
TORSION FOR CM ELLIPTIC CURVES DEFINED OVER NUMBER FIELDS

OF DEGREE 2p
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Abstract. For a prime number p, we characterize the groups that may arise as torsion subgroups of
an elliptic curve with complex multiplication defined over a number field of degree 2p. In particular,
our work shows that a classification in the strongest sense is tied to determining whether there exist
infinitely many Sophie Germain primes.

1. Introduction

In 1922, Mordell proved that the set of Q-rational points of an elliptic curve E defined over Q is
a finitely generated abelian group [23]. That is, E(Q) ∼= E(Q)tors×Zr, where E(Q)tors denotes the
finite collection of torsion points and r ∈ Z≥0 is the rank of E/Q. It is natural to ask what groups
arise as E(Q)tors as E ranges over all elliptic curves over Q, and the answer is known due to work
of Mazur.

Theorem 1.1 (Mazur, [21]). Let E/Q be an elliptic curve. Then E(Q)tors is isomorphic to one of
the following groups:

Z/mZ 1 ≤ m ≤ 10 or m = 12
Z/2Z× Z/2mZ 1 ≤ m ≤ 4.

Furthermore, each of these groups occurs as a torsion subgroup of an elliptic curve E/Q.

More generally, if E is an elliptic curve defined over a number field F , then the collection of
F -rational points of E is again a finitely generated abelian group by Weil [31], so one may seek to
classify the groups occurring as E(F )tors. In fact, by Merel’s Uniform Boundedness Theorem [22],
there are only finitely many groups that arise as E(F )tors, even as E ranges over all elliptic curves
defined over all number fields F of a fixed degree. Thus the fundamental question which motivates
our work is the following:

Question 1. For a fixed d ∈ Z+, what groups arise as torsion subgroups of an elliptic curve defined
over a number field of degree d?

Now 100 years after Mordell’s proof, the answer to Question 1 is known only for d ≤ 3; see
[21, 18, 20, 19, 11]. A fundamental obstruction to extending the classification to d > 3 is the
existence of so-called sporadic or isolated points on modular curves which can give rise to torsion
subgroups occurring on only finitely many elliptic curves (up to isomorphism) defined over all
number fields of a fixed degree. To date, we lack adequate tools for detecting such points, and
hence the problem of classifying torsion subgroups of elliptic curves over higher degree number
fields remains largely open.

One way to obtain classification results beyond cubic fields is to restrict the elliptic curves under
consideration. One common family of elliptic curves to study in this context is elliptic curves E/Q
under base extension, where the classification of torsion subgroups is known for degrees d ≤ 5, d = 7,
or d not divisible by a prime ≤ 7; see [24, 13, 12]. If we require only that the j-invariant of E lie in Q,
then analogous classification results exist [14, 10]. Another common family is elliptic curves with
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complex multiplication (CM), which are elliptic curves with unusually large endomorphism
rings. Whereas most elliptic curves have endomorphism ring isomorphic to Z, we say E/F is a
CM elliptic curve if EndF (E) ∼= O, an order in an imaginary quadratic field K. Each order is
uniquely determined by its discriminant ∆ := [OK : O]2 · ∆K , where ∆K is the discriminant of
K and OK is its ring of integers. For the collection of all CM elliptic curves, the classification of
torsion subgroups is known for any d ≤ 13 or for any odd d > 13; see [6, 25, 5, 4]. We note that
CM elliptic curves produce many examples of sporadic points on modular curves (see, for example,
[7]), so this provides further motivation for studying this class in particular.

In the present work, we extend the classification of torsion subgroups of CM elliptic curves to
those defined over any number field of degree twice a prime, building on work of the first author
and Clark [1, 2]. In fact, since the classification is known for d = 4, 6, and 10 by [6], we need only
consider fields of degree 2p for primes p > 5. Our classification is most clearly stated in the context
of new subgroups. By Theorem 2.1 in [4], if a torsion subgroup arises in degree d′, then it arises in
any degree d for which d′ | d. We say a CM torsion subgroup is new if it occurs in degree d and
not in any degree d′ < d such that d′ | d. Since torsion subgroups of CM elliptic curves in degrees
1 and 2 are known [25, 6], and there are no new CM torsion subgroups in degree p > 5 for p prime
[4], it suffices to classify only the new subgroups arising in degree 2p.

Theorem 1.2. Let F be a number field of degree 2p for p > 5 prime and let E/F be an elliptic
curve with CM by the order of discriminant ∆. Then E(F )tors is new if and only if one of the
following occurs:

(1) ∆ = −115, p = 11, and E(F )tors ∼= Z/23Z.
(2) ∆ = −235, p = 23, and E(F )tors ∼= Z/47Z.
(3) ∆ ∈ {−11,−19,−27,−43,−67,−163}, 2p+ 1 is prime with

(︂
∆

2p+1

)︂
= 1, and

E(F )tors ∼= Z/(2p+ 1)Z.
(4) ∆ ∈ {−8,−12,−16,−28}, 2p+ 1 is prime with

(︂
∆

2p+1

)︂
= 1, and

E(F )tors ∼= Z/2(2p+ 1)Z.
(5) ∆ = −7, 2p+ 1 is prime with

(︂
∆

2p+1

)︂
= 1, and E(F )tors ∼= Z/2Z× Z/2(2p+ 1)Z.

(6) ∆ = −3, p = 7, and E(F )tors ∼= Z/49Z.
(7) ∆ = −3, 6p+ 1 is prime, and E(F )tors ∼= Z/(6p+ 1)Z.
(8) ∆ = −4, 4p+ 1 is prime, and E(F )tors ∼= Z/2(4p+ 1)Z.

