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Abstract
In the realm of survey research, establishing connections within large datasets remains a challenge. This study aims to unveil 
underlying connections within extensive survey data, emphasizing the need for a more integrated approach to decipher intri-
cate relationships among survey elements. Utilizing computational semantics, machine learning, and advanced spatiotemporal 
models, we developed an all-encompassing database. This novel database is adept at extracting and characterizing features 
from a multitude of survey studies, spotlighting relationships among metadata elements such as terms, variables, and topics. 
The derived relationships are systematically stored as connectivity matrices. These matrices not only quantify the degree of 
interconnectedness among features but also provide insights into their complex interplay. As a result, our system functions 
akin to a digital geographical data librarian. Beyond merely serving as a storage tool, this system facilitates interdisciplinary 
research. It equips researchers with the capability to discern connections between survey elements, enabling them to identify 
the most influential paths among features based on diverse criteria. Such a tool fosters cross-disciplinary integration and 
unveils potential ties between seemingly unrelated survey attributes, paving the way for breakthroughs in understanding 
and application.
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1  Introduction

Incorporating social survey research into the field of geo-
graphic information science is driven by two compelling 
reasons. Firstly, many spatially explicit challenges are inter-
connected with social factors, as they have both drivers and 
consequences within the social dimension. Secondly, com-
munity engagement and citizen response play a crucial role 
in shaping the research agenda of geography [1]. The toler-
ance and mutual understanding need to be fostered between 
social phenomena and their geographic context [2]. To fully 
comprehend the far-reaching consequences of human activi-
ties on climate and ecosystems, and the reciprocal feedback 
effects on human society within the framework of coupled 
human-earth systems (CHES), it is imperative for social 
scientists and earth scientists to mutually appreciate each 
other's perspectives [3]. This collaborative approach is vital 
for addressing the gaps and challenges in CHES modeling 
and advancing our understanding, ultimately paving the way 
for sustainable mitigation and adaptation strategies. Social 
scientists need to understand the objective of generating 
quantitative socio-economic projections and forecasts in 
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earth science, while earth scientists should recognize the 
unique perspectives and methodologies through which social 
scientists study human behavior and institutions [4]. It is 
essential to acknowledge the inherent challenges in predict-
ing human activities and choices. By fostering this interdis-
ciplinary collaboration, fruitful interactions between social 
and geographic phenomena can be achieved.

Since the development and application of probability 
sampling methods in the early twentieth century, surveys 
have become one of the most widely used data collection 
tools for empirical social science research on challenging 
issues on the earth [5]. Collected in a standardized form 
(e.g., questionnaires and structured interviews), survey 
data help social scientists gain new knowledge. Many sur-
vey researchers analyze secondary data collected by others 
because even for a relatively small sample size, high-quality 
survey data can be costly to collect, process, document, and 
curate. On the other hand, the research team that collects 
its own data usually designs the survey to address specific 
research questions and is often limited in its capacity to fully 
explore the potential use of the data. Therefore, the dis-
semination of survey data for public use not only improves 
transparency and replicability in social science research but 
also allows secondary data users to collectively exploit the 
full-scope scientific value of each dataset. Finding the right 
existing survey for secondary analysis is crucial. Secondary 
data users must draw on extensive literature reviews and 
their own prior research experiences to identify one or more 
candidate surveys. It may take months, if not years, for a 
researcher to develop a decent working knowledge about the 
strengths and weaknesses of a candidate survey and proceed 
with data analysis. This labor-intensive and time-consuming 
data search process can be substantially shortened with the 
help of large data archive centers.

However, despite many existing tools to promote effective 
data use at these data archive centers, data search remains 
largely a time-intensive process which requires research-
ers to choose certain search keywords or browse surveys 
by certain subject categories pre-defined by archivists [6]. 
A fundamental challenge is how to better harness the rich 
data from multiple surveys that cut across existing discipli-
nary boundaries to inform the development of new theory 
and hypothesis testing. A social scientist may quickly iden-
tify candidate survey data on a research topic in line with 
his/her research interest and expertise after a few keyword 
queries. However, relying on a certain data archive alone, 
he/she is probably limited in his/her capacity to discover 
other features potentially related to the same topic across 
surveys of various disciplinary backgrounds or to pinpoint 
the optimal influence chain linking two potentially related 
research topics across different surveys. A classic exam-
ple is the social research on the association between racial 
segregation and racial inequality in America since the late 

