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A B S T R A C T   

This research presents a sophisticated framework for the precise downscaling of population data from census 
blocks to individual residential units, employing an integration of housing unit characteristics. The aim was to 
devise and substantiate a thorough methodology for the distribution of households within specific residential 
buildings. Utilizing the Microsoft Building Footprint dataset, LiDAR remote sensing, and Point of Interest (POI) 
data, a detailed inventory of residential structures was compiled. A quadratic programming model and Monte 
Carlo Simulation techniques were applied independently for the strategic allocation of households to these 
buildings. For validation, this study conducted a comparative analysis between the two methods. The outcomes 
revealed that the quadratic programming model provided superior precision and detail in population data 
compared to the Monte Carlo Simulation technique. Consequently, the quadratic programming model signifi
cantly enhances the granularity of population distribution data, offering a valuable tool for more informed de
cision-making.   

1. Introduction 

The spatial distribution of populations is a critical area of study 
across various academic fields, such as demography, economics, and 
environmental science. These disciplines require detailed population 
data at a high resolution, including at the building level, to effectively 
conduct their research (Bakillah et al., 2014; Liu et al., 2008; Niu et al., 
2017; Wan et al., 2022). Additionally, the accelerating dynamics of 
climate change and urbanization underscore the importance of exam
ining vulnerability and sustainability at the building scale within urban 
design and landscape sustainability science (Elmer & Fraker, 2011; Rode 
et al., 2018; Ye et al., 2023). Understanding the demographic and so
cioeconomic characteristics at the building level is vital for gaining in
sights into residential behavior patterns and routines. These insights are 
instrumental in shaping strategies related to human mobility, public 
health, climate change adaptation, urban planning, and disaster miti
gation (Watthanasutthi, 2016; Yao et al., 2017). 

The disaggregation of census data raises significant privacy concerns 
due to the potential for demographic and socioeconomic information to 
inadvertently reveal individual identities, rendering such detailed data 
unavailable at the building level (Ural et al., 2011). In the absence of 
comprehensive datasets, alternative sources such as micro samples or 
Public Use Microdata Samples (PUMS) and marginal statistics provide 
key socio-demographic attributes. However, existing methodologies 
often lack spatial precision, resulting in broadly generalized regional 
data. To achieve a more spatially precise population allocation, it is 
essential to expand the synthetic population representation to include 
detailed aspects of the built environment, such as housing units, build
ings, and other establishments. The integration of precise spatial data 
can significantly enhance the accuracy and applicability of these ana
lyses, thereby informing more effective urban planning and trans
portation strategies. 

This paper introduces a novel framework for the downscaling of 
population data from the census block level to the individual building 
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level. It utilizes open-source data to compile a comprehensive inventory 
of housing units. Additionally, the Microsoft Building Footprint dataset, 
LiDAR remote sensing data, and Point of Interest (POI) data are metic
ulously combined using dasymetric mapping techniques to create a 
detailed building inventory. A quadratic programming model is subse
quently developed for the precise allocation of individual housing units 
to specific residential buildings. The methodology’s effectiveness is 
demonstrated through its application in Galveston Island, TX. Validation 
is achieved through a comparative analysis with Monte Carlo Simula
tion, which highlights the method’s enhanced accuracy and detail. The 
key contributions of this study include:  

• Developing a method for fine-grained population downscaling from 
the census block level to the building level.  

• Employing the Microsoft Building Footprint dataset, LiDAR remote 
sensing data, and POI data to generate comprehensive building 
inventories.  

• Implementing a Mathematical Formulation approach to optimize the 
allocation of households to individual buildings using a static 
Quadratic Programming model. 

The paper is organized as follows: The next section provides a review 
of relevant literature, identifying key gaps and contributions. Section 3 
describes the process of compiling housing unit and building inventories 
for Galveston Island, TX. Section 4 introduces the quadratic program
ming model and the Monte Carlo Simulation methodology. Section 5 
presents the results and compares the two methods. Finally, Section 6 
concludes the paper with discussions and perspectives for future 
research directions. 

2. Relevant works 

2.1. Data utilization in population allocation 

Interpolation and dasymetric methods are developed for the refined 
disaggregation of census data into grid cells, incorporating a variety of 
ancillary data sources (Briggs et al., 2007; Gallego et al., 2011; Leyk 
et al., 2019; Li & Zhou, 2018). A primary technique in this realm is a real 
interpolation, essential for transposing socioeconomic data across varied 
spatial units (Wu et al., 2005). Among these techniques, the direct areal 
weighting method is fundamental, distributing population data from a 
source zone to target zones in proportion to each target zone’s area 
(Goodchild & Lam, 1980). However, this method is limited by its 
assumption of uniform population density within the source zone, which 
is rarely the case in real-world scenarios. Dasymetric mapping, by 
contrast, has emerged as a more effective approach for spatial down
scaling (Mennis, 2009; Li & Zhou, 2018). When specific population 
density data is not available, binary dasymetric mapping is often used. 
This method divides target areas into two distinct zones, each charac
terized by unique population features derived from additional datasets 
(Su et al., 2010). 

