
(𝐾) > −2𝜏I(𝐾) − 2,

from which our inequality immediately follows. □

We are now ready to identify 𝜏I with 𝜏♯
I
.

 17538424, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12346 by Louisiana State U
niversity Lsu, W

iley O
nline Library on [28/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



42 of 53 GHOSH et al.

Proof of Theorem 1.2 in the instanton setting. If 𝜏♯
I
(𝐾) ⩾ 1, then for all positive 𝑛, we have 𝜏♯

I
(♯ 𝑛𝐾) ⩾

𝑛, and from [6, Proposition 5.4], we have |2𝜏♯
I
(♯ 𝑛𝐾) − 𝜈♯

I
(♯ 𝑛𝐾)| ⩽ 1, and, in particular, 𝜈♯

I
(♯ 𝑛𝐾) >

0. So, we can apply Corollary 5.13 to ♯ 𝑛𝐾 to conclude that

2𝑛𝜏I(𝐾) − 2 = 2𝜏I(♯ 𝑛𝐾) − 2 < 𝜈♯
I
(♯ 𝑛𝐾) < 2𝜏I(♯ 𝑛𝐾) + 2 = 2𝑛𝜏I(𝐾) + 2.

From the definition of 𝜏♯
I
(𝐾) (Definition 2.9), we have

lim
𝑛→∞

(
𝜏I(𝐾) −

1

𝑛

)
⩽ 𝜏♯

I
(𝐾) =

1

2
lim
𝑛→∞

𝜈♯
I
(♯ 𝑛𝐾)

𝑛
⩽ lim

𝑛→∞

(
𝜏I(𝐾) +

1

𝑛

)
,

and so,
𝜏♯
I
(𝐾) = 𝜏I(𝐾).

If 𝜏♯
I
(𝐾) ⩽ 1, then we can pick a knot 𝐾0 with 𝜏♯

I
(𝐾0) = 1 (e.g., the right-handed trefoil). Since

𝜏♯
I
is a concordance homomorphism, we have

𝜏♯
I
(𝐾) = 𝜏♯

I
(𝐾 ♯ 𝑛𝐾0) − 𝜏♯

I
(♯ 𝑛𝐾0) = 𝜏♯

I
(𝐾 ♯ 𝑛𝐾0) − 𝑛.

Thus, for 𝑛 large enough, we have 𝜏♯
I
(𝐾 ♯ 𝑛𝐾0) ⩾ 1, and so, the paragraph above shows that both

𝜏♯
I
(𝐾 ♯ 𝑛𝐾0) = 𝜏I(𝐾 ♯ 𝑛𝐾0)

and
𝜏♯
I
(♯ 𝑛𝐾0) = 𝜏I(♯ 𝑛𝐾0) = 𝑛.

Since 𝜏I is also a concordance homomorphism, we conclude that

𝜏♯
I
(𝐾) = 𝜏I(𝐾),

as desired. □

Finally, we state the necessary changes for the monopole setting.

Proof of Theorem 1.2 in the monopole setting. The proof is similar to that in the instanton setting,
with a different proof for the following statement: In Proposition 5.1, the symmetry isomorphism
for odd 𝑛,

SHI(−𝑆3(𝐾), Γ𝑛, 𝑆𝑛, 𝑖) ≅ SHI(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, −𝑖)

follows from a symmetry in the generalized eigenspaces associated to 𝜇(𝑅). The analogous
statement,

SHM(−𝑆3(𝐾), Γ𝑛, 𝑆𝑛, 𝑖) ≅ SHM(−𝑆3(𝐾), −Γ𝑛, 𝑆𝑛, −𝑖),

follows from the conjugation symmetry in the Spin𝑐 decomposition inmonopole Floer theory. □
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 43 of 53