nineteenth century. Within the discipline of sociology alone, 
this research inquiry can be traced back to as early as the 
beginning of the twentieth century when suggested that 
racial residential segregation could affect social interaction 
between whites and blacks in harmful ways. It is through 
more than one hundred years of constant research efforts 
that we are getting better at mapping out various, compli-
cated pathways linking racial segregation to racial inequality. 
Residential segregation leads to a concentration of impover-
ished neighborhoods occupied by minorities who are faced 
with limited job opportunities, thereby giving rise to eco-
nomic inequality between whites and racial/ethnic minori-
ties [7]. In addition to poverty, racial residential segregation 
can also affect racial inequality by eroding social capital 
and collective efficacy which in turn increases the rates of 
homicide and other violent crimes [8]. Growing up and liv-
ing in segregated neighborhoods expose children of racial/
ethnic minority origins to an elevated level of chronic stress 
which can undermine their cognitive development [9] and 
academic performance [10]. The resulting racial inequality 
in human capital accumulation during childhood is likely to 
last, if not amplify, into racial inequality in socioeconomic 
status in adulthood. More importantly, these mechanisms 
are often intertwined with each other to either reinforce the 
preexisting condition of inequality or create a new source of 
inequality. It would be time-consuming for a researcher who 
only specializes in one aspect of racial segregation (say, the 
effect of racial segregation on concentrated poverty) to factor 
in chronic stress or food environment as intermediate vari-
ables in the causal chain between segregation and poverty.

Hence, a new data tool is needed to assist researchers in 
efficiently identifying as many logically sound pathways as 
possible from voluminous existing data and published stud-
ies. Most importantly, the new tool needs to have the capac-
ity to offer, through data mining, new possible pathways for 
hypothesis testing. For example, neuroscience research has 
discovered a moderating role of social and racial contexts 
in the long-term effects of past event-related face recog-
nition on affective reactions to people during subsequent 
encounters [11]. Such research may provide new insight into 
the neuroscientific basis of racial prejudice and discrimina-
tion but may not catch sociologists’ attention in a timely 
fashion. Through its computationally efficient search of the 
published scientific database, the new data tool may quickly 
detect such an implicit connection between the neuroscience 
research and sociological research on race/ethnicity and pro-
vide a recommendation to its users to embark on testing the 
new hypothesis.

The discovery of complementary but disjointed lit-
erature is known as literature-based discovery. Literature-
based discovery aims to assist researchers in generating 
meaningful hypotheses by mining the implicit relationships 
between terms in the literature. This field was pioneered by 
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Swanson’s work starting from the late 1980s [12–14]. Gen-
erally, the literature-based discovery process starts with the 
extraction of terms or concepts. The terms or concepts might 
come from an existing knowledge base or be automatically 
extracted by techniques such as semantic filtering or cluster-
ing. The similarities between the terms or concepts are then 
computed using a variety of techniques, including lexical 
analysis, citation analysis, bibliographic coupling methods, 
clustering, or heterogeneous bibliographic information net-
work, etc. [15]. Traditionally, the results are presented to 
the users with related terms. However, influence chains that 
represent a complex chain of intermediate terms could also 
be extracted. The past thirty years have seen increasingly 
large and diverse datasets for extracting terms and measuring 
similarities. At the same time, progressively more automated 
and complex algorithms have been investigated to deal with 
these data. However, most connectivity matrices, which are 
among one of the core components for building the influ-
ence chains, were built on the static data structure, instead of 
the dynamic data structure. Currently, two main approaches 
exist: (1) process data from third-party databases offline, 
which cannot incorporate dynamic updates; and (2) retrieve 
related datasets at query time, which cannot reflect accurate 
term correlations of the entire database. The semantic relat-
edness in the connectivity matrices could be calculated from 
the metadata, or other data sources including Wikipedia and 
Wordnet, but there is no systematic investigation on weight-
ing different sources. Besides, it is crucial to leverage user 
feedback to adjust the term relatedness adaptively from user 
interactions through machine learning techniques. The third 
limitation is that most connectivity matrices were built on 
simple network structure, which is less efficient for computa-
tion of optimized influence chains with big data. Three chal-
lenges relate to these limitations: (1) Weighted connectivity 
matrix, semantic relatedness could be measured from dif-
ferent data sources, as well as user experience; (2) Dynamic 
updates, online search based on dynamically updated sur-
vey collections; and (3) Computational efficiency, multiscale 
connectivity matrices for efficient computation.

