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This research presents a sophisticated framework for the precise downscaling of population data from census
blocks to individual residential units, employing an integration of housing unit characteristics. The aim was to
devise and substantiate a thorough methodology for the distribution of households within specific residential
buildings. Utilizing the Microsoft Building Footprint dataset, LiDAR remote sensing, and Point of Interest (POI)
data, a detailed inventory of residential structures was compiled. A quadratic programming model and Monte
Carlo Simulation techniques were applied independently for the strategic allocation of households to these
buildings. For validation, this study conducted a comparative analysis between the two methods. The outcomes
revealed that the quadratic programming model provided superior precision and detail in population data
compared to the Monte Carlo Simulation technique. Consequently, the quadratic programming model signifi-
cantly enhances the granularity of population distribution data, offering a valuable tool for more informed de-

cision-making.

1. Introduction

The spatial distribution of populations is a critical area of study
across various academic fields, such as demography, economics, and
environmental science. These disciplines require detailed population
data at a high resolution, including at the building level, to effectively
conduct their research (Bakillah et al., 2014; Liu et al., 2008; Niu et al.,
2017; Wan et al., 2022). Additionally, the accelerating dynamics of
climate change and urbanization underscore the importance of exam-
ining vulnerability and sustainability at the building scale within urban
design and landscape sustainability science (Elmer & Fraker, 2011; Rode
et al.,, 2018; Ye et al., 2023). Understanding the demographic and so-
cioeconomic characteristics at the building level is vital for gaining in-
sights into residential behavior patterns and routines. These insights are
instrumental in shaping strategies related to human mobility, public
health, climate change adaptation, urban planning, and disaster miti-
gation (Watthanasutthi, 2016; Yao et al., 2017).

The disaggregation of census data raises significant privacy concerns
due to the potential for demographic and socioeconomic information to
inadvertently reveal individual identities, rendering such detailed data
unavailable at the building level (Ural et al., 2011). In the absence of
comprehensive datasets, alternative sources such as micro samples or
Public Use Microdata Samples (PUMS) and marginal statistics provide
key socio-demographic attributes. However, existing methodologies
often lack spatial precision, resulting in broadly generalized regional
data. To achieve a more spatially precise population allocation, it is
essential to expand the synthetic population representation to include
detailed aspects of the built environment, such as housing units, build-
ings, and other establishments. The integration of precise spatial data
can significantly enhance the accuracy and applicability of these ana-
lyses, thereby informing more effective urban planning and trans-
portation strategies.

This paper introduces a novel framework for the downscaling of
population data from the census block level to the individual building
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level. It utilizes open-source data to compile a comprehensive inventory
of housing units. Additionally, the Microsoft Building Footprint dataset,
LiDAR remote sensing data, and Point of Interest (POI) data are metic-
ulously combined using dasymetric mapping techniques to create a
detailed building inventory. A quadratic programming model is subse-
quently developed for the precise allocation of individual housing units
to specific residential buildings. The methodology’s effectiveness is
demonstrated through its application in Galveston Island, TX. Validation
is achieved through a comparative analysis with Monte Carlo Simula-
tion, which highlights the method’s enhanced accuracy and detail. The
key contributions of this study include:

e Developing a method for fine-grained population downscaling from
the census block level to the building level.

e Employing the Microsoft Building Footprint dataset, LiDAR remote
sensing data, and POI data to generate comprehensive building
inventories.

e Implementing a Mathematical Formulation approach to optimize the
allocation of households to individual buildings using a static
Quadratic Programming model.

The paper is organized as follows: The next section provides a review
of relevant literature, identifying key gaps and contributions. Section 3
describes the process of compiling housing unit and building inventories
for Galveston Island, TX. Section 4 introduces the quadratic program-
ming model and the Monte Carlo Simulation methodology. Section 5
presents the results and compares the two methods. Finally, Section 6
concludes the paper with discussions and perspectives for future
research directions.

2. Relevant works
2.1. Data utilization in population allocation

Interpolation and dasymetric methods are developed for the refined
disaggregation of census data into grid cells, incorporating a variety of
ancillary data sources (Briggs et al., 2007; Gallego et al., 2011; Leyk
etal., 2019; Li & Zhou, 2018). A primary technique in this realm is a real
interpolation, essential for transposing socioeconomic data across varied
spatial units (Wu et al., 2005). Among these techniques, the direct areal
weighting method is fundamental, distributing population data from a
source zone to target zones in proportion to each target zone’s area
(Goodchild & Lam, 1980). However, this method is limited by its
assumption of uniform population density within the source zone, which
is rarely the case in real-world scenarios. Dasymetric mapping, by
contrast, has emerged as a more effective approach for spatial down-
scaling (Mennis, 2009; Li & Zhou, 2018). When specific population
density data is not available, binary dasymetric mapping is often used.
This method divides target areas into two distinct zones, each charac-
terized by unique population features derived from additional datasets
(Su et al., 2010).

