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Abstract— Loop shaping based on the disturbance observer
(DOB) offers great flexibility in designing a control system’s
closed-loop sensitivity to external disturbances and noises.
While it is well understood how to design feedback control
to reject band-limited disturbances with little trade-off when a
closed-loop system has a single sampling control rate, challenges
arise when disturbances appear beyond the Nyquist frequency
and when the speed of the feedback sensor cannot be conve-
niently increased due to hardware and/or process constraints.
Such is the case in hard disk drives and emerging vision-
based motion control. In this paper, we propose an optimal
multirate forward model disturbance observer (MFMDOB) for
intuitive, flexible, and exact rejection of band-limited distur-
bances beyond the Nyquist frequency. Based on the tools from
Youla-Kucera parameterization, the internal model principle,
multirate analysis, and convex optimization, we translate the
design objective into a set of model-based convex optimization
and multirate prediction problems, enabling optimal local-loop
shaping (LLS). We provide different optimal design formula-
tions with finite and infinite impulse response filters. Verification
of the MFMDOB is conducted on a galvo scanning process
model in selective laser sintering for additive manufacturing.

I. INTRODUCTION

An essential task in precision motion control is to shape
the feedback loop locally to reject band-limited disturbances.
This practice, known as local-loop shaping (LLS), is funda-
mental for ensuring nanometer precision in applications like
hard disk drives (HDDs) and semiconductor manufacturing
[1], [2]. LLS primarily involves creating notch shapes in
the closed-loop error-rejection function, a process that must
adhere to the inherent constraints of feedback control design.
In particular, the disturbance observer (DOB) employs model
inversion for intuitive LLS and has proven effective in
precision information storage and manufacturing [3], [4].
The concept also extends to systems with unstable inverses,
leading to the development of the forward model selective
disturbance observer (FMSDOB) that avoids explicit model
inversion [5].

When the feedback sampling rate lags behind the core
system dynamics, traditional LLS encounters inherent band-
width constraints. For example, in visual servoing where
the sensor’s data-intensive nature limits its sampling rate,
robot manipulators are susceptible to latency and bandwidth
restrictions [6]. Similarly, when processes like selective laser
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Fig. 1. Block diagram of the proposed MFMDOB. The sampling times are
indicated by the dashed (slower, LTs) and the dotted (faster, Ts) lines. The
continuous-time signals are indexed by (·), and discrete-time signals by [·]
(e.g. r(t) is a continuous-time signal, and r[n] is a discrete-time signal).

sintering (SLS) adopt visual feedback (e.g. infrared vision),
the sensor operates at a significantly slower rate compared to
the speed of the material processing [7]. In these scenarios,
disturbances occurring beyond the Nyquist frequency of
the slow feedback sensor are not fully observable due to
downsampling and aliasing.

To overcome the limitations posed by slow feedback
sensors, this paper proposes an optimal multirate forward
model disturbance observer (MFMDOB) which is capable
of reconstructing structured disturbances that occur beyond
the Nyquist frequency. We leverage the internal model prin-
ciple and Youla-Kucera all-stabilizing control to assure high-
performance disturbance rejection while assuring closed-loop
stability beyond the Nyquist frequency. To cope with the
aliasing effect, optimality is then introduced to ensure distur-
bance rejection at the target frequencies while simultaneously
minimizing error amplification across other frequencies, both
below and above the Nyquist frequency. Our approach incor-
porates various design options using both finite and infinite
impulse response filters. The coefficients for these filters
were obtained by forming a set of convex optimization prob-
lems involving second-order conic programming (SOCP) and
semi-definite programming (SDP).