2 � Literature review

2.1 � Term extraction from textual data

Term extraction is the process of automatically extracting 
key and topical terms from documents. The central issue of 
term extraction is to determine correct terms from a large 
number of candidate terms. The candidate terms are typi-
cally selected through simple methods such as stop-list, part-
of-speech tags, or n-grams. Researchers have investigated 
both supervised and unsupervised approaches to address this 
issue. The supervised approach relies on designed features 

including statistical, structural, or syntactic features [16]. 
Some researchers tried integrating external resources to con-
struct features. Wikipedia is the most used reference source 
[17]. Unsupervised approaches include graph-based rank-
ing, topic-based clustering, and language modeling [16]. 
Many tools have emerged for term extraction, but issues still 
exist, such as incorporating appropriate background knowl-
edge, handling long documents, and improving evaluations 
[16]. In practice, a big challenge of building a user-friendly 
search system is the existence of synonyms. Automatically 
discovering synonyms has been an active topic in natural 
language processing tasks. The difficulty of synonym dis-
covery mainly comes from context.

2.2 � Connectivity matrix and semantic similarity

The connectivity matrix is essentially a matrix of semantic 
similarity measures between terms in surveys. Similar to a 
spatial connectivity matrix that defines the spatial connec-
tions among different addresses, a conceptual connectivity 
matrix defines the conceptual connections among different 
terms. The connectivity matrix can be formulated as a graph 
for calculating optimized chains between terms. The element 
in the matrix represents the semantic similarity between 
features. The most commonly used computation methods 
include correlation-based relevance, such as Pearson correla-
tion, and vector cosine-based relevance [18]. The relevance 
calculation is highly domain-specific in terms of the features 
considered in the calculation and associated weights. For 
survey metadata, the features may include title, summary, 
subject, space, time, related publications, and so on. The 
vectors for each feature can be computed by using infor-
mation retrieval methods such as TF-IDF, topic modeling 
methods such as Latent Dirichlet Allocation (LDA) [19].

Measuring the semantic relatedness between documents 
or terms has been one of the main themes in computational 
linguistics since the 1990s [20]. Researchers have developed 
various types of methods for computing the semantic relat-
edness, including graph-based approaches such as normal-
ized path length, or the context-based approaches such as 
co-occurrence methods, or information theoretic methods. 
Applications of semantic similarity includes online data 
sources such as Wikipedia [21], knowledge graphs [22, 23], 
or specific domains such as biomedical science [24]. The 
knowledge resources used to measure the semantic related-
ness include the linguistically constructed data sources such 
as WordNet, and collaboratively constructed sources such as 
Wikipedia. Researchers have also started to investigate the 
use of knowledge graph (such as DBpedia) to compute the 
semantic relatedness [23]. An evaluation of different meas-
ures is given in [25].

Although many different measures exist, choosing the 
right measure could be problematic in practice without 
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proper weighting and adjustment. Given the diversity and 
volume of the terms, it’s not possible to ask researchers 
explicitly to weight different measures because it’s time-
consuming and expensive. Thus, it is crucial to collect the 
implicit feedback from users who interact with the system 
and adjust the weighted connectivity matrix accordingly. 
This process of learning from user input to adjust internal 
knowledge is studied well in the community of recom-
mender systems [26]. Generally there are two categories of 
recommender algorithms, collaborative filtering that learn 
from user interest of items, and content-based filtering that 
break down an item in terms of its attributes. How to effec-
tively integrate implicit user feedback and knowledge about 
Mixed similarity learning to solve the issue of data sparsity 
from relying on single data source, including heterogeneous 
information network [27], collaborative deep learning [28], 
heterogeneous-constraint item similarity model [29], and 
mixed similarity learning [30].

2.3 � Identification of influence chains 
in literature‑based discovery

The identification of influence chains is conceptually finding 
paths between two terms. Pathfinding algorithms such as the 
Dijkstra’s algorithm have been applied to numerous stud-
ies and applications across a wide array of disciplines. For 
example, people have used the pathfinding functions daily on 
their mapping services. Pathfinding in knowledge discovery 
has been commonly used to measure concept similarity [31]. 
In literature-based discovery, researchers have envisioned 
the extension of the Swanson ABC model, incorporating 
higher-order co-occurrences to allow more than one interme-
diate term [32]. Recent years have seen growing interest in 
this direction. Wilkowski et al. (2011) suggested a discovery 
browsing method that guides users’ search chains between 
two concepts through graph analysis [33]. Song, Heo, and 
Ding (2015) proposed a semantic path analysis method to 
enable the generation of possible hypotheses from biological 
terms [34]. Hahn-Powell, Valenzuela-Escárcega, and Surd-
eanu (2017) introduced a graph-based approach to identify-
ing influence relations from publications, which allows users 
to explore direct and indirect influence chains [35]. Most 
of these studies have been focused on biomedical applica-
tions, but interest in this direction has also started to emerge 
among researchers in other fields. For example, researchers 
have investigated heuristic algorithms to identify semantic 
chains between concepts in Wikipedia [36].