Satellite-based remote sensing products are commonly used as sup-
plementary data sources. These include land use (Tan et al., 2018;
Weber et al., 2018) and nighttime light imagery (Chen et al., 2019; Li &
Zhou, 2018), along with Point of Interest (POI) data (Yang et al., 2019;
Ye et al., 2019). These datasets act as weighting surfaces that help
delineate the uneven distribution of populations. However, nighttime
light data can be less effective for smaller areas due to its relatively
lower spatial resolution (Stathakis & Baltas, 2018). In a novel approach,
Huang, Wang, et al. (2021) successfully disaggregated population data
from the census tract level to a 100-m grid within the CONUS region,
utilizing the open-source Microsoft building footprint data. Launched in
June 2018, the Microsoft building footprint dataset, with its 125 million
building footprints, represents one of the most comprehensive collec-
tions available. A significant limitation, however, is its lack of building
height data, leading to potential inaccuracies in population estimates,
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particularly in urban areas with high-rise structures.

Incorporating building height data can significantly enhance the
accuracy of building volume calculations, thereby improving population
estimations, especially in densely populated urban settings. Research by
Stal et al. (2013) demonstrated the potential of extracting building
heights using aerial photogrammetry techniques. In this study, we
integrate LiDAR data, which provides building height information, with
the Microsoft building footprints dataset and POI data. The inclusion of
POI data is instrumental in differentiating residential from non-
residential buildings. Ultimately, we apply dasymetric mapping tech-
niques to effectively combine these diverse datasets for more precise
population distribution analysis.

2.2. Population allocation methods

Iterative Proportional Fitting (IPF) has gained prominence in de-
mographic research, particularly for its effectiveness in addressing
complex population synthesis challenges. Initially conceptualized as a
numerical method for analyzing contingency tables (Deming & Stephan,
1940), IPF’s fundamental operation involves aligning a contingency
table, derived from microdata, with marginal constraints obtained from
more extensive aggregated census data (Beckman et al., 1996).

Despite its widespread application due to its intuitive concept, IPF
encounters several notable challenges. In response to these challenges,
researchers have sought to refine the IPF process. A significant devel-
opment is the Iterative Proportional Updating (IPU) algorithm intro-
duced by Ye et al. (2009), designed to reconcile both household and
individual-level data distributions. This algorithm has been imple-
mented in PopGen, a leading-edge open-source synthetic population
generator (Konduri et al., 2016). Moving towards probabilistic ap-
proaches, some methods have deviated from traditional IPF techniques,
creating more diverse agents that are not simply replicas of the micro-
data sample (Saadi et al., 2016; Sun et al., 2018; Zhang et al., 2019).
Innovative strategies, including the application of Markov Chains for
probabilistic population synthesis and the use of data-driven inferential
methods like Bayesian Networks, have also been explored (Sun & Erath,
2015; Zhang et al., 2019).

While these methods excel in synthesizing populations at larger
geographic scales, achieving high spatial resolution requires more
complex allocation strategies. Some approaches, like Rosenheim et al.’s
(2021) method, rely on a randomized selection process, using Monte
Carlo simulations to distribute socio-demographic data to individual
housing units. Fereshtehnejad et al. (2021) extended this approach by
predicting housing unit occupancy status and, when occupied, deter-
mining household characteristics. Other research has aimed to reduce
the randomness of these assignments. Harada and Murata (2017)
developed a technique to project synthetic households onto geographic
maps, utilizing critical geospatial data to allocate households according
to building specifications. Chapuis et al. (2018) combined satellite im-
agery and building geometry data to estimate population density at the
micro-level, applying areal interpolation for allocation while controlling
distribution.

In conclusion, significant advancements have been made in the field
of population synthesis, yet there remains a discernible gap in fully
integrating spatial details and the built environment’s representation.
To authentically capture the spatial dynamics of populations, a
comprehensive and accurate integration of spatial information,
including precise population allocation to buildings, is crucial.

