
State-Space System Identification beyond the Nyquist Frequency with
Collaborative Non-Uniform Sensing Data

Xiaohai Hu†, Thomas L. Chu†,and Xu Chen†,⋆

Abstract— In a multirate sampled-data system encompassing
a continuous-time process and multiple output samplers with
periods n1T and n2T , coupled with a zero-order hold with
a period of mT for the input, we introduce an innovative
approach that leverages non-uniform data collated through a
coprime collaborative sensing mechanism. The ultimate aim is
to identify the intricate dynamics governing the system. The
predominant challenge – relating to the accurate identification
and representation of the multirate system dynamics – is
addressed by pioneering a lifted state-space model for the
system. This model is achieved by building upon and extending
the subspace system identification. Moving forth, using this
elevated model as a foundational basis, we seamlessly extract
the single-rate system through an eigenvalue decomposition
process. The proposed methodology’s efficacy is empirically
tested through demonstrative examples with multiple orders
and varying coefficients.

I. INTRODUCTION

Multirate systems play a pivotal role in diverse areas
such as process control within chemical reactions [1], au-
ditory aids in human audio and speech processing [2], [3],
aerospace industry [4] and addictive manufacturing [5]–[7].
For example, polymerization reactors [8] often employ a gas
chromatography to keep track of reactant concentrations. The
measured sampling rate of these concentrations tends to be
slower than other parameters such as temperature or pressure.
Despite this, modifications to the reactor’s input can be made
quickly. This rate difference defines a multirate system mode,
where the characteristic trait is typically a slower sampled
output compared to the input.

The standard configuration of a multirate system is to
have the output and input sampled at two different rates.
The adoption of non-uniform sampling will bring forth a
plethora of advantages. It allows for richer sampling in
areas of significant interest, proving invaluable in regions
marked by pronounced variability or intricacy. Additionally,
non-uniform sampling promotes the use of computational
resources by focusing on fewer samples in regions that
are more predictable or stable. Furthermore, it offers the
flexibility to align with the inherent characteristics of the
data, which can pave the way for more refined models
or representations. On the flip side, non-uniform sampling
serves as a bulwark against the adverse impacts of aliasing,
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Fig. 1. Irregular and sparse measurements from two sensors with different
sampling rates, i.e., n1 = 3 and n2 = 5. Parameter estimation is relevant
only at times that are integer multiples of n1 × n2. [14]

particularly when the mean sampling rate falls short of twice
the desired Nyquist sampling frequency. Therefore, it is
imperative to acknowledge the complexities introduced by
non-uniform sampling, especially regarding system identifi-
cation algorithms. The challenges associated with procuring
analytical solutions have cast a shadow of uncertainty over
the practicality of non-uniform data.

Historically, multirate system identification has been a
subject of rigorous research since Kranc’s seminal con-
tribution in 1957 [9]. Three predominant techniques have
been employed: the lifting technique for state-space model
identification [10], polynomial transformation [11], and the
stochastic gradient method [12], [13]. This paper introduces
a novel concept of system identification with complete co-
prime collaborative sensing. The proposed approach employs
two slow sensors with distinct sampling rates, synchronized
and processed to identify system dynamics surpassing the
individual sensor’s capabilities, as illustrated in Fig. 1. This
collaborative methodology retains each sensor’s uniform
sampling rate while enhancing overall data resolution. We
attain the identification goal by first formulating a lifted mul-
tirate system (Section II), developing a modified subspace
system identification to discern the state space of the lifted
model (Section III), and then recovering the original fast-rate
model via an eigenvalue analysis (Section IV). The efficacy
of the proposed approach is validated in the concluding
sections through case studies on partially randomly selected
system models and a comparison among different sensors.

II. PROBLEM FORMULATION

We consider the problem of system identification for a
multirate system as shown in Fig. 2. This system consists of a
continuous-time plant, P (s), which receives an input signal,
u[n], through a zero-order hold HmT operating at a period of
mT , ensuring the continuous nature of the signal. The output



Fig. 2. A Multirate System with two samplers and noise, e(t).

of the system is then sampled at different rates. In this paper,
we specifically focus on the case where the system has two
slow sensors. The two sensors sample at Sn1T and Sn2T with
periods of n1T and n2T , respectively. For simplification, we
also omit ”s” in our subsequent derivations. We assume the
following:

1) The input is sampled faster than the outputs, i.e., m <
ni for all i, which is common in practice [1].