2.4 � Knowledge graph storage and search

Resource Description Framework (RDF) has been widely 
used for decades in the applications of the Semantic Web, 
which is a W3C standard to define resources and their logical 

relationships [37]. RDF has several data models, for exam-
ple, triple store, C-store (or column store), property tables, 
and graphs. RDF data are usually represented by either RDF 
triples (in the form of < subject, predicate, object >) or RDF 
knowledge graphs. Examples of RDF graph data include 
DBpedia [38], YAGO [39], Wordnet [40], and so on.

Due to the large size of the multi-scale connectivity 
matrices, graph partitioning can be employed to reduce the 
space cost of large and sparse connectivity matrices. Tech-
niques of distributed storage systems [41] and sparse matri-
ces [42] can be leveraged in the graph partitioning process.

3 � Method

An integrated approach for discovering the linkages can be 
suggested among big survey data (Fig. 1). A large-scale inte-
grated database with terms extracted from survey studies 
can be developed by applying computational semantics and 
machine learning. The database can capture the relations 
of multiple terms embedded in the survey metadata. These 
relations can be stored as multi-scale connectivity matri-
ces that measure the relatedness between terms considering 
complex sematic relationships. The online tool can function 
as a digital data librarian and help facilitate interdisciplinary 
research by enabling investigators to identify the optimized 
influence chains between terms based on different criteria. 
Those influence chains link terms based on the hierarchi-
cal structure of subjects. Terms are linked further to sur-
vey studies, as well as related authors and publications, in 
a hierarchical and network structure. This can enable the 
generation of a broad range of novel research questions and 
scientific hypotheses in a much more efficient and flexible 
way than previous approaches.

3.1 � Term extraction from textual data

A survey usually contains the following types of features: 
title, summary, subject terms, space, time, related publica-
tions, and variables. Each subject term also links to a group 
of studies that contain the same subject. Space (geographical 
coverage) is represented with a list of place names and can 
be linked to administrative entities on different levels. Time 
is represented as a single year or a range of years. Related 
publications are normally structured in a standardized tag 
format such as RIS, or BIB that includes authors, organi-
zations, and other related information. Each variable also 
contains the source and description.

Formally, we denote a survey s from all surveys S as a 
group of features s = {A, G, T, P, V}, where A is a list of sub-
jects A =

{
a1, a2,… , an1

}
 , G is a list of administrative units 

G = {g1, g2,… , gn2} , T is a list of dates T = {t1, t2,… , tn3} , 
P is a list of related publications P = {p1, p2,… , pn4} , and V 
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is a list of variables V = {v1, v2,… , vn5} . All objects in a fac-
tor also belong to s. For example, a subject ak in A belongs 
to s, denoted as ak ∈ s.

We can extract terms from the variable description. This 
is easier than extracting terms directly from survey forms, 
since the latter is basically unstructured text, and can easily 
lead to an explosion of terms. We can combine a stop word 
list, part-of-speech-tags, and pre-defined lexico-syntactic 
patterns to select candidate terms, and then apply existing 
graph-based ranking methods or machine learning algo-
rithms for term extraction. After the terms are determined, 
we can identify synonyms in the terms using synonym dis-
covery algorithms adapted to the context of survey variable 
descriptions. Formally, each variable vk corresponds to a set 
of terms Cvk

 . The entire term set C for a survey s is decided 
by taking the union of Cvk

 for all variables. A term ck in C 
is said to belong to s, denoted as ck ∈ s . The term set can 
be subsequently compiled into a multi-scale term structure 
considering the subject hierarchy.

3.1.1 � Challenges

Term extraction is not trivial due to issues such as the entity 
resolution, deduplication, and removing the ambiguity of 

terms in different contexts. The multi-scale term structure 
needs to be validated by professional curators with domain 
expertise.