3. Study area and data
3.1. Testing site and method overview
Galveston Island, located about 50 miles south of Houston at the

juncture of Galveston Bay, is inherently prone to natural disasters,
particularly hurricanes, due to its strategic geographic location. This
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susceptibility highlights the island’s importance as a critical site for
urban research, as noted in Huang, Ye, et al. (2021). The urban design
and architectural features of Galveston Island are representative of
typical U.S. urban planning models, as discussed in Beasley (2006). This
alignment makes the island an ideal case study for examining urban
planning principles and understanding their wider implications. Insights
derived from Galveston Island are of considerable value and can be
applied to similar urban environments, thus contributing significantly to
the field of urban planning research.

This study introduces a sophisticated framework to enhance the
resolution of population data, shifting from the traditional census block
approach to a more detailed, building-focused analysis, incorporating
relevant housing unit data (illustrated in Fig. 1). The methodology
employs the Microsoft Building Footprint dataset, LIDAR remote sensing
data, and Point of Interest (POI) datasets to create a comprehensive
building inventory. The next phase combines housing unit and building
data, using a two-pronged approach of Mathematical Formulation and
Monte Carlo Simulation to assign households to specific buildings. The
Mathematical Formulation, based on optimizing population allocation
within household number constraints, results in a static Quadratic Pro-
gramming model. Conversely, the Monte Carlo Simulation, guided by
population density metrics, performs allocation through a probabilistic
process. Together, this integrated approach significantly enhances the
accuracy of population distribution datasets, making it a valuable tool
for informed decision-making in various academic fields.

3.2. Datasets

This study endeavors to elucidate the intricate interrelationships
between distinct social entities, notably households characterized by
diverse attributes, and architectural structures, such as buildings. Cen-
tral to this exploration is the compilation of both housing unit and
building inventories. These inventories serve as instrumental conduits,
enabling the transformation of aggregated household and housing unit
data into discrete housing units. Each of these units is imbued with
particular attributes, resonating with a specific housing unit typology.
These attributes can then be seamlessly integrated with the overarching
building inventory.

3.2.1. Housing unit inventory

This research draws upon the housing unit inventory methodology
delineated by Rosenheim et al. (2021) to meticulously catalog the
nuanced characteristics of residential edifices located on Galveston Is-
land. The exhaustive dataset derived from this housing unit inventory
offers intricate specifics pertaining to each individual housing unit, with
representative examples presented in Table 1.where the huid functions
as a distinct identifier, uniquely demarcating each housing unit. The
blockid aligns with the 2010 Census Block ID and acts as the pivotal
reference, facilitating the association of housing units with the corre-
sponding buildings in the inventory. This association is not a direct one-
to-one linkage but aligns each housing unit with potentially multiple
buildings within the same block. Concurrently, numprec denotes the
population tally associated with the specific huid. Expanding upon this,
the housing unit inventory encapsulates a plethora of attributes,
including but not limited to tenure status, racial categorization, vacancy
typology, poverty indicators, and other salient characteristics.3.2.2
Building Inventory

A nuanced comprehension of both the volume and spatial dispersion
of architectural structures is intrinsically linked to the availability and
accuracy of rooftop data. In this context, the Microsoft Building
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Footprint dataset stands out as an indispensable asset, proffering
meticulous building contours that encapsulate both positional and
morphological facets of building rooftops. These facets are instrumental
in charting the spatial orientation and unique attributes of buildings
(Heris et al., 2020). The Microsoft Building Footprint dataset used in this
research is a public dataset released by Microsoft.! It is generated
through a DNN model based on Bing Imagery (with an average shooting
year of 2012) and has extracted polygons for 10,678,921 buildings in the
Texas area. Polygon evaluation metrics calculated from three di-
mensions: Intersection over Union, Shape distance, and Dominant angle
rotation error, indicate that the dataset’s precision reached 98.5 %, and
recall reached 92.4 %.

Concurrently, LiDAR remote sensing data, distinguished by its
unparalleled precision and high-resolution capabilities, furnishes an
intricate point cloud depiction of the urban landscape (Zhao et al.,
2017). This representation ensures the accurate delineation of building
features, encompassing geographical coordinates, stature, and spatial
dimensions. The LiDAR data used in this study originates from Houston-
Galveston Area Council(H-GAC), Texas Natural Resources Information
System (TNRIS), and United States Geological Survey (USGS), and was
ultimately published through Environmental Systems Research Institute
(ESRI).”? The data includes radar point cloud files related to the shape,
location, and height of buildings, with the collection year being 2018.
The data covers the Harris County and Galveston County areas. The
accuracy of this LiDAR data has reached an RMSE of 10 cm (non-vege-
tated). The amalgamation of insights from the Microsoft Building
Footprint dataset and LiDAR data results in the extraction of 29,148
building rooftops, rendered in polygonal format, as depicted in Fig. 2b.