Satellite-based remote sensing products are commonly used as sup
plementary data sources. These include land use (Tan et al., 2018; 
Weber et al., 2018) and nighttime light imagery (Chen et al., 2019; Li & 
Zhou, 2018), along with Point of Interest (POI) data (Yang et al., 2019; 
Ye et al., 2019). These datasets act as weighting surfaces that help 
delineate the uneven distribution of populations. However, nighttime 
light data can be less effective for smaller areas due to its relatively 
lower spatial resolution (Stathakis & Baltas, 2018). In a novel approach, 
Huang, Wang, et al. (2021) successfully disaggregated population data 
from the census tract level to a 100-m grid within the CONUS region, 
utilizing the open-source Microsoft building footprint data. Launched in 
June 2018, the Microsoft building footprint dataset, with its 125 million 
building footprints, represents one of the most comprehensive collec
tions available. A significant limitation, however, is its lack of building 
height data, leading to potential inaccuracies in population estimates, 

particularly in urban areas with high-rise structures. 
Incorporating building height data can significantly enhance the 

accuracy of building volume calculations, thereby improving population 
estimations, especially in densely populated urban settings. Research by 
Stal et al. (2013) demonstrated the potential of extracting building 
heights using aerial photogrammetry techniques. In this study, we 
integrate LiDAR data, which provides building height information, with 
the Microsoft building footprints dataset and POI data. The inclusion of 
POI data is instrumental in differentiating residential from non- 
residential buildings. Ultimately, we apply dasymetric mapping tech
niques to effectively combine these diverse datasets for more precise 
population distribution analysis. 

2.2. Population allocation methods 

Iterative Proportional Fitting (IPF) has gained prominence in de
mographic research, particularly for its effectiveness in addressing 
complex population synthesis challenges. Initially conceptualized as a 
numerical method for analyzing contingency tables (Deming & Stephan, 
1940), IPF’s fundamental operation involves aligning a contingency 
table, derived from microdata, with marginal constraints obtained from 
more extensive aggregated census data (Beckman et al., 1996). 

Despite its widespread application due to its intuitive concept, IPF 
encounters several notable challenges. In response to these challenges, 
researchers have sought to refine the IPF process. A significant devel
opment is the Iterative Proportional Updating (IPU) algorithm intro
duced by Ye et al. (2009), designed to reconcile both household and 
individual-level data distributions. This algorithm has been imple
mented in PopGen, a leading-edge open-source synthetic population 
generator (Konduri et al., 2016). Moving towards probabilistic ap
proaches, some methods have deviated from traditional IPF techniques, 
creating more diverse agents that are not simply replicas of the micro
data sample (Saadi et al., 2016; Sun et al., 2018; Zhang et al., 2019). 
Innovative strategies, including the application of Markov Chains for 
probabilistic population synthesis and the use of data-driven inferential 
methods like Bayesian Networks, have also been explored (Sun & Erath, 
2015; Zhang et al., 2019). 

While these methods excel in synthesizing populations at larger 
geographic scales, achieving high spatial resolution requires more 
complex allocation strategies. Some approaches, like Rosenheim et al.’s 
(2021) method, rely on a randomized selection process, using Monte 
Carlo simulations to distribute socio-demographic data to individual 
housing units. Fereshtehnejad et al. (2021) extended this approach by 
predicting housing unit occupancy status and, when occupied, deter
mining household characteristics. Other research has aimed to reduce 
the randomness of these assignments. Harada and Murata (2017) 
developed a technique to project synthetic households onto geographic 
maps, utilizing critical geospatial data to allocate households according 
to building specifications. Chapuis et al. (2018) combined satellite im
agery and building geometry data to estimate population density at the 
micro-level, applying areal interpolation for allocation while controlling 
distribution. 

In conclusion, significant advancements have been made in the field 
of population synthesis, yet there remains a discernible gap in fully 
integrating spatial details and the built environment’s representation. 
To authentically capture the spatial dynamics of populations, a 
comprehensive and accurate integration of spatial information, 
including precise population allocation to buildings, is crucial. 

3. Study area and data 

3.1. Testing site and method overview 

Galveston Island, located about 50 miles south of Houston at the 
juncture of Galveston Bay, is inherently prone to natural disasters, 
particularly hurricanes, due to its strategic geographic location. This 
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susceptibility highlights the island’s importance as a critical site for 
urban research, as noted in Huang, Ye, et al. (2021). The urban design 
and architectural features of Galveston Island are representative of 
typical U.S. urban planning models, as discussed in Beasley (2006). This 
alignment makes the island an ideal case study for examining urban 
planning principles and understanding their wider implications. Insights 
derived from Galveston Island are of considerable value and can be 
applied to similar urban environments, thus contributing significantly to 
the field of urban planning research. 