2) The values m, n1, and n2 are coprime with respect
to each other. If m and any ni are not coprime, the
common factor can be extracted. For n1 and n2, coar-
rays of coprime arrays provide enhanced information,
facilitating estimation with fewer sensor elements, as
highlighted in [15].

A. Lifting Technique for Multi-rate Systems

To deal with the multirate systems, one has to address
the challenge of different sampling rates in the input u[k]
and outputs yi[k]’s. When only one sensor exists, such
mismatched input and output can be addressed with the
lifting technique [16], [17]. Here, we leverage the lifting
technique to transform the multi-sensor multi-rate system
into a single-rate system operating at a common multiple
period, mn1n2T .

More specifically, we denote the lifting operator, Ln1n2
,

to map the input signal u to a vector input signal u:

{u(0), u(1), . . .} 7→




u(0)
u(1)

...
u(n1n2 − 1)

 ,


u(n1n2)

u(n1n2 + 1)
...

u(2n1n2 − 1)

 , . . .


(1)

or compactly denoted as u = Ln1n2u.
The process of lifting is characterized by several dis-

tinct properties. Specifically, lifting is non-causal, norm-
preserving, and invertible, i.e. L−1L = LL−1 = I [16],
[17]. The lifting technique retains the data-rich input by
packaging the vector of input as a set of equally sized
vectors. The signals are uplifted to a lower sampling rate,
often referred to as a common or mutual sampling period,
which transforms the system from a multi-rate framework to
a single-rate schema.

Fig. 3 shows the proposed model transformation where
outputs from channel one, y1[k], and two, y2[k], are lifted
by Lmn2 and Lmn1 , respectively, and the input is lifted by
Ln1n2

. As a result of these operations, the initial multi-rate

system becomes a multiple-input, multiple-output (MIMO)
lifted system, which operates singularly at a longer period
of mn1n2T .

B. State-Space Equations for The Lifted Model

Consider the lifted system represented as P , which maps
u to yi (i ∈ {1, 2}). Let P1 and P2 be the lifted transfer
functions of the plant, P , corresponding to channel one and
two of the output sensors. Our objective here is to delineate
the representation as derived from both channel one and two.
Further elaboration will reveal that by combining the output
information from multiple sensors, an analytical solution for
the single-rate state space model can be acquired.

From Fig. 3, the representation for channel one is ex-
pressed as P1 = Ln2mSn1TPHmTL

−1
n1n2

. Building upon the
proposition presented in [17], we can derive the state-space
representation P1 as

P1(z) =
An1n2

mT An1n2−1
mT BmT · · · BmT

C D · · · 0
CAn1 CAn1−mBmT · · · 0

...
...

. . .
...

CA(n2m−1)n1 CAmn1n2−n1−mBmT · · · 0


(2)

Similarly, we can establish the state-space equations for
P2. It is noteworthy that while the matrices, A and B,
are identical for P1 and P2, the corresponding C and D
matrices differ in dimensions. This observation confirms the
understanding that varied sampling rates do not alter the state
count. We then have the state-spaces system representations
(for i = 1, 2):

Pi(z) =

[
AP BP

Ci Di

]
, (3)

By vertically concatenating the C matrices, we obtain

P (z) =

 AP BP

C1 D1

C2 D2

 . (4)

A detailed depiction is presented in Eq. (7). Given that
the resulting output is y = [y1

T y2
T ]T , the state space is

formulated as

x[k + 1] = Apx[k] +Bpu[k] (5)

y1(0)
y1(n1T )

...
y1((n2m− 1)n1T )

−
y2(0)

y2(n1T )
...

y2((n1m− 1)n2T )


=

C1

−
C2

x(k) +

D1

−
D2




u(0)
u(mT )

...
u((n, n2 − 1)mT )

 .

(6)
where the output y is rich in data by using both sensors,
containing n2m+ n1m measurements.



Fig. 3. Lifted Multirate System, where the input has a zero-order hold (mT ) and output samples at periods n1T and n2T under collaborative sensing.



Amn1n2

(∑mn1n2−1
i=mn1n2−m Ai

)
B

(∑mn1n2−m−1
i=mn1n2−2m Ai

)
B · · ·

(∑m−1
i=0 Ai

)
B

C D 0 · · · 0

CAn1 C
(∑n1−1

i=n1−m Ai
)
B D + C

(∑n1−m−1
i=0 Ai

)
B · · · 0

...
...