II. CONTROL DESIGN

A. Problem Formulation

Fig. 1 shows the block diagram of the proposed MFM-
DOB. We focus on the case where the system is single-
input single-output (SISO). The proposed MFMDOB uses
the principles from internal model control, where the forward
model is leveraged and the inverse dynamics of the plant



is then parameterized through a performance-enhancement
filter Q(z). When all signals have the same sampling rate,
the inner-loop structure is in fact a form of Youla-Kucera
all-stabilizing control [8]. Here, P (s) and P (z) are the
continuous- and fast-sampled discrete-time plant models.
y(t) is the immediate continuous-time plant output, and
yd[n] is the actual measurable slow sampled output. A
discrete-time estimate of the disturbance dp(t) is formed in
dd[n], which is upsampled and refined in the mulirate model
predictor (MMP) and Q(z). As a result of this sequence of
filtering, the output of Q(z) serves to counteract the effect of
the disturbance dp(t) at a rate beyond the Nyquist frequency
of the original output sampler LTs. In this implementation,
the control structure does not require model inversion and
applies to stable minimum- or non-minimum phase (NMP)
plants.

Other than the aforementioned notations and signal flows,
yd[n] is upsampled from the slow sampling time, LTs, in
the baseline control, to the fast sampling time, Ts, by a
factor of L to match the controller input sampling time.
The upsampled signal passes through an interpolator, IL(z),
with a zero order hold (ZOH) operating at the speed of
Ts. rL[n] is the reference input. uc,L[n] and uL[n] are
the baseline control output and the final plant input. Also,
ŷd[n] is the estimated disturbance-free output sampled at
the same speed as yd[n]; ds[n] is the sensor noise; dd[n]
and dL[n] are the estimated disturbances sampled at LTs

and Ts, respectively. ↑ L and ↓ L are upsampling and
downsampling operations, respectively.

A structured disturbance can be modeled as the output of
a system excited by an impulse signal δ[n] [9]. For instance,
a constant d[k] = d is the impulse response of the scaled in-
tegrator d/(1−z−1); sin(ω0k) is the impulse response of the
filter (z−1 sinω0)/(1− 2z−1 cosω0 + z−2). More generally,
we model the disturbance as d[k] = Bd(z

−1)/Ad(z
−1)δ[k]

in the z-domain [7], [10], where z−i for i > 0 denotes
the backward shift operator [11]. When we rewrite such a
relationship as Ad(z

−1)dL[n] = Bd(z
−1)δ[n], the right-hand

side is a linear combination of delayed and scaled impulses
that converge to zero, which implies that Ad(z

−1)dL[n] →
0. Perfect multirate disturbance rejection is then feasible
by constructing a set of Diophantine equations that are
analytically solvable to recover the structured disturbance at
integer fractions of the slow sensor sampling rate [12].

For completeness, we review the key results in the dis-
turbance reconstruction, and then in the next subsection,
we focus on the key results of convex-optimization based
LLS. We focus on the band-limited disturbance dp(t) =
η(t)+

∑m
i=1 λd,i sin(2πfd,it+ϕd,i), where λd,i and ϕd,i are

an unknown amplitude and phase shift of the narrow-band
disturbance component, and η(t) characterizes other broad-
band noises. The disturbance frequency, fd,i (Hz), can be
acquired through spectrum analysis and system identification
and is assumed to be known or can be adaptively estimated
[13], [14]. When m narrow-band disturbances are sampled
at a sampling time of Ts, the disturbance-model polynomial

Ad(z
−1) is

Ad(z
−1) =

m∏
i=1

(
1− 2 cos(2πfd,iTs)z

−1 + z−2
)

= 1 + a1z
−1 + . . .+ a2mz−2m

(1)

We design the fast-sampling to divide the slow-sampling
time, such that dd[n] = dp(nTsL) and dd[n] = dL[nL].
There are L−1 intersample points between dd[n] and dd[n+
1] required to rebuild the lost signal. Let k ∈ {1, . . . , L−1}
be the kth intersample point between dL[nL] and dL[(n +
1)L]. We construct the Diophantine equation

Fk(z
−1)Ad(z

−1) + z−kWk(z
−L) = 1 (2)

with

Fk(z
−1) = 1 + fk,1z

−1 + . . .+ fk,2m(L−1)z
−2m(L−1) (3)

Wk(z
−L) = wk,0 + wk,1z

−L + . . .+ wk,nw
z−(nw)L (4)

where nw ≥ 2m − 1. The minimum-order solution (nw =
2m− 1) to Eq. (2) is solved by matching the coefficients of
Eqs. (3) and (4) with respect to z−i, which is expressed as
the linear matrix equation

Mk



fk,1
...

fk,2m(L−1)

wk,0

...
wk,nw


=



−a1
−a2

...
−a2m
0
...
0


(5)

where Mk ∈ R2mL×2mL is defined as

Mk =
[
M̃k | ek ek+L · · · ek+(2m−1)L

]
(6)

and ei is a column vector of zeros except for the ith row,
which is one. M̃k is defined as

M̃k =



1 · · · 0
...