6 COMPUTATION FOR TWIST KNOTS

In this section, we computeKHG− for the family of knots𝐾𝑚 as in Figure 1, proving Theorem 1.16.
We divide Theorem 1.16 into four propositions: Proposition 6.6, Proposition 6.9, Proposition 6.10,
and Proposition 6.12
Note that, in particular, 𝐾1 is the right-handed trefoil, 𝐾0 is the unknot, and 𝐾−1 is the figure-

eight knot.
From the Seifert algorithm, we can easily construct a genus-1 Seifert surface for 𝐾𝑚, which

we denote by 𝑆𝑚. Hence, g(𝐾𝑚) = 1. Also, it is straightforward to compute the (symmetrized)
Alexander polynoial of 𝐾𝑚 to be

Δ𝐾𝑚
(𝑡) = 𝑚𝑡 + (1 − 2𝑚) + 𝑚𝑡−1. (6.1)

First, we will computeKHG(−𝑆3, 𝐾𝑚). Suppose that (𝑆3(𝐾𝑚), Γ𝜇) is the balanced suturedman-
ifold obtained by takingmeridional sutures on knot complements. There is a curve 𝜁 ⊂ Int 𝑆3(𝐾𝑚)

as in Figure 1 so that we have a surgery exact triangle:

Here,𝐾𝑚 is described as above, and𝑄 is obtained from 𝑆3(𝐾𝑚) by performing a 0-Dehn surgery
along 𝜁. We can use the surface 𝑆𝑚,𝜇 that intersects the suture Γ𝜇 twice to construct a grading on
the sutured monopole and instanton Floer homologies. Let 𝑆𝑚,𝑛 be an isotopy of 𝑆𝑚,𝜇 so that 𝑆𝑚,𝑛

intersects the suture Γ𝑛 exactly 2𝑛 times. Since 𝜁 is disjoint from 𝑆𝑚,𝜇, all the Seifert surfaces 𝑆𝑚,𝜇

and 𝑆𝑚,𝑛 survive in 𝑄, which we call 𝑆𝜇 and 𝑆𝑛, respectively. Also, there is a graded version of the
exact triangle (note that we omit the surfaces from the following exact triangle):

(6.2)

Since 𝑆𝑚,𝜇 has genus one and intersects the suture twice, all the graded sutured monopole and
instantonFloer homologies in (6.2) could only possibly be nontrivial for−1 ⩽ 𝑖 ⩽ 1. To understand
what is SHG(−𝑄,−Γ𝜇), from [19] and [24], the surgery exact triangle (3.7) is just the same as the
oriented skein exact triangle and SHG(−𝑄,−Γ) is isomorphic to the knot monopole or instanton
Floer homology of the oriented smoothing of 𝐾𝑚, which is a Hopf link. Applying oriented Skein
relation again on Hopf links, we can conclude that

rk(SHG(−𝑄,−Γ𝜇)) ⩽ 4. (6.3)

For the monopole and instanton knot Floer homologies of 𝐾1 (trefoil), we could look at the
surgery exact triangle along the curve 𝜍 in Figure 7 and argue in the sameway as in [19] to conclude
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44 of 53 GHOSH et al.

F IGURE 7 The trefoil and the circle 𝜍.

rk(SHG(−𝑆3(𝐾1), −Γ𝜇) ⩽ 3.

Using the Alexander polynomial in (6.1) and [19, 20], we know that

SHG(−𝑆3(𝐾1), −Γ𝜇, 𝑆1,𝜇, 𝑖) ≅  (6.4)

for 𝑖 = −1, 0, 1 and it vanishes in all other gradings.
Now let𝑚 = 1 in (6.2). We know from (6.1) that

rk(SHG(−𝑆3(𝐾2), −Γ𝜇) ⩾ 7.

Then, from the exactness and inequalities (6.3) and (6.4), we know that

rk(SHG(−𝑄,−Γ𝜇)) = 4.

After further examining each gradings, we know that

SHG(−𝑄,−Γ𝜇, 𝑆𝜇, 𝑖) =

⎧⎪⎨⎪⎩
 for 𝑖 = 1, −1,

2 for 𝑖 = 0,

0 otherwise.