The POI dataset serves as an instrumental criterion for discerning
residential edifices from their non-residential counterparts (Ye et al.,
2019). The POI data used in this study was collected from the SafeGraph
Places POI data collection in December 2022. This data set covers the
attribute information of a total of 2086 POIs in the study area, including
latitude and longitude, address, business information, POI category, etc.
By comparing with Google Maps, the error of the data in latitude and
longitude is between 0 and 5 m, the accuracy of matching with buildings
exceeds 70 %, and the accuracy of POI attributes exceeds 99 %.>

By applying specific spatial analysis tools within ArcGIS, our meth-
odology involves a detailed spatial intersect analysis between building
polygons and POI obtained from Safegraph. This process utilizes Arc-
GIS’s ‘Intersect’ tool to pinpoint buildings that occupy the same
geographical space as any POL This analysis identifies buildings that
share spatial coordinates with any POIs. Subsequently, buildings with
such overlaps are designated as non-residential, reflecting the assump-
tion that their intersection with varied POIs suggests uses beyond resi-
dential purposes. When dealing with mixed types of buildings, a
simplifying assumption is adopted: a building is classified as nonresi-
dential if it spatially coincides with one or more POIs for nonresidential
uses.

This methodological approach effectively omits commercial, indus-
trial, and other non-residential infrastructures from the analytical pur-
view since the dataset of POIs encompasses attributes of locations,
incorporating names (for instance, McDonald’s, Fresenius Kidney Care,
Shoe Dept. Encore, among others) as well as categories (such as Auto-
motive Repair and Maintenance, Grocery Stores, etc.). The view of the
POI dataset is shown in Fig. 2c.

By transmuting the information gleaned from both the Microsoft

! This Microsoft Building Footprint is made available under the Open Data-
base License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
individual contents of the database are licensed under the Database Contents
License: http://opendatacommons.org/licenses/dbcl/1.0/

2 https://tiles.arcgis.com/tiles/IqQRTrQp2HrfnJt8U/arcgis/rest/services/
Building_Footprints_2018/MapServer

3 https://docs.safegraph.com/docs/places-data-evaluation
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Fig. 1. The proposed framework in this study.

Table 1

A sample of housing unit inventory.
huid blockid numprec
B481677240001047H006 481,677,240,001,047 1
B481677240002091H001 481,677,240,002,091 1
B481677241011038H001 481,677,241,011,038 1
B481677241011053H001 481,677,241,011,053 1
B481677241011056H001 481,677,241,011,056 1

Building Footprint dataset and the LiDAR point cloud into vectorial data,
and subsequently excising non-residential edifices, ArcGIS shapefiles are
synthesized. These files encapsulate the exact geographical coordinates,
elevation metrics, and spatial dimensions of each edifice, each distinctly
demarcated by the buid. A representative excerpt of the residential
building inventory, rendered in shapefile format, is depicted in Fig. 2d.

Dasymetric mapping employs a systematic series of spatial sub-
divisions to augment the granularity of datasets originally amassed at a
broader scale (Eicher & Brewer, 2001). Drawing upon the methodo-
logical framework delineated by Huang, Ye, et al. (2021), with a
particular emphasis on the disaggregation of potential household
numbers and population metrics, the process unfolds as follows, given
the established number of households (H) and population (P) within the
designated study block:

DbXHb

H =HX—=——— 1

b XZDbXHb ()
b
DbXHh

e _

Pb_PXZDbXHb )
b

whereHj and P refer to the estimated number of households and pop-
ulation respectively in the target building b. D, and Hp denote the di-
mensions of the allocated building and the corresponding height
assigned to this building respectively. The selected building b is within
the study block spatially.

Eventually, the comprehensive building inventory dataset is exem-
plified in Table 2.

In Table 2, buid serves as a distinct identifier, uniquely demarcating
each architectural structure. Concurrently, the blockid is utilized to forge
a linkage with the housing unit inventory. Furthermore, the variables hh
and pop denote the tallies of households and populations, respectively,
corresponding to the specific buid. Within a given blockid, multiple buid
entities can be identified. Each buid is, in turn, associated with several
huid entities, all unified under the unique identifier blockid. Conceptu-
ally, a block encompasses an array of buildings, with each building
housing multiple individual units.

4. Population synthesis algorithm
4.1. Mathematical formulation

Table 3 summarizes all the variables and parameters used in
formulating the model.

