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1 | INTRODUCTION

Among the Floer invariants of 3-manifolds, it is now known that various flavors of Heegaard Floer
homology, monopole Floer homology, and embedded contact homology are isomorphic, while
their relationship with instanton Floer homology remains a major open question.

The relationships between Floer invariants of knots in 3-manifolds are even less understood:
Knot instanton Floer homology is not known to be isomorphic to the other knot homologies, and
while it is known that the usual knot monopole Floer homology is isomorphic to the hat flavor
of knot Heegaard Floer homology (tensored with the mod-2 Novikov field R) as graded modules
over R [11, 17, 22, 37]:

KHM(Y,K; R) =~ HFK(Y,K;F,) ® R, 1.1)
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no analogous statement is known for the more powerful minus flavor of knot Heegaard Floer
homology HFK~ (Y, K; [, ), which is a graded module over F,[U] rather than [,. In fact, the minus
flavors KHM™ and KHI™ of knot monopole and instanton Floer homologies have been defined
only recently by the second author [26] using contact handle attachment maps of sutured man-
ifolds, based on work of Baldwin and Sivek [3] and inspired by work of Etnyre, Vela-Vick, and
Zarev [13]. As such, many basic structural properties of KHM™~ and KHI™ are yet unknown.

For example, a key property of HFK ™ for knots K C S? is its unique F,[U]-summand, the nega-
tive of whose maximal Alexander Z-grading is a concordance invariant 7;;(K). " In fact, 7;; defines
a homomorphism 74; : C — Z from the smooth concordance group C. Moreover, |t(K)| also
gives a lower bound on the smooth 4-genus ¢,(K). More generally, t;; can be defined for null-
homologous knots K in a connected, oriented, closed 3-manifold Y, with a choice of a Seifert
surface S. Inspired by this, the second author [26] similarly defines 7,,(Y, K, S) and 7;(Y, K, S) to
be the negative® of the maximal Alexander Z-grading of the non-U-torsion elements of KHM~
and KHI™. § However, for knots K C S3, these have not been shown to be concordance invariants
or to give 4-genus bounds.

In a different approach to the tau invariants, Baldwin and Sivek [6] define a concordance invari-

4
I

integer surgeries S>(K) along K, and homogenize »

using cobordism maps between the framed instanton Floer homology I¥ of $3 and of the

i
I

show that |T?(K)| < g4(K), and that er gives a homomorphism ZTf : C — R that is, in fact, a

slice-torus invariant, as defined by Lewark [23] following Livingston [27]; however, defined via a

4
I

less, these properties of Tf are sufficient for Baldwin and Sivek to use to determine I* of all nonzero
rational surgeries on 20 of the 35 nontrivial prime knots in S* through eight crossings, and estab-

ant v

to obtain a concordance invariant TIJi . U They

homogenization process, 77 is not known to be an integer (or even a rational number). Nonethe-

lish several other results. While it is not explicitly stated, a concordance invariant Ti/l can be
similarly defined in the monopole Floer theory, via the tilde flavor HM(S fl (K); R). By construction,
Tf and rﬁ,[ are defined only for knots K C S°.

This article represents the natural first step in understanding the structures of KHM™ and KHI™
and their comparisons with HFK™. In the following, we shall replace the subscripts M and I (for
“monopole” and “instanton”) in t); and 7; by the subscript G (for “gauge-theoretic”) in 75, when
the statement applies to both theories. To begin, our main theorem identifies the tau invariants,
answering the question posed in (a previous version of) [6].

Theorem 1.2. For all knots K C S3, we have t5(K) = Té(K).

We immediately have the following corollaries in the instanton setting.

Corollary 1.3. For all knots K C S3, the invariant ‘L'f (K) is an integer. In other words, r? defines a

homomorphism Tf :C—- Z

T Technically, 7;; — usually simply denoted T — may depend on the coefficient ring. In this article, we always take t5(K)
to mean 7 (K; ).

There is no negative sign in Definition 2.5 because we have reversed the orientation of the ambient 3-manifold there.

§When Y = S3, we abbreviate these by 7),(K) and 7;(K).
#

11n [6], s simply denoted as %; we add the subscript I to separate it from the monopole version 7.

I
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Corollary 1.4 (cf. [6, Proposition 5.4]). For all knots K C S*, we have |7,(K)| < g4(K).

i
I

and use this to show that TIﬁ (K) agrees with g,(K) when K is quasi-positive. Moreover, as Lewark
[23] proves that slice-torus invariants agree with the negative of the signature for alternating knots,

they obtain Tf (K) = —o(K)/2 for such knots.” Lewark also proves that the values of all slice-torus

As mentioned above, Baldwin and Sivek [6, Theorem 1.6] show that 277 is a slice-torus invariant,

invariants agree on homogeneous knots, which gives T? (K) = t(K) for such knots.
In the monopole setting, the statements in the preceding paragraph can be readily proved for
Tﬁ/[ also. Thus, Theorem 1.2 immediately implies the following for knots in S>.

Corollary 1.5 (cf. [6, Theorem 1.6]). The invariant 2t is a slice-torus invariant. If K is a quasi-
positive knot, then t5(K) = g,(K). If K is an alternating knot, then 75(K) = —o(K)/2. IfK is a
homogeneous knot, then t(K) = ti3(K).*

In fact, in the monopole setting, we can strengthen this last statement to hold for all knots.

Theorem 1.6. For all knots K C S, we have 7y, (K) = 75;(K).

Proof. Baldwin and Sivek [6, Section 10] detail how the Heegaard Floer 7y invariant can also be
expressed as the homogenization of a concordance invariant coming from surgeries, as explained

to them by Jennifer Hom. (One may reasonably denote such an invariant by Tf{.) They then use
this to show that if

dim¢ Iﬁ(Y; C)= dim[F2 AE(Y; F,)

holds for all Y obtained via integer surgery along a knot in S3, then rlﬁ(K) = rf{(K) = 1(K) for
all K C S3 [6, Proposition 1.24]. The exact same proof can be adapted to show that if

rkp HM(Y; R) = dimg HF(Y;F,) (1.7)

holds for all Y obtained via integer surgery, then Tﬁ/l(K) = rf{(K) = 1;(K). But (1.7) is simply
the isomorphism between monopole and Heegaard Floer homologies for 3-manifolds [11, 17, 37].
Thus, our claim follows from Theorem 1.2. O

The significance of Theorem 1.6 is that it represents the first step toward proving the
generalization of the isomorphism between KHM and HFK in (1.1) to the minus flavor.

Conjecture 1.8. Let Y be a connected, oriented, closed 3-manifold, and let K C Y be an oriented,
nullhomologous knot. Then there is an isomorphism of graded modules over R[U]:

KHM™(Y,K;R) ~ HFK (Y, K;F,) ® R[U].

TWe follow the convention where the right-handed trefoil has signature —2.

¥ These facts combined show that 7; = 7y for all prime knots through nine crossings, except possibly 9,5, 944, and 9.
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Corollary 1.5 has another implication, as pointed out to the authors by Steven Sivek.
Corollary 1.9. Suppose that A C (S3, &) is a Legendrian knot of smooth knot type K, then

tb(A) + |r(A)| < 276(K) — 1.

Proof. Consider the positive and negative transverse push-offs ©, (A), which have self-linking

numbers sl(0, (A)) = tb(A) F r(A), respectively. By [6, Theorem 6.1], sI(©) < er}(K) — 1 for all
#

I b
works for Tﬁ/[.) Thus, the result follows from Theorem 1.2. (Note that [6, Theorem 6.1] is, in fact,

transverse representatives © of K. ([6, Theorem 6.1] is a statement for 77, but the same argument

the key ingredient in proving that Tf (K) = g4(K) for quasi-positive knots K.) [l
Remark 1.10. The analogous statement that

tb(A) + |r(A)| < 2t(K) -1, (1.11)
first proved by Plamenevskaya [35], implies Corollary 1.9 for 7, via Theorem 1.6.

Below, we describe the strategy to prove Theorem 1.2. To simplify our notation, we first set up
some conventions for the rest of the article.

Conventions

The coefficient ring for monopole Floer homologies is always taken to be the mod-2 Novikov field,
and that for instanton Floer homologies is always taken to be the field C of complex numbers. In
both cases, we shall denote the coefficient ring by R. Similar to 75, we shall denote both SHM
and SHI by SHG when a statement applies to both sutured monopole and sutured instanton Floer
homologies, and likewise denote by KHG (resp. KHG™) the knot monopole and instanton Floer
homologies KHM (resp. KHM ™) and KHI (resp. KHI™).

1.1 | Strategy

The astute reader may have noticed that we did not state the concordance invariance of 7, or
its additivity under connected sum, as a corollary of Theorem 1.2. The reason is that, in order to
prove Theorem 1.2, we shall, in fact, first prove the concordance invariance of 7.

Proposition 1.12. For all knots K C S°, the integer 75(K) is a concordance invariant.

To establish Proposition 1.12, we shall also prove the key property that KHG™ has a unique
R[U]-summand (also known as an infinite U-tower) for knots K C S3, analogous to HFK":

Proposition 1.13. For all knots K C S*, KHG™(S3,K) has a unique R[U]-summand.

After establishing Proposition 1.12, we shall turn to the additivity of 75 under connected sum.
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES 50f53

m negative full twists m positive full twists

Km ?’m,

FIGURE 1 The twist knots K,,, and I?m. In Section 6, we shall perform surgery along the curve ¢ in the proof
of Theorem 1.16.

Proposition 1.14. For all pairs of knots K;, K, C S3, we have t5(K; # K,) = 15(K;) + 76(Ky).

The rest of the proof of Theorem 1.2 can be described roughly as follows. Recall that KHG™
is defined in terms of a directed system of SHG of the knot complement S3(K) with sutures
I',,, over different values of n, where I', denotes a pair of parallel sutures on the boundary
torus with n full twists. First, using bypass and surgery exact triangles involving —S3(K), we
reformulate 7 in terms of the twisting coefficient n, for which SHG of —S*(K) with —T,,
sutures uniquely attains minimum rank. (This is conceptually similar to Baldwin and Sivek’s
notion of V-shaped knots.) Next, noting that whether the inequality rk, SHG(—S*(K), T, ) >
rk, SHG(—S*(K), —T,) holds is equivalent to the (non-)vanishing of certain surgery cobordism

maps involving —S*(K), further analysis using surgery exact triangles allows us to relate 7; to the

8

. . . . . e 3
(non-)vanishing of surgery cobordism maps involving I* or HM of =57, (K), and thence to v,

giving the inequality
216(K) — 1 < v5(K) < 206(K) + 1

whenever vg(K) # 0. A homogenization argument, using the fact that 75 is a concordance
homomorphism, completes the proof.

1.2 | Examples

Let K,,, C S° be the twist knot with a positive clasp and m negative full twists (or —m positive full
twists if m < 0), and let Em denote its mirror image; see Figure 1. (In the notation of Baldwin and
Sivek [6], their K,, corresponds to our K_,, ,, when n is even, and to our f(n +1)/2 When n is odd.)
Baldwin and Sivek [6] compute’

# 0 form <0, e 0 form <0,
(K, )= vi(K, )= 1.15
I( m) {1 form > 0, I( m) -1 form >0, (L15)

T They only compute half of these, but the antisymmetry of v? under mirroring gives the other half.
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60f53 | GHOSH ET AL.

and use it to fully determine dim¢ Iﬁ(SZ /q(Km)). One can also compute ff (K,,) (and hence r? (I?m))

as follows: Since twist knots are alternating, [6, Corollary 1.10] says that ‘r? (K,,) = —o(K,,)/2,and
the signature o(K,,,) can be directly computed from the 2 X 2 Seifert matrix. This gives

ﬁ(K ) 0 form<0O, ﬁ(I? ) 0 form <0,
T = T =
e 1 form >0, e -1 form > 0.

(One can also use (1.15) to compute r?(Km) without computing o(K,,), using [6, Theorem 3.7,
Proposition 5.4, and Corollary 1.10].) With this in hand, to illustrate Theorem 1.2, we provide a
direct and complete computation of KHG™(—S3, K,,,) and 7; for this infinite family.

Theorem 1.16. We abbreviate by R the R[U|-module R[U]/U, and denote Alexander gradings by
subscripts, and direct sums by superscripts.

(1) Form <0, we have
KHG (-S%K,,) = KHG(-S*,K,,) 2 R[Ul, ® R;" & R;™,

TG(Km) = TG(I?m) =0.

(2) Form > 0, we have

KHG (-S*,K,) 2 R[U]; ® R" ' @ R", KHG (-S*,K,) = R[U]_, ®R" & Ry,

oK) =1, t6(K,,) = 1.

1.3 | Future work

As this article represents the first step in our major goal to understand the structures of KHG™,
we present here some open questions that arise naturally from our discussion.

First, while Corollary 1.5 gives 75(K) for all alternating knots K C S3, one may reasonably hope
to fully determine KHG™(S?, K) for such K. Indeed, we do so in Theorem 1.16 for twist knots,
which are alternating. In knot Heegaard Floer homology, if K is alternating with signature o =
o(K), and symmetrized Alexander polynomial Ag(t) = ¥, a; - t', then

HFK(S°, K:F,) 2 F,[U]: @ | E[U1/0)"" (@ | D Elu1/u)™ |

;
._o .o
<< g
IS5 l<2

where b; = Zj>0 ai,j; see [29], and also [33, Corollary 10.3.2].