. . .
...

a2m
. . . 1

...
. . .

...
0 · · · a2m


2mL×2m(L−1)

(7)

Multiplying Eq. (2) by dL[n] and applying the internal
signal model of Ad(z

−1)dL[n] → 0, we have, at steady state

dL[n] = Wk(z
−L)dL[n− k] (8)

Substituting Eq. (4) into Eq. (8) and letting n = nL+k yield
dL[nL+k] =

∑2m−1
i=0 wk,idL[(n−i)L], or equivalently, after

using the notation in the multirate block diagram,

dL[nL+ k] =

nw∑
i=0

wk,idd[n− i] (9)

Thus, the disturbance signal is reconstructed at the fast
sampling frequency. 1/Ts.



Fig. 2. Forward model DOB loop.

Fig. 3. A set of discrete frequencies with one disturbance frequency where
0 < ω1 < ω2 < . . . < ω15×r ≤ π (rad).

B. Convex-Optimization Based Optimal Local-Loop Shaping

We now discuss the main optimal LLS design. In this
subsection, let us assume that the feedback sampling time
in Fig. 1 is fast (L = 1). As P (z) is the ZOH equivalent
of P (s) sampled at Ts, the output satisfies yL[n] = y(nTs).
When no modeling error exists, ŷL[n] is disturbance free. We
then have dp,L[n] = yL[n]− ŷL[n]. Fig. 2 shows the output
of the system in the z-domain, where the transfer function
from the plant disturbance to the output is

YL

Dp,L
(z) = 1− P (z)Q(z) (10)

For effective disturbance rejection while permitting non-
disturbance signals to pass, the ideal conditions for Eq. (10)
are

1− P (ejωd,i)Q(ejωd,i) = 0 (11)

P (ejωi)Q(ejωi) = 0 (12)

where ωd,i (rad) denotes the ith disturbance frequency, and
ωi (rad) belongs to the set of uniformly distributed non-
disturbance frequencies. The constraints of the parameterized
finite impulse response (FIR) filter in continuous-time is
accurately approximated in the discrete-time as a set of
15× r uniformly spaced discrete frequencies spanning from
0 to π rad, where r is the filter order [15]. To avoid
infeasibility between the band-stop (BS) and band-pass (BP)
constraints of Eqs. (11) and (12), respectively, the closest
non-disturbance frequencies below and above each distur-
bance frequency is spaced such that ωi = ωd − π/(2 × r)
and ωi+1 = ωd+π/(2× r). Fig. 3 illustrates an example set
of discrete frequencies.

1) Convex Optimization of Q(z) using Second-Order
Conic Programming: In this subsection, we formulate Eq.
(12) into a quadratic constraint for SOCP that is solved using
the interior point method [16]. Let the plant and filter design
of be described as

P (z) =
bmp

zmp + . . .+ b1z + b0

znp + anp−1znp−1 + . . .+ a1z + a0
(13)

Q(z) = q0 + q1z
−1 + · · ·+ qrz

−r (14)

where np > mp ≥ 0 and {q0 . . . qr} are the FIR filter
coefficients. The equalities of Eqs. (11) and (12) are linear
for every ωd,i and ωi. More specifically, let us express Eq.
(14) as a dot product

Q(z) = qTϕ(z) (15)

where q =
[
q0 q1 · · · qr

]T
and ϕ(z) =[

1 z−1 · · · z−r
]T

. Substituting z = ejωi , Eq. (15)
is divided into real and imaginary components such that