This study introduces a sophisticated framework to enhance the 
resolution of population data, shifting from the traditional census block 
approach to a more detailed, building-focused analysis, incorporating 
relevant housing unit data (illustrated in Fig. 1). The methodology 
employs the Microsoft Building Footprint dataset, LiDAR remote sensing 
data, and Point of Interest (POI) datasets to create a comprehensive 
building inventory. The next phase combines housing unit and building 
data, using a two-pronged approach of Mathematical Formulation and 
Monte Carlo Simulation to assign households to specific buildings. The 
Mathematical Formulation, based on optimizing population allocation 
within household number constraints, results in a static Quadratic Pro
gramming model. Conversely, the Monte Carlo Simulation, guided by 
population density metrics, performs allocation through a probabilistic 
process. Together, this integrated approach significantly enhances the 
accuracy of population distribution datasets, making it a valuable tool 
for informed decision-making in various academic fields. 

3.2. Datasets 

This study endeavors to elucidate the intricate interrelationships 
between distinct social entities, notably households characterized by 
diverse attributes, and architectural structures, such as buildings. Cen
tral to this exploration is the compilation of both housing unit and 
building inventories. These inventories serve as instrumental conduits, 
enabling the transformation of aggregated household and housing unit 
data into discrete housing units. Each of these units is imbued with 
particular attributes, resonating with a specific housing unit typology. 
These attributes can then be seamlessly integrated with the overarching 
building inventory. 

3.2.1. Housing unit inventory 
This research draws upon the housing unit inventory methodology 

delineated by Rosenheim et al. (2021) to meticulously catalog the 
nuanced characteristics of residential edifices located on Galveston Is
land. The exhaustive dataset derived from this housing unit inventory 
offers intricate specifics pertaining to each individual housing unit, with 
representative examples presented in Table 1.where the huid functions 
as a distinct identifier, uniquely demarcating each housing unit. The 
blockid aligns with the 2010 Census Block ID and acts as the pivotal 
reference, facilitating the association of housing units with the corre
sponding buildings in the inventory. This association is not a direct one- 
to-one linkage but aligns each housing unit with potentially multiple 
buildings within the same block. Concurrently, numprec denotes the 
population tally associated with the specific huid. Expanding upon this, 
the housing unit inventory encapsulates a plethora of attributes, 
including but not limited to tenure status, racial categorization, vacancy 
typology, poverty indicators, and other salient characteristics.3.2.2 
Building Inventory 

A nuanced comprehension of both the volume and spatial dispersion 
of architectural structures is intrinsically linked to the availability and 
accuracy of rooftop data. In this context, the Microsoft Building 

Footprint dataset stands out as an indispensable asset, proffering 
meticulous building contours that encapsulate both positional and 
morphological facets of building rooftops. These facets are instrumental 
in charting the spatial orientation and unique attributes of buildings 
(Heris et al., 2020). The Microsoft Building Footprint dataset used in this 
research is a public dataset released by Microsoft.1 It is generated 
through a DNN model based on Bing Imagery (with an average shooting 
year of 2012) and has extracted polygons for 10,678,921 buildings in the 
Texas area. Polygon evaluation metrics calculated from three di
mensions: Intersection over Union, Shape distance, and Dominant angle 
rotation error, indicate that the dataset’s precision reached 98.5 %, and 
recall reached 92.4 %. 

Concurrently, LiDAR remote sensing data, distinguished by its 
unparalleled precision and high-resolution capabilities, furnishes an 
intricate point cloud depiction of the urban landscape (Zhao et al., 
2017). This representation ensures the accurate delineation of building 
features, encompassing geographical coordinates, stature, and spatial 
dimensions. The LiDAR data used in this study originates from Houston- 
Galveston Area Council(H-GAC), Texas Natural Resources Information 
System (TNRIS), and United States Geological Survey (USGS), and was 
ultimately published through Environmental Systems Research Institute 
(ESRI).2 The data includes radar point cloud files related to the shape, 
location, and height of buildings, with the collection year being 2018. 
The data covers the Harris County and Galveston County areas. The 
accuracy of this LiDAR data has reached an RMSE of 10 cm (non-vege
tated). The amalgamation of insights from the Microsoft Building 
Footprint dataset and LiDAR data results in the extraction of 29,148 
building rooftops, rendered in polygonal format, as depicted in Fig. 2b. 