The objective function is defined as the total number of households
allocated to buildings, aiming to maximize the allocation of households
to buildings as much as possible, which can be formulated as

max obj = szh,b

he7bez

3
To assign each household to a building, which can be formulated as

th‘b < 1Vh e 7

be.z

4

The assignment of each household to a single building ensures the
assignment’s uniqueness. Additionally, allocating household to a
building is contingent upon meeting the building’s maximum number of
households and total population.

th‘b < H;Vb cp

he”

)

thxhb <PiVbe »

he7z

(6)

The stated formulas indicate that the assignment of households to a
building is subject to a constraint ensuring that the number of house-
holds does not exceed the building’s designated maximum capacity.
Likewise, the total population residing within a building must adhere to
the building’s maximum occupancy threshold. This ensures that both
household and population allocations remain within feasible and pre-
defined limits for each building.

Therefore, the household allocation problem can be formulated as
the following programming model:

(HUAP) max{Zth,b 1 (4) ~(6) }#(7)

he7bez

@)

Several modifications are made to improve the robustness of the
model. Firstly, the original eq. (4) is altered to ensure all households can
be assigned to buildings, i.e., eq. (8). Eq. (5) is adjusted to ensure that
the number of households corresponds to the buildings, i.e., eq. (9).
Additionally, eq. (6) undergoes a relaxation operation. Finally, the
objective function is updated to minimize the difference between the
relative total population of households assigned to each building, i.e.,
eq. (10). The improved formulas are as follows.
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Fig. 2. Data set in the study area. a) Study area; b) Zoom in view of building’s roof data; ¢) Zoom in view of POI data; d) Zoom in view of residential build-
ing inventory.

Table 2

A sample of building inventory.
buid blockid hh pop
10,028 481,677,240,001,047 5 9
307 481,677,240,002,091 1 5
5714 481,677,241,011,038 10 11
10,903 481,677,241,011,053 37 89
8212 481,677,241,011,056 6 9

Table 3

Notations of sets and parameters.

Notation Detailed Definition
Sets
Va Set of households
B Set of buildings
Parameters
Py The population for each household h, h € 7
H} The estimated number of households for each building b, b € %
Py The estimated population for each building b, b € %
Decision
variables
Xnp Binary variables, = 1 if household h is allocated to building b, =

0 otherwise. h € 7,b € .%.

th,b =1wWhe” ®)

bex

th,b = H§Vb [S74 9

he7r

minax obj = Z ZPhxh,b - P (10$)
he” |bez

The household allocation problem can be formulated as the
improved quadratic programming model:

thxh,b - Py

bez

(HUAP_improved) min{ Z
her

S (8) ~ (9)} an

4.2. Monte Carlo simulation

The Monte Carlo Simulation process, as detailed by Rosenheim et al.
(2021), entails the allocation of households to buildings within specific
census blocks. This allocation is conducted probabilistically to predict
the likelihood that a building will be occupied by its owner.

The initial step involves the calculation of the cumulative size of all
buildings within a specified block. The proportionate size of each
building is determined by dividing the dimensions of all buildings within
the given block.
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Dy _
Pr, = —> 2
(4% Z be (S

b

(12)

where Pry, is the relative size of each building as a proportion of the total
size.

Then, the predetermined number of iterations is defined, and in each
iteration, a random number of households are assigned to each building
according to its size proportionally.

Hp = round (Prb X ZH{;) Vb e # (13)
b

where Hj, represents the number of households that need to be allocated
to the building and using ‘round’ ensures that H, becomes an integer.

P, = zh:thh (S 14)

where P, denotes the population that needs to be allocated to a building,
and /7', represents the assigned households in a given building. When P,
is at least equal to the estimated population stated in eq. (15), house-
holds will be given to the building. Otherwise, households are randomly
assigned to other buildings while adhering to the population constraint.

P, >=PVbe .7 (15)

Household counts and population figures are iteratively refreshed
until all households have been allocated to buildings.

5. Results

The study encompassed 1641 blocks and an allocated population of
22,530 households. In the application of the quadratic programming
model, Gurobi 9.5.2 was adopted to address the intricacies of the
quadratic programming paradigm. A temporal constraint, capped at
7200 s, was instituted to ensure timely convergence of the solution. In
this study, residual plots and Mean Squared Error (MSE) are employed to
scrutinize the effectiveness of the two methods.