Thus, by using the same argument and the induction, we can compute, for𝑚 > 0, that

SHG(−𝑆3(𝐾𝑚), −Γ𝜇, 𝑆𝑚,𝜇, 𝑖) =

⎧⎪⎨⎪⎩
𝑚 for 𝑖 = 1, −1,

2𝑚−1 for 𝑖 = 0,

0 otherwise.
(6.5)

Since 𝐾0 is the unknot, we can use the same technique to compute for,𝑚 ⩽ 0, that

SHG(−𝑆3(𝐾𝑚), −Γ𝜇, 𝑆𝑚,𝜇, 𝑖) =

⎧⎪⎨⎪⎩
−𝑚 for 𝑖 = 1, −1,

1−2𝑚 for 𝑖 = 0,

0 otherwise.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 45 of 53

F IGURE 8 The map 𝜓1
+,2

for 𝐾𝑚. Each row is the positive bypass exact triangle in a particular grading. The
leftmost column indicates the gradings. We use letters like 𝑎, 𝑏, and 𝑐 to indicate that, a priori, we do not know
what the rank is.

F IGURE 9 The map 𝜓2
+,3

for 𝐾𝑚. We denote by (𝜓2
+,3

)𝑖 the restriction of the map 𝜓2
+,3

to the grading 𝑖.

Nowwe are ready to compute the minus version. Recall that the Seifert surface induces a fram-
ing on the boundary of the knot complements as well as 𝑄. Write Γ𝑛 the suture consists of two
curves of slope −𝑛. We have a graded version of by-pass exact triangles (3.9) for even 𝑛 as well as
(3.8) for odd 𝑛.
A simple case to analyze is when 𝑚 < 0. For the knot 𝐾𝑚 with 𝑚 < 0, take 𝑛 = 2 in (3.8); we

have Figure 8.
Here, as in [26, Section 4], the top and bottom nonvanishing grading of SHG(−𝑆3(𝐾𝑚), −Γ𝑛)

can be computed via sutured manifold decomposition and coincide with the top and bottom
nonvanishing grading of SHG(−𝑆3(𝐾𝑚), −Γ𝜇).
From the graded exact triangles on the rows of the table and an extra exact triangle (3.2), we

know that
𝑏 ⩾ 1 − 𝑚, 𝑐 ⩾ 𝑎 + 𝑚, 𝑏 + 𝑐 ⩽ 𝑎 + 1.

Hence, the only possibility is 𝑏 = 1 − 𝑚, 𝑐 = 𝑎 + 𝑚. Now take 𝑛 = 3 in (3.9); we have Figure 9.
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46 of 53 GHOSH et al.

Here, SHG(−𝑆3(𝐾𝑚), −Γ3) can be computed by taking 𝑘 = 1 (note g = g(𝐾𝑚) = 1) in (3.5). We
know from [26, Section 5.2] that

KHG−(−𝑆3, 𝐾𝑚, 𝑖) ≅ SHG(−𝑆3(𝐾𝑚), −Γ3, 𝑆𝑚,3, 𝑖 + 1)

for 𝑖 = 1, 0, and −1, and the𝑈 maps on KHG−(−𝑆3, 𝐾𝑚, 𝑖) for 𝑖 = 1 and 2 coincide with the maps
𝜓𝑖

+,2
as in Figure 9. From the exactness, we know that𝑈 map is actually zero at grading 1 and has

a kernel of rank −𝑚 at grading 0. Hence, we conclude the following.

Proposition 6.6. Suppose𝑚 ⩽ 0 and the knot 𝐾𝑚 is described as above. Then,

KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]0 ⊕ (1)
−𝑚 ⊕ (0)

−𝑚,

and hence, 𝜏G(𝐾𝑚) = 0.

To computeKHG− of𝐾𝑚 for𝑚 > 0, we first deal with the case𝑚 = 1. Now𝐾1 is a right-handed
trefoil, which has 𝑡𝑏(𝐾1) = 1, and hence, from Lemma 3.3, we know that

rk SHG(−𝑆3(𝐾1), −Γ1) = rk SHG(−𝑆3(𝐾1), −Γ0) + 1.