The POI dataset serves as an instrumental criterion for discerning 
residential edifices from their non-residential counterparts (Ye et al., 
2019). The POI data used in this study was collected from the SafeGraph 
Places POI data collection in December 2022. This data set covers the 
attribute information of a total of 2086 POIs in the study area, including 
latitude and longitude, address, business information, POI category, etc. 
By comparing with Google Maps, the error of the data in latitude and 
longitude is between 0 and 5 m, the accuracy of matching with buildings 
exceeds 70 %, and the accuracy of POI attributes exceeds 99 %.3 

By applying specific spatial analysis tools within ArcGIS, our meth
odology involves a detailed spatial intersect analysis between building 
polygons and POI obtained from Safegraph. This process utilizes Arc
GIS’s ‘Intersect’ tool to pinpoint buildings that occupy the same 
geographical space as any POI. This analysis identifies buildings that 
share spatial coordinates with any POIs. Subsequently, buildings with 
such overlaps are designated as non-residential, reflecting the assump
tion that their intersection with varied POIs suggests uses beyond resi
dential purposes. When dealing with mixed types of buildings, a 
simplifying assumption is adopted: a building is classified as nonresi
dential if it spatially coincides with one or more POIs for nonresidential 
uses. 

This methodological approach effectively omits commercial, indus
trial, and other non-residential infrastructures from the analytical pur
view since the dataset of POIs encompasses attributes of locations, 
incorporating names (for instance, McDonald’s, Fresenius Kidney Care, 
Shoe Dept. Encore, among others) as well as categories (such as Auto
motive Repair and Maintenance, Grocery Stores, etc.). The view of the 
POI dataset is shown in Fig. 2c. 

By transmuting the information gleaned from both the Microsoft 

1 This Microsoft Building Footprint is made available under the Open Data
base License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in 
individual contents of the database are licensed under the Database Contents 
License: http://opendatacommons.org/licenses/dbcl/1.0/  

2 https://tiles.arcgis.com/tiles/lqRTrQp2HrfnJt8U/arcgis/rest/services/ 
Building_Footprints_2018/MapServer  

3 https://docs.safegraph.com/docs/places-data-evaluation 
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Building Footprint dataset and the LiDAR point cloud into vectorial data, 
and subsequently excising non-residential edifices, ArcGIS shapefiles are 
synthesized. These files encapsulate the exact geographical coordinates, 
elevation metrics, and spatial dimensions of each edifice, each distinctly 
demarcated by the buid. A representative excerpt of the residential 
building inventory, rendered in shapefile format, is depicted in Fig. 2d. 

Dasymetric mapping employs a systematic series of spatial sub
divisions to augment the granularity of datasets originally amassed at a 
broader scale (Eicher & Brewer, 2001). Drawing upon the methodo
logical framework delineated by Huang, Ye, et al. (2021), with a 
particular emphasis on the disaggregation of potential household 
numbers and population metrics, the process unfolds as follows, given 
the established number of households (H) and population (P) within the 
designated study block: 

He
b = H ×

Db × Hb
∑

b
Db × Hb

(1)  

Pe
b = P ×

Db × Hb
∑

b
Db × Hb (2)  

whereHe
b and Pe

b refer to the estimated number of households and pop
ulation respectively in the target building b. Db and Hb denote the di
mensions of the allocated building and the corresponding height 
assigned to this building respectively. The selected building b is within 
the study block spatially. 

Eventually, the comprehensive building inventory dataset is exem
plified in Table 2. 

In Table 2, buid serves as a distinct identifier, uniquely demarcating 
each architectural structure. Concurrently, the blockid is utilized to forge 
a linkage with the housing unit inventory. Furthermore, the variables hh 
and pop denote the tallies of households and populations, respectively, 
corresponding to the specific buid. Within a given blockid, multiple buid 
entities can be identified. Each buid is, in turn, associated with several 
huid entities, all unified under the unique identifier blockid. Conceptu
ally, a block encompasses an array of buildings, with each building 
housing multiple individual units. 

4. Population synthesis algorithm 

4.1. Mathematical formulation 

Table 3 summarizes all the variables and parameters used in 
formulating the model. 

The objective function is defined as the total number of households 
allocated to buildings, aiming to maximize the allocation of households 
to buildings as much as possible, which can be formulated as 

max obj =
∑

h∈H

∑

b∈B

xh,b (3) 

To assign each household to a building, which can be formulated as 
∑

b∈B

xh,b ≤ 1∀h ∈ H (4) 

The assignment of each household to a single building ensures the 
assignment’s uniqueness. Additionally, allocating household to a 
building is contingent upon meeting the building’s maximum number of 
households and total population. 
∑

h∈H

xh,b ≤ He
b∀b ∈ B (5)  

∑

h∈H

Phxh,b ≤ Pe
b∀b ∈ B (6) 

The stated formulas indicate that the assignment of households to a 
building is subject to a constraint ensuring that the number of house
holds does not exceed the building’s designated maximum capacity. 
Likewise, the total population residing within a building must adhere to 
the building’s maximum occupancy threshold. This ensures that both 
household and population allocations remain within feasible and pre
defined limits for each building. 