Question 1.17. Is there an analogous formula for KHG™(S?, K) for alternating knots K, or at least
two-bridge knots K?
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 7 of 53

Another question is the mirroring of knots. It follows from our work that if K is the mirror of
K, then 74(K) = —75(K). In knot Heegaard Floer homology, one has the following more precise
formula: If

k
HFK™ (8%, K;F,) 2 F,[U]_, & (@([Fz[U]/U);[>,

i=1

then
. k
HFK™(S*,K;Fy) = F,[U], @ (EB([FZ[U]/U)Zﬁ_si)
i=1

where T = t;(K); see [31, Section 3.5], and also [33, Proposition 7.4.3].
Question 1.18. Is there an analogous formula for KHG™(S?, K) in terms of KHG(S3,K)?
Aside from symmetry, there are questions concerning the behavior of KHG™ under crossing

changes and with respect to skein relations. In particular, if K_ is the result of changing a positive
crossing in K, to a negative crossing, then there exists graded F,[U]-module maps

C_: HFK (S%,K,) - HFK (S%,K_), C,: HFK (S% K_) - HFK(S%,K,),

such that C_oC_ and C_oC_ is each equal to multiplication by U. Exploiting this, Alishahi and
Eftekhary [1] define a U-torsion order invariant I(K) that gives a lower bound on the unknot-
ting number u(K). A generalized version is used by Juhasz, Miller, and Zemke [16] to obtain an
obstruction to connected knot cobordisms with a given number of local maxima.

Question 1.19. Are there analogous maps for KHG™ (S, K, ) and KHG™(S3,K_), and conse-
quently a U-torsion order invariant in knot instanton and monopole Floer theory?

Note that a positive answer to Question 1.19 would imply that 0 < 75(K,) — 7g(K_) < 1, a fact
that can be deduced from Corollary 1.5; see [27, Corollary 3].

In regard to the oriented skein relation, Kronheimer and Mrowka [19, Theorem 3.1] prove that
KHI satisfies an exact triangle relating K, K_, and their oriented resolution Kj,. The analogous
relation in knot Heegaard Floer homology is satisfied by both HFK and HFK~ [32], and like its
instanton counterpart, has proved to be a very useful tool. One may thus ask:

Question 1.20. Does KHI™ satisfy an oriented skein relation?
In order to answer Question 1.20, one must necessarily generalize the definition of KHI™ to
links with multiple components. This has been carried out by the first and second authors [14,

Section 6.2], who define KHG™ (Y, L) for nullhomologous links L C Y.

Question 1.21. Can 74 be generalized to a multiset of values for links L C Y, and if so, what
properties does it satisfy?
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8of53 | GHOSH ET AL.

The analogous notion in knot Heegaard Floer theory is that of the ty-set of a link [10, 15, 33].
Notably, Hedden and Raoux [15, Theorem 2] prove that the 7y-set of a link L C Y satisfy many
interesting properties previously known for 7(S3, K), including concordance invariance in Y,
crossing-change inequalities in Y, 4-genus bounds in Y, and, in the case L C S® = W where W
is a definite 4-manifold, an inequality for surfaces in W bound by L.

Finally, we turn to Legendrian knot invariants. For a Legendrian knot A C (Y, §) of smooth
knot type K, Baldwin and Sivek [5, 7] define a class EM(A) € KHM(-Y,K), and show it to be
equivalent to the LOSS invariant EH(A) e HFK(-Y,K). Notably, their work implies that EH
gives an obstruction to the existence of exact Lagrangian cobordisms between Legendrian knots —
without adjectives such as decomposable or regular — for which there is currently no proof purely
in Heegaard Floer theory. On the other hand, £}; has a generalization £;(A) € HFK (-Y,K),
which is a non-U-torsion class that is mapped to EH(A) under the natural map HFK™(-Y,K) —
ﬁﬁ((—Y, K). Etnyre, Vela-Vick, and Zarev [13] place Ly in the context of HFK™ as the limit
of a directed system of SFH; following this strategy, we may also define a Legendrian invariant
Ly (A) € KHM™(-Y, K), which is mapped to EM(A) under the natural map KHM (-Y,K) —
KHM(-Y, K). By the naturality in monopole Floer theory [2], £, is a well-defined class — and
not only a class defined up to isomorphism — in KHM™(-Y, K).

Question 1.22. Is the Legendrian invariant £,,(A) € KHM™ (=Y, K) effective in distinguishing
Legendrian knots, or in obstructing exact Lagrangian cobordisms?

1.4 | Organization

We review the definitions of KHG™, 75, and T(ﬁ} in Section 2. In Section 3, we prove Proposition 1.13
and Proposition 1.12, establishing that 7 is a concordance invariant; in Section 4, we prove Propo-
sition 1.14, the additivity of 5. We then carry out the argument described in Section 1.1 to prove
Theorem 1.2, identifying the tau invariants in Section 5. Finally, we compute KHG™ and 7 for
twist knots in Section 6, proving Theorem 1.16.

2 | PRELIMINARIES

2.1 | KHG and naturality

In this article, we shall focus on oriented, based knots (K, p) C S and (K, p) C —S>. As in [2,
Section 8], by the knot complement S3(K) and the meridional sutures I, we mean the following:
Let D? be the unit disk in the complex plane with boundary S' = dD?, and let ¢ : S' x D? — S3
be an embedding such that ¢(S! x {0}) = K and ({1} x {0}) = p; then

(S*(K),T,) = (5° \ Int(Im(p)), pu} U —),

where ,u;;“ is the oriented meridian @({+1} x dD?) on 3S3(K). Of course, this definition does not
quite make sense yet, as it depends on the choice of ¢. In work of Kronheimer and Mrowka [20],

fFor A c (83, &), the Alexander grading of EH(iA) is (tb(A) F r(A) + 1)/2, which offers another proof of (1.11).
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 9 of 53

the balanced sutured manifold (S3(K), T ,.) 1s used to construct the knot instanton and monopole
Floer homologies: '

KHG(S?,K, p) = SHG(S*(K),T ).

The sutured instanton and monopole Floer homologies SHG(M, y), defined in general for bal-
anced sutured manifolds (M, y), themselves depend on the choice of a closure, a closed 3-manifold
Y obtained by gluing an auxiliary piece to (M, y) and then identifying the remaining boundary
components, together with a distinguished surface R C Y. Kronheimer and Mrowka assign mod-
ules to each such closure, and show that these modules are all isomorphic. By refining the notion
of closures, Baldwin and Sivek [2] prove that there are, in fact, canonical isomorphisms relating
these modules — well defined up to multiplication by a unit in R — and use them to build a
projectively transitive systemSHG for balanced sutured manifolds. By abuse of notation, whenever
we write SHG in the sequel, we shall mean the canonical module associated to SHG.*

Coming back to KHG(S?, K, p), while the definition of (S*(K), F#) above depends on ¢, Bald-
win and Sivek [2, Proposition 8.2] further prove that there are canonical isomorphisms relating
SHG of the sutured manifolds (S*(K), FM) constructed using different embeddings ¢ and ¢’. This
proof hinges on the fact that the basepoint p is fixed, and explains the notation KHG(S?, K, p).
Once again, this leads to a projectively transitive system KHG(S?, K, p), and we shall take
@(53,K , p) to mean the associated canonical module.

2.2 | KHG and7g

In this subsection, we recall the construction of KHG™ and 7 by the second author [26].

LetS C S° be an oriented, minimal-genus Seifert surface of K. The surface S induces a framing
on the boundary of the knot complement S3(K) and hence longitude 1 (whose orientation agrees
with that of K). Let ¢ : S' x D?> — S3 be as before, with p(S' x {0}) = K and ({1} x {0}) = p; then
define the balanced sutured manifold

(S*(K),T,) = (S*\ Int(Im(qo)),/lz,n u-1,,)

where /1;’” is the oriented longitude p({e’ x ei(‘”‘)}lem,zﬂ)), and 4, is the oriented longitude
p({e! x MY 1o 0), on 8S3(K). Note that T, € 853(K) is the union of two disjoint, parallel,
oppositely oriented simple closed curves of slope —n (or, equivalently, of class +([A] — n[u]) €
H,(8S*(K))). Like (S*(K),T},), the sutured manifold (S*(K),T,,) depends on the choice of ¢. By
an argument similar to that of [2, Proposition 8.2], there are canonical isomorphisms relating SHG
of (S3(K),T,,) constructed using different embeddings ¢ and ¢'.

Note that, while our exposition so far focuses on (S*(K), r,) and (S3(K),T,,), a similar con-
struction gives the balanced sutured manifolds (—S3(K), -I',)and (=S3(K), -T,,), which we shall
use extensively.

The basepoint p is omitted in the Kronheimer-Mrowka definition.

#Technically, the canonical module is only defined for an honestly (i.e., not projectively) transitive system; for projectively
transitive systems, one would only obtain a module modulo multiplication by a unit in R, which is only a set. Instead, we
choose to interpret SHG as an actual R-module, whose elements are well defined only up to multiplication by a unit in R.
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10 of 53 | GHOSH ET AL.

To define KHG™, maps "} . are defined in [26]," which fit into a commutative diagram

z?b:n+l

-+ — SHG(—S3(K), -T',) — = SHG(—S3(K), —T'41) — -+
i ha \L 2 21

n+1
—n+2

¥
-+ —— SHG(—S*(K), —T'y41) —— SHG(=S*(K), —T'pp) — ---.

Each horizontal row forms a directed system of R-modules.* (Note that we choose to work pri-
marily with (—$*(K), —T},) instead of (S*(K), T,), because the definition of "' makes use of a

contact element ¢ € SHG(—M, —y) [3, 4], defined for a contact structure &on (M,y).)

Definition 2.2 [26, Definition 5.4]. The minus knot monopole or instanton Floer homology
KHG (—S3,K, p) is the direct limit of the directed system in (2.1), which is an R-module whose
elements are well defined up to multiplication by a unit in R. The collection of maps {zpﬁ:’n +1}n€Z+
defines a map on the direct limit

U: KHG (-S3,K, p) -» KHG (-S3,K, p),

which gives KHG™(—S3, K, p) an R[U]-module structure.

In the following paragraphs, we describe the grading on KHG™ (-S>, K, p). Our description
shall be brief; for more details, see [26, Section 3 and 4].

Fix the balanced sutured manifold (—S3(K), —T), where T is either ', or I, for some n. Now
realize S as a properly embedded surface (S, 3S) c (—S3(K), —3(S3(K)); then S N I’ must consist
of exactly 2k points for some k. The realization of S as S, in fact, involves a choice, corresponding to
the value of k. By isotoping S near its boundary, one could create a new pair of intersection points
with T; this is called the positive or negative stabilization of S depending on the isotopy. We denote
by S7 (resp. S~9) the result of performing g positive (resp. negative) stabilizations on S. (When
q = 1, wealso denote these by S*.) It is proved [26, Theorem 3.4] that (S, 3S) c (—=S3(K), —3S3(K))
induces a Z-grading on SHG(—S3(K), —T') whenever dS intersects I' at 2k points, where k is odd,
and a formula [26, Proposition 4.9] is given that relates the Z-gradings associated to Seifert surfaces
related by stabilizations: For all r € Z, we have

SHG(-S3(K), =T, S9*% i) =~ SHG(-S3(K), -T, S9,i + r), (2.3)

where SHG(—S3(K), —T, S, i) denotes the summand in grading i € Z.

Now fix (—S*(K), —T,,) for some n. Since the longitude 1 is the boundary of the Seifert surface S,
and T, is of class +([1] — n[u]), it follows that S has a realization (S,,,3S,) C (=S3(K), —dS3(K))
such that dS, N T, consists of exactly 2n points. Then, for n odd (resp. even), we obtain Z-gradings

Technically, these maps are well defined only up to multiplication by a unit in R, for the same reason as before. Here and
in the rest of the article, we say that f = g if the maps f and g on SHG (or consequently KHG™) agree up to multiplication
by a unit in R. In particular, (2.1) commutes up to multiplication by a unit in R.

¥ As before, this is really a directed system of “R-modules whose elements are well defined only up to multiplication
by a unit in R.” One could take the alternative viewpoint of choosing an honest R-module representative for each
SHG(—S3(K), —T,) by specifying an embedding ¢ and a closure (Y, R); however, more work would be necessary to take
care of the fact that z,bf’x,” 1 is only well defined (up to multiplication by a unit) for “compatible” closures of (=S3(K),T,)
and (—S3(K), T',4;), which necessarily have auxiliary pieces of the same genus.
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 11 of 53

induced by the surfaces S,, (resp. S;); for brevity, we write SZ(”) for S, when nis odd, and S, when
n is even; that s, (n) = 0 or —1. For (—S3(K), —FM), we obtain a Z-grading induced by the surface
S, thatintersects I', at exactly 2 points.

It is then proved [26, Propositions 5.5 and 5.6] that, after an appropriate grading shift’

o(n) = n-— lz—r(n)’

(2.4)
themapsy” . inthe directed system in (2.1) become grading-preserving maps, that is, they each
decompose into maps

—n+1 " n+1

p" : SHG (—53(1{), T, st i) [0(n)] — SHG <—S3(K), T, 877D, i) [o(n +1)]

for i € Z. Thus, the Seifert surface S induces a Z-grading on KHG(—S3,K, p), known as the
Alexander grading. The maps ¢J”r 4+1» and hence the action of U on KHG™, is then of degree —1.
For knots inside S* or —S3, the Alexander grading is independent of the choice of the Seifert

surface S; we shall therefore suppress S from the notation. Thus, we obtain a decomposition

KHG™(-$%,K, p) = @ KHG (-S*,K, p, i),

iez

where KHG™(-S3, K, D, i) denotes the summand in Alexander grading i € Z.
Inspired by the tau invariant in knot Heegaard Floer homology defined by Ozsvath and Szabd
[30], we have the following definition.

Definition 2.5 [26, Definition 5.7]. For a knot K C S3, the instanton or monopole tau invariant is
defined as

75(K) = max {i € Z | there is a homogeneous, non-U-torsion element x € KHG (-S3,K, p, i)}
(Here, a non-U-torsion element x is one such that U/x # 0 for all j > 0.)