Q(ejωi) = qTϕr(e
jωi)− jqTϕi(e

jωi) (16)

where ϕr(e
jωi) =

[
1 cos(ωi) · · · cos(rωi)

]T
and

ϕi(e
jωi) =

[
0 sin(ωi) · · · sin(rωi)

]T
. Let the

plant at z = ejωi be divided into real and imaginary
components, where P = Pr+jPi (the term, ejωi , is omitted
here and forward for brevity). Substituting Eq. (16) into Eq.
(11) yields

qT (Prϕr − Piϕi)− jqT (Piϕr + Prϕi) q = 1 (17)

Eq. (17) is a linear equality with respect to q and therefore
convex; thus, Eq. (11) is convex.

Eq. (12) is not practical, so the constraint is relaxed to an
upper bound where |P (ejωi)Q(ejωi)| ≤ β(ωi). Taking the
square yields

qT
[
ϕr(P

2
r + P 2

i )ϕ
T
r + ϕi(P

2
r + P 2

i )ϕ
T
i

]
q ≤ ρ(ωi) (18)

Thus, Eq. (18) is a quadratic inequality; the number of
inequalities, denoted as nm, is dependent on the set of
discrete non-disturbance frequency range to be minimized.

Integrating both the BS and BP signal criteria, the pro-
posed SOCP for optimal LLS is

minρ
nm∑
i=1

ρ(ωi)

subject to 1− P (ejωd,i)Q(ejωd,i) = 0 ∀i = 1, . . . ,m

qT [ϕr(P
2
r + P 2

i )ϕ
T
r . . .

+ ϕi(P
2
r + P 2

i )ϕ
T
i ]q ≤ ρ(ωi) ∀i = 1, . . . , nm

(19)

This formulation has several advantages. First, the relaxed
constraint from Eq. (18) allows solvers to automatically
determine a feasible solution. Second, the minimum bound
ρ(ωi) is automatically solved from optimization, and the
designer possesses the discretion to select the frequency
range for minimization.

2) Finite Impulse Response Filter Formulation using
Semi-Definite Programming: We have applied SOCP for
solving a feasible bound for the BP constraint in Eq. (18).
However, the SOCP does not directly minimize amplifica-
tions in Eq. (10) rooted in the celebrated Bode’s Integral The-
orem. To address this, we formulate the objective function to
minimize the H∞ norm (maximum magnitude response) of
Eq. (10), using a special form of the discrete-time Bounded-
Real lemma.
Discrete-Time Bounded-Real Lemma. Let G(z) denote a
discrete-time system that is LTI with a minimal state-space



realization. The inequality ∥G(z)∥∞ ≤ γ is satisfied if G(z)
is bounded-input, bounded-output (BIBO) stable [17], and
there exists a positive semi-definite matrix M such that the
following matrix inequality holds [18], [19]

M MAd MBd 0
AT

d M M 0 CT
d

BT
d M 0 γI DT

d

0 Cd Dd γI

 ⪯ 0 (20)

In the proposed solution, we transform G(z) from Eq. (10)
into its controllable canonical form (CCF), which stores the
coefficients of Q(z), q (in vector form), in matrices Cd and
Dd. As a result, the matrix inequality in Eq. (20) becomes
linear in terms of both q and M , preserving convexity. Other
state-space representations of the Bounded-Real Lemma (see,
e.g., [20]) can be used, but linearity with respect to q and
M must be preserved in the matrix inequality.

Given the discrete-time system represented by Eq. (13),
the state-space representation in the CCF is

xP [n+ 1] = APxP [n] +BPu[n] (21)
yP [n] = CPxP [n] +DPu[n] (22)

with

AP =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0 −a1 · · · −anP−1

 BP =


0
...
0
1


CP =

[
b0 · · · bmp 01x(np−mp−1)

]
DP = [0]

(23)
Note that the input for Q(z) is the output of P (z). The state-
space representation of Eq. (14) in CCF is

xQ[n+ 1] = AQxQ[n] +BQyP [n] (24)
yQ[n] = CQxQ[n] +DQyP [n] (25)

with

AQ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 BQ =


0
...
0
1


CQ =

[
qr qr−1 · · · q1

]
DQ = [q0]