Therefore, the household allocation problem can be formulated as 
the following programming model: 

(HUAP) max

{
∑

h∈H

∑

b∈B

xh,b : (4) ∼ (6)

}

#(7) (7) 

Several modifications are made to improve the robustness of the 
model. Firstly, the original eq. (4) is altered to ensure all households can 
be assigned to buildings, i.e., eq. (8). Eq. (5) is adjusted to ensure that 
the number of households corresponds to the buildings, i.e., eq. (9). 
Additionally, eq. (6) undergoes a relaxation operation. Finally, the 
objective function is updated to minimize the difference between the 
relative total population of households assigned to each building, i.e., 
eq. (10). The improved formulas are as follows. 

Fig. 1. The proposed framework in this study.  

Table 1 
A sample of housing unit inventory.  

huid blockid numprec 

B481677240001047H006 481,677,240,001,047  1 
B481677240002091H001 481,677,240,002,091  1 
B481677241011038H001 481,677,241,011,038  1 
B481677241011053H001 481,677,241,011,053  1 
B481677241011056H001 481,677,241,011,056  1  
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∑

b∈B

xh,b = 1∀h ∈ H (8)  

∑

h∈H

xh,b = He
b∀b ∈ B (9)  

minax obj =
∑

h∈H

⃒
⃒
⃒
⃒
⃒

∑

b∈B

Phxh,b − Pe
b

⃒
⃒
⃒
⃒
⃒

(10) 

The household allocation problem can be formulated as the 
improved quadratic programming model: 

(
HUAP improved

)
min

{
∑

h∈H

⃒
⃒
⃒
⃒
⃒

∑

b∈B

Phxh,b − Pe
b

⃒
⃒
⃒
⃒
⃒
: (8) ∼ (9)

}

(11)  

4.2. Monte Carlo simulation 

The Monte Carlo Simulation process, as detailed by Rosenheim et al. 
(2021), entails the allocation of households to buildings within specific 
census blocks. This allocation is conducted probabilistically to predict 
the likelihood that a building will be occupied by its owner. 

The initial step involves the calculation of the cumulative size of all 
buildings within a specified block. The proportionate size of each 
building is determined by dividing the dimensions of all buildings within 
the given block. 

Fig. 2. Data set in the study area. a) Study area; b) Zoom in view of building’s roof data; c) Zoom in view of POI data; d) Zoom in view of residential build
ing inventory. 

Table 2 
A sample of building inventory.  

buid blockid hh pop 

10,028 481,677,240,001,047  5  9 
307 481,677,240,002,091  1  5 
5714 481,677,241,011,038  10  11 
10,903 481,677,241,011,053  37  89 
8212 481,677,241,011,056  6  9  

Table 3 
Notations of sets and parameters.  

Notation Detailed Definition 

Sets  
H Set of households 
B Set of buildings 
Parameters  
Ph The population for each household h, h ∈ H 

He
b The estimated number of households for each building b, b ∈ B 

Pe
b The estimated population for each building b, b ∈ B 

Decision 
variables  

xh,b Binary variables, = 1 if household h is allocated to building b, =
0 otherwise. h ∈ H ,b ∈ B .  
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Prb =
Db
∑

b
Db

∀b ∈ B (12)  

where Prb is the relative size of each building as a proportion of the total 
size. 

Then, the predetermined number of iterations is defined, and in each 
iteration, a random number of households are assigned to each building 
according to its size proportionally. 

Hb = round

(

Prb ×
∑

b
He

b

)

∀b ∈ B (13)  

where Hb represents the number of households that need to be allocated 
to the building and using ‘round’ ensures that Hb becomes an integer. 

Pb =
∑

h

Ph∀h ∈ H b (14)  

where Pb denotes the population that needs to be allocated to a building, 
and H b represents the assigned households in a given building. When Pb 
is at least equal to the estimated population stated in eq. (15), house
holds will be given to the building. Otherwise, households are randomly 
assigned to other buildings while adhering to the population constraint. 

Pb >= Pe
b∀b ∈ B (15) 

Household counts and population figures are iteratively refreshed 
until all households have been allocated to buildings. 

5. Results 

The study encompassed 1641 blocks and an allocated population of 
22,530 households. In the application of the quadratic programming 
model, Gurobi 9.5.2 was adopted to address the intricacies of the 
quadratic programming paradigm. A temporal constraint, capped at 
7200 s, was instituted to ensure timely convergence of the solution. In 
this study, residual plots and Mean Squared Error (MSE) are employed to 
scrutinize the effectiveness of the two methods. 