In the sequel, we shall often compute the rank of KHG(—S3, K, p,i) in a specific Alexander
grading i € Z as an R-module. We claim that this completely determines the R-module isomor-

phism type of KHG(—S3, K, p, i): For KHI™, this is clear, since the module is a vector space over
C. For KHM™, our claim is a consequence of the following lemma.

Proposition 2.6. For any based knot (K, p) in S® and anyi € Z, the R-module KHM~(=S3,K, p, i)
is free and of finite rank.

Proof. From [26, Proposition 5.10], we know that there exists a sufficiently large n € Z, such that
KHM ™~ (-S° K, p, i) = SHM(~S*(K), ~T,,, S5, J)

for some j € Z, which shows that the R-module is of finite rank. (Here, i might not be equal to j
because of the grading shift in the definition of KHM ™~ that we mentioned earlier.)

*The difference between this and the formula for o(n) on [26, p. 1401] is due to a typographical error in the cited article.
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12 of 53 | GHOSH ET AL.

To prove that it is free, recall that by work of Kronheimer and Mrowka [20, Lemma 4.9],
for a balanced sutured manifold (M, y) and a coefficient ring R of characteristic 0, we have an
isomorphism of R-modules

SHM(M,y; R) = SHM(M, y;T')) = SHM(M,y;Z) ®; R, 2.7

which respects the grading. (Here, I', denotes a local system whose fiber at every point is R, and
is unrelated to the sutures I', and I',,.) Sivek [36, Section 2.2] extends SHM to mod-2 coefficients,
which gives the isomorphism analogous to (2.7) for the Novikov ring R of characteristic2.  []

To simplify notation, we shall omit the basepoint p from the notation involving KHG™ in the
sequel; however, we emphasize again that the basepoint is a necessary input for naturality results
that allow KHG™ to be well defined.

#
23 | 7,

8
G

focuson rf .First, foraknotK C S3,let N(K) be the smallest integer n > 0 for which the cobordism
map

We now recall the definition of 7, by Baldwin and Sivek [6]. For simplicity of notation, we first

(X0, ,) - TH(S?) - TH(S3(K))

vanishes, where X, is the trace of n-surgery along K, and v,, (unrelated to vf) is some properly
embedded surface in X,.

Definition 2.8 [6, Definition 3.5]. For a knot K C S3, define vIIi (K) € Z by the equation

Vi(K) = N(K) = N(K).

It is proved [6, Theorem 3.7] that vf (K) depends only on the smooth concordance class of K,
and satisfies the smooth 4-genus bound

|vf(1<)| < max(2g,(K) — 1,0).

It is then shown [6, Theorem 5.1] that vf defines a quasi-morphism from the smooth concordance

i

; satisfies

group Cto Z, that is, that v
VTi K K,) — VTi K,)— VTi K 1
I( 1 ﬁ' 2) I( 1) I( 2) <

for all knots K, K, C S, and subsequently make the following definition:

Definition 2.9. For a knot K C S3, define rf(K) € R as the homogenization

(4 nK
T?(K) = % lim M

n— oo n
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 13 of 53

One then has [6, Proposition 5.4] that this concordance invariant defines a group homomor-
phism 7 : C — R and satisfies the smooth 4-genus bound

|10 < a®).

Finally, ri,[(K) can be defined completely analogously, where N(K) would instead be the
smallest integer n > 0 such that the cobordism map

HM(X,,) : HM(S?) » HM(S3(K))

vanishes.

3 | CONCORDANCE INVARIANCE OF 7,

In this section, we prove the corcordance invariance of 7, establishing Proposition 1.12. Through-
out the section, we have a knot K C S? and the sutures I, and FM on 4S3(K), as described in the
previous section.

Fixn € Z,_;on 0S3(K), we pick a meridional curve a such that « intersects the sutures I',, twice.
Let[—1,0] x S3(K) c S3(K) be a collar of 3S3(K) inside the knot complement S3(K), and endow
a [—1,0]-invariant tight contact structure on [—1, 0] X dS3(K), so that each slice {t} x dS3(K) for
t € [-1,0] is convex and the dividing set is (isotopic to) I',,. By the Legendrian Realization Prin-
ciple, we can push « into the interior of the collar [—1, 0] X dS3(K) and get a Legendrian curve j.
With respect to the surface framing, the curve 8 has tb = —1. (When talking about framings of 3,
we will always refer to the surface framing with respect to 4S3(K).)

Following Baldwin and Sivek [3], since « intersects the sutures I',, twice, after making o Leg-
endrian, we can glue a contact 2-handle to (S*(K), T,,) along «, and get a new balanced sutured
manifold (M, 7). Suppose that (Y, R) is a closure of (S*(K),T,,) in the sense of Kronheimer and
Mrowka [20] such that g(R) is sufficiently large; then, by work of Baldwin and Sivek [5], we know
that a closure (Y, R) of (M, y) can be obtained from (Y, R) by performing 0-surgery along the
curve 3. Note that, inside Y, (8 is disjoint from R, and so, the surgery can be made disjoint from R;
this means that the surface R survives in Y,,. Now let (M_;,T,)) be the balanced sutured manifold
obtained from (S3(K),T,,) by performing a (—1)-surgery along . Note that § is contained in the
interior of S3(K), and so, the surgery does not affect the boundary or the sutures.

Clearly, if we perform (—1)-surgery along 8 on Y, we will get a closure (Y_;, R) of the balanced
sutured manifold (M_,,T,,). The surgery exact triangle proved by Kronheimer, Mrowka, Ozsvéth,
and Szabd [21, Theorem 2.4], generalized to the sutured setting, gives the exact triangle

SHG(~-M_y,~T,) SHG(-S*(K), —T'»)

\ Ch,n

SHG(—M, —y).

Remark3.1. Compared to the one in [21], the surgery exact triangle here seems to go in the reverse
direction; this is because the orientations on the sutured manifolds have been reversed.
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14 of 53 | GHOSH ET AL.

We now determine that (M, y) and (M_;,T,,) are familiar balanced sutured manifolds. First,
(M, y) is obtained from (S3(K), T,,) by attaching a contact 2-handle along a meridional curve «,
and so, it is nothing but (S3(1), §), where S3(1) is obtained from S3 by removing a 3-ball, and §
is a connected simple closed curve on the spherical boundary of S3(1). For (M_,,T,,), note that 8
and K are inside the 3-sphere S3, and 8 is a meridian around K. Thus, (—1)-surgery along 8 on
S3(K) will result in the same 3-manifold S3(K), while the framing on its boundary will increase
by 1. In other words, we have (M_;,T,,) = (S3(K),T,,_;). (Recall that the slope of T',, is —n). Thus,
the above exact triangle becomes

SHG(~S*(K), ~T'p_1) SHG(=S*(K), ~T,,).

\ Cor (3.2)

SHG(~S(1), —8)

Lemma 3.3. Denote by tb(K) the maximal Thurston-Bennequin number among all Legendrian
representatives A C (S3,&yq) of the smooth knot type K. If n > —tb(K), then the map Cp, is
surjective, and hence,

rk SHG(—S*(K), -T,,) = tkp SHG(-S*(K), —T,,_;) + 1. (3.4)

Proof. Since n > —tb(K) we can isotope K to a Legendrian A C (S3, &,4) with th(A) = —n. We
can remove a standard Legendrian neighborhood of A; then the dividing set on the boundary of
the complement is the sutures I',,. Hence, when we glue back a contact 2-handle, we get (S3(1), §)
with the standard tight contact structure. By work of Baldwin and Sivek [3, 4], we know that the
corresponding contact element is a generator of

Since the contact 2-handle attaching map Cj, ,, preserves the contact element, we see that C), , is
surjective. O

We now digress to prove that there is a unique R[U]-summand in KHG™(S3, K).

Proof of Proposition 1.13. Suppose that S is a minimal-genus Seifert surface of K, and let g = g(S).
The main portion of this proof will be to show that a pattern emerges for SHG(—S*(K), —T,) for
sufficiently large n, with gradings taken into account. More precisely, we shall use bypass exact
triangles to show that the rank of SHG(—S*(K), T, ) increases by a fixed positive integer r
whenever the nonnegative integer k increases by 1, as expressed in the following: For k odd, we
have

SHG(=S*(K), =T 41 Sag ks 1)

0 fori>29+(k—1)/2
SHG(-S%,-T,,,S,, 2y —(k=1)/2) for(k+1)/2< Zg+(k—1)/2 (3.5)
IR for —(k—l)/z (k—l)/z

SHG(-S3, —T5, S5 i+ (k+1)/2) for —2g— (k- 1)/2 <ig—-(k+1)/2,
0 fori <—2g—(k—1)/2;

L
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES 15 of 53

while for k even, we have

SHG(—S*(K), =T3S, 1)

2g+k’
r0 fori > 2g +k/2
SHG(-S3, 15,55, —k/2) fork/2+1< Zg +k/2, (3.6)
=~ 4R for —k/2+1 <k/2,
SHG(-S?, —Tp,. 85,1 +k/2) for —2g - k/z +1<i<—k/2,
0 fori< —2¢g—k/2+1.

\

To begin, as described in [26, p. 1360], the maps " . fit into bypass exact triangles proved by
Baldwin and Sivek [8, Theorem 1.21]: N

[
SHG(-S3(K),—T',,_1) = SHG(—S*(K),—T},)

3.7

SHG(~S*(K), -T).

(Note that (3.7) is, in fact, two different bypass exact triangles, one for positive bypasses and one
for negative bypasses, written together. The same is true for (3.8) and (3.9) below.) Examining the
proof of [26, Proposition 5.5], one obtains the graded versions of the exact triangles above: Let S,
and Su’ as well as their positive and negative stabilizations, be as in Section 2.2; then, for n odd,
we have

Via
SHG(_S3(K)a _rn—la S,«T 1° ) — SHG( SS(K)’ _Fna Sna l)

T / (3.9)

SHG(—S3(K), =T, Sz"*, i);

while for n even, we have

[
SHG(—S*(K), —T,_1, 5%, 1) = SHG(—S*(K), —T,, SE,1)

SHG(—S3(K), =T, Sz™*2,1).

We shall in general be applying (3.8) and (3.9) with n = 2¢ + k, where k > 0. The key observa-
tion is that the homology group in the bottom rows of (3.8) and (3.9) is zero for many gradings i,
which give us an isomorphism in the top row. Precisely, it is well known (e.g., see [20]) that for
lil > g,

SHG(-S*(K),—T,,S,,i) =0,
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16 of 53 | GHOSH ET AL.

and so by the grading shift in (2.3), for k odd, we have
SHG(~S*(K), TS, i) =0 fori < —g+(g+ (k—1)/2) = (k —1)/2,
SHG(=S*(K),-T,, S i)=0  fori>g+(-g—(k-1)/2)=—(k—1)/2;

thus, the positive (resp. negative) bypass exact triangle in (3.8) splits for i < (k —1)/2 (resp. i >
—(k — 1)/2), and we obtain, fori < (k —1)/2,

SHG(=S*(K), —T i 34100 1) & SHG(=S*(K), —Ty -1, S5, 1)
(3.10)
= %(—53(10, _r29+k_1’52_g+k—1’ i+1),
where the last isomorphism follows also from (2.3), and fori > —(k — 1) /2,
SHG(=5*(K), =Tag ks S2g4k 1) & SHG(=S*(K), =T 111,55 44y )- (3.11)

Similarly, for k even, the positive and negative bypass exact triangles in (3.9), respectively, give,
fori—1<(k—2)/2(.e.,fori<k/2),

SHG(-S*(K), T3, 41 S i) = SHG(-S3(K), —F2g+k,S;g+k,i -1

2g+k’

~ SHG(-S*(K), —F2g+k_1,S§g+k_1,i -1) (3.12)
= SHG(-S*(K), —T3 4 x—1>Sagrk—1- 1)
and fori > —(k —2)/2 = -k/2+1,

SHG(—S*(K), =T34 S D) = SHG(—S*(K), =T 11, S;j+k_1, i)
‘ ' (3.13)

= @(—53(@, _F2g+k—1’52g+k—17i - 1).

Now for k odd, by setting n = 2¢ + k in [28, Theorem 2.21 (1)], we see that the R-module
SHG(—S*(K), =T, 4k>S24+k-1) is supported only in gradings —2g —(k —1)/2 < i <29+ (k-
1)/2. This, together with (3.12) and (3.13), implies that for k even, SHG(=S*(K), =T, . otk )
is supported only in gradings —2g — k/2 + 1 < i < 2g + k/2. We call these the possible gradings.

Therefore, in essence, what (3.10) and (3.12) say is that the summands of SHG(—S*(K), - T, g+k)
in the bottom 2¢ + k — 1 possible gradings are respectively isomorphic to the summands of
SHG(-S3*(K), -T, s+k—1) in the bottom 2g + k —1 possible gradings (possibly with a grad-
ing shift), and (3.11) and (3.13) give the analogous statement for the top 2¢g + k — 1 possible
gradings. (Since SHG(-S*(K),-T, g+k—1) has 4g +k —1 possible gradings, this means that
summands in 2(2g + k—1) — (49 + k — 1) = k — 1 “middle” gradings are “sampled” twice.) As
SHG(-S*(K), —T'5,41) has 4g + k possible gradings, these isomorphisms completely determine
SHG(—S*(K), —T,, &) in terms of SHG(—S*(K), =T, ;1) except in the case k = 1, wherein the
middle grading SHG(—S*(K), -T, g+1> 52441, 0) is not determined. Simply letting

r =1k SHG(—S*(K), =T, 41552441, 0),

we establish (3.5) and (3.6) by inducting on k.
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 17 of 53

Now, taking k to be sufficiently large, (3.4) implies that the integer r must, in fact, be 1. Thus,
for a fixed grading i = —g — m < —g, we have that

k) .
SHG(—S*(K), ~T, 10 S5, Dlo]

2g+k

SHG(—S*(K), =Ty 44» ngfflj P _m+k/2) if k is even,

~

{SHG(—S3(K), —T 0 S2C90 —m 4 (k —1)/2) ifk is odd,

xR

whenever k > m + 1, where the last isomorphism follows from (3.5) and (3.5). By definition, this
means that

KHG (-S3,K,i)) = R

for all i < —g. Finally, this together with [26, Corollary 5.11] implies that there is a submodule
(and at most one such submodule) in KHG™(—S3, K) isomorphic to R[U]. Since R is a field in
our context, we conclude that it is, in fact, a unique R[U]-summand. O

In the following, we will continue to denote by ¢ the genus g(K) of a knot K.