In particular, any new torsion subgroup arises on one of only finitely many CM elliptic curves, and
all but ∆ = −115 and −235 correspond to imaginary quadratic orders of class number 1.

Remark 1.3. In [15], the authors classify torsion subgroups of Mordell curves defined over Q under
base extension to number fields of degree 2p and 3p, where p ≥ 5 is prime. Every Mordell curve
E has j(E) = 0 and CM by the order of discriminant ∆ = −3. Our classification result includes
additional groups since we are not requiring elliptic curves with j(E) = 0 to be defined over Q.

Theorem 1.2 tells us that if ∆ ̸= −3,−4, then the only ∆-CM torsion subgroups that can arise
in degree 2p for p > 5 that did not occur over a number field of degree 2 or degree p must have
exponent 2p+ 1 or 2(2p+ 1), where p is a Sophie Germain prime. It is conjectured that there are
infinitely many Sophie Germain primes, though this remains unproven. These primes were a vital
piece of Sophie Germain’s investigations concerning Fermat’s Last Theorem.

From Theorem 1.2, we can quickly deduce the torsion subgroups that arise for CM elliptic curves
defined over number fields of degree 2p where p > 5 is prime, including for the first previously
unknown degree d = 14. For example, 7 is not a Sophie Germain prime, but 6 ·7+1 and 4 ·7+1 are
both prime. Thus, by Theorem 1.2, the new torsion subgroups in degree 14 are precisely Z/43Z,
Z/49Z, and Z/58Z. We record this and other small degrees in the following result.
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Corollary 1.4. Let F be a number field of degree 2p for p ∈ {7, 11, 13, 17, 19}, and let E/F be a
CM elliptic curve. The group E(F )tors is isomorphic to one of the following groups which arises
over quadratic fields

Z/mZ for m = 1, 2, 3, 4, 6, 7, or 10
Z/2Z× Z/2mZ for m = 1, 2, or 3
Z/3Z× Z/3Z

or else

(1) p = 7 and E(F )tors ∼= Z/mZ for m = 43, 49, or 58,
(2) p = 11 and E(F )tors ∼= Z/mZ for m = 23, 46, 67 or Z/2Z× Z/46Z,
(3) p = 13 and E(F )tors ∼= Z/mZ for m = 79 or 106, or
(4) p = 17 and E(F )tors ∼= Z/mZ for m = 103.

Moreover, each group occurs.

Remark 1.5. Since there are only finitely many CM j-invariants contained in all number fields
of a fixed degree (see §2), each of these groups necessarily arises on only finitely many CM elliptic
curves.

In particular, by Corollary 1.4, we see that no new torsion subgroups arise on CM elliptic curves
defined over number fields of degree d = 2 · 19. Thus, another consequence of Theorem 1.2 is a
description of degrees of the form 2p such that no new torsion subgroups occur.

Corollary 1.6. Let F be a number field of degree 2p, for p > 5, and suppose none of the following
hold:

(1) 2p+ 1 is prime and split in an imaginary quadratic order of class number 1 with ∆ < −4.
(2) 4p+ 1 is prime.
(3) 6p+ 1 is prime.

Then for any CM elliptic curve E/F , the torsion subgroup E(F )tors is isomorphic to one of the
groups that arise for CM elliptic curves defined over quadratic fields.

This finding is significant in the context of “stratification of torsion,” a phenomenon first explored
in [3, 5] for CM torsion subgroups in odd degree. For any positive integer d, let GCM(d) denote
the set of isomorphism classes of groups which arise as E(F )tors for some CM elliptic curve E over
some degree d number field F . For any positive integer d, we define the set of d-Olson degrees to
be those positive integers d′ for which GCM(d′) = GCM(d). In the case of odd d, we find that the
set of d-Olson degrees possesses a positive asymptotic density [5], but whether the same holds true
for any even d is still an open problem. See [5, Questions 1.6].

Remark 1.7. In fact, as noted by Clark, Corollary 1.6 implies there exist infinitely many 2-Olson
degrees. Recall the Prime Number Theorem states that the number of primes p ≤ X is asymptotic
to X

logX . On the other hand, for any even a ∈ Z+, as X → ∞ the number of primes p ≤ X such

that ap + 1 is also prime is O( X
log2 X

); see [16, Thm. 3.12]. By applying this with a = 2, 4 and 6,

we see that there are infinitely many primes p ≤ X such that 2p is a 2-Olson degree.
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2. Background and Notation

For most elliptic curves E over a number field F , the ring of endomorphisms of E defined over
F is isomorphic to Z, where n ∈ Z corresponds to the multiplication-by-n map on E. We say an
elliptic curve has complex multiplication, or CM, if its endomorphism ring is strictly larger than
Z. For a CM elliptic curve E/F , there is an imaginary quadratic field K and positive integer f
such that EndF̄ (E) ∼= O = Z + fOK , the order in K of conductor f . Here OK denotes the full
ring of integers in K. In particular, we note that O ⊆ OK and [OK : O] = f . The order is largest
when f = 1, and so we call OK the maximal order. Any order O in an imaginary quadratic field
K can be uniquely identified using its discriminant,

∆ = ∆(O) = f2 ·∆K ,

where ∆K is the discriminant of K. We let ω denote the number of units in O, so

ω =

⎧⎪⎨⎪⎩
6 if ∆ = −3,

4 if ∆ = −4,

2 if ∆ < −4.