Residuals, representing the disparities between observed values and 
model predictions, are crucial for evaluating predictive model efficacy 
(Cox & Snell, 1968). We utilize residual plots to assess the effectiveness 
of population allocation methods for 22,520 households, as shown in 
Fig. 3. The x − axis in our graphical representation denotes the allocated 
population for each household. At the same time, the y − axis captures 
the residual values—depicting the differences between the actual and 

given population. In Fig. 3, the x-axis shows the allocated population for 
each household. The extremely large populations for some households 
are a result of the way data is recorded for certain census blocks that 
include institutions or organizations. For example, a census block may 
contain a single building but be associated with the entire population of 
an institution that spans multiple blocks. In the case of the university 
campus, the census block includes only the residential life building but 
registers the total population of 328 individuals, reflecting the entire 
school. This allocation method leads to unusually high population 
counts for that. 

As left of the Fig. 3 corresponding to the HUAP improved method, the 
residual plot reveals a concentration of residuals within the − 10 to +10 
range. However, notable deviations emerge, with four outliers exhibit
ing errors of around 20 and a single point demonstrating an error of 
approximately 70. It is that this specific block encompasses only one 
building. Due to a necessity for the total household count to align, this 
condition contributes to an increased discrepancy in population allo
cation. In contrast, the residuals associated with the MCS method pre
dominantly cluster about 20. As a result, the HUAP improved method 
demonstrates superior performance, evident in a more confined 
dispersion of residuals. This characteristic suggests heightened accuracy 
in population allocation, underscoring its efficacy compared to the MCS 
method. 

The MSE is a statistical metric utilized to quantify the average 
squared differences between observed and predicted values (Das et al., 
2004). MSE is a pivotal measure for assessing model performance, as it 
emphasizes systematic and random errors, as follows: 

MSE =
1
n
∑n

i=1

(
Pe

h − P̂e
h
)2 (16)  

Where n represents the number of observations, totaling 22,520 
households, Pe

h signifies the estimated population for each household, 

and P̂e
h denotes the allocated population. Delving into the outcomes, the 

Mean Squared Error (MSE) for the HUAP improved method computes 
0.6522. This value signifies a diminished average squared difference 
between observed and allocated values. In contrast, the MCS method 
presents a substantially elevated MSE of 28.4717, indicative of a more 
pronounced discrepancy between assigned and actual values. Conse
quently, the HUAP improved method’s superiority is accentuated by its 
notably lower MSE, underscoring its efficacy in minimizing errors 
compared to the MCS method. 

For illustrative clarity, a census block identified by the blockid 
481,677,246,002,024 was selected. In this census block, 15 buildings 

Fig. 3. Residual Plot for the two allocation methods  
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accommodate a population of 601 individuals and consist of 184 
households. As demonstrated in Table 4, Pe

b and He
b denote the estimated 

population and households assigned to building b, respectively, while Pb 
and Hb represent the actual allocation to building b. The errors in allo
cating population and households to buildings are computed to compare 
the quadratic programming model 

(
HUAP improved) and Monte Carlo 

Simulation (MCS) methodologies. 
As Table 4, when utilizing the HUAP improved methodology, allo

cating households and the population count to each building is accom
plished with remarkable precision, exhibiting a negligible 0 % error rate. 
In contrast, when compared to the MCS method, which shows an almost 
imperceptible 5.49 % error rate. 

In summary, the HUAP improved method substantially reduces 
assignment errors compared to the MCS method by employing a 
Quadratic Programming model. It systematically allocates population 
and households to individual buildings, focusing on optimizing alloca
tion accuracy, which significantly outperforms random assignment in 
terms of precision and reliability. 

5 Discussion 

5.1. Transferability and reproducibility of this research 

The datasets used in this study primarily include data from the 
United States Census, Microsoft Building Footprints, SafeGraph Points of 
Interest data, and LiDAR remote sensing data. The availability of these 
datasets poses certain challenges for the transferability and reproduc
ibility of the study. The first two datasets are publicly accessible and 
downloadable, covering the entire United States with stable updates 
(usually annually, while the census block scale data is updated every ten 
years). However, SafeGraph POI data does not offer free access or 
downloads, but it provides good accuracy, covers >220 countries & 
territories, and maintains a good update frequency (every 3–6 months). 
As for the LiDAR data, it does not provide free public access or clear 
information on update frequency, but this is only for the current study 
area. Availability of data can vary for different research areas. For the 
two datasets that are not publicly available, local government de
partments or academic institutions often provide corresponding POI or 
LiDAR data depending on the study area. Even without these two types 
of data, the method proposed in this study for population disaggregation 
remains valid. This is because the main purpose of these two types of 
data is to determine the physical information and usage type of build
ings, and many studies have proposed different data sources and 
methods to achieve this goal. For example, Atwal et al. (2022) used the 
publicly available dataset OpenStreetMap to predict building types. Of 
course, it must be acknowledged that the quality of data, especially 

concerning the physical and usage information of buildings, signifi
cantly affects the outcomes of this study since they are used to ascertain 
the number, location, and volume of residential buildings. 