Strictly speaking, we did not have to prove Proposition 1.13 for the arguments of this section.
Its significance, however, is that it explains the definition of 74 as a natural, unique definition for
knots in S3.

Having proved that KHG™(—S?,K) has a unique R[U]-summand, we now return to the main
setup of the section to prove the concordance invariance of 7. Our next major goal is to rechar-
acterize 7 in terms of the (non-)vanishing of a map on KHG™(—S?, K) induced by the maps Chn-
We begin with the following lemma.

Lemma 3.14. The maps
Cppn : SHG(=S(K), =T,,) = SHG(-S(1), -9),
which appear in the exact triangle (3.2), induce a surjective map
Cp, : KHG (=S K) — SHG(-S%(1), -9).
Furthermore, C;, commutes with the action of U on &G‘(—S{K).

Proof. The lemma follows from Lemma 3.3 and the following two commutative diagrams, one for
positive bypasses and one for negative bypasses:

n
z’bt,n+l

SHG(-S3,-T,) SHG(—S3,-T,41)

Chun %

SHG(-S(1), =5).

To prove these commutative diagrams, recall that the maps ¢” , are constructed via bypass
attachments, which can be interpreted as contact handle attachments (see [34, Section 3] and
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18 of 53 | GHOSH ET AL.

[3, Section 5]), and so, is C}, ,,. The commutativity for the diagrams follows from the observation
that the contact handle attaching regions for ¢ | and C, , are disjoint from each other. O

As a quick aside, we exhibit an immediate consequence of Lemma 3.14 as follows. Let
¥ : KHG (-S% K) - KHG™(=S°,K)
be the map induced by the collection of maps {1,,} under the directed system in (2.1), where
$, : SHG(~S*(K),~T,,_;) = SHG(~S*(K), -T,,)
is the map in the exact triangle (3.2). Then we have the following.

Corollary 3.15. There is an exact triangle

y

KHG (-S3,K) KHG ™ (-S3,K)

T~

SHG(~S*(1), -6)

Proof. The maps Cj, , in the exact triangle (3.2) commute with the maps 3"  in the directed
system, and so, we can pass to the direct limit and still have an exact triangle. O

The significance of Corollary 3.15 is the following. There is an exact triangle in Heegaard Floer
theory that involves the modules that are analogous to those appearing in Corollary 3.15:

HFK (=S3,K) ol HFK (=S3,K)

\/

HE(-S%)

One key difference is that, in this context, the map in the top row is defined algebraically. Thus,
we are led to ask the following natural question.

Question 3.16. Does ¥ admit an interpretation as U — 1, where U denotes the action of U?
We believe that establishing a positive answer to this question would have topological applica-
tions.

In any case, we are now ready to recharacterize 7.

Proposition 3.17. The invariant 75(K) admits an alternative definition:
76(K) = max {i ez ‘ the restriction of C), to KHG™ (=S, K, i) is nontrivial }

Proof. We claim that an element [x] € KHG™(—S?, K) is not U-torsion if and only if C;,([x]) # 0.
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ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES | 19 of 53

First, note that the U map commutes with the map C);, by Lemma 3.14: Cj,oU = C,. It follows
immediately that if C,([x]) # 0, then [x] is not U-torsion.

Conversely, let [x] € KHG™(—S3, K) be a non-U-torsion element; then it is represented by an
element x € SHG(—S*(K), =T, > Sy k- i + g + (k — 1)/2) such that

2g+k+1-1 2g+k
¢+,2g+k+l ° °¢+,29+k+1(x) #0

for all even | € Z . (Note that this implies a statement for odd [ as well.) Taking into account the
gradings as in the first rows of (3.8) and (3.9), for a given, even | € Z__, this is an element of

. k-1
SHG<—S3(K), _F29+k+l’S29+k+l’l +g+ T - l)

Now the idea is that, for large n, the map Cj,,, is an isomorphism when restricted to the “mid-
dle” possible gradings; and we can ensure that our element lies in those “middle” gradings by
taking [ to be sufficiently large. Precisely, from the proof of [28, Proposition 4.26], Cj, 5,4 is an
isomorphism when restricted to SHG(—=S>(K), =T, 4 k11> Sag+k+1» J) for

Since we chose k > —g — i + 1, we have that

k-1 k-1
LIPS LBy
> l+g+ 3

for all [; and if we take [ > 2¢, then we will have

i+g+—k;1—l<2g+k_1 k-1

Then, for these choices, we see that
2g+k+1-1 2g+k
Ch,2g+k(x) = Ch,2g+k+l°1)b+?2g+k+l O e O¢+“,}2g+k+1(x) # 09
which implies that Cj,([x]) # 0. The proposition follows immediately. [l

Remark 3.18. By the same argument as in the proof of Proposition 2.6, we can show that in
Proposition 3.17, the map C;, being nontrivial is equivalent to it being surjective.

With the alternative definition of 75, we can now prove that it is a concordance invariant.

Proof of Proposition 1.12. Suppose that K, and K; are concordant; then there exists a properly
embedded annulus A C [0,1] x S3 such that

({0} x S3, AN {0} x S%) = (S%,Ky), ({1} xS, An{1}x S?) = (S3,K)).
The idea of the proof is that A induces a grading-preserving cobordism map

F,: KHG (-S3,K,) - KHG™(=S3,K,) that commutes with C;,, which will imply the result for
7 via Proposition 3.17.
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20 of 53 | GHOSH ET AL.

The first step is to analyze the cobordism map induced by A on SHG(—S*(K,),T,,). For each
n, the pair ([0,1] x S*, A) induces a cobordism W,, from Y, to Y, ,, where Y, , is a closure of
(-S3(K;),-T,), and W, induces a map

F,,: SHG(-S*(K,),-T,) — SHG(-S*(K,),-T,)

as follows. There are two ways to describe W,,, which are both useful; below, we briefly recall both
of these descriptions from [25].

First, take a parametrization of A = [0, 1] X S'. Then, a tubular neighborhood of A C [0, 1] x S3
can be identified with A x D? = [0,1] x S' x D?, with

(AxD*)N (0,1} xS*) ~{0,1} x S' x D?.
Thus, we know that
0(([0,1]x S*) \ (A x D?)) = =S*(K,) U ([0,1] X S' x 6D*) U S*(K)). (3.19)
Choosing a closure Y, of (—S*(K,), —T,), we can write
W, = —(([0,1]x $%) \ (4x D) U ([0,1] X (¥, \ S*(Ko))),
via a natural identification
[0,1] x S* x dD* = [0,1] x S*(K,).
A second description of W, is as follows. As
3S3(K,) ~ dS3(K,) = S' x D?,
from (3.19), ([0,1] X S®) \ (A x D?) can be obtained from ([0, 1] X S3(K,)) by attaching a set of
four-dimensional handles H to the interior of {1} x S3(K,), as in [25, Lemma 3.9]. Thus, as above,
choosing a closure Y, , of (=S*(K), —T,), we can attach the same set of handles M to {1} X Y, , C
[0,1] X Yy ,,, and the result is again W,.
We break down the rest of the proof into four claims, as detailed below.
Claim 1. The maps F, , give rise to a map'
F,: KHG (-S%K,) - KHG (-S3,K,).

To prove the claim, it suffices to show that we have a commutative diagram

FAVL
SHG(-S*(Ky), —T,) ——= SHG(=S*(K}), ~T,)

J#en J#2e

An+l

F
SHG(—S(Ky), =T p41) —— SHG(=S(K}), —Tp42).

7 The basepoints p; for K; are specified by p; = {i} X p in the parametrization A 2 [0,1] x S'.
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The commutativity of this diagram follows from the fact that the attaching regions for the han-
dles associated to F, , and to z,bf,n 4+ are disjoint: When constructing F, ,, we attached handles
to [0,1] X Y, ,, along the region {1} X Int S3(K,), while when constructing the map gbf’n L1 WeE
attached handles to [0, 1] X Y; , along the region {1} x [0, 1] X 3S3(K;); see [25, Section 3]).

Claim 2. F , commutes with the U map on KHG™. The proof of this claim is completely analogous
to one for Claim 1, with ¢ instead of 1_.

The two claims above show that F , is a homomorphism of R[U]-modules.

Claim 3. There is a commutative diagram

KHG (—$3, Ko) KHG (—S3, Ky)

\SHE /

where C), is defined as in Lemma 3.14.
To prove the claim, it suffices to prove that the following diagram commutes for all n:

SHG(—S3(Ky), ~T') — = SHG(~S%(K, ), ~T,)
J(Ch,n ich,n (3.20)
SHG(—S%(1), —8) ——= SHG(—S*(1), -8).

As above, suppose that we have a closure Y, , for (—S*(K,), —T,). Let Y, , be the corresponding
closure for (—S3(K;),—T,) as in the construction of W, above. Recall from the construction of
Cp,, that it is the map associated to a 2-handle attached along a meridian curve a C 453(K,); we
can push « slightly into the interior and get a curve 8. Then we get a closure Y(’) for (=S3(1),-9)
by performing 0-surgery on Y, along 3. Note that the difference between S3(K,) and S3(K,) is
contained in the interior, and so, we also have the curve 8 C S3(Kl) cYy,. Thus, we can obtain
another closure Y/ for (—S3(1), —8). We can form a cobordism W/, from Y{ to Y| by attaching
the set of four-dimensional handles H as in the proof of Claim 1 to Y(’) x {1} C Y(’) X [0, 1], and the
attaching region is contained in Int(S3(K,)) C Y(’). Hence, there is a commutative diagram just as
in the proof of Claim 1:

FAn
SHG(-S*(Ky), —T,,) — = SHG(=S*(K,), =T',)

l Ch,n \L Ch,n
F/

SHG(~§%(1), ~6) —— SHG(~S*(1), -9).

where F/, is the map induced by the cobordism W7,

So, to prove (3.20), it suffices to show that W’ is actually a product [0, 1] X Y/, which will imply
that F/, = Id. To do this, recall that W) is obtained from [0, 1] X Y| by attaching a set of handles
H, while the attachment regions are contained in Int S3(K,) C IntS3(1) C {1} x Y(’). This means
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that we can split W/ into two parts
w! =W u([0,1]x (Y] \ $°(1))),

where W/ is obtained from [0, 1] X S3(1) by attaching the set of handles H. Recall that (S3(1), )
is obtained from (S3(K,), T,,) by attaching the contact 2-handle h, and so, topologically,

S3(1) = S3(K,) U B .
Note the 3-ball B3 is attached to S3(K,)) along part of the boundary, and the set of handles H is
attached to [0, 1] x S3(1) within the region Int(S3(K,))) C {1} x S*(1), and so, the two attaching

regions are disjoint. Thus, we have

"' ~10,1]xS*()UH

= ([0,1] X (S*(Ky) UB®)) UH

IR

(
([0,1] x S*(Ky) U H U ([0,1] x B*)
(a

[

([0,1]x S*)\ (A x D?)) u ([0,1] X B?).

Here, [0,1] x B3 is glued to ([0,1] X S3) \ (A x D?) along a thickened annulus. From here, it is
straightforward to check that the resulting manifold W;l’ is diffeomorphic to [0,1] x S3(1).

Claim 4. The map
F,: KHG (-S%K,) - KHG (-S>,K;)

preserves the grading.

By definition, we know that for any fixed j € Z, we can pick a large enough odd # so that, for
i=0,1,

— 3 . 3 n—1
KHG™ (=5, K, J) = SHG(—S*(K), T s Sy + "5 )-
(Here, T, is a set of sutures on —S*(K;) of slope —n, and S; ,, is a minimal-genus Seifert surface
of K; that intersects I'; , at exactly 2n points.) Hence, to show that F, preserves the grading, we
need only to show that FF, , preserves the grading. Note that we can identify the boundaries:
3S3(K,) = 0S>(K,)

via the parametrization A = [0,1] x S! and we can assume that under the above identification,

Son NOS*(Ky) = S, ,, N3S*(KY).

Now let Y, be a closure of (—S*(K),—T,,), and let §0,n be the closure of S, , in Yy, as in
the construction of gradings; see [26, Section 3]. Then we have a corresponding closure Y7 ,, for
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(=S3(K;), -T,), inside which there is the closure §1J’l of S ,,. To describe this surface, recall that
Y, =-S*(K)) Uss3(ky)=a53k;) Yo \ S*(Ky))
as in the construction of W, at the beginning of the proof; then concretely, ELn is defined to be
S1n =510 U S0 \ S*(K)):
Using the Mayer-Vietoris sequence, we see that
H,(([0,1] x S*) \ (A x D?)) = 0.

Therefore, the closed surface —S,, UAUS;, C ([0,1] X S*) \ (A x D?) bounds a 3-chain ¢ C
([0,1] x S*) \ (A x D?). Now inside W,,, let

d=cu ([o, 1] x (Eo,n \53(1(0))),
where the two pieces are glued along
A=[0,1]x S 2[0,1] X (S, \ S*(Ky))
It is straightforward to check that
5d E _§0,Yl U §1,Vl'
Hence, we conclude that
[go,n] = [gl,n] € H,(W,),
whence it follows that FF, , preserves the grading.