For an elliptic curve E with CM by the order of discriminant ∆, we have ∆ = −3 if and only if
j(E) = 0 and ∆ = −4 if and only if j(E) = 1728. We use wK to denote #O×

K .
CM elliptic curves have a well-known and beautiful connection with class field theory. For

example, if E has CM by the maximal order in K, then K(j(E), h(Etors)) is the maximal abelian
extension of K, where h : E → E/Aut(E) ∼= P1 denotes a Weber function on E. If one adjoins
the values of a Weber function only on points of order dividing N , we obtain the ray class field of
K modulo N ; see, for example Theorem II.5.6 and Corollary II.5.7 of [30]. Of particular relevance
to the present work is the fact that if E has CM by the order in K of conductor f , then K(j(E))
is the ring class field of K of conductor f and [K(j(E)) : K] = [Q(j(E)) : Q] = h(O), the class
number of O. For an elliptic curve E with CM by the order of discriminant f2∆K with f ≥ 2, we
have [9, Cor. 7.24]

(1) [K(j(E)) : K] = hK
2

wK
f
∏︂
p|f

(︃
1−

(︃
∆K

p

)︃
1

p

)︃
,

where hK denotes the class number of K and
(︂
∆K
p

)︂
is the Kronecker symbol. As there are only

finitely many imaginary quadratic fields of a given class number [17, Theorem III], there are only
finitely many imaginary quadratic orders of a given class number by (1). For each imaginary
quadratic order O, there are precisely h(O) non-isomorphic O-CM elliptic curves.

A crucial ingredient in the proof of our main result is the following theorem. Recall ω = #O×.

Theorem 2.1 (Bourdon, Clark, [2, Theorem 4.1]). Let K be an imaginary quadratic field, and let

O be the order in K of conductor f . Let M = ℓa11 · · · ℓarr | N = ℓb11 · · · ℓbrr where ℓ1 < · · · < ℓr are
prime numbers and ai, bi are nonnegative integers.

(1) There is T (O,M,N) ∈ Z+ such that: for all d ∈ Z+, there is a number field F ⊃ K(j(E))
such that [F : K(j(E))] = d and an O-CM elliptic curve E/F such that Z/MZ×Z/NZ ↪→
E(F ) if and only if T (O,M,N) | d.
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(2) If N = 2 or 3, then T (O,M,N) is as follows:

T (O, 1, 2) =

{︄
3

(︁
∆
2

)︁
= −1 and ∆ ̸= −3

1 otherwise
,

T (O, 1, 3) =

{︄
8/ω

(︁
∆
3

)︁
= −1

1 otherwise
,

T (O, 2, 2) =
2(2−

(︁
∆
2

)︁
)

ω
,

T (O, 3, 3) =
2(3−

(︁
∆
3

)︁
)

ω
.

(3) Suppose N ≥ 4. Then we have

T (O,M,N) =

∏︁r
i=1

˜︁T (O, ℓaii , ℓbii )
ω

where the definition of ˜︁T (O, ℓa, ℓb) appears below. Put c := ordℓ(f).
i) If

(︁
∆
ℓ

)︁
= −1, then

˜︁T (O, ℓa, ℓb) := ℓ2b−2(ℓ2 − 1).

ii) If
(︁
∆
ℓ

)︁
= 1, then

˜︁T (O, ℓa, ℓb) := {︄
ℓb−1(ℓ− 1) a = 0

ℓa+b−2(ℓ− 1)2 a ≥ 1
.

iii) If ℓ | f and
(︂
∆K
ℓ

)︂
= 1, then

˜︁T (O, ℓa, ℓb) := ℓa+b−1(ℓ− 1).

iv) If
(︂
∆K
ℓ

)︂
= 0, then

˜︁T (O, ℓa, ℓb) := {︄
ℓa+b−1(ℓ− 1) b ≤ 2c+ 1

ℓmax(a+b−1,2b−2c−2)(ℓ− 1) b > 2c+ 1
.

v) If ℓ | f and
(︂
∆K
ℓ

)︂
= −1, then

˜︁T (O, ℓa, ℓb) := {︄
ℓa+b−1(ℓ− 1) b ≤ 2c

ℓmax(a+b−1,2b−2c−1)(ℓ− 1) b > 2c
.

From this, we deduce the following corollary, which also appears as Theorem 6.2 in [1]. It refines
earlier results of Silverberg [28, 29].

Corollary 2.2. Let O be an order in an imaginary quadratic field K, and let N ∈ Z+. Then

φ(N) | ω · T (O, 1, N).

Suppose E/F is an O-CM elliptic curve with Z/MZ × Z/NZ ↪→ E(F ). Since [K(j(E)) : K] =
[Q(j(E)) : Q] = h(O), we can actually consider the divisibility conditions in Theorem 2.1 over
Q(j(E)), as illustrated in the field diagram below.
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Q

Q(j(E))
K

K(j(E))
F

FK

h(O) 2

h(O)
2divisible by T (O,M,N)

divisible by T (O,M,N)
1 or 2

Corollary 2.3. Let O be an order in an imaginary quadratic field K, and let E/F be an O-CM
elliptic curve with an F -rational point of order N ∈ Z+. Then T (O, 1, N) | [F : Q(j(E))] and

φ(N) | ω · [F : Q(j(E))].

Proof. This follows from Corollary 2.2 and the diagram above. □

Following [2], for any imaginary quadratic order O and integers M | N , we let T ◦(O,M,N)
denote the least degree of an extension F/Q(j(E)) in which an O-CM elliptic curve E/F has
Z/MZ×Z/NZ ↪→ E(F ). In particular, F need not contain the CM fieldK. We note T ◦(O,M,N) =
2ϵ · T (O,M,N), where ϵ ∈ {0, 1}. Explicit formulas for T ◦(O,M,N) for fixed O are computed in
[2, §8].