5.2. Limitation 

In this study, the accuracy assessment of the HUAP-improved and 
MCS methods was based on estimated population data derived from 
Microsoft building footprints augmented with LiDAR and POI data. 
While this approach allowed us to conduct a comprehensive analysis 
within the constraints of available resources and data, it is essential to 
acknowledge that these estimates do not represent ground-truth data. 
Consequently, the accuracy metrics derived from this comparison must 
be interpreted cautiously as they do not reflect accurate ground-truth 
accuracies. This limitation is significant as it could potentially influ
ence the perceived effectiveness of the population downscaling results 
produced by both algorithms. A more robust validation method would 
involve downscaling from the census block group level to the building 
level, followed by aggregation to the census block level. This aggregated 
data could then be compared against actual ground-truth survey data to 
provide a more definitive assessment of each method’s accuracy. 
Implementing such a method would allow for a more transparent and 
precise evaluation of how these algorithms replicate known population 
distributions, thereby offering more substantial contributions to the 
population downscaling literature. Here are the specific limitations 
identified in the approach used for the accuracy assessment in the 
population downscaling study. 

5.2.1. The assumption of building’s maximum occupancy threshold 
We constrain the allocation algorithm by setting a maximum number 

of people/households per building. This is based on the concept that 
there is a positive correlation between building volume and population 
density. Several studies have reached this conclusion. For example, in a 
study by Zhao et al. (2017), they tested the relationship between pop
ulation and built volume in four different cities in Texas, and the results 
showed that in family-oriented mixed-use communities, there is a pos
itive correlation between the relationship between building volume and 
population size. In the study of Shahfahad et al. (2021), using satellite 
image data and census data, they found through statistical analysis that 
there is a strong positive correlation between population density and 
built-up area area. It is true that we must admit that such a concept has 
limitations and does not hold true in many cases. For example, in high- 
income neighborhoods, a small number of people/households live in 
large buildings. Zięba-Kulawik et al. (2020) used aerial orthophotos and 
airborne laser scanning (ALS) point clouds to calculate the building 
volume of Luxembourg City from 2001 to 2019, and conducted corre
lation analysis with population data, and found that population and the 
correlation of building volumes is dynamic. However, we were unable to 
obtain detailed information on the population living in a specific 
building from publicly available data to analyze the specific situation. 
Therefore, our study is based on the consensus of many population 
studies: population density is directly proportional to residential build
ing volume. 

5.2.2. POI and mixed type buildings 
We faced the challenge of accurately handling and classifying mixed- 

use buildings, which in reality may serve both residential and non- 
residential functions. Given the nature of the non-residential POI data
set on which we relied primarily, we adopted a methodological strategy 
that was both practical and consistent with data availability to classify 
possible mixed-use buildings. 

Specifically, when a building geographically coincides with one or 
more POI identified as non-residential uses, we classify it as a non- 
residential building based on existing data limitations and simplified 
analysis needs. This decision reflects the trade-offs researchers face 
during the data collection and processing stages when faced with 

Table 4 
Comparison of results between HUAP improved and MCAS.

buid Pe
b Pb He

b Hb 

HUAP improved MCS HUAP improved MCS 

11,985 24  24 24 7  7 7 
12,000 33  33 34 10  10 10 
12,014 2  2 4 1  1 1 
12,027 60  60 59 18  18 18 
12,043 13  13 12 4  4 4 
12,050 25  25 23 8  8 8 
12,056 50  50 50 15  15 16 
12,091 48  48 27 15  15 8 
12,101 25  25 23 8  8 8 
12,105 47  47 43 14  14 16 
12,113 18  18 19 6  6 8 
13,874 68  68 66 21  21 21 
13,878 70  70 73 22  22 23 
14,444 94  94 90 28  28 29 
28,128 24  24 21 7  7 8 
Sum 601  601 568 184  184 185 
Error –  0 5.49 % –  0 0.54 %  
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common situations of incomplete information and limited processing 
capabilities. We recognize that this approach may not accurately reflect 
the characteristics of all uses of a building, and particularly for buildings 
with commercial space on the ground floor and residential above, this 
classification may ignore the residential component of the building. 

Although adopting this classification strategy increases the 
simplicity and consistency of research operations, it may also have a 
specific impact on the research results. For example, our analysis may 
overemphasize buildings with non-residential uses, thereby affecting to 
some extent the understanding of the distribution of uses in urban space. 
In this regard, our study reveals an important data and methodological 
limitation of current urban research and points to directions for further 
exploration and improvement in future work. 