The four claims above together prove the existence of a grading-preserving homomorphism
F,: KHG (-S3,K,) » KHG (=S3,K;) of R[U]-modules that commutes with the map Cj,. By
Proposition 3.17, 75 is the maximum grading for which C, is nontrivial, and thus, our proof
is complete. Cl

Having achieved our main goal of the section, we end it with an application to ribbon concor-
dance, which is a knot concordance that admits a handle decomposition with only 0-, 1-, but not
2-handles. In recent work of Daemi, Lidman, Vela-Vick, and the third author [12], it is proved that
the map on KHI associated to a ribbon concordance is injective. We may quickly extend this result
to KHI™.

Corollary 3.21. Suppose that A is a ribbon concordance from K, to K, in [0,1] x S3; then the map

F,: KHG (-S%K,) —» KHG (-S%,K))

defined in the proof of Proposition 1.12 is injective.
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FIGURE 2 The contact handles: h(z) is attached along u,, h? is attached along y,, and k2 is attached along a.

Proof. By [12, Theorem 4.4], the map
Fy ¢ SHG(=S*(K), ~T,,) = SHG(=S*(K}), —T},)
is injective for all n € Z. Passing to the direct limit, we see that F , is also injective. [l
These Eﬂlts may be compared to that of Zemke [38], who first proves the analogous statement
for both HFK and HFK ™.
4 | ADDITIVITY OF r UNDER CONNECTED SUM

In this subsection, we prove the additivity of the r; under connected sum, establishing
Proposition 1.14. To begin, we establish the superadditivity of .

Proposition 4.1. Suppose that K, and K, are two knots in S*; then
76(Ko K1) > 15(Kp) + 76(Ky).

Proof. Suppose that K, and K, are two knots in S*, and suppose that m and n are two suffi-
ciently large, odd integers. Suppose further that S, and S; are minimal-genus Seifert surfaces of
K, and K, respectively. We can attach a 1-handle h' to connect the two balanced sutured mani-
folds (S3(K,),T,,,) and (S*(K,),T,). Let (M, 7,) be the resulting balanced sutured manifold; then
we have

13

Cpi : SHG(=S*(Ky), —T},) ® SHG(=S*(K;), —T,,) = SHG(—M,, —,). (42)

On (M,, y,), we can attach a contact 2-handle h% along the curve a, as depicted in Figure 2, and
the resulting balanced sutured manifold is (S*(K,, ff K;), ;). (This « is not the same as the one
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FIGURE 3 Left: The strip P as the shaded region. Right: Pushing off the interior of P into the interior of M,
in the construction of S.

in Figure 1.) Thus, there is a map
Cpz : SHG(=M,, =y,) = SHG(—S*(Ky # K1), =T pin)-

Inside (M, y,), there is a surface S, LI S;, whose associated grading is the one we are interested
in. However, the surface S, LI S; intersects the curve a, along which we attach the 2-handle h2,
and so, it does not survive in (S*(K, #f K;), T,..,,) as a properly embedded surface. To circumvent
this problem, we add to it a strip P, as described in the next paragraph.

See Figure 3. Pick a strip P C dM,,, which serves as a two-dimensional 1-handle attached to the
surfaces S and S;. Let S be the union S, U S; U P, with the interior of P being pushed off into the
interior of M,; then S is a properly embedded surface inside (M,), y,,) and is disjoint from «. Thus,
after attaching the contact 2-handle along «, S survives in S*(K, ff K;,T',.,,), and it is obvious that
S is a Seifert surface of K, f K;. Since a N S = @, the map Ch§ preserves the gradings induced by S
and its stabilizations. To compare the gradings induced by S, LI S; and S, note that their difference,
the two-dimensional 1-handle P, is chosen to be on dM;. Hence, we know that

In [14, Section 4], the first and second authors prove that the gradings induced by S, U S; and S
differ by an overall grading shift. To pin down the exact grading shift, observe that the decom-
position of (M, y) along S, U.S; and S are both taut; this fact allows us to identify the maximal
nonvanishing gradings. Thus, combining with the fact that Chg preserves the grading, we have
the following lemma.

Lemma 4.3. Suppose that m and n are sufficiently large, odd integers. Then, for all i, j € Z, the
map Chg oCy,1 shifts the grading as follows:

Chgochl : SHG(_S3(KO)9 _Fm’ SO7 l) ® SHG(_S3(K1)9 _Fn7 Sl! ])

— SHG(=S*(Ky 1 K1), =T s S5 i+ j + 1). 0
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Let u, C 3S3(K,) and , C S°(K,) be meridians of K, and K, respectively. See Figure 2. We
can attach contact 2-handles h(z) and hf along u, and u,, respectively; the resulting balanced
sutured manifolds are both (S3(1), §). Thus, we have maps

Cpa : SHG(-S*(K,), —T,,) = SHG(=S>(1), —9),
Cpz : SHG(=S(K,),=T,,) — SHG(=S*(1), =).
1
The curves u, and g, are disjoint from the contact handles h! and hg, and so, they survive in
(S3(Ky # K1), T pppip)- Both g and u, become meridians of K, f K;, and so, the contact 2-handle

attaching maps associated to them (viewed as attachment maps from (—S*(K,, # K;), =T ,,;.,)) are
the same:

Cf =C)2 = Cpp 0 SHG(—S*(Ky # K1), =T pyn) = SHG(=S3(1), —9).
0 1 - -
The commutativity of contact handle attachments then gives us the following commutative
diagram:

Id®Ch% Ch%®1d
(KOs Fm) ® (53(1)9 5) =~ (Kos Fm) ® (Kls Fn) I (Kls Fn) ® (S3(1)s 5)

= Chl
=|Cp (MO’ }/0) =|Cp
1 Ch% 0 (44)
(KOa Fm) (KO ﬂ Kla 1ﬂm+n) (Kla Fn)
ct

($°(), 6).

Here and below, for the sake of space, we often denote SHG(—S>(1), —6) by (S3(1), 8), denote
SHG(—S3(K), —T) by (K, T), and denote SHG(—M,,, —y,,) by (M, 7,):

Since m and n are chosen to be odd and sufficiently large, by [26, Proposition 5.10], ele-
ments in KHG™(—S3,K,) and KHG™(—S3,K;) of sufficiently large gradings can be found in
SHG(-S*(K,),—T,,) and SHG(—S3(K,),—T,) respectively, as in the previous section. In par-
ticular, let x, € SHG(—S*(K,), —T,,) be an element representing a non-U-torsion element in
KHG™(—S3,K,) of maximal grading; then, by Proposition 3.17,

-1
815, (%) = T6(Ko) + T, Cpa(xo) %0,

where grg means the grading with respect to S, and the term (m — 1)/2 represents the grading
shift in the definition of KHG™. Similarly, we can pick y, € SHG(—S*(K;),-T},) to represent a
non-U-torsion element in KHG™(—S3, K;) of maximal grading; then

-1
g5, 00) = oK) + o= Ce(yy) 0.
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Let
2o = C20C1(xo ® ¥o) € SHG(=S*(Ky # K1), —Tpnyn);
then we know from Lemma 4.3 that

+
gre-(zy) = 15(Ky) + 15(Ky) + m > n

From the commutative diagram (4.4), we know that
C¥(z,) = cﬁochgochl (39 ® Y) = Cp20C1o(ld ®Cy2)(xg ® ¥o) = Cpa(x) 0, (4.5)
where the third equality uses the fact that Chf(yo) # 0. Hence, by Proposition 3.17, we have

m+n m+n

> grs-(zo) = 16(Kp) + 76(K7) + 5

7oKy B Ky) +

from which the proposition follows.
We now upgrade the inequality in Proposition 4.1 to an equality.

Proof of Proposition 1.14. We keep all notation from the proof of Proposition 4.1. In particular, we
have an element

2y = Cp20Cp1(Xo ® ¥o) € SHG(=S*(Ky # K1), ~T),

where x, € SHG(-S3*(K,),-T,,) and y, € SHG(-S*(K,),—T,) represent non-U-torsion ele-
ments in KHG™ (=53, K, and KHG™(—S?, K;) of maximal gradings, respectively.
By (4.5), we see that z, in fact, corresponds to a non-U-torsion element

z; € KHG™(-S°, K, # K)).
If we assume the contrary of the proposition, that is,
T6(Ko # K1) > 76(K) + 76(KY),
then we are assuming that z; is not the starting point of the unique infinite U-tower; in other
words, it has a preimage under U. Translating back to SHG(—S*(K, # K;), —T,,;,.), this means
that there is an element
z;, € SHG(-S*(Ky # K1), =T ppin1)

such that

-1
Yz, = 2,
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FIGURE 4 Thearcs 3, and 3, along which bypasses are attached, viewed in (S*(K, # K;), T,y,.,.)-

By the positive bypass exact triangle in (3.7), we see that

Tit(zo) = 0.
We claim that this will lead to a contradiction.
Indeed, consider the maps

Y, + SHG(=S*(Ky), —T},) = SHG(=S5*(K), — T,

Yt SHO(-S(K,), ~T,) — SHG(~S*(K, ), ~T,),

which each fit into the positive bypass exact triangle in (3.7). Let 8, € dS3(K,)) and B, € 4S3(K;)
be the arcs along which bypasses corresponding to these maps are attached; we may view 3, and
B in (S*(K, #K;),T,,.), as in Figure 4. (Since 8, and f; are both disjoint from the 1-handle h'
and the 2-handle h2, they survive in (S*(Ky # K;), Ty )-)

Inside (S3(K, # K;), 1), the arcs 8, and B, are isotopic; thus, they both correspond to the
bypass map

P SHG(—S*(K,, § K}), =T 1) = SHG(=S*(K, # K}), —T).

For concreteness, suppose that this bypass map is constructed via a bypass attached along (,.
Since 3, is disjoint from k' and hg, there is a commutative diagram as follows:

dey; ,
(KO’ Fm) ® (Kl’ Fn) I (KO’ Fm) ® (Kl’ r/x)
ichg oCj1 \LC}% oCj1
e

(KO ﬁ Kl’ 1_‘m+n)

(KO ﬁ Kla F,u)

(Here, we are using the simplified notation as in (4.4).)

A ‘T *vT0T "YTY8ESLT

sdny woy

dny) SUONIPUO,) PUB SUL T 3 998 “[HZ0T/Z1/8Z] UO AIBIQIT SUIUQ AJ[1AN “NS] ASIOAIUN) SIBIS BUBISINGT Aq 9p€7 1 0dOY/Z | [ [01/10p/WOdKo[1Ar”

-Kojiav-

95UDY SUOWIWIOY) 9AEA1) d]qeardde oy AQ PAWIIAOS IE SIPILIE V() S9SN JO I[N 10§ AIBIQYT OUIUQ Ao[1A UO (SUONIP



ON THE TAU INVARIANTS IN INSTANTON AND MONOPOLE FLOER THEORIES 29 of 53

From the commutativity, we know that

i) = WeCioC (o @ o)

= Ch§ oCpio(Id ®¢Z,M)(xo ® ¥o)

where y, =9} #(yo). Since y, corresponds to a non-U-torsion element in KHG™(—S3,K;) of
maximal grading, we know that y, ¢ Im"~!, and so, by the exactness of (3.7), we know that

+.n’
Y #0.
Now we claim that the following diagram commutes:

yr, @1
(K0> Fm) ® (Kla r/,t) I (K07 r/,t) ® (Kla F/,t)

lchgochl ig (46)

(KO ﬁKhF,u) (KO ﬂKl’F,u)-

(The isomorphism in the right column arises from the fact that the two sutured manifolds have
the same closure; the same is true for C;1 on the left column, but we display it explicitly so
that Ch% makes sense.) Since x, = gbﬂﬂ(xo) # 0 (as x, represents a non-U-torsion element in

KHG™(—S?3, K,,) of maximal grading), this will show that

_V:_/l’;n(zo) = Chgochl (x() ® yl,() = Itb-T,M(xO) ® ylu = x/,( ® y/,( # Oa

giving us the desired contradiction.
The rest of the proof is devoted to proving the commutativity of (4.6). Let (M, ;) be the result
of attaching the handle h' to (S*(K,),T,,) U (S*(K;),T},). (This gives us a map

C1 @ SHG(-S°(K,), —T,,,) ® SHG(-S*(K,), -T,) > SHG(—M, —7,),

similar to (4.2), but with sutures -I, instead of —T',, on —S3(K;).) Our strategy is to analyze the
contact 2-handle attachment along a, corresponding to Chg and viewed in (—M,, —¥;), and com-
pare it to the bypass attachment along 3, corresponding to " u A bypass attachment is, in fact,
the composition of a contact 1-handle and a contact 2-handle (see, for example, [3, Section 5]);
in our context, we shall work with the preclosures of the sutured manifolds (see [3, Section 4.2]
for details of the relevant constructions), where the contact 1-handle associated to z,bfff u will be
identified with a part of the auxiliary surface associated to (M;, y;), and the attaching curve of the
contact 2-handle associated to 3" u will be identified with an isotopic copy of .

See Figure 5. Because we have the sutures I';, on 3S3(K,), we see that after the 1-handle h' is
added, one component of y, is simply a meridian on the dS3(K,) part of the boundary (of S*(K, #
K,)), while the other component, which intersects the dS3(K,)) part of the boundary, also wraps
around the dS3(K,) part of the boundary like a meridian. We may thus view a part of this latter
component, an arc 7;, as isotopic to a part of o, which we call &, relative to their endpoints. More
precisely, while the arcs 7, and & do not have the same endpoints; however, from Figure 5, one
can pair up the endpoints obviously by short arcs ¢.
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FIGURE 5 The arcsy, and &, which we think of as isotopic relative to their endpoints. Their endpoints are
denoted by the red and blue dots, respectively. The short arcs ¢ are omitted.