In the case whereM = 1, we use the streamlined notation T (O, N) := T (O, 1, N) and T ◦(O, N) :=
T ◦(O, 1, N). We have the following description of T ◦(O, N), which follows from Theorems 1.3, 6.1,
6.2, and 6.6 in [2].

Theorem 2.4 (Bourdon, Clark [2]). Let O be an imaginary quadratic order of conductor f in K.
Let N ∈ Z+ have prime power decomposition ℓa11 · · · ℓarr with ℓ1 < . . . < ℓr. The least degree over
Q(j(E)) in which there is an O-CM elliptic curve E with a rational point of order N is T (O, N)
if and only if T ◦(O, ℓaii ) = T (O, ℓaii ) for all 1 ≤ i ≤ r. Otherwise the least degree is 2 · T (O, N).
Moreover, T ◦(O, ℓaii ) = T (O, ℓaii ) if and only if one of the following holds, where ci := ordℓi(f):

(1) ℓi is inert in O
(2) ℓaii = 2 and is split or ramified in O
(3) ℓaii = 2ai where 2 is ramified in O but not in K, ci ≥ 2, and ai ≤ 2ci − 2
(4) ℓaii = 2ai where 2 is ramified in K and ci = 0
(5) ℓaii = 2ai where ord2(∆K) = 2, ci ≥ 1, and ai ≤ 2ci
(6) ℓaii = 2ai where ord2(∆K) = 3, ci ≥ 1
(7) ℓi > 2 is ramified in O but split in K and ai ≤ 2ci
(8) ℓi > 2 is ramified in O and not split in K

Let E/F be an O-CM elliptic curve and P ∈ E a point of order N . If [F : Q] = T ◦(O, N) ·h(O),
then F = Q(j(E), h(P )), where h : E → E/Aut(E) ∼= P1 is a Weber function on E. Moreover, if
ψ : E → E′ is an isomorphism, then h(P ) = h(ψ(P )) by [27, p.107]. It follows that for any P ∈ E,
the fields K(j(E), h(P )) and Q(j(E), h(P )) do not depend on the chosen Weierstrass equation for
E. See [2, §2.4] and [1, §7A] for additional details.
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3. Determining the Exponent of New Subgroups

Let p > 5 be a prime number, and suppose F is a number field of degree 2p. Let E/F be a CM
elliptic curve with E(F )tors ∼= Z/MZ × Z/NZ for M | N . By definition, this torsion subgroup is
new if it does not occur as the torsion subgroup of a CM elliptic curve defined over a number field
of degree 1, 2, or p. However, every CM torsion subgroup arising in degree 1 also arises in degree 2,
and there are no new torsion subgroups of CM elliptic curves in prime degree p > 5 by [4, Theorem
1.4]. Thus E(F )tors is new if and only if it does not occur in degree 2.

In this section, we will determine the possible exponents of a new CM torsion subgroup in degree
2p. If E(F )tors ∼= Z/MZ× Z/NZ is a new torsion subgroup, then either N appears already as the
exponent of a CM torsion subgroup in degree 2 and N ∈ {1, 2, 3, 4, 6, 7, 10} by [6, §4.2], or else it
has exponent outside this list. We say E(F )tors has a new exponent N if E(F )tors is new and
N ̸∈ {1, 2, 3, 4, 6, 7, 10}.

3.1. Two Preliminary Lemmas. By Corollary 2.2, if O is an order in an imaginary quadratic
field and N ∈ Z+, then

φ(N) | ω · T (O, N).

Since T ◦(O, N) ∈ {T (O, N), 2 · T (O, N)}, this implies φ(N) | ω · T ◦(O, N). The following lemma
shows equality can hold under only very specific conditions.

Lemma 3.1. Let N ∈ Z≥4 have prime power decomposition ℓa11 · · · ℓarr with ℓ1 < · · · < ℓr, and let
O be an imaginary quadratic order of discriminant ∆. If φ(N) = ω · T ◦(O, N), then every ℓi with
ℓaii ≥ 3 is ramified in O. If ℓaii = 2, then 2 is split or ramified in O.

Proof. Suppose ℓ | N is prime and ordℓ(N) = a with ℓa ≥ 3, and suppose φ(N) = ω · T ◦(O, N).
In particular, this implies T (O, N) = T ◦(O, N) by Corollary 2.2, and so by Theorem 2.4, we have
T (O, ℓa) = T ◦(O, ℓa). Then

(︁
∆
ℓ

)︁
̸= 1 by Theorem 2.4. Suppose

(︁
∆
ℓ

)︁
= −1. Recall from Theorem

2.1 that since N ≥ 4,

ω · T (O, N) =
r∏︂

i=1

˜︁T (O, ℓaii ).

If φ(N) = ω · T (O, N), we must have φ(N) =

r∏︂
i=1

˜︁T (O, ℓaii ). Moreover, since φ(ℓaii ) | ˜︁T (O, ℓaii ) for

all i, we must have φ(ℓa) = ˜︁T (O, ℓa). By Theorem 2.1 we have

˜︁T (O, ℓa) = ℓ2a−2(ℓ2 − 1) = (ℓa−1)(ℓa−1)(ℓ− 1)(ℓ+ 1) > φ(ℓa).

We have reached a contradiction. The same kind of calculation shows 2 cannot be inert in O. □

Lemma 3.2. Let E/F be an O-CM elliptic curve with an F -rational point of order N for N ∈ Z+.
If ω · [F : Q(j(E))] = φ(N), then

T (O, N) = T ◦(O, N) = [F : Q(j(E))].