3.1.2 � Research directions

We can combine automated tools and experience from pro-
fessional curators. The human-detected analyses based on 
the experience provided a contextual understanding and 
validation of the machine-detected findings. The existing 
thesaurus from targeted application fields can be leveraged 
to build the multi-scale term structure.

3.2 � Connectivity matrix construction

The construction of a connectivity matrix between differ-
ent terms is a key part, which lays the foundation for graph 
formulation and calculation of optimized influence chains 
[43]. We consider the term-to-term matrix MT . Since the 
terms are extracted from variable descriptions, each term 
reversely corresponds to a set of variables, which are 
related to several survey studies, and subsequently related 
to other terms such as subjects or publications. This chain 

Fig. 1   The flowchart diagram
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of mediating relations makes it possible to calculate the 
term-term similarities through these other features.

This proposed framework can consider six measures 
of the connectivity strength between two terms ci and cj , 
using various measures:

The Binary measure determines the relationship based 
on the presence of both terms in a study. if 
∃s ∈ S, ci ∈ s

⋀
cj ∈ s , MTij

= 1 , otherwise MTij
= 0 . This 

approach results in a sparse matrix, offering clarity to 
users by indicating that terms are related only if they co-
occur in a study.

The Frequency-based measure calculates MTij
 as the 

count of instances where both terms ci and cj appear 
together in a study across all studies S.

For the Similarity-based measure, MTij
 represents the 

similarity between terms. This similarity is computed 
using cosine similarity with TF-IDF vectors. Here, each 
term c corresponds to a list of surveysSc . If the term c 
appears k times in a survey s, s will appear k times inSc.In 
essence, we treat terms as documents that contain multiple 
survey studies as words in information retrieval. Thus, tf(s, 
c) represents the number of times that survey s appears 
inSc , whereas idf(s, C) = log

|C|
|{c∈C,s∈Sc}| . The TF-IDF vec-

tor Qc = tf(S, c) ⋅ idf(S, c) . The cosine similarity between 
ci and cj is then defined as cos (θ) =

Qc1
⋅Qc2

Qc1
Qc2

.

The Weighted Similarity-based measure extends the 
similarity-based approach by considering a weighted aver-
age of multiple features, including time, survey studies, 
and related publications.

The Supervised Approach involves constructing mul-
tiple machine learning features from survey metadata. Ini-
tially, a subset of terms C′ is randomly selected from all 
terms C. The similarity between terms in’C’ is then rated 
using a fixed integer scale, such as 0 to 10. These ratings 
serve as training samples. Features derived from the sur-
vey metadata include statistical features like TF-IDF vec-
tors, syntactical and lexical features, and knowledge-based 
features from external sources like WordNet Similarity. 
A machine learning model, such as logistic regression, 
is trained using these features, and the values in MT  are 
predicted based on the best-performing model.

Lastly, the Word Embedding-based measure employs 
Word2vec models trained on variable descriptions from 
all surveys. The model generates a similarity vector V for 
each word in the input text, allowing for the identification 
of MTij

 in the vector for either term ci or cj.
We can evaluate the efficiency and effectiveness of 

these six types of matrices in both user studies and online 
experiments. We can provide users with the option and 
flexibility to select different types of matrices, so that 

the similarity of the selected type between two terms (or 
through an optimized chain) can be calculated.

In practice, the connectivity matrices can be very sparse, 
but of large scale (with many terms). We can study how to 
partition the sparse matrix to reduce the space cost. Spe-
cifically, the connectivity matrix can be equivalently repre-
sented by a graph where vertices are terms, and edges are 
associated with weights, indicating the similarities between 
any two terms (vertices). Therefore, we can also design 
effective cost-model-based graph partitioning algorithms to 
divide a large graph (matrix) into smaller subgraphs (small 
partitioned matrices) and reduce the storage space of con-
nectivity matrices.

3.2.1 � Challenges

The challenges of constructing connectivity matrices lie 
with both the computation and storage. For the compu-
tation of the first four types of connectivity matrices, the 
naïve approach is to calculate the relevance or similarity 
between all terms sequentially. However, this method is 
time- and space- inefficient given a large number of terms. 
The machine learning models for the fifth and sixth types 
can not fit in a single machine either. Therefore, the problem 
of how to leverage cloud computing techniques to effectively 
compute large-scale connectivity matrices is a challenging 
issue. The storage of connectivity matrices is also challeng-
ing, especially when the number of terms is large. What is 
more, due to the sparseness or skewness of survey data, we 
may not be able to identify accurate similarity between any 
two terms (even if we apply advanced similarity measures/
approaches). Therefore, it is also challenging how to effec-
tively compute “good” similarity scores among terms.