FIGURE 6 Constructing an auxiliary surface T, for (M,, y,), from an auxiliary surface T, for (M, ;). In the

second diagram, only a part of & is on T’; we isotope all of & onto T in the third diagram. As shown, the auxiliary
surfaces may have nonzero genus; their irrelevant boundary components are omitted.
Suppose that T, is a connected auxiliary surface of (M, y,); then we can form the preclosure
M=M,U[-1,1] X T;.

From [3, Section 4.2.2], there is an auxiliary surface T for (S*(K,),T,,) U (S*(K;),T,,), obtained

—1
from T, by attaching a two-dimensional 1-handle h , which corresponds to the three-dimensional
1-handle k!, as in Figure 6, so that we also have

M = (S’(Kp) US> (K1) U([-1,1] X T).

—1
In this description, we can think of k! as a thickeningof h C T.
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From [3, Section 4.2.3], attaching the contact 2-handle hg along a corresponds to performing
a 0-surgery along a push-off of « on the level of preclosures. Since & is isotopic to 7, relative to
their endpoints, we can isotope & onto 7, (using ¢') and hence onto T, to give a properly embedded
arc &y C T, as depicted in Figure 6. The product neighborhood of &; corresponds to a contact 1-
handle A attached to (S*(K,),T,,,) U (S*(K;),T,); this is the contact 1-handle associated to P,
Let (M,,7,) be the balanced sutured manifold obtained by attaching h!, and let T, = T \ &; then
T, is an auxiliary surface for (M,, y,), and thus,

M = (M,,y,) U[-1,1] X T,.

Because & is isotopic to &, we can think of h(l) as attached to (S3(K,), T,,,) U (S3(K;), I',) along the
two end pointsof & \ & on T, C dS*(K,,). We further isotope &; to an arc &1, on the boundary of
0

h(l), that intersects y, exactly once, and let
0

Then, the 0-surgery (with respect to the surface framing) along a push-off of a corresponds to
a 0-surgery along a push-off of &/, and hence to a contact 2-handle attachment along «’. The
1-handle hé and the 2-handle attached along &’ together correspond to a bypass attached along
a\é.

Now under the same identification of the endpoints as before — by the short arcs { — we see
that o \ & is isotopic to the arc 3, relative to their endpoints (if we allow the endpoints to move
along T,,,), viewed on (S3(K,), T',,,); compare Figure 4 and Figure 5. (They are not isotopic when
viewed on (S3(K, # K;),T,,,,).) Thus, we see that the map Chg corresponds to the map associated
to a bypass attached along 3, which is ¢ w0 and the proposition follows. O

Having achieved our goal of the section, we end it by spelling out an immediate corollary.
Corollary 4.7. For all knots K C S3, we have 7 (K) = —15(K), where K is the mirror image of K.

Proof. This is a direct consequence of Proposition 1.12 and Proposition 1.14. O

5 | IDENTIFYING THE TAU INVARIANTS

In this section, we identify the invariants 75 and Té, proving Theorem 1.2. While the instanton
and monopole Floer theories are formally similar, there are some differences in their defini-
tions. For example, the definition of SHM(M, y) involves a decomposition into Spin® structures
of Y (where (Y, R) is a closure of (M,y)), which are in bijection with H2(Y) (see [18]); the def-
inition of SHI(M,y) involves a generalized eigenspace decomposition by actions of surfaces,

corresponding to H2(Y)/ Tors (see, e.g., [20, Corollary 7.6]). To identify 7 with 1'2, we have to

8
G

focus on 77 and Tf throughout the section, and discuss the changes necessary for the monopole
setting.

work directly with these objects above. As 77, is defined only in the instanton setting in [6], we
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5.1 | A conjugation symmetry for SHI(—S*(K),-T,)

One key ingredient we shall need is a symmetry on SHI(—S3(K), —T,,) that is analogous to the
Spin® conjugation symmetry in monopole and Heegaard Floer theories. In particular, this will
give us an isomorphism between the homology in grading i with the homology in grading —i.

Proposition 5.1. Suppose that n is odd, which implies that T(n) = 0. For any i € Z, we have an
isomorphism

SHI (—53(1{), _r,,s"™, i) ~ SHI (—53(K), T

n'*~n ST(n), _i> .

n*=n

Proof. 1f (Y,R) is a closure of (—S3(K), —T,) such that S,Tl(") extends to a closed surface §n, then
(Y,—R) is a closure of (—S3(K), T,,). Denote by Eig(u(R), i) the generalized i-eigenspace of u(R).
Then,
SHI (=S*(K), =T}, ) = Eig(u(R), 29(R) - 2);
taking gradings into consideration,
SHI (=$3(K), T, S}, 1) = Big(u(R), 29(R) — 2) " Big(u(S,,,20).
Similarly,
SHI(~S*(K), T, Si", ) = Eig(u(~R), 29(R) — 2) N Eig(u(5,,, 20).
Since
Eig(u(R), 29(R) — 2) = Eig(u(-R),2 — 2¢(R))
holds in general, we have
SHI (=5°(K), ~T,,, 55", 1) = Big(u(R), 29(R) — 2) N Big(u(5,,), 20

= Eig(u(-R), 2 — 2g(R)) N Eig(u(S,,), 2i)
= Big(u(—R), 29(R) — 2) N Eig(u(S,,), —2i)

= SHI(—S3(K), T, 5=, —i).

st nrn

where the isomorphism in the third line follows from [9, Lemma 2.3]. The isomorphisms above
commute with cobordism maps.
Now since dS3(K) is a torus, we can isotope T, to —T',,. Hence, there is a diffeomorphism

1 (S*K),T,) - (S(K),-T,),
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which restricts to the identity outside a collar of the boundary. Hence, under this diffeomor-
phism, the surface S,Z(") =S, is preserved: f(S,) = S,. Thus, this diffefomorphism induces an
isomorphism

SHI(=S*(K), Ty, Sy, —1) & SHI(=S(K), =T, Sy, =)
Combining this with the paragraph above, we have
SHI(=S*(K), —T, S, 1) & SHI (=S(K), T,,, 57", =i
= SHI(—S*(K), —T},, S,,, —0),
which is what we wanted to prove. O

We have the following corollary, which is analogous to the fact that HFK™(—K) is isomorphic
to HFK™(K), where —K denotes the reverse of K. We shall not need this corollary in the sequel.

Corollary 5.2. We have KHI™(—S3,K) = KHI" (-S>, —=K). In particular, t;(K) = t;(=K).

Proof. The longitude and meridian for —K are the same as those for K with their orientations
reversed; this means that given a sutured manifold (—S*(K), —T',,) in the directed system associ-
ated to K, the corresponding sutured manifold for —K is (—S3(K),T,). Also, if SZL(”) is a Seifert
surface for K, then —S;(”) is a Seifert surface for —K. As in the proof of Proposition 5.1, by [9,
Lemma 2.3], for odd n, we have that

SHI (—53(1{), T, 57", i) ~ SHI (—53(K), L =i ",1).

n>*n

A similar argument can be made for even n, with the modification that we need to switch between
negative and positive stabilizations under the symmetry. Fitting these into the directed systems,
one also needs to switch between positive and negative bypass maps under the symmetry. In any
case, the isomorphisms above commute with the bypass cobordism maps, and so, we have an
isomorphism of the directed systems, meaning that KHI™(—S3,K) = KHI~(—S3, —K). O

5.2 | rt;revisited

Recall that the tau invariant was defined in Definition 2.5 and subsequently reformulated in
Proposition 3.17. Below, we give yet another reformulation; roughly speaking, we translate the
characterization of 77 in Proposition 3.17 from the KHI™ context to the SHI context, and then use
the symmetry in Proposition 5.1 to switch to viewing 7y as a minimal rather than maximal grading.

Recall from Section 3 that « is a meridian of K on dS*(K) that intersects the sutures T, twice.
Let B C int(S3(K)) be a push-off of « into the interior of (S*(K),T,,), and let (N, T,,) be obtained
from (S3(K),T,,) by performing a 0-surgery along .

Our first key observation is that, by [3, Section 4.2.3], the map

Ch,n : @(_Ss(K)’ _rn) - @(_M’ _7/) = @(_53(1)’ _5)
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in (3.2) associated to a 2-handle attachment along « in Section 3 can be identified with the map
Fg, : SHI(-S*(K),-T,) — SHI(-N, -T,)

associated to 0-surgery along . Here, (—S3(1), —8) is not diffeomorphic to (—~N, —T,,), but they
differ by a 1-handle attachment along two points on §, and hence have the same closures; thus,
their sutured instanton Floer homologies are canonically identified. In particular, we know that

SHI(—N,-T,) = C.

From now on, we shall often refer to (3.2) but have in mind Fg , in place of Cj, ,,. We may now
state the reformulation of 7.

Proposition 5.3. For n odd and sufficiently large,

7(K) = max {i ez ’ the restriction of Fg , to @(—S%K), —-T,,S,,i)is nontrivial} - nT—l’

the restriction of Fg , to SHI(—S*(K), —T,,S,,, i) is nontrivial} _n-1

TI(K)=—min{ieZ >

Proof. The first statement follows directly from Proposition 3.17, with the grading shift of (n —
1)/2 coming from (2.4) in the definition of KHI". Since the diffeomorphism f in the proof of
Proposition 5.1 restricts to the identity outside a collar of dS3(K), we can take §8 to be inside the
region where f is the identity. Hence, the isomorphism

SHI(=S*(K), =T, S, i) = SHI(=S*(K), =T, S, —1)

in Proposition 5.1 intertwines the maps Fpg ,,. This implies that the maximum grading for which
the restriction of F , is nontrivial is minus the minimum grading for which the restriction of Fg ,
is nontrivial. O

5.3 | The sutured manifold (S*(K),T,)

Let us now discuss the strategy of identifying r; with Tf. Recall that rf is1/2 times the homogeniza-

tion of vf . Baldwin and Sivek explain in [6, p. 16] that the sequence of integers (dim Iu(Sfl Knez
satisfies the following:

 consecutive values always differ by +1, that is, | dim, Iﬁ(Sfl(K)) —dim¢ Iﬂ(SZ_l(K))| = 1;and
* either the sequence is unimodal, with a unique minimum at n = vf(K), which they call V-
shaped, or vf (K) = 0 and there are two minima at n = +1, which they call W-shaped.

Our goal is to study, analogously, the sequence (dimg SHI(—S*(K), —T,)),cz, Which turns out
to be similar to the sequence above and but is always V-shaped. In this subsection, we prove

this assertion, and relate 7; with the slope n, at which the unique minimum occurs. In the next

#

subsection, we shall use n,, to relate 7; with v? and pass to the homogenization to get ;.
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For brevity, for a given K, let us denote
d, = dimg SHI(—-S*(K), —T,).
First, we prove that d,, differs from d,_; by +1.

Lemma5.4. Forallne 7, |d, —d,_;| =1

Proof. This follows directly from (3.2) and the fact that SHI(—S3(1), —6) = C. O
Next, we prove that (d,,),c7 is V-shaped.

Lemma 5.5. Forall n€z ifd,>d,_;, then d,.;, >d,; if d, <d,_;, then d,_, <d,_,.
Consequently, the sequence (d,,),c, has a unique minimum.

Proof. First, consider the surgery exact triangle (3.2), with Fg ,, in place of C), :

@(_53(K)’ _Fn—l) @(_53(K)’ _Fn)

m " (5.6)

@(_N’ _Fn)

Here, as in Section 5.2, (N,T,) is obtained from (S*(K),T,) by O-surgery along . Since
SHI(—N, —T,,) = SHI(—S3(1), —8) = C, we see that the condition d, > d,_; is equivalent to
Fg, #0,and also to Gg ,_; = 0; similarly, the condition d, < d,_, is equivalent to Fg , = 0, and
alsoto Gg,,_; #0.

The idea now is to combine this surgery exact triangle with either one of the two bypass exact

triangles associated to ¢} ., and 9" -
3 z’b;n+l 3
SHI(—S*(K), ~T,,) SHI(—S*(K), ~Tpp1)

\/

SHI(—S*(K),-T})

Since g lies in the interior of S*(K), the triangle above is intertwined by the maps Fg

e

SHI(—S*(K),-T,) - SHI(—=S*(K), =T'y11)
Fg,n SHI(—S*(K),-T,) Fpnin
SHI(—N,-T,) ‘ SHI(=N, —T'41)

E(_Na _F,u)
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Note that N = S! x S?(K) is a solid torus with meridional disk D, where 0D = a C 3(S! X
S?(K)) = 8S3(K). In other words, D is a boundary-compressing disk, and so (—N, —TI',)isnot taut.
Therefore,

@(_N’ _Fﬂ) = O’

and we have the following commutative diagram:

n
+,n+1

SHI(~S*(K), -T,,) SHI(=S*(K), ~T'y1)

Fﬁv" Fﬁ,n+l

SHI(-N, —T';) ——————> SHI(-N, —T},,)

Thus, if Fg , # 0, then Fg,,; # 0. This means thatifd, > d,_,, thend,, > d,,.
Similarly, the bypass exact triangles are intertwined by the maps

Ggpt SHI(-N,~T,) = SHI(~S*(K), ~T,),

which appear in (5.6), from which we get the following commutative diagram:

W
SHI(—S*(K), =T'y_y) ———— SHI(=S*(K), —T,,_)
Gﬁ,n—2 Gﬁ,n—l (5_7)
SHI(-N,—T',_;) = SHI(-N,-T,)

n—1

From this, we conclude that if Gg ,_; # 0, then Gg,,_, # 0. This means that if d, <d,_,, then
dn—l < dn—2'

Finally, the inequalities imply that (d,,),,c> has at most one minimum. Since d,, is a dimension,
we have d,, > 0 for all n, which means that (d,),,c, does indeed have a unique minimum. O

Let n,, be the index at which the sequence (d,,),c attains its unique minimum. We now turn
to relating n,, with ;.