Proof. By Corollaries 2.2 and 2.3 we have

φ(N) | ω · T (O, N) | ω · [F : Q(j(E))] = φ(N),

from which we conclude equality holds throughout. Thus T (O, N) = T ◦(O, N) = [F : Q(j(E))]. □
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3.2. Determining new exponents. Let F be a number field of degree 2p, for p > 5 prime. If E/F
is an O-CM elliptic curve with a point of order N , then h(O) = [Q(j(E)) : Q] ∈ {1, 2, p, 2p}. We
will consider each case separately in a series of lemmas. One important ingredient is the following
theorem of Parish.

Theorem 3.3 (Parish, [26, §6]). Let E be a CM elliptic curve defined over F = Q(j(E)). Then
E(F )tors is isomorphic to one of the following groups: the trivial group {·},Z/2Z,Z/3Z,Z/4Z,Z/6Z,
or Z/2Z× Z/2Z.

All other cases build upon Theorems 2.1 and 2.4 in combination with Lemma 3.1.

Lemma 3.4. Let F be a number field of degree 2p. Suppose E/F is an O-CM elliptic curve, where
h(O) = 2p. Then E(F )tors is not new.

Proof. Here, F = Q(j(E)) and E(F )tors is one of the groups arising over Q by Theorem 3.3. □

Lemma 3.5. Let F be a number field of degree 2p for p > 5. Suppose E/F is an O-CM elliptic
curve, where h(O) = p. Then E(F )tors ∼= Z/MZ× Z/NZ for M | N and N ∈ {1, 2, 3, 4, 6}.

Proof. Note in this case [F : Q(j(E))] = 2, which means φ(N) | ω ·2 by Corollary 2.3. As h(O) = p,
we have ω = 2, and so N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. If N is a new exponent, then N ∈ {5, 8, 12}.
We will show these do not occur, and we will also rule out N = 10.

Suppose N ∈ {5, 8, 12}. Then φ(N) = 4 = 2 · [F : Q(j(E))], and by Lemma 3.2 we have
T (O, N) = T ◦(O, N) = 2. Thus by Lemma 3.1 each prime dividing N is ramified in O. Since
h(O) = p > 5, in particular the class number is odd, and so ∆(O) = −2ϵ · ℓ2a+1 for ϵ ∈ {0, 2} and
ℓ ≡ 3 (mod 4) prime; see, for example, Lemma 3.5 of [4]. This shows immediately that N ̸= 5. So
suppose N = 8. Then ϵ = 2, and O is an order of conductor 2ℓa, where 2 is split or inert in the
corresponding imaginary quadratic field K = Q(

√
−ℓ). Then T (O, 23) < T ◦(O, 23) by Theorem

2.4, which gives a contradiction. Similarly, if N = 12, we find T (O, 22) < T ◦(O, 22), and so
T (O, 12) < T ◦(O, 12) by Theorem 2.4.

Finally, we note N ̸= 10, since E cannot have a point of order 5 by the argument above. □

Lemma 3.6. Let F be a number field of degree 2p for p > 5. Suppose E/F is an O-CM elliptic
curve, where O has class number 2. Then E(F )tors has new exponent N if and only if one of the
following occurs:

(1) N = 23, p = 11, and ∆(O) = −115.
(2) N = 47, p = 23, and ∆(O) = −235.

Proof. Suppose E(F )tors ∼= Z/MZ× Z/NZ for M | N . Note in this case [F : Q(j(E))] = p, which
means φ(N) | ω · p by Corollary 2.3. As h(O) = 2, we have ω = 2. If φ(N) | 2p, then N = 2a · qb
where q is an odd prime and a ≤ 2, for otherwise ord2(φ(N)) > ord2(2p) = 1. If b = 0, then
N ∈ {1, 2, 4}, so suppose b > 0. It follows that a ≤ 1, for otherwise ord2(φ(N)) > 1. Thus

φ(N) = 2a−1 · qb−1(q − 1) | 2p.
If q = 3, then the assumption that p > 5 implies N = 3 or N = 6, so suppose q ̸= 3. Then q−1 | 2p
implies q − 1 = 2p, since both p, q are odd and q ̸= 3. That is, if E(F ) has a point of order N ,
then N ∈ {1, 2, 3, 4, 6, 2p + 1, 2 · (2p + 1)} where 2p + 1 is prime. If N is a new exponent, then
N ̸∈ {1, 2, 3, 4, 6} by definition, and so N ∈ {2p+ 1, 2 · (2p+ 1)}.

Now, suppose E/F has a point P of order N = 2p+1, where 2p+1 is prime. Then φ(N) = 2p,
and by Lemma 3.2, we have p = T (O, N) = T ◦(O, N). Thus by Lemma 3.1, N is ramified in O.
That is, N | f2∆K . Based on the formula for h(O) (see equation 1 in §2) and the classification of
imaginary quadratic fields of class numbers 1 and 2 (see, for example, [8, p.229]), this can happen
only if N = 23 and ∆(O) = −115 or N = 47 and ∆(O) = −235. Conversely, if ∆(O) = −115, then
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there exists a point of order 23 in degree 11 · [Q(j(E)) : Q] = 2 · 11 by Theorem 2.4. Similarly, if
∆(O) = −235, then there exists a point of order 47 in degree 23 · [Q(j(E)) : Q] = 2 · 23.