Residuals, representing the disparities between observed values and
model predictions, are crucial for evaluating predictive model efficacy
(Cox & Snell, 1968). We utilize residual plots to assess the effectiveness
of population allocation methods for 22,520 households, as shown in
Fig. 3. The x — axis in our graphical representation denotes the allocated
population for each household. At the same time, the y — axis captures
the residual values—depicting the differences between the actual and

Residuals Plot - HUAP_improved Method
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given population. In Fig. 3, the x-axis shows the allocated population for
each household. The extremely large populations for some households
are a result of the way data is recorded for certain census blocks that
include institutions or organizations. For example, a census block may
contain a single building but be associated with the entire population of
an institution that spans multiple blocks. In the case of the university
campus, the census block includes only the residential life building but
registers the total population of 328 individuals, reflecting the entire
school. This allocation method leads to unusually high population
counts for that.

As left of the Fig. 3 corresponding to the HUAP_improved method, the
residual plot reveals a concentration of residuals within the —10 to +10
range. However, notable deviations emerge, with four outliers exhibit-
ing errors of around 20 and a single point demonstrating an error of
approximately 70. It is that this specific block encompasses only one
building. Due to a necessity for the total household count to align, this
condition contributes to an increased discrepancy in population allo-
cation. In contrast, the residuals associated with the MCS method pre-
dominantly cluster about 20. As a result, the HUAP_improved method
demonstrates superior performance, evident in a more confined
dispersion of residuals. This characteristic suggests heightened accuracy
in population allocation, underscoring its efficacy compared to the MCS
method.

The MSE is a statistical metric utilized to quantify the average
squared differences between observed and predicted values (Das et al.,
2004). MSE is a pivotal measure for assessing model performance, as it
emphasizes systematic and random errors, as follows:

n

_1 e _ TP
MSEan(Ph PY)

i=1

(16

Where n represents the number of observations, totaling 22,520
households, Pj signifies the estimated population for each household,

and }/"; denotes the allocated population. Delving into the outcomes, the
Mean Squared Error (MSE) for the HUAP_improved method computes
0.6522. This value signifies a diminished average squared difference
between observed and allocated values. In contrast, the MCS method
presents a substantially elevated MSE of 28.4717, indicative of a more
pronounced discrepancy between assigned and actual values. Conse-
quently, the HUAP_improved method’s superiority is accentuated by its
notably lower MSE, underscoring its efficacy in minimizing errors
compared to the MCS method.

For illustrative clarity, a census block identified by the blockid
481,677,246,002,024 was selected. In this census block, 15 buildings

Residuals Plot - MCS Method
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accommodate a population of 601 individuals and consist of 184
households. As demonstrated in Table 4, P; and Hj denote the estimated
population and households assigned to building b, respectively, while Py,
and H, represent the actual allocation to building b. The errors in allo-
cating population and households to buildings are computed to compare
the quadratic programming model (HUAP_improved) and Monte Carlo
Simulation (MCS) methodologies.

As Table 4, when utilizing the HUAP_improved methodology, allo-
cating households and the population count to each building is accom-
plished with remarkable precision, exhibiting a negligible 0 % error rate.
In contrast, when compared to the MCS method, which shows an almost
imperceptible 5.49 % error rate.

In summary, the HUAP_improved method substantially reduces
assignment errors compared to the MCS method by employing a
Quadratic Programming model. It systematically allocates population
and households to individual buildings, focusing on optimizing alloca-
tion accuracy, which significantly outperforms random assignment in
terms of precision and reliability.

5 Discussion

5.1. Transferability and reproducibility of this research

The datasets used in this study primarily include data from the
United States Census, Microsoft Building Footprints, SafeGraph Points of
Interest data, and LiDAR remote sensing data. The availability of these
datasets poses certain challenges for the transferability and reproduc-
ibility of the study. The first two datasets are publicly accessible and
downloadable, covering the entire United States with stable updates
(usually annually, while the census block scale data is updated every ten
years). However, SafeGraph POI data does not offer free access or
downloads, but it provides good accuracy, covers >220 countries &
territories, and maintains a good update frequency (every 3-6 months).
As for the LiDAR data, it does not provide free public access or clear
information on update frequency, but this is only for the current study
area. Availability of data can vary for different research areas. For the
two datasets that are not publicly available, local government de-
partments or academic institutions often provide corresponding POI or
LiDAR data depending on the study area. Even without these two types
of data, the method proposed in this study for population disaggregation
remains valid. This is because the main purpose of these two types of
data is to determine the physical information and usage type of build-
ings, and many studies have proposed different data sources and
methods to achieve this goal. For example, Atwal et al. (2022) used the
publicly available dataset OpenStreetMap to predict building types. Of
course, it must be acknowledged that the quality of data, especially