Consider the map Ggn': SHI(-N,-T ;) = SHI(-S3*(K), —T,,) in (5.6). Using again the fact
that SHI(—N, —T',,, ;) = C, we define the element

Xn = Gﬁ,n(1n+1) € E(_SG(K)’ _Fn)’
where 1, is a generator of SHI(—N, —T',, ;). Recall that SHI(—N, —T,,, ;) is well defined only up

to a unit; if we like, we could choose concrete representatives of each term, and choose 1,, so that
I1,a1,)=1,,,,wherel, : SHI(—N,-T,) - SHI(—N, T, ) is the map in (5.7). That commutative
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diagram ensures that

Xp41 = ¢z,n+1(xn)‘ (58)

Note that there are two assertions here, one for3? ., andonefor®” . and each one holdsup
to multiplication by a (possibly different) unit in C. We will need both assertions later.
We are interested in the “width” of x,, in terms of the grading. Precisely, writing

Xn = Z Xn,is
iez
where x,,; € SHI(-S*(K), —Fn,S,Z(”),i), we define the “width” to be the maximum supported

grading of x,, less the minimum supported grading:

max{i€ Z|x,; #0}—min{i€ Z | x,,; #0}+1 ifx, #0;
L, = ’ ' .
0 ifx, =0.

The reason we are interested in [,, is the following. On the one hand, for large, positive, odd n, the
value of I_,, is related to 7;(K) via Proposition 5.3. (Here, K denotes the mirror of K; the appear-
ances of the mirror and the negative sign before n are related to the fact that there is a duality
between the maps Fj; , and G _,,.) On the other hand, as —n increases, |_, strictly decreases until
it reaches zero, and the value of —n when I_,, reaches zero determines n,. We first prove the first
assertion.

Lemma 5.9. For n odd and sufficiently large,
I, =2t;(K) +n.
Here, K is the mirror of K.
Proof. First, the unimodality of (d,),c» from Lemma 5.5 implies that, for n sufficiently large,
d_,41 <d_, must hold, or equivalently, Gz _, # 0; this implies that x_, # 0, and so, I_, =
max{i € Z|x_,; #0}—min{i € Z| x_,; # 0} + 1.
There is an orientation-preserving diffeomorphism
(_SS(K)7 _F_n’ Sn) = (SS(I?)7 rn: Sn)

Hence, we have the following commutative diagram:

@(_SG(KL _r—n’ Sn’ l) ; @(S:;(E)’ Fns Sn, l)

—
Gg,n,i Ggn,i

SHI(-N,-T_,) SHI(N,T,)
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— —_

Here, the bar on G, ; reminds us that it is a map associated to K, and Gg _,; is the component
—

of Gg _,, that lands in the grading-i summand (and similarly for G ). From [25, Theorem 1.7], we

have natural isomorphisms
@(53(E)a rn’ Sa l) = @(—53(E), rn’ Sy i)v, @(N, rn) = @(_]\L Fn)v’

where V'V denotes the vector space dual to V. These isomorphisms fit into a commutative
diagram:

@(53(E)’ Fna S’ l) ; E(_SG(E)’ Fna S’ l)v

aﬁ,n,i F;,n,i
SHI(N,T,) - SHI(-N,T,)"

Here, the map F;m is the dual of the map
Fg,;: SHI(-S*(K),T,,S,i) - SHI(-N,T,).

— —
The reason that the diagram above commutes is that Gﬁ , and Fg, are induced by the same
cobordism with opposite orientations. Thus, we have

maX{iEZ x_n,i;eo}=max{ieZ‘Gﬁ’_n,i5é0}=max{i€Z‘5;,n,i$0}
:maX{iEZ ?,\‘!,n,i:_’éo} =maX{i€Z’Fﬁ’n’i¢0}
— n—1
= K ,
71(K) + >

where the last equality follows from Proposition 5.3. Similarly,

n—1

x_n’l' # 0} = TI(K) + 2 .

—min{ieZ

Summing these and adding 1, we get

l_nzmax{iez

X_p,i #O} —min{i EZ|xX_p; # 0} +1= 2T1(E)+n,

as claimed. [l

Next, we prove the folowing lemma.
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Lemma 5.10. Forn € Z, ifl, > 0, thenl,, <1, —1;ifl, =0, thenl, , = 0.

Proof. The second claim follows directly from the definition, since if x, =0, then x,,; =
" ni1(Xz) = 0. We focus on the first claim, where we assume x,, # 0. First, if x,,,, = 0, then
l,,.1 = 0 and the inequality holds; thus, we may also assume that x,,; # 0.
Recall, from the discussion following (2.4), that with the Z-gradings on SHI(-S*(K),-T,,)

induced by S;("), the map 9" preserves grading while 9 | decreases grading by 1. Thus,
for j > max{i € Z| x,,; # 0} — 1, the graded version of (5.8) becomes
Xn+1,j = ¢-7—,n+1(xnaj+1) = -yll—,n+1(0) =0,

while for j < min{i € Z| x,,; # 0},

xn+1,j = ¢f,n+1(xn,j) = zlbﬁ’n_*.l(o) =0.

xn’i#O}—1>—min{ieZ

as claimed. O

This means that

ln+1<<max{iez xn’i;é0}+1:ln—1,

We now combine the two claims to relate n, with 7;(K).

Corollary 5.11. We have the inequality
ny < 21;(K).

Proof. From its definition, it is clear that [, > 0 whenever x, # 0. Fix some n that is odd and
sufficiently large, so that Lemma 5.9 holds and I_,, = 27(K) + n. Letting m = 27;(K) + n, we may
inductively apply Lemma 5.10 m times to conclude that

l < max{l_, —m,0} = max {ZTI(E) +n-— (211(1?) + n), 0} = 0.

21,(K)

Thus, we see that x = 0, or equivalently, G = 0. As explained in the text following

5)271 (E)

211(K)
(5.6), this is equivalent to the condition that dzTI ®41 > erI ®) This can occur only when 27¢(K) >

ne. (]
5.4 | Identifying 7, with ri‘
Lemma 5.12. If vi(K) # 0, then

YW(K) > —21;(K) - 2.

Proof. To simplify the notation, we set n = 27;(K) + 2 throughout this proof. By Corollary 5.11, we
haved, ; > d,_,, or equivalently, Fz ,_; # 0, as explained in the text after (5.6).
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Our goal is to relate Fg , _; to a cobordism map in the definition of v¥(K). To do so, take a curve
of class nu — A on 3S3(K), and push it off into the interior of S*(K) to obtain a curve 7, such that
7 has linking number 1 with 8 (meaning that it is closer to S3(K) than ). Consider the surgery
exact triangle associated to #:

7,n—1

@(_Sa(K)a _Fn—l) @(_YO’ _Fn—l)

\/

@(_Y—l’ _rn—l)

Here, (Y,,T,,_;) (resp. (Y_;,T,_;)) is obtained from (S*(K),T,_;) by O-surgery (resp. —1-surgery)
along 7, where the surgery coefficient is taken with respect to the surface framing induced by
3S3(K).

We can, in fact, determine these Floer homology groups: First, as explained in Section 5.2,
we can identify F, p withamap Cp, ,,_; : : SHI(-S3*(K),T,,_,) — SHI(—P(1), —§) associated to
a 2-handle attachment along nu — A (of which # is a push-off). Again, (—P(1), —9) is not diffeo-
morphic to (=Y, —I',,_;), but they have the same closures and hence the same Floer homologies.
Here, P is obtained from S3(K) by performing a Dehn filling along nu — A, and so, it is nothing
but Sin(K ). After attaching the 2-handle, the boundary becomes a sphere, which is why we have
P(1); the sutures become connected, which is why we have §. Thus,

SHI(-Y,, -T,,_,) & SHI(-P(1), —8) = I*(=S? (K)).

Second, since 7 is boundary parallel, performing a (—1)-surgery along 7 is equivalent to per-
forming a Dehn twist along nu — A on 8S3(K). This means that (Y_,,T,_,) is diffeormorphic to
(S3(K), I',). Combining, we have the following exact triangle:

SHI(—S*(K), ~T'p_y) Chrc (=2 ,(K))

T~

SHI(—S*(K),-T,)

We can also perform a 0-surgery along 8 and obtain a commutative diagram:

Ch,n—l

SHI(-S*(K), —T,,_;) IH(=S3 (K))

\/

Fgna SHI(—S3(K), -T,) n

SHI(-N,-T,_;) *(—=S?)

R

SHI(-N,~T})
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Note that themap V_,, on I* really does coincide with the map on SHI of the 0-surgeries, since the
sutured manifolds involved have the same closures. Here, N is the manifold we encountered in
Section 5.2. We have that SHI(—N, _Fu) = 0, because N is irreducible and (—N, —TI',) is not taut.
Thus, we obtain the commutative diagram:

Ch n—1
SHI(—S3(K), —Ty_;) ———— /(=52 ,,(K))
Fgpn1 V_,

SHI(—M, —T,,_;) ———— (5%

This implies that, since Fg,_; # 0, we have that V_, £ 0. (Recall thatn = 21'1(1?) +2)
Finally, we note that V_,, a cobordism map associated to the 0-surgery along 3, is dual to the
map

W_,: (8% - I/(S* (K))

associated to the same cobordism upside down. Hence, W_,, # 0. Recall from Definition 2.8 that
vf (K) = N(K) — N(K), where N(K) is the smallest nonnegative integer for which the cobordism

Wy 1*(s3) - Iﬁ(Si](K)(K)) vanishes. By [6, Proposition 3.3], if vf (K) # 0, then precisely, one

of N(K) and N(K) is nonzero, and

(aime 1 (53,0) )

€Z

is unimodal with minimum precisely at m = v? (K). By [6, (3.1) and the proof of Proposition 3.2],
this means that W, : Iﬁ(S H-> Iji(Sg1 (K)) vanishes exactly when m > vlﬁ (K). Thus, we obtain that

—21(K) -2 = —n < v(K),
as claimed. O
Corollary 5.13. If vf (K) # 0, then
20(K) — 2 < ¥(K) < 211(K) + 2.

Proof. Since 17 is a concordance homomorphism, we know that 7;(K) = —‘L'I(I?). Hence, the first
inequality follows directly from Lemma 5.12. For the second inequality, we use the fact from [6,
Section 3] that —vf (K) = v? (K) and use Lemma 5.12 on K to get

ViEK) > —201(K) - 2,

from which our inequality immediately follows. O

f

We are now ready to identify 7; with 7}
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Proof of Theorem 1.2 in the instanton setting. If T? (K) > 1, then for all positive n, we have T? (#nK) =
n, and from [6, Proposition 5.4], we have |2Tf #nK) — Vf (#nK)| < 1, and, in particular, Vf (#nK) >

0. So, we can apply Corollary 5.13 to § nK to conclude that
2n7y(K) — 2 = 25(§ nK) — 2 < Vi (§ nK) < 25(§ nK) + 2 = 2n7y(K) + 2.

From the definition of Tf (K) (Definition 2.9), we have

ti<1in K)

lim (760 - 5 ) <) = < Jim (n@®+ 1),

l\)l’—‘

and so,
T(K) = 1K)

If Tf (K) < 1, then we can pick a knot K, with rf (Kp) =1 (e.g., the right-handed trefoil). Since
#

7 is a concordance homomorphism, we have
TH(K) = TH(K § nKy) — TH( nK,) = TH(K 1 nKy) — n.
Thus, for n large enough, we have Tf (K #nK,) > 1, and so, the paragraph above shows that both
T?(K finK,) = 7,(K ff nK)

and
Tlﬁ(ﬁ nk,) = 7( nk,) = n.

Since 7 is also a concordance homomorphism, we conclude that
7(K) = 1(K),
as desired. O
Finally, we state the necessary changes for the monopole setting.
Proof of Theorem 1.2 in the monopole setting. The proof is similar to that in the instanton setting,

with a different proof for the following statement: In Proposition 5.1, the symmetry isomorphism
for odd n,

SHI(—S*(K),T,,S,,i) = SHI(-=S*(K), -T,, S,,, —i)

follows from a symmetry in the generalized eigenspaces associated to u(R). The analogous
statement,

SHM(-S*(K),T,,S,,,1) & SHM(=S*(K), T, S,,, —i),

follows from the conjugation symmetry in the Spin® decomposition in monopole Floer theory. [
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6 | COMPUTATION FOR TWIST KNOTS

In this section, we compute KHG™ for the family of knots K,,, as in Figure 1, proving Theorem 1.16.
We divide Theorem 1.16 into four propositions: Proposition 6.6, Proposition 6.9, Proposition 6.10,
and Proposition 6.12

Note that, in particular, K; is the right-handed trefoil, K, is the unknot, and K_ is the figure-
eight knot.