Now let us compute SHG(−𝑆3(𝐾1), −Γ0). Pick 𝑆0 to be a genus 1 Seifert surface of 𝐾 so that 𝑆0 is
disjoint fromΓ0.We canuse the surface 𝑆−

0
, a negative stabilization of 𝑆0 as in [26, Definition 3.1] to

construct a grading on SHG(−𝑆3(𝐾1), −Γ0). From the construction of grading and the adjunction
inequality, there could only be three nonvanishing grading−1, 0, and 1. For the grading 1 part, we
can apply [26, Lemma 3.2 and Lemma 4.2] and get

SHG(−𝑆3(𝐾1), −Γ0, 𝑆
−
0 , 1) ≅ SHG(𝑀′, 𝛾′),

where the balanced sutured manifold (𝑀′, 𝛾′) is obtained from (−𝑆3(𝐾), −Γ0) by a (sutured man-
ifold) decomposition along the surface 𝑆0. Since 𝐾 is a fibred knot, the underlining manifold 𝑀′

is just a product [−1, 1] × 𝑆0. The suture 𝛾′ is not just {0} × 𝜕𝑆 but is actually three parallel copies
of {0} × 𝜕𝑆 on [−1, 1] × 𝜕𝑆. We can find an annulus 𝐴 ⊂ [−1, 1] × 𝜕𝑆 that contains the suture 𝛾′.
Then, we can push the interior of 𝐴 into the interior of 𝑆 × [−1, 1] and get a properly embedded
surface. If we further decompose (𝑀′, 𝛾′) along (the pushed off of)𝐴, then we get a disjoint union
of a product balanced sutured manifold (𝑆 × [−1, 1], 𝜕𝑆 × {0}) with a solid torus with four longi-
tudes as the suture. The sutured monopole and instanton Floer homologies of the first are both
of rank 1 and the second of rank 2, as in [19] and [24]. Hence, we conclude

SHG(−𝑆3(𝐾1), −Γ0, 𝑆
−
0 , 1) ≅ 2.

For the other two gradings, note that from the grading shifting property in [26, Proposition 4.9],
we have

SHG(−𝑆3(𝐾1), −Γ0, 𝑆
−
0 , 𝑖) = SHG(−𝑆3(𝐾1), −Γ0, 𝑆

+
0
, 𝑖 − 1)

= SHG(−𝑆3(𝐾1), −Γ0, (−𝑆0)
−, 1 − 𝑖).
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 47 of 53

F IGURE 10 The map 𝜓1
+,2

(on the left) and 𝜓1
−,2

(on the right) for 𝐾1.

The second equality follows from the basic observation that if we reverse the orientation of the
surface 𝑆+

0
, then we get (−𝑆0)

−. Hence,

SHG(−𝑆3(𝐾1), −Γ0, 𝑆
−
0 , −1) = SHG(−𝑆3(𝐾1), −Γ0, (−𝑆0)

−, 2) = 0

by the adjunction inequality and

SHG(−𝑆3(𝐾1), −Γ0, 𝑆
−
0 , 0) = SHG(−𝑆3(𝐾1), −Γ0, (−𝑆0)

−, 1) ≅ 2.

by the same argument as above. Thus, as a conclusion,

SHG(−𝑆3(𝐾1), −Γ1) ≅ 5.

Similarly, there are only three possible nonvanishing gradings −1, 0, 1. We have already known
that the homology at top and bottom gradings are of rank 1 each, so the middle grading has rank
3. Let 𝑛 = 2 in (3.8); we have Figure 10.
From the exactness, we know that 𝑏 = 𝑐 = 2. The rest of the computation is straightforward

and we conclude that
KHG−(−𝑆3, 𝐾1) ≅ [𝑈]1 ⊕ 0.

Now we have the map

𝐶1,ℎ,1 ∶ SHG(−𝑆3(𝐾1), −Γ1) → SHG(−𝑆3(1), 𝛿)

and by the description of KHG−(−𝑆3, 𝐾1) above, Proposition 3.17, and the fact that 𝐶1,ℎ,𝑛

commutes with 𝜓−,𝑛 (Claim 1 in the proof of Proposition 1.12), we know that

𝐶1,ℎ,1 ∶ SHG(−𝑆3(𝐾1), −Γ1, 1) → SHG(−𝑆3(1), −𝛿)

is surjective, and, since SHG(−𝑆3(𝐾1), −Γ1, 1) has rank 1, it is actually an isomorphism (for the
monopole case, the argument is essentially the same as in the proof of Proposition 2.6). Now we
go back to the surgery exact triangle in (6.2), which corresponds to surgeries on the curve 𝜁 ⊂
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48 of 53 GHOSH et al.