...
...

CA(n2m−1)n1 C
(∑mn2−n1−1

i=mn2−n1−m Ai
)
B C

(∑mn2−n1−m−1
i=mn2−n1−2m Ai

)
B · · · 0

C D 0 · · · 0

CAn2 C
(∑n2−1

i=n2−m Ai
)
B D + C

(∑n2−m−1
i=0 Ai

)
B · · · 0

...
...

...
...

CA(n1m−1)n2 C
(∑mn1−n2−1

i=mn1−n2−m Ai
)
B C

(∑mn1−n2−m−1
i=mn1−n2−2m Ai

)
B · · · 0



(7)

III. SUBSPACE SYSTEM IDENTIFICATION OF THE LIFTED
MODEL

The proposed system transformation employs MIMO sub-
space system identification, initiating with the estimation
of state vectors followed by the derivation of state-space
realization.

A. Estimation of State Vectors

The lifted state-space model transforms the system into a
MIMO system and is given by

x[k + 1] = Ax[k] +B u[k]
y[k] = C x[k] +Du[k]

(8)

Given the input sequence {u[0], u[1], . . . , u[N − 1]} and
output sequence {y[0], y[1], . . . , y[N−1]}, state order n, and
time horizon K (where K > n), we form the input and
output Hankel matrices as described in [18]:

U0|K−1 =


u[0] u[1] . . . u[N − 1]
u[1] u[2] . . . u[N ]

...
...

. . .
...

u[K − 1] u[K] . . . u[K +N − 2]

 , (9)

Y0|K−1 =


y[0] y[1] . . . y[N − 1]
y[1] y[2] . . . y[N ]

...
...

. . .
...

y[K − 1] y[K] . . . y[K +N − 2]

 . (10)

The dimensions of U0|K−1 and Y0|K−1 are Kn1n2N and
Km(n1+n2)N , respectively. The row dimension arises from
the interaction of the time horizon K with the number of
inputs and outputs. After the lifting procedure, the input gets
augmented by a factor of n1n2 and the output by m, with the
column length designed to encompass the given data points.

By recursively using Eq. (8), the input-output relationship
can be expressed as [19]


y[k]

y[k + 1]
...

y[k +K − 1]

 =


C
CA

...
CAK−1

x[k]

+


D 0 · · · 0
CB D · · · 0

...
. . . . . .

...
CAK−2B · · · CB D




u[k]
u[k + 1]

...
u[k +K − 1]

 (11)

Here, the Extended Observability Matrix is defined as
OK =

[
C CA · · · CAK−1

]T
.

Let ΨK denote the Toeplitz matrix

ΨK =


D
CB D

...
. . . . . .

CAK−2B · · · CB D

 . (12)

For notational convenience, we introduce the column
vectors

uK [k] =
[
u[k]T, u[k + 1]T, . . . , u[k +K − 1]T

]T ∈ RKn1n2 ,
(13)

yK [k] =
[
y[k]T, y[k + 1]T, . . . , y[k +K − 1]T

]T ∈ RKm.
(14)

The Hankel matrices, in terms of uK [k] and yK [k], are

U0|K−1 = [uK [0],uK [1], . . . ,uK [N − 1]] , (15)
Y0|K−1 = [yK [0],yK [1], . . . ,yK [N − 1]] . (16)

Then, we have[
U0|K−1

Y0|K−1

]
=

[
IKm 0Km×n

ΨK OK

] [
U0|K−1

X0

]
(17)



where the past states (or initial states) Xp = X0 =
[x[0], x[1], · · · , x[N − 1]] ∈ Rn×N .

The future input and output are defined as

Uf = UK|2K−1

=
[
uK [K] uK [K + 1] · · · uK [N +K − 1]

]
,

Yf = YK|2K−1

=
[
yK [K] yK [K + 1] · · · yK [N +K − 1]

]
.

(18)
By repeatedly using Eq. (8) similar to Eq. (17), we also

have
YK|2K−1 = OKXK +ΨKUK|2K−1 (19)

where the future state, Xf = XK = [x[K], x[K +
1], · · · , x[K +N − 1]] ∈ Rn×N , defines the past and future
output and input information matrices

Wp ≜

[
Up

Yp

]
=

[
U0|K−1

Y0|K−1

]
,

Wf ≜

[
Uf

Yf

]
=

[
UK|2K−1

YK|2K−1

]
.