Table 4
Comparison of results between HUAP_improved and MCAS.

buid P Py H Hy

HUAP_improved =~ MCS HUAP_improved =~ MCS

11,985 24 24 24 7 7 7
12,000 33 33 34 10 10 10
12,014 2 2 4 1 1 1
12,027 60 60 59 18 18 18
12,043 13 13 12 4 4 4
12,050 25 25 23 8 8 8
12,056 50 50 50 15 15 16
12,091 48 48 27 15 15 8
12,101 25 25 23 8 8 8
12,105 47 47 43 14 14 16
12,113 18 18 19 6 6 8
13,874 68 68 66 21 21 21
13,878 70 70 73 22 22 23
14,444 94 94 90 28 28 29
28,128 24 24 21 7 7 8
Sum 601 601 568 184 184 185
Error - 0 5.49 % - 0 0.54 %
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concerning the physical and usage information of buildings, signifi-
cantly affects the outcomes of this study since they are used to ascertain
the number, location, and volume of residential buildings.

5.2. Limitation

In this study, the accuracy assessment of the HUAP-improved and
MCS methods was based on estimated population data derived from
Microsoft building footprints augmented with LiDAR and POI data.
While this approach allowed us to conduct a comprehensive analysis
within the constraints of available resources and data, it is essential to
acknowledge that these estimates do not represent ground-truth data.
Consequently, the accuracy metrics derived from this comparison must
be interpreted cautiously as they do not reflect accurate ground-truth
accuracies. This limitation is significant as it could potentially influ-
ence the perceived effectiveness of the population downscaling results
produced by both algorithms. A more robust validation method would
involve downscaling from the census block group level to the building
level, followed by aggregation to the census block level. This aggregated
data could then be compared against actual ground-truth survey data to
provide a more definitive assessment of each method’s accuracy.
Implementing such a method would allow for a more transparent and
precise evaluation of how these algorithms replicate known population
distributions, thereby offering more substantial contributions to the
population downscaling literature. Here are the specific limitations
identified in the approach used for the accuracy assessment in the
population downscaling study.

5.2.1. The assumption of building’s maximum occupancy threshold

We constrain the allocation algorithm by setting a maximum number
of people/households per building. This is based on the concept that
there is a positive correlation between building volume and population
density. Several studies have reached this conclusion. For example, in a
study by Zhao et al. (2017), they tested the relationship between pop-
ulation and built volume in four different cities in Texas, and the results
showed that in family-oriented mixed-use communities, there is a pos-
itive correlation between the relationship between building volume and
population size. In the study of Shahfahad et al. (2021), using satellite
image data and census data, they found through statistical analysis that
there is a strong positive correlation between population density and
built-up area area. It is true that we must admit that such a concept has
limitations and does not hold true in many cases. For example, in high-
income neighborhoods, a small number of people/households live in
large buildings. Zigba-Kulawik et al. (2020) used aerial orthophotos and
airborne laser scanning (ALS) point clouds to calculate the building
volume of Luxembourg City from 2001 to 2019, and conducted corre-
lation analysis with population data, and found that population and the
correlation of building volumes is dynamic. However, we were unable to
obtain detailed information on the population living in a specific
building from publicly available data to analyze the specific situation.
Therefore, our study is based on the consensus of many population
studies: population density is directly proportional to residential build-
ing volume.

5.2.2. POI and mixed type buildings

We faced the challenge of accurately handling and classifying mixed-
use buildings, which in reality may serve both residential and non-
residential functions. Given the nature of the non-residential POI data-
set on which we relied primarily, we adopted a methodological strategy
that was both practical and consistent with data availability to classify
possible mixed-use buildings.

Specifically, when a building geographically coincides with one or
more POI identified as non-residential uses, we classify it as a non-
residential building based on existing data limitations and simplified
analysis needs. This decision reflects the trade-offs researchers face
during the data collection and processing stages when faced with
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common situations of incomplete information and limited processing
capabilities. We recognize that this approach may not accurately reflect
the characteristics of all uses of a building, and particularly for buildings
with commercial space on the ground floor and residential above, this
classification may ignore the residential component of the building.

Although adopting this classification strategy increases the
simplicity and consistency of research operations, it may also have a
specific impact on the research results. For example, our analysis may
overemphasize buildings with non-residential uses, thereby affecting to
some extent the understanding of the distribution of uses in urban space.
In this regard, our study reveals an important data and methodological
limitation of current urban research and points to directions for further
exploration and improvement in future work.