Int 𝑆3(𝐾𝑚). Since 𝜁 is disjoint from the boundary, and as above, disjoint from all Seifert surfaces
𝑆𝑚,𝑛, we have the following exact triangle for any𝑚 and 𝑛 (where we again omit the surfaces):

(6.7)

There are contact 2-handle attaching maps

𝐶𝑚,ℎ,𝑛 ∶ SHG(−𝑆3(𝐾𝑚), −Γ𝑛) → SHG(−𝑆3(1), −𝛿),

where the contact 2-handle is attached along a meridional curve on the knot complements. We
can attach a contact 2-handle along the same curve on the boundary ofQ, and the handle attaching
maps commute with the maps in the exact triangle (6.7). Thus, we have a diagram:

(6.8)

Here, 𝑆2 × 𝑆1 is obtained from 𝑆3 by performing a 0-surgery along the unknot 𝜁. The balanced
sutured manifold (𝑆2 × 𝑆1(1), 𝛿) is obtained from 𝑆2 × 𝑆1 by removing a 3-ball and assigning a
connected simple closed curve on the spherical boundary as the suture. Its sutured monopole
and instanton Floer homologies are computed in [4] and [24] and are both of rank 2. Thus, the
exactness tells us that 𝜙∞ = 0, 𝜙1 is injective, and 𝜙0 is surjective.
Now take𝑚 = 0, 𝑛 = 1, and 𝑖 = 1, we know that

SHG(−𝑄,−Γ1, 𝑆1, 1) ≅ SHG(−𝑆3(𝐾1), −Γ1, 𝑆1,1, 1) ≅ ,

and 𝐶𝑄,ℎ,𝑛 is injective. Then, take 𝑚 to be an arbitrary nonnegative integer and 𝑛 = 1, 𝑖 = 1 in
(6.8). From (6.5), we know that

SHG(−𝑆3(𝐾𝑚), −Γ𝜇, 𝑆𝑚,𝜇, 1) ≅ 𝑚.

By performing sutured manifold decompositions along 𝑆𝑚,𝑛 and applying [26, Lemma 4.2], we
know that

SHG(−𝑆3(𝐾𝑚), −Γ1, 𝑆𝑚,1, 1) ≅ SHG(−𝑆3(𝐾𝑚), −Γ𝜇, 𝑆𝑚,𝜇, 1) ≅ 𝑚.
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ON THE TAU INVARIANTS IN INSTANTON ANDMONOPOLE FLOER THEORIES 49 of 53

F IGURE 11 The map 𝜓1
+,2

for 𝐾𝑚.

Recall from above discussions, we have

SHG(−𝑄,−Γ1, 𝑆1, 1) ≅ ,

so in the exact triangle (6.8), we know that 𝜏𝑚,1,1 is surjective. Then, we can use the commutativity
part of (6.8) and conclude that

𝐶𝑚+1,ℎ,𝑛 ∶ SHG(−𝑆3(𝐾𝑚+1), −Γ1, 𝑆𝑚,1, 1) → SHG(−𝑆3(1), −𝛿)

is surjective. From the fact that 𝜓𝑛
±,𝑛+1

commutes with 𝐶ℎ,𝑛 as in Claims 1 and 2 in the
proof of Proposition 1.12, we know that this surjectivity means that the unique 𝑈 tower in
KHG−(−𝑆3, 𝐾𝑚, 𝑝𝑚) starts at grading 1:

𝜏G(𝐾𝑚) = 1

for𝑚 > 0.
Take 𝑛 = 2 in (3.8); then we have Figure 11.
The fact that 𝜏G(𝐾𝑚) = 1means that (𝜓1

+,2
)0 ≠ 0, as (𝜓1

+,2
)0 corresponds to the𝑈map at grading

1 part of KHG−(−𝑆3, 𝐾𝑚, 𝑝𝑚). Thus, from the exactness, we know that

𝑏 ⩾ 𝑚 + 1, 𝑐 ⩾ 𝑎 − 𝑚.