Following the methodology presented in [18], [20], [21],
the state matrix, Xf , serves as a memory for exchanging
between past and future information. It is a basis for the in-
tersection of past and future subspaces and can be computed
using the SVD technique as outlined below, due to the fact
that SVD does not produce a single, unique solution. The
following formulation is one of the possible implementations.

The projection of Yf onto Wp along Uf is

ξ = Ê∥Uf
{Yf | Wp} , (20)

and the SVD of ξ is

ξ =
[
U1 U2

] [ Σ1 0
0 0

] [
V T
1

V T
2

]
= U1Σ1V

T
1 (21)

Then we have

ξ = OKXf ∈ RKp×N

OK = U1Σ
1/2
1 T ∈ RKp×n, |T | ̸= 0

Xf = T−1Σ
1/2
1 V T

1 ∈ Rn×N .

where n = dimΣ1 and T ∈ Rn×n is an arbitrary nonsingular
matrix.

B. Derivation of Linear State-Space Equation

In the preceding section, we acquired the state estimation,
XK . We introduce the subsequent matrices, each with N−1
columns, as defined below:

X̄K+1 ≜
[
x[K + 1] · · · x[K +N − 1]

]
X̄K ≜

[
x[K] · · · x[K +N − 2]

]
ŪK|K ≜

[
u[K] · · · u[K +N − 2]

]
ȲK|K ≜

[
y[K] · · · y[K +N − 2]

]
.

(22)

The state-space model can then be derived using least
squares in the subspace identification method while imposing
the causality condition of D [17].[

Â B̂

Ĉ D̂

]
=

([
X̄K+1

ȲK|K

] [
X̄K

ŪK|K

]T)

·
([

X̄K

ŪK|K

] [
X̄K

ŪK|K

]T)−1

.

(23)

The state-space realization derived from the Hankel ma-
trix [22] may also be applied in this context, where the
parameters (A,B,C,D) are determined through the exami-
nation of the extended observability and controllability ma-
trices. This alternative approach potentially offers enhanced
robustness in the model’s formulation.

IV. DERIVATION OF THE FAST SINGLE-RATE MODEL

In this section, we formulate the fast single-rate model us-
ing the lifted mixed-rate model. Given the lifted state space,
(A,B,C,D), the initial step discretizes the lifted state space
with a period of mT , denoted as (AmT , BmT , C,D). Sub-
sequently, we aim to recover the state space (A,B,C,D).

From the given data, the matrices B and C is expressed
as

B =
[
B1 B2 · · · Bn

]
,

C =
[
CT

1 CT
2 · · · CT

m

]T
.

(24)

It is evident that BmT = Bn =
∑m−1

i=0 AiB, C = C1,
and D = 0, the latter meeting the causality condition [17].

Assuming that the matrix A is diagonalizable, a premise
for subspace system identification algorithm as elaborated in
subsequent sections of [17] show that

P−1AP = diag
(
λ1, λ2, · · · , λp

)
,

wherein the columns of P embody the eigenvectors, and the
elements λ1, λ2, · · · , λp represent the corresponding eigen-
values of A. Assuming A = Amn1n2 implies that A and A
possess identical eigenvectors. If ρi = αi + jβi identifies as
a pole of the system G, then the following relationship is
established:

λi = emn1n2Tsρi = emn1n2Tsαiejmn1n2βi .

The eigenvalues of A, denoted as λi for i = 0, 1, . . . , p−1,
facilitate the computation of matrix A. Application of P−1

to the final two columns of B, specifically Bn−1 and Bn−2,
yields two vector columns

P−1Bn−1 =


a0
a1
...

ap−1

 , P−1Bn−2 =


b0
b1
...

bp−1

 .

Given Bn−2 = AmTBn−1, the eigenvalues λi are ascer-
tainable from the component ratios in the vectors as

λi =
bi
ai
, for i = 0, 1, . . . , p− 1.