(26)

Let the state variable be x̃[n] =
[
xT
P [n] xT

Q[n]
]T

. The
state-space representation of Eq. (10) is

x̃[n+ 1] = Ãx̃[n] + B̃u[n] (27)

ỹ[n] = C̃ñ[n] + D̃u[n] (28)

with

Ã =

[
AP 0np×r

BQCP AQ

]
B̃ =

[
BP

BQDP

]
C̃ = −

[
DQCP CQ

]
D̃ = [1−DQDP ]

(29)

Fig. 4. Bode plot of Eq. (10) using SOCP of Eq. (19). The solid green
line, denoted as ”Low”, represents the minimization below the disturbance
frequency of 1716 Hz. The dashed red line, denoted as ”High”, represents
the minimization above 1716 Hz. The dotted blue line, denoted as ”Full”,
represents the minimization spanning the entire frequency range.

Fig. 5. Bode plots of P (z)Q(z) (top) and Eq. (10) (bottom). The Nyquist
frequency is 1320 Hz, and the disturbance frequency is 1716 Hz.

Applying Eq. (20) to the state-space from Eq. (29), we
have the minimization problem for the SDP-FIR filter

minγ,M γ

subject to 1− P (ejωd,i)Q(ejωd,i) = 0 ∀i = 1, . . . ,m
M MÃ MB̃ 0

ÃTM M 0 C̃T

B̃TM 0 γI D̃T

0 C̃ D̃ γI

 ⪯ 0

M ⪰ 0, γ ≥ 0

qT [ϕr(P
2
r + P 2

i )ϕ
T
r + . . .

ϕi(P
2
r + P 2

i )ϕ
T
i ]q ≤ ρ(ωi) ∀i = 1, . . . , nm

(30)

3) Infinite Impulse Response Filter Formulation using
Semi-Deifnite Programming: In addition to the FIR filter
design, infinite impulse response (IIR) filters provide a
versatile design approach for LLS. We provide an optimal
IIR notch filter design to match the performance of the SDP-
FIR filter at a reduced filter order. Specifically, the proposed
IIR filter has the form

QIIR(z) = (1− V (z))K(z) (31)



Fig. 6. Measured slow output (sampled at Ts) of the system without the
DOB, baseline BP FMSDOB, FIR filters, and IIR filter.

with

V (z) =
m∏
i=1

1− 2z−1 cosωd,i + z−2

1− 2αiz−1 cosωd,i + α2
i z

−2
(32)

K(z) = k0 + k1z
−1 + · · ·+ krz

−r (33)

where αi ∈ (0, 1) controls the notch size. As α approaches
zero, the disturbance rejection notch width expands. The
minimization for the IIR filter is similar to the SDP-FIR filter.
Let P = Np(z)/Dp(z) and V = Nv(z)/Dv(z). Substituting
Eq. (31) into Eq. (10) yields

1− P (z)QIIR(z) = 1 +H(z)K(z) (34)

with

H(z) =
Np(z)Nv(z)−Np(z)Dv(z)

Dp(z)Dv(z)
(35)

The state-space formulations of H(z) and K(z) are simi-
lar to Eqs. (23) and (26) and are omitted for brevity. Let the
state variable for Eq. (34) be x̄[n] =

[
xT
H [n] xT

K [n]
]T

,
where xH [n] and xK [n] are the state variables for H(z) and
K(z) respectively. The state-space representation of Eq. (34)
in CCF is

x̄[n+ 1] = Āx̄[n] + B̄u[n]

ȳ[n] = C̄x̄[n] + D̄u[n]
(36)

with

Ā =

[
AH 0nh×r

BKCH AK

]
B̄ =

[
BH

BKDH

]
C̄ =

[
DKCH CK

]
DP = [1 +DKDH ]

(37)

The minimization problem for the SDP-IIR filter is iden-
tical to Eq. (30).