From the Seifert algorithm, we can easily construct a genus-1 Seifert surface for K,,, which
we denote by S,,. Hence, g(K,,,) = 1. Also, it is straightforward to compute the (symmetrized)
Alexander polynoial of K, to be

Ag (t)=mt+(1—-2m)+ mt L. (6.1)

First, we will compute KHG(—S?, K,,,). Suppose that (S*(K,,), T,) is the balanced sutured man-
ifold obtained by taking meridional sutures on knot complements. There is a curve ¢ C IntS3(K,,)
as in Figure 1 so that we have a surgery exact triangle:

@(_53(Km)a _F/,t) %(_53(Km+1)7 _F/,L)

‘\/

%(_Q’ _FM)

Here, K, is described as above, and Q is obtained from S*(K,,,) by performing a 0-Dehn surgery
along ¢. We can use the surface S, , that intersects the suture I, twice to construct a grading on
the sutured monopole and instanton Floer homologies. Let S,, , be an isotopy of S,,, , so that S,,, ,
intersects the suture I, exactly 2n times. Since ¢ is disjoint from S,,, ,, all the Seifert surfaces S,,, ,
and S, , survive in Q, which we call S, and S,,, respectively. Also, there is a graded version of the
exact triangle (note that we omit the surfaces from the following exact triangle):

SHG(_S3(KM)’ _r’u9 l) SHG(_S3(Km+1)’ _F/,(’ l)

\ / ©2

w(_Q’ _r/,n l)

Since S,, , has genus one and intersects the suture twice, all the graded sutured monopole and
instanton Floer homologies in (6.2) could only possibly be nontrivial for —1 < i < 1. To understand
what is SHG(—Q, _Fu)’ from [19] and [24], the surgery exact triangle (3.7) is just the same as the
oriented skein exact triangle and SHG(—Q, —T') is isomorphic to the knot monopole or instanton
Floer homology of the oriented smoothing of K,,,, which is a Hopf link. Applying oriented Skein
relation again on Hopf links, we can conclude that

rk (SHG(-Q,-T'))) < 4. (6.3)

For the monopole and instanton knot Floer homologies of K; (trefoil), we could look at the
surgery exact triangle along the curve ¢ in Figure 7 and argue in the same way as in [19] to conclude
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N

FIGURE 7 The trefoil and the circle .

rky (SHG(-S*(K,), -T,) < 3.
Using the Alexander polynomial in (6.1) and [19, 20], we know that
SHG(—S*(K}),—T,, 8, 1) = R (6.4)

fori = —1,0,1 and it vanishes in all other gradings.
Now let m = 1 in (6.2). We know from (6.1) that

rky (SHG(—S*(K,), —T,) > 7.
Then, from the exactness and inequalities (6.3) and (6.4), we know that
ke (SHG(-Q,-T',)) = 4.
After further examining each gradings, we know that

R fori=1,-1,
0 otherwise.

Thus, by using the same argument and the induction, we can compute, for m > 0, that

R™ fori=1,-1,
SHG(—S*(K ), =T, Sy i) = 4 R¥™1 fori =0, (6.5)
0 otherwise.

Since K|, is the unknot, we can use the same technique to compute for, m < 0, that

R~ fori=1,-1,
SHG(—S*(K ), =T}y Sy yn i) =4 RI2" fori =0,
0 otherwise.
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R-™ R-™

R1-2m R-m RY

R-m R RC
R-m R-m

FIGURE 8 Themap !, for K,,. Each row is the positive bypass exact triangle in a particular grading. The

leftmost column indicates the gradings. We use letters like a, b, and c to indicate that, a priori, we do not know

what the rank is.

gr

FIGURE 9 The map ¢7 , for K,,. We denote by (37 ,); the restriction of the map 97 , to the grading i.

Now we are ready to compute the minus version. Recall that the Seifert surface induces a fram-
ing on the boundary of the knot complements as well as Q. Write I',, the suture consists of two
curves of slope —n. We have a graded version of by-pass exact triangles (3.9) for even n as well as

(3.8) for odd n.

A simple case to analyze is when m < 0. For the knot K,,, with m < 0, take n = 2 in (3.8); we

have Figure 8.

Here, as in [26, Section 4], the top and bottom nonvanishing grading of SHG(—S3(K,,), —T,)
can be computed via sutured manifold decomposition and coincide with the top and bottom

Yo ¥is
r, I'y I3
R—m R—m
Rl—Qm R—m (wiﬁ)] Rl—rn
R—m lem (wi‘s)o
Ra+m Raer
R R™™

nonvanishing grading of SHG(—S3(K,,,), =T).

From the graded exact triangles on the rows of the table and an extra exact triangle (3.2), we

know that

b>1-m,

cza+m,

b+c<a+1.

Hence, the only possibility is b = 1 — m, ¢ = a + m. Now take n = 3 in (3.9); we have Figure 9.
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Here, SHG(-S3(K,,), —T;) can be computed by taking k = 1 (note g = g(K,,) = 1) in (3.5). We
know from [26, Section 5.2] that

KHG (—S*,K,,, 1) = SHG(—S*(K,,,), —T's, S5, i + 1)

fori = 1,0, and —1, and the U maps on KHG™(—S?,K,,, i) fori = 1 and 2 coincide with the maps
1,b as in Figure 9. From the exactness, we know that U map is actually zero at grading 1 and has
a kernel of rank —m at grading 0. Hence, we conclude the following.

Proposition 6.6. Suppose m < 0 and the knot K,, is described as above. Then,
KHG (=S*K,,) 2 R[U], & (R) " @& (Ry) ™™,
and hence, t4(K,,) = 0.

To compute KHG™ of K, for m > 0, we first deal with the case m = 1. Now K| is aright-handed
trefoil, which has E(Kl) = 1, and hence, from Lemma 3.3, we know that

rkr SHG(—S3(K,), —T,) = tk SHG(-S3(K;), —T) + 1.

Now let us compute SHG(—S*(K;), —T). Pick S, to be a genus 1 Seifert surface of K so that S, is
disjoint from I',. We can use the surface S, a negative stabilization of S, as in [26, Definition 3.1] to
construct a grading on SHG(—S3(K,), —Ty). From the construction of grading and the adjunction
inequality, there could only be three nonvanishing grading —1, 0, and 1. For the grading 1 part, we
can apply [26, Lemma 3.2 and Lemma 4.2] and get

SHG(-S3(K,),—T,, Sy, 1) = SHG(M', "),

where the balanced sutured manifold (M’,y") is obtained from (—S3(K), —T'y) by a (sutured man-
ifold) decomposition along the surface S,. Since K is a fibred knot, the underlining manifold M’
is just a product [—1,1] X S,,. The suture y’ is not just {0} x 85 but is actually three parallel copies
of {0} x 8S on [—1,1] x 8S. We can find an annulus A C [—1, 1] X S that contains the suture y’.
Then, we can push the interior of A into the interior of S X [—1, 1] and get a properly embedded
surface. If we further decompose (M’, y’) along (the pushed off of) A, then we get a disjoint union
of a product balanced sutured manifold (S x [—1,1],3S X {0}) with a solid torus with four longi-
tudes as the suture. The sutured monopole and instanton Floer homologies of the first are both
of rank 1 and the second of rank 2, as in [19] and [24]. Hence, we conclude

SHG(-S*(K,), —T,,S;,1) = R,

For the other two gradings, note that from the grading shifting property in [26, Proposition 4.9],
we have

SHG(-S3(K,), =Ty, Sy, i) = SHG(-S*(K;), =T, S i — 1)

= SHG(—S*(K,), =T, (=Sp) ", 1 = i).
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FIGURE 10 The map g} , (on the left) and ¢! , (on the right) for K.

The second equality follows from the basic observation that if we reverse the orientation of the
surface S(;f , then we get (—S,,)~. Hence,

SHG(-S*(K,), —T,S; , —1) = SHG(=S*(K,), —T,(—S;)~,2) = 0

by the adjunction inequality and
SHG(-S*(K;), =Ty, Sy ,0) = SHG(=S*(K,), =T, (—Sp) ", 1) = R*.
by the same argument as above. Thus, as a conclusion,
SHG(-S*(K;),—Ty) = R’

Similarly, there are only three possible nonvanishing gradings —1,0, 1. We have already known
that the homology at top and bottom gradings are of rank 1 each, so the middle grading has rank
3. Let n = 2 in (3.8); we have Figure 10.

From the exactness, we know that b = ¢ = 2. The rest of the computation is straightforward
and we conclude that

KHG (-S%,K;) = R[U], ® R,.
Now we have the map

Cy 1t SHG(=S*(K,),—T) - SHG(-S*(1),6)

and by the description of KHG™(—S% K,) above, Proposition 3.17, and the fact that C,,
commutes with 1_ ,, (Claim 1 in the proof of Proposition 1.12), we know that

Cypyt SHG(-S*(K,),-T;,1) - SHG(-S3(1), —6)
is surjective, and, since SHG(—S3(K;), —T;, 1) has rank 1, it is actually an isomorphism (for the

monopole case, the argument is essentially the same as in the proof of Proposition 2.6). Now we
go back to the surgery exact triangle in (6.2), which corresponds to surgeries on the curve { C
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Int S3(K,,,). Since ¢ is disjoint from the boundary, and as above, disjoint from all Seifert surfaces

S,u.n» We have the following exact triangle for any m and n (where we again omit the surfaces):

SHG(-S3*(K,,), =T, 1) SHG(—S*(K p41) =Ty 1)

\ / ©7

w(_Q9 _FVH l)

There are contact 2-handle attaching maps

Conpn * SHG(=S(K,,)), —T,) = SHG(=5*(1), =),

m,h,n *
where the contact 2-handle is attached along a meridional curve on the knot complements. We
can attach a contact 2-handle along the same curve on the boundary of Q, and the handle attaching
maps commute with the maps in the exact triangle (6.7). Thus, we have a diagram:

SHG( 53(Km) rn’ SHG(_S3(Km+1)’ _rn; l)

mhn SHG( Q F}’l’ l) Cm+1,h,n

(6.8

SHG(~$%(1), ~6) e lc SHG(~S%(1), ~6)

SHG(—S? x S1(1), —8)

Here, S? x S! is obtained from S* by performing a 0-surgery along the unknot ¢. The balanced
sutured manifold (S? x S'(1),8) is obtained from S? x S' by removing a 3-ball and assigning a
connected simple closed curve on the spherical boundary as the suture. Its sutured monopole
and instanton Floer homologies are computed in [4] and [24] and are both of rank 2. Thus, the
exactness tells us that ¢, = 0, ¢, is injective, and ¢, is surjective.

Now take m = 0,n = 1, and i = 1, we know that

SHG(-Q,-T),S,,1) = SHG(-S*(K,), -T'}, 5, 1, 1) = R

and Cg j, , is injective. Then, take m to be an arbitrary nonnegative integer and n = 1,i =1 in
(6.8). From (6.5), we know that

SHG(-S*(K,,), —T» 1) = R™.

mw

By performing sutured manifold decompositions along S,, , and applying [26, Lemma 4.2], we
know that

SHG(—S*(K ), =T, Sy 1, 1) = SHG(-S*(K,,), =T s Sy 1) = R
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-2 R™ R™

FIGURE 11 The map ! , forK,,.

Recall from above discussions, we have
SHG(-Q,-T4,S5;,1) = R,

so in the exact triangle (6.8), we know that 7,,, | ; is surjective. Then, we can use the commutativity
part of (6.8) and conclude that

Consinn t SHG(—=S*(K,,11), —T1, S0, 1) = SHG(-S*(1), -6)

is surjective. From the fact that 37 | commutes with C}, as in Claims 1 and 2 in the

proof of Proposition 1.12, we know that this surjectivity means that the unique U tower in
KHG (-S3,K,,, p,,) starts at grading 1:

fG(Km) = 1
form > 0.

Take n = 2 in (3.8); then we have Figure 11.
The fact that 75(K,,,) = 1 means that (1,[)}r ,)o # 0,as (z,b}r ,)o corresponds to the U map at grading

1 part of @_(—53, K,,, m)- Thus, from the exactness, we know that
b>m+1,c>a—m.
From the exact triangle (3.2), we know that
b+c<a+1
and hence b = m + 1,c = a — m. Thus, we conclude the following.
Proposition 6.9. Suppose m > 0 and K,,, is as above. Then
KHG™(=S°,K,,) = R[UL, ® (R)" ™ & (Ry)",

and hence, t5(K,,) = 1.
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or T, Yia T Ve Ty
1 R R™
0 R rm 20
—1 RM R RE
—2 R R

FIGURE 12 Themapy!, forK,.

We could also compute the KHG™ of the knots K ,,, the mirror image of K,,. For m < 0, the
computation is exactly the same as before, and we conclude:

Proposition 6.10. Suppose m < 0 and the knot Em is as above. Then
KHG (-S*K,,) @ R[U], ® (R) ™™ & (Ry)™™,
and hence, t5(K ;) = 0.

For m > 0, we have a diagram similar to (6.8), as follows.

SHG( S( m+1) Fnal) M(*Ss(fm)afrnal)
SHQG(-Q. Tmi)
(6.11)

Let us first compute the case m = 1, when K,,, is the left-handed trefoil. In this case, take n = 2
in (3.8); then we get Figure 12.

The left-handed trefoil is not right veering in the sense of [8], so from their discussion, we
conclude that (¢i,2)0 = 0. (This is how they prove that the second top grading of the instanton
knot Floer homology of a non-right-veering knot is nontrivial. Though they only work in the
instanton case, the monopole case is exactly the same.) Thus, we conclude that b = 0.

In (6.11), let m = 0,n = 2,i = 0. Note the grading is induced by S;z,z’ that is, a Seifert sur-
face of the knot K, that intersects the suture T, transversely at four points and with a positive
stabilization. With the gradings as in the first row of (3.9), we have

7(2)

SHG(-S*(K,),—T,,577,00 =R =0,  SHG(-S*(K,),—T,, 575,

12’ 0)

Here, EO is the unknot and we have computed the SHG of a solid torus with any possible sutures
in [26, Section 4.4]. Thus, we conclude that

SHG(-Q, -T,,5:%,00= R
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FIGURE 13 The mapy? , forK,,.

Use the exactness and the induction, then we have
SHG(-S3(K ), T,,0) = R°m, cp <m—1.

For the knot Em, take n = 3 in (3.9); then we have Figure 13.
Thus, we conclude from the exactness thatc,, = m — 1, (1/)%r 3)1 =0, and (z,bfL 3)0 = 0. As above,

the two maps (32 ,); and (2 ,), correspond to the U maps of KHG™(—S?,K,,) at grading 1 and
0, respectively. Hence, we conclude:

Proposition 6.12. Suppose m > 0 and the knot K ,,, is as above. Then,

KHG (-S*K,) 2 R[U]_; ® (R)" & (Ry)"™ ",
and hence, 75(K,,,) = 0.
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