Then the reconstruction of the matrix A is

A = P diag {λ0, λ1, . . . , λp−1}P−1



Fig. 4. Graphical representation of the pole-zero configuration within
the complex plane. Poles (shaded gray region) were positioned away from
the origin for rapid transient demonstration, with system identification
prioritizing steady-state responses. The remaining six poles’ real parts range
from -20 to -50, with imaginary parts from -25 to 25. Zeros’ (red line) real
parts are randomly set between -30 to 30.

V. NUMERICAL ILLUSTRATION

We illustrate the underlying principles of the multirate sys-
tem with an 8th order plant. More specifically, we arbitrarily
generated four zeros and six poles, along with the placement
of a pair complex-conjugate poles within the specified gray
area in Fig. 4.

The plant under such consideration can be mathematically
represented as:

G(s) =

∑4
i=0 ais

4−i∑8
i=0 bis

8−i
(25)

Despite its random generation, the system is bounded-input,
bounded-output (BIBO) stable for proper system identifica-
tion with the designed region of stable poles1.

The computational simulation was executed using MAT-
LAB Simulink operating at a frequency of Fs = 1024 Hz.
The chosen input mechanism was a zero-order hold, which
was maintained for a control duration equivalent to 2T . In
this setup, two distinct sensors were integrated, characterized
by unique coprime frequencies. Specifically, the two sensors
operated at a frequency 3× and 5× slower than the system
sampling period, respectively. This is denoted as m = 2,
n1 = 3, and n2 = 5. The Nyquist sampling frequency is
Fs/(2n1) for the first sensor and Fs/(2n2) for the second
sensor.

Fig. 6 illustrates a comparative analysis of the frequency
responses between the actual system and the inferred system
models. It’s imperative to highlight the observed congruence
between the estimated system’s frequency response and that
of the genuine system. This congruence signifies the efficacy
of the estimation technique, emphasizing its proficiency in
accurately delineating the inherent dynamics and attributes
of the real system. Fig. 5 shows the limitation of a singular
sensor in capturing peaks surpassing its Nyquist sampling
frequency. However, our novel collaborative sensing method-
ology ensures that system dynamics are effectively approx-

1For unstable plants, closed-loop system identification can be performed
after stabilizing the plants.

Fig. 5. In this setup, a single sensor is insufficient for accurately capturing
the system dynamics, highlighting the need for cooperative sensing

Fig. 6. Efficiency of a Dual-Sensor System: This illustration showcases
the system’s stable output achieved by the operation of two sensors
with coprime sampling periods, guaranteeing a robust capture of system
dynamics

imated beyond each individual sensor’s Nyquist sampling
frequency. Such an observation emphasizes the value and
efficacy of integrating multiple sensors for enhanced system
identification performance as opposed to relying on a singu-
lar sensor.

In addition to the preceding analysis, the algorithm’s
performance was evaluated on an 8th order non-minimum
phase (NMP) system as shown in Figs. 7 and 8. This system
exhibits two zeros in the right half-plane and two in the left
half-plane. The analysis highlights the single-sensor’s inad-
equacy in accurately representing the dynamics of a NMP
system, with its inability to capture the system’s dynamic
behavior effectively. In contrast, a dual-sensor configuration
substantially improves the precision and dependability of
dynamic system capture, providing a robust and thorough
insight into the NMP system’s behavior. Experimental and
analytical evidence confirms the two-sensor system’s im-
proved capabilities in identifying the complexities of NMP



Fig. 7. In the context of a non-minimum phase system setup, a single
sensor proves inadequate for capturing the complete system dynamics
accurately.

Fig. 8. Contrastingly, a Dual Sensor System adeptly encapsulates
the intricate dynamics of the non-minimum phase system, ensuring a
precise capture of system behavior.

systems.

VI. CONCLUSION AND FUTURE WORK

This research proposes a pioneering methodology to model
multirate sampled-data systems using lifted state-space rep-
resentation. By leveraging non-uniform data derived from
the coprime collaborative sensing mechanism, our frame-
work can identify system dynamics beyond the Nyquist
frequency of the single-rate sensor. Our method’s empirical
validation across minimum phase and NMP systems shows
its robustness and broad applicability. Advancing further, it
is imperative to incorporate filtering techniques to enhance
intersample estimates and facilitate recursive system identi-
fication. There is promising work in utilizing features from
Hankel matrices to develop data-driven control strategies,
which circumvent the need for an explicit realization process
and instead directly utilize the state vector for implementing
closed-loop control [23] [24].
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