Future research can improve the accuracy of building use classifi
cation by introducing more detailed and comprehensive data sets, such 
as combining real estate registration information, resident survey re
sults, or using more advanced spatial data analysis techniques. This will 
not only provide a more accurate classification of mixed-use buildings, 
but also help researchers better understand the role and function of these 
buildings in urban space, thereby providing richer insights for urban 
planning and development. 

5.2.3. The impact of dynamic population 
We adopted a method focused on residential buildings to enhance 

the granularity of population data. This method aims to simulate pop
ulation distribution by identifying and analyzing residential buildings. 
We recognize that while this approach has advantages in improving the 
accuracy of population data in residential areas, it also has certain 
limitations. Specifically, this method may not fully capture the living 
situations in non-traditional living spaces (such as mixed-use buildings 
with both commercial and residential functions), thereby affecting the 
understanding of the complete picture of urban population distribution. 
Additionally, the treatment and analysis of population data in this study 
are based on static data benchmarked against census data, meaning that 
our study lacks the ability to capture population dynamics. That is, the 
population we study refers to people who reside permanently in their 
own residential buildings and does not include those who live elsewhere 
for extended periods or are frequently in a state of mobility. 

Future research could start with data sources closer to population 
mobility trends, such as mobile devices signal and social media, and 
employ more advanced spatial analysis methods and population simu
lation technologies to more accurately simulate population distribution 
in urban area. This would enhance the study of dynamic changes in the 
population within urban area, especially considering the emergence of 
new living forms during urban development and their impact on pop
ulation distribution. 

5.2.4. Building height data and dynamic allocation methods 
The inclusion of building height data represents a significant 

enhancement in the accuracy of population distribution models. Urban 
areas, particularly those with high-density housing, such as apartments 
and high-rises, benefit substantially from this approach. Traditional 
population estimation methods often overlook vertical spatial varia
tions, leading to significant inaccuracies in densely populated areas. By 
incorporating building height, we can assign population figures more 
accurately across different floors and better reflect the actual distribu
tion within urban landscapes. This approach improves the granularity of 
population data and aids in urban planning and infrastructure devel
opment, ensuring resources are appropriately allocated based on actual 
population densities. 

Our study aimed to use a static quadratic programming model to 
optimize the allocation of resources based on predefined constraints and 
objectives. This model is particularly beneficial for its efficiency and 
stability in producing optimal and feasible solutions within the set pa
rameters. However, one limitation of the static model is its inability to 
dynamically adjust to real-time changes in input data, such as shifts in 

population dynamics or urban development patterns. In future work, 
exploring dynamic models that adjust allocations based on ongoing data 
updates could be especially useful in rapidly changing urban 
environments. 

6. Conclusion 

This paper introduces a novel framework aimed at enhancing the 
resolution of population data, transitioning from the traditional census 
block level to a more detailed scale—individual buildings—while inte
grating relevant housing unit data. Utilizing the advanced Microsoft 
Building Footprint dataset, LiDAR remote sensing techniques, and Point 
of Interest (POI) data, this methodology meticulously compiles a 
comprehensive and accurate building inventory. 

Further, the study employs sophisticated Mathematical Formulation 
and Monte Carlo Simulation methods to assign households to specific 
buildings accurately. A comparative analysis of these techniques dem
onstrates significant improvements in the accuracy and detail of the 
resulting population distribution models, owing to the refined approach 
of the former. The research presents an innovative method for fine- 
grained population downscaling to the building level, offering sub
stantial contributions to demographic research. This detailed perspec
tive enables a more nuanced analysis of population dynamics and their 
relationship with spatial distribution. It is particularly beneficial in 
evaluating the effects of population growth and distribution on urban 
infrastructure, services, and disaster resilience, thereby informing more 
strategic urban development plans. Additionally, this integration is 
crucial for optimizing resource allocation and enhancing risk manage
ment, leading to more resilient and sustainable urban environments. 
Such downscaled population data are invaluable for urban planners in 
making informed decisions to improve urban livability and adaptability. 

Regarding the allocation methodology, the study currently focuses 
on population and household counts, acknowledging limitations in 
attribute diversity. Future research directions include exploring sce
narios that utilize a broader range of attributes for household and 
population allocation, representing a multi-objective optimization 
challenge that adds depth and complexity to the optimization process. 
The density of residential structures within a census block significantly 
influences the distribution of housing units and resident populations. 
Data accuracy issues, such as missing building clusters within a block 
group, can lead to population underestimation in those areas and 
overestimation in others within the same census tract. Future research 
should prioritize enhancing data accuracy in building inventories, 
potentially leveraging advanced remote sensing techniques to achieve 
this goal. 
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