Finally, suppose E/F has a point P of order 2 · (2p + 1), where 2p + 1 is prime. Then in
particular E has a point of order 2p+ 1, and so by the previous paragraph either 2p+ 1 = 23 and
∆(O) = −115 or else 2p + 1 = 47 and ∆(O) = −235. In each case, 2 is inert in O, and so by
Theorem 2.1 T (O, 2 · (2p+ 1)) = 3p, and we have a contradiction by Corollary 2.3. □

Lemma 3.7. Let F be a number field of degree 2p for p > 5. Suppose E/F is an O-CM elliptic
curve, where O has class number 1 and ∆(O) < −4. Then E(F )tors has new exponent N if and
only if we are in one of the following cases:

(1) N = 2p+ 1 where 2p+ 1 is a prime split in O and
(︁
∆
2

)︁
= −1.

(2) N = 2 · (2p+ 1) where 2p+ 1 is a prime split in O and
(︁
∆
2

)︁
̸= −1.

Proof. Suppose E(F )tors ∼= Z/MZ × Z/NZ for M | N . Note in this case [F : Q(j(E))] = [F :
Q] = 2p, which means φ(N) | ω · 2p by Corollary 2.3. Since ∆ < −4, it follows that ω = 2. Thus
φ(N) | 4p. If φ(N) | 4, then N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. If φ(N) | 2p, then the proof of the
previous lemma shows N ∈ {1, 2, 3, 4, 6, 2p + 1, 2 · (2p + 1)} where 2p + 1 is prime. Thus the only
remaining case is when φ(N) = 4p. But in this case Lemma 3.2 implies T (O, N) = T ◦(O, N) = 2p.
By Lemma 3.1, if N ≥ 4, then N =

∏︁
ℓaii where ℓi is a prime ramified in O or N = 2 ·

∏︁
ℓaii where

2 is split in O and ℓi is an odd prime ramified in O. As the discriminant of O is in

{−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163},
there are no possibilities such that φ(N) = 4p for p > 5. We note that if N is new, then N ̸∈
{1, 2, 3, 4, 6, 10} by definition. Furthermore, N ̸∈ {5, 8, 12}, for otherwise 4 | [F : Q]; see, for
example, the table in the appendix of [4].

Now, suppose N = 2p+1, where 2p+1 is prime. Since p > 5, we see immediately from the list of
imaginary quadratic discriminants of class number 1 that N is not ramified in O, and N is not inert,
for otherwise T (O, N) = 2p(p+ 1) ∤ [F : Q] by Theorem 2.1. Now, suppose N is split in O. Then
T ◦(O, N) = 2p by Theorem 2.4. By Theorem 2.1, N = 2 · (2p + 1) is possible only if 2 is split or
ramified in O. Conversely, suppose 2 is split or ramified in O. Then ∆ ∈ {−7,−8,−12,−16,−28}.
In each case, such an O-CM elliptic curve E/F will always have an F -rational point of order 2;
this can be seen, for example, by the fact that any model of such an elliptic curve over Q will have
a rational point of order 2, and points of order 2 are invariant under quadratic twist. □

Lemma 3.8. Let F be a number field of degree 2p for p > 5. Suppose E/F is an O-CM elliptic
curve, where ∆(O) = −4. Then E(F )tors has new exponent N if and only if N = 2 · (4p+1) where
4p+ 1 is prime.

Proof. Suppose E(F )tors ∼= Z/MZ × Z/NZ for M | N . If ∆ = −4, then ω = 4 and φ(N) | 8p by
Corollary 2.3. If φ(N) | 8, then

N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30}.
If φ(N) | 4p, then ord2(φ(N)) ≤ ord2(4p) = 2 implies N = 2a · qb1 · qc2 where q1, q2 are odd primes
and a ≤ 3. If a = 3, then N = 8, so suppose a = 2. Then N = 22 ·qb1. If b > 0, then the assumption

that φ(N) = 2 · qb−1
1 (q1 − 1) | 4p implies q1 = 3 or 2p + 1 as above, and b = 1. If a ≤ 1, then

N = 2a · qb1 · qc2, and we have

φ(N) = qb−1
1 (q1 − 1) · qc−1

2 (q2 − 1) | 4p.
In particular, qi−1 | 4p implies qi ∈ {3, 5, 2p+1, 4p+1}, since it is an odd prime. Thus if φ(N) | 4p,
the only possibilities are

N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 2p+1, 2 · (2p+1), 3 · (2p+1), 4 · (2p+1), 6 · (2p+1), 4p+1, 2 · (4p+1)},
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where 2p+1 and 4p+1 can arise only if they are prime. Finally, suppose φ(N) = 8p. But Lemma
3.2 implies 2p = T (O, N) = T ◦(O, N). By Lemma 3.1, N ∈ {1, 3, 2a} since ∆ = −4, but none of
these satisfy φ(N) = 8p.

We note that if N is a new exponent, then N ̸∈ {1, 2, 3, 4, 6, 10} by definition, so we may remove
these values from consideration. By Theorem 2.1, T (O, N) ∤ 2p if N ∈ {8, 12, 15, 20}, which implies
N cannot be any of these values, along with 16, 24, or 30. Though there can exist a point of order
5 on an O-CM elliptic curve defined over a number field F of degree 2p, such an elliptic curve
corresponds to an equation of the form y2 = x3 + Ax and so has an F -rational point of order
2. Thus an exponent of 5 is not possible. Now, consider a prime N = 2p + 1, which cannot be
ramified since ∆ = −4. If N is inert, then T (O, N) = p(p+1) ∤ 2p. In addition, N cannot be split,
since then T (O, N) = p/2 would not be an integer. Thus if E(F )tors has new exponent N , then

N ∈ {4p+ 1, 2 · (4p+ 1)} where 4p+ 1 is prime. Since
(︂

−4
4p+1

)︂
= 1, there is a point of order 4p+ 1

in degree 2p by Theorem 2.4 and Theorem 2.1. As E has the form y2 = x3 + Ax, there is a point
of order 2 as well, so N = 2 · (4p+ 1). □

Lemma 3.9. Let F be a number field of degree 2p for p > 5. Suppose E/F is an O-CM elliptic
curve, where ∆(O) = −3. Then E(F )tors has new exponent N if and only if we are in one of the
following cases:

(1) N = 49 and p = 7.
(2) N = 6p+ 1 where 6p+ 1 is prime.