Future research can improve the accuracy of building use classifi-
cation by introducing more detailed and comprehensive data sets, such
as combining real estate registration information, resident survey re-
sults, or using more advanced spatial data analysis techniques. This will
not only provide a more accurate classification of mixed-use buildings,
but also help researchers better understand the role and function of these
buildings in urban space, thereby providing richer insights for urban
planning and development.

5.2.3. The impact of dynamic population

We adopted a method focused on residential buildings to enhance
the granularity of population data. This method aims to simulate pop-
ulation distribution by identifying and analyzing residential buildings.
We recognize that while this approach has advantages in improving the
accuracy of population data in residential areas, it also has certain
limitations. Specifically, this method may not fully capture the living
situations in non-traditional living spaces (such as mixed-use buildings
with both commercial and residential functions), thereby affecting the
understanding of the complete picture of urban population distribution.
Additionally, the treatment and analysis of population data in this study
are based on static data benchmarked against census data, meaning that
our study lacks the ability to capture population dynamics. That is, the
population we study refers to people who reside permanently in their
own residential buildings and does not include those who live elsewhere
for extended periods or are frequently in a state of mobility.

Future research could start with data sources closer to population
mobility trends, such as mobile devices signal and social media, and
employ more advanced spatial analysis methods and population simu-
lation technologies to more accurately simulate population distribution
in urban area. This would enhance the study of dynamic changes in the
population within urban area, especially considering the emergence of
new living forms during urban development and their impact on pop-
ulation distribution.

5.2.4. Building height data and dynamic allocation methods

The inclusion of building height data represents a significant
enhancement in the accuracy of population distribution models. Urban
areas, particularly those with high-density housing, such as apartments
and high-rises, benefit substantially from this approach. Traditional
population estimation methods often overlook vertical spatial varia-
tions, leading to significant inaccuracies in densely populated areas. By
incorporating building height, we can assign population figures more
accurately across different floors and better reflect the actual distribu-
tion within urban landscapes. This approach improves the granularity of
population data and aids in urban planning and infrastructure devel-
opment, ensuring resources are appropriately allocated based on actual
population densities.

Our study aimed to use a static quadratic programming model to
optimize the allocation of resources based on predefined constraints and
objectives. This model is particularly beneficial for its efficiency and
stability in producing optimal and feasible solutions within the set pa-
rameters. However, one limitation of the static model is its inability to
dynamically adjust to real-time changes in input data, such as shifts in

Cities 152 (2024) 105223

population dynamics or urban development patterns. In future work,
exploring dynamic models that adjust allocations based on ongoing data
updates could be especially useful in rapidly changing urban
environments.

6. Conclusion

This paper introduces a novel framework aimed at enhancing the
resolution of population data, transitioning from the traditional census
block level to a more detailed scale—individual buildings—while inte-
grating relevant housing unit data. Utilizing the advanced Microsoft
Building Footprint dataset, LIDAR remote sensing techniques, and Point
of Interest (POI) data, this methodology meticulously compiles a
comprehensive and accurate building inventory.

Further, the study employs sophisticated Mathematical Formulation
and Monte Carlo Simulation methods to assign households to specific
buildings accurately. A comparative analysis of these techniques dem-
onstrates significant improvements in the accuracy and detail of the
resulting population distribution models, owing to the refined approach
of the former. The research presents an innovative method for fine-
grained population downscaling to the building level, offering sub-
stantial contributions to demographic research. This detailed perspec-
tive enables a more nuanced analysis of population dynamics and their
relationship with spatial distribution. It is particularly beneficial in
evaluating the effects of population growth and distribution on urban
infrastructure, services, and disaster resilience, thereby informing more
strategic urban development plans. Additionally, this integration is
crucial for optimizing resource allocation and enhancing risk manage-
ment, leading to more resilient and sustainable urban environments.
Such downscaled population data are invaluable for urban planners in
making informed decisions to improve urban livability and adaptability.

Regarding the allocation methodology, the study currently focuses
on population and household counts, acknowledging limitations in
attribute diversity. Future research directions include exploring sce-
narios that utilize a broader range of attributes for household and
population allocation, representing a multi-objective optimization
challenge that adds depth and complexity to the optimization process.
The density of residential structures within a census block significantly
influences the distribution of housing units and resident populations.
Data accuracy issues, such as missing building clusters within a block
group, can lead to population underestimation in those areas and
overestimation in others within the same census tract. Future research
should prioritize enhancing data accuracy in building inventories,
potentially leveraging advanced remote sensing techniques to achieve
this goal.
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