III. NUMERICAL VERIFICATION

Simulation was conducted with MATLAB Simulink using
the block diagram in Fig. 1. Consider the following plant
from laser beam steering in selective laser sintering in
additive manufacturing [5] and a discrete-time PID controller

Fig. 7. Spectra of the measured output with various DOB designs. The slow
feedback sensor aliases the disturbance frequency at 1716 Hz and appears
at 984 Hz.

Fig. 8. Comparison of the optimal value of the SDP-FIR and SDP-IIR
filters at various filter orders.

with a sampling time of Ts = 1/5280 second

P (s) =
3.74488× 109

s2 + 565.5s+ 3.197752× 105

C(z) =
1

200

[
0.125 +

0.05

z − 1
+

0.6(z − 1)

z

]
We focused on the slow sensor with half the sampling rate

of the input (L = 2, fss = 2/Ts = 2640 Hz with the Nyquist
frequency at 1320 Hz). The filter order was r = 30, and the
disturbance frequency was 1.3× fss/2 = 1716 Hz. The fast-
rate disturbance signal was reconstructed using Eqs. (1) - (9).
The disturbance amplitude was λ = 2 with a random phase
shift ϕ ∈ [0, π]. White Gaussian noise was introduced as
the plant disturbance, dp(t), and sensor noise, ds[n], at unity
power. The SOCP and SDP from Eqs. (19) and (30) were
used to design Q(z). The BP FMSDOB from [5] was used
as the baseline DOB for comparison.

Fig. 4 shows the Bode plot of Eq. (10) using the SOCP
FIR filter with various frequency ranges constrained in Eq.
(19). In all solutions, there were large disturbance rejection
at 1716 Hz, and the magnitudes of the ”Low” and ”High”
lines were lowest below and above 1716 Hz, respectively.
Notably, the magnitude of the ”Full” line lies between the
”Low” and ”High” lines. Fig. 5 shows the bode plots of
P (z)Q(z) and Eq. (10), where the SOCP-FIR, SDP-FIR,
and SDP-IIR filters outperformed the BP FMSDOB filter
with low gains across the non-disturbance frequencies due
to SDP and SOCP objective functions minimizing Eqs. (10)
and (18), respectively.

The simulation output in Fig. 6 and the Fast Fourier Trans-
form (FFT) of the output in Fig. 7 show that the optimally
solved MFMDOBs minimized low frequency amplification



Fig. 9. Bode plot of (10) using the IIR filter at various α’s.

Fig. 10. Bode plot of (10) on a randomly generated 16th order system
with a NMP zero.

compared to the BP FMSDOB. As the actual disturbance at
1716 Hz was beyond the Nyquist sampling frequency, the
dual peaks observed at 984 Hz and 1716 Hz are symmetric
about 1320 Hz, which indicates aliasing.

Fig. 8 shows the solved optimal value, γ, at various
filter orders, indicating the maximum upper bound of ∥1 −
P (z)Q(z)∥∞. The lowest feasible filter order using SDP was
six, and the IIR filter had a better optimum than the FIR filter
up to a filter order of 30. There were diminishing returns
increasing the filter order beyond 30. Fig. 9 shows the added
benefit of adjusting the BS notch size for the IIR filter.

The robustness of the proposed algorithm was tested on
randomly generated stable discrete-time plants with NMP
zeros; the poles of the plant could have an integrator, repeated
poles, and complex conjugate poles within the unit circle.
The proposed algorithm found feasible solutions up to a
plant order of np = 16. Table I shows the attenuation of the
disturbance frequency and optimum values of the randomized
discrete-time plants with NMP zeros. Fig. 10 shows an
example of the Bode plot of the 16th order plant with a NMP
zero, where the proposed filters have less amplification below
the disturbance frequency compared to the BP FMSDOB.

IV. CONCLUSION

We proposed an optimally designed MFMDOB to attenu-
ate structured disturbances beyond the Nyquist frequency of
a feedback sensor. We presented the signal reconstruction
process and posed the design prerequisites of the DOB
into convex constraints for SOCP and SDP. Simulations
were conducted to validate the efficacy of the MFMDOB
employing SOCP-FIR, SDP-FIR, and SDP-IIR filters. The
advantages of each optimally derived filter were discussed.
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