From the exact triangle (3.2), we know that

𝑏 + 𝑐 ⩽ 𝑎 + 1

and hence 𝑏 = 𝑚 + 1, 𝑐 = 𝑎 − 𝑚. Thus, we conclude the following.

Proposition 6.9. Suppose𝑚 > 0 and 𝐾𝑚 is as above. Then

KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]1 ⊕ (1)
𝑚−1 ⊕ (0)

𝑚,

and hence, 𝜏G(𝐾𝑚) = 1.
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50 of 53 GHOSH et al.

F IGURE 1 2 The map 𝜓1
+,2

for 𝐾1.

We could also compute the KHG− of the knots 𝐾𝑚, the mirror image of 𝐾𝑚. For 𝑚 ⩽ 0, the
computation is exactly the same as before, and we conclude:

Proposition 6.10. Suppose𝑚 ⩽ 0 and the knot 𝐾𝑚 is as above. Then

KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]0 ⊕ (1)
−𝑚 ⊕ (0)

−𝑚,

and hence, 𝜏G(𝐾𝑚) = 0.

For𝑚 > 0, we have a diagram similar to (6.8), as follows.

(6.11)
Let us first compute the case𝑚 = 1, when 𝐾̄𝑚 is the left-handed trefoil. In this case, take 𝑛 = 2

in (3.8); then we get Figure 12.
The left-handed trefoil is not right veering in the sense of [8], so from their discussion, we

conclude that (𝜓1
+,2

)0 = 0. (This is how they prove that the second top grading of the instanton
knot Floer homology of a non-right-veering knot is nontrivial. Though they only work in the
instanton case, the monopole case is exactly the same.) Thus, we conclude that 𝑏 = 0.
In (6.11), let 𝑚 = 0, 𝑛 = 2, 𝑖 = 0. Note the grading is induced by 𝑆+

𝑚,2
, that is, a Seifert sur-

face of the knot 𝐾𝑚 that intersects the suture Γ2 transversely at four points and with a positive
stabilization. With the gradings as in the first row of (3.9), we have

SHG(−𝑆3(𝐾1), −Γ2, 𝑆
𝜏(2)
1,2

, 0) = 𝑏 = 0, SHG(−𝑆3(𝐾0), −Γ2, 𝑆
𝜏(2)
0,2

, 0) ≅ .

Here, 𝐾0 is the unknot and we have computed the SHG of a solid torus with any possible sutures
in [26, Section 4.4]. Thus, we conclude that

SHG(−𝑄,−Γ2, 𝑆
𝜏(2)
2

, 0) ≅ .
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F IGURE 13 The map 𝜓2
+,3

for 𝐾𝑚.

Use the exactness and the induction, then we have

SHG(−𝑆3(𝐾𝑚), Γ2, 0) ≅ 𝑐𝑚 , 𝑐𝑚 ⩽ 𝑚 − 1.

For the knot 𝐾𝑚, take 𝑛 = 3 in (3.9); then we have Figure 13.
Thus, we conclude from the exactness that 𝑐𝑚 = 𝑚 − 1, (𝜓2

+,3
)1 = 0, and (𝜓2

+,3
)0 = 0. As above,

the two maps (𝜓2
+,3

)1 and (𝜓2
+,3

)0 correspond to the 𝑈 maps of KHG−(−𝑆3, 𝐾𝑚) at grading 1 and
0, respectively. Hence, we conclude:

Proposition 6.12. Suppose𝑚 > 0 and the knot 𝐾𝑚 is as above. Then,

KHG−(−𝑆3, 𝐾𝑚) ≅ [𝑈]−1 ⊕ (1)
𝑚 ⊕ (0)

𝑚−1,

and hence, 𝜏G(𝐾𝑚) = 0.
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