Proof. Suppose E(F )tors ∼= Z/MZ× Z/NZ for M | N . If ∆ = −3, then ω = 6 and φ(N) | 12p by
Corollary 2.3. If φ(N) | 12, then

N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 21, 26, 28, 36, 42}.
If φ(N) | 6p, then ord2(φ(N)) ≤ ord2(6p) = 1 implies N = 2a · qb for an odd prime q and a ≤ 2.
Suppose b > 0. Then a ≤ 1 and q − 1 | 6p implies q ∈ {3, 7, 2p+ 1, 6p+ 1} since q is an odd prime.
If φ(N) | 4p, then as shown in the proof of Lemma 3.8,

N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 2p+1, 2 · (2p+1), 3 · (2p+1), 4 · (2p+1), 6 · (2p+1), 4p+1, 2 · (4p+1)},
where 2p+ 1 and 4p+ 1 can arise only if they are prime. Finally, suppose φ(N) = 12p. But then
Lemma 3.2 implies T (O, N) = T ◦(O, N) = 2p. Since ∆ = −3, Lemma 3.1 implies N ∈ {1, 2, 3a},
but none of these satisfy φ(N) = 12p.

If N is a new exponent, then N ̸∈ {1, 2, 3, 4, 6, 7, 10} by definition. By Theorem 2.1, N ̸∈
{5, 8, 9, 12, 14, 18, 26, 28, 36, 42, 98} since T (O, N) ∤ 2p. Next, we will show 2p+1 ∤ N when 2p+1 is
prime. Since ∆ = −3, 2p+1 is not ramified, and it cannot be split because then T (O, 2p+1) /∈ Z.
Thus 2p+ 1 is inert in O, and T (O, N) > 2p; contradiction. Similarly, we cannot have 4p+ 1 | N
when 4p+ 1 is prime.

The remaining options are N ∈ {13, 21, 49, 6p + 1, 2 · (6p + 1)} where 6p + 1 is prime. To see
N ̸= 13, note that by Lemma 7.6 and Theorem 7.8 in [1], if P ∈ E has order 13 and K = Q(

√
−3),

then [K(h(P )) : K] = 2 or 24, where h denotes a Weber function on E. Since P is defined over a
number field of degree 2p, it must be that [K(h(P )) : K] = 2. Then [Q(h(P )) : Q] = 2, since its
degree must also divide 2p. However, then there is a twist of E defined over Q(h(P )) such that P
becomes rational, and T (O, 13) = T ◦(O, 13) = 2. This contradicts Theorem 2.4. Similarly, N ̸= 21:
by Lemma 7.6, Proposition 7.7, and Theorem 7.8 in [1], [K(h(P )) : K] = [Q(h(P )) : Q] = 2 since
this quantity must divide 2p. But then T (O, 21) = T ◦(O, 21) = 2, which contradicts Theorem 2.4.

We note N = 49 does occur as a new exponent in degree 2 · 7 by Theorem 2.4, and this is the

only possible degree since φ(49) | 12p only if p = 7. If N = 6p+ 1 is prime, then
(︂

−3
6p+1

)︂
= 1, and

there exists a point of order N in degree 2p by Theorem 2.4. However, T (O, 2 · (6p+1)) = 3p, and
so we cannot have an O-CM elliptic curve with a point of order 2 · (6p+ 1) in degree 2p. □
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4. Determining New Torsion Subgroups

Suppose F is a number field of degree 2p, where p > 5 is prime, and E/F is an O-CM elliptic
curve. If E(F )tors ∼= Z/MZ×Z/NZ forM | N is new, then either N occurs already as an exponent
of a CM torsion subgroup in degree 1 or 2 and

N ∈ {1, 2, 3, 4, 6, 7, 10}
by [6, §4.1, 4.2], or else by the previous section we are in one of the following cases:

(1) ∆(O) = −115, p = 11, and N = 23,
(2) ∆(O) = −235, p = 23, and N = 47,

(3) ∆(O) ∈ {−11,−19,−27,−43,−67,−163} and N = 2p+ 1 is prime with
(︂

∆
2p+1

)︂
= 1,

(4) ∆(O) ∈ {−7,−8,−12,−16,−28} and N = 2·(2p+1) where 2p+1 is prime with
(︂

∆
2p+1

)︂
= 1,

(5) ∆(O) = −4 and N = 2 · (4p+ 1) where 4p+ 1 is prime,
(6) ∆(O) = −3, p = 7, and N = 49,
(7) ∆(O) = −3 and N = 6p+ 1 where 6p+ 1 is prime.

Lemma 4.1. Suppose F is a number field of degree 2p, where p > 5 is prime, and E/F is an
O-CM elliptic curve. If E(F )tors ∼= Z/MZ× Z/NZ for M | N is new, then M = 1 or 2.

Proof. Suppose ℓ | M is prime. If ℓ = ω · p+ 1 > 4, then by Theorem 2.1 we have T (O, ℓ, ℓ) > 2p.
This is a contradiction. By §3 as summarized above, it remains to consider

M ∈ {3, 4, 5, 6, 7, 10, 49}.
Note that for any M ≥ 3, the CM field K is contained in F (E[M ]) by Lemma 3.15 of [4], and

so 2 · T (O,M,N) | [F : Q] by Theorem 2.1. We reach a contradiction for

(M,N) ∈ {(3, 6), (4, 4), (5, 10), (6, 6), (7, 7), (7, 49), (10, 10), (49, 49)}.
This leaves only (M,N) = (3, 3), but Z/3Z× Z/3Z occurs already in degree 2 by [6, §4.2]. □

By the classification of CM torsion subgroups in degree 2 [6, §4.2] and the previous lemma,
the only possible new subgroup with an old exponent is Z/2Z × Z/10Z. Any other new torsion
subgroup will be of the form Z/NZ or Z/2Z× Z/NZ for a new exponent N . In particular, if N is
odd, then the new torsion subgroup is precisely Z/NZ. It remains to check whether one can have
full 2-torsion in each of the following cases:

(1) N = 10

(2) N = 2 · (2p+ 1) where 2p+ 1 is prime, ∆(O) ∈ {−7,−8,−12,−16,−28} and
(︂

∆
2p+1

)︂
= 1

(3) N = 2 · (4p+ 1) where 4p+ 1 is prime and ∆(O) = −4

Lemma 4.2. Z/2Z×Z/10Z does not occur as a new torsion subgroup of a CM elliptic curve defined
over a number field of degree 2p for p > 5.

Proof. Suppose E/F is an O-CM elliptic curve with E(F )tors ∼= Z/2Z× Z/10Z, and let P ∈ E(F )
be a point of order 10. By Corollary 2.2, we have 2 | T (O, 10) unless ∆ = −4. Thus 2 ∤ h(O), for
otherwise 4 | [F : Q] by Corollary 2.3. In addition, h(O) ̸= p by Lemma 3.5. Since h(O) | 2p, it
follows that h(O) = 1. Moreover, ∆(O) = −4 by the table in the appendix of [4] since otherwise
[Q(h(P )) : Q] ∤ 2p. Also, this table shows that Q(h(P )) has degree 2, as neither 4 nor 8 divide 2p.
Since T (O, 10) = 1 by Theorem 2.1, it follows that K = Q(

√
−1) = Q(h(P )). In particular, K ⊆ F .

Moreover, T (O, 2, 10) = 2. Since T (O, 2, 10) | [F : K], it follows that 4 | [F : Q]; contradiction. □

Lemma 4.3. Z/2Z × Z/2(2p + 1)Z where 2p + 1 is prime and p > 5 is prime occurs as a new

torsion subgroup of an O-CM elliptic curve in degree 2p if and only if ∆(O) = −7 and
(︂

∆
2p+1

)︂
= 1.
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Proof. Suppose E/F is an O-CM elliptic curve with E(F )tors ∼= Z/2Z × Z/2(2p + 1)Z. Then

∆(O) ∈ {−7,−8,−12,−16,−28} and
(︂

∆
2p+1

)︂
= 1 by Lemma 3.7. We consider two cases. First,

suppose 2 is ramified in O. Then T (O, 2, 2(2p + 1)) = 2p by Theorem 2.1, yet by Theorem 2.4,
T ◦(O, 2, 2(2p+ 1)) = 2 · 2p since 2p+ 1 is split. So we must have 2 split in O, which occurs if and
only if ∆ = −7. Then T (O, 2, 2(2p+ 1)) = p, and T ◦(O, 2, 2(2p+ 1)) = 2p, as desired.

Finally, we must show that if ∆(O) = −7 and Z/2(2p + 1)Z ↪→ E(F )tors, then in fact E has
full 2-torsion over F . By Lemma 7.6 and Theorem 7.8 in [1], if P ∈ E(F ) has order 2p + 1
and K = Q(

√
−7), then [K(h(P )) : K] = p or 2p2. Since P is defined over a number field of

degree 2p, it must be that [K(h(P )) : K] = p. By Theorem 2.4, [Q(h(P ) : Q] = 2p, and so
K ⊆ Q(h(P )) ⊆ F . Thus E has full 2-torsion over F by Theorem 4.2 of [4], as we recall that
2-torsion is model-independent. □

Lemma 4.4. Z/2Z× Z/2(4p+ 1)Z where 4p+ 1 is prime and p > 5 is prime does not occur as a
new torsion subgroup of a CM elliptic curve in degree 2p.

Proof. Suppose F is a number field of degree 2p for p > 5 prime, and suppose E/F is an O-CM
elliptic curve with a point of order 4p + 1, where 4p + 1 is prime. Then by the lemmas of §3.2,
∆(O) = −4. Since 4p+ 1 is split in O, Theorem 2.1 implies T (O, 2, 2(2p+ 1)) = 2p. However, by
Theorem 2.4, T ◦(O, 2, 2(4p+ 1)) = 2 · 2p, and we have a contradiction. □
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15. Tomislav Gužvić and Bidisha Roy, Torsion groups of Mordell curves over number fields of higher degree, available
at: arxiv:2105.04954.

16. Heini Halberstam and Hans-Egon Richert, Sieve methods, London Mathematical Society Monographs, No. 4,
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730

17. Hans Heilbronn, On the class-number in imaginary quadratic fields, The Quarterly Journal of Mathematics os-5
(1934), no. 1, 150–160.

12



18. Sheldon Kamienny, Torsion points on elliptic curves over all quadratic fields, Duke Math. J. 53 (1986), no. 1,
157–162.

19. , Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992), no. 2,
221–229.

20. Monsur Kenku and Fumiyuki Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya
Math. J. 109 (1988), 125–149.

21. Barry Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47,
33–186 (1978).
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