3.2.2 � Research directions

Observing the large-scale and data sparsity of connectivity 
matrices, we can design effective data partitioning tech-
niques to divide the survey studies and/or publications. 
Then, instead of constructing a single large and sparse 
matrix, we can construct offline multiple small connec-
tivity matrices (equivalently, partition a large graph from 
each connectivity matrix into subgraphs, based on our 
devised cost model) for those (highly correlated) terms 
over surveys/publications. In addition, we can also main-
tain the similarities among small connectivity matrices, 
which can support fast online retrieval of term similarity 
across surveys. When the smaller connectivity matrices 
are still of large scale, we can further perform the data 
partitioning recursively and obtain a finer resolution of 
matrix data, forming a hierarchical multi-scale structure. 
To allow the storage and processing over large scale matrix 
data, we can leverage cloud computing to deploy the data 
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partitions (e.g., partitioned connectivity matrices in differ-
ent scales) to different servers, and design novel parallel 
and distributed algorithms (e.g., following the MapReduce 
framework) to efficiently compute and query connectivity 
matrices. To facilitate efficient data retrieval during the 
cloud computing, we can develop space-efficient indexes 
for matrices to efficiently access/retrieve the data on server 
nodes, and utilize data compression methods to summarize 
and transmit the output matrix, which can significantly 
reduce the communication cost over the network during 
the cloud computing of connectivity matrices.

In order to accurately estimate unbiased similar-
ity scores among terms, in addition to survey data, we 
can explore other data sources such as knowledge bases 
(e.g., Wikipedia, WordNet, etc.), and consider incorporat-
ing similarity values among times in these external data 
sources to compute unbiased similarity measure. Specifi-
cally, given any two terms, we can obtain their different 
similarity values, from different similarity measures/
approaches (e.g., as discussed above) and data sets (includ-
ing surveys and external data sources). Then, we can use 
a machine learning approach to find appropriate weights 
for weighing these similarity values and calculating a 
final similarity score. The input of the machine learning 
problem is a number of similarity values from different 
data sources or approaches, whereas the output is a set 
of expected final similarity scores for pairs of terms. We 
can train the learning process by providing user feedback 
about final similarity scores and back propagate the errors 
to adjust parameters during the learning process. Finally, 
we can use this machine learning approach to derive simi-
larity scores for pairs of terms, which can be used for data 
analytics over survey data.

3.3 � Large‑scale knowledge graph integration

We can utilize the extracted terms from survey metadata 
to construct knowledge graphs from connectivity matri-
ces. Specifically, for the metadata of surveys (e.g., terms 
extracted from survey metadata), we obtain a knowledge 
graph where each vertex is a term, and each edge between 
any two vertices corresponds to the relationships of two 
terms [44]. In future research, survey contents (e.g., survey 
answers) can also be leveraged to construct the knowledge 
graph, where each answer to a survey can be represented 
by a knowledge graph, and each node is a survey question 
that is associated with both question and answers terms 
(keywords), and each directed edge between two nodes 
represents the relationship of two survey questions (e.g., 
if the answer is yes, then skip to the answer associated 
with Question 10).

3.3.1 � Metadata for survey knowledge graphs

In order to integrate surveys into a single database, we can 
first construct a meta-knowledge graph for each survey study. 
Since different survey studies use distinct sets of terms (with 
different relationships among these terms), we obtain the 
meta-knowledge graphs of different graph topologies. Due 
to the heterogeneity of survey data, we then merge these 
meta-knowledge graphs into a single large-scale meta-graph. 
That is, those vertices from distinct graphs but with the same 
vertex labels (i.e., terms) can be merged together (each 
vertex is associated with term sources). If two edges from 
two different graphs connect the same two vertices, then 
edges are merged, but associated with a multi-set of weights 
from 2 graphs (as well as survey sources of edges). Here, 
the weights of the edges can be obtained from offline pre-
computed multi-scale connectivity matrices, as mentioned 
in Sect. 2.2 (in the case that they are not stored due to the 
data partitioning, we can compute the weight online, that is, 
the similarity between two terms).

Due to dynamic updates of survey data, the metadata for 
survey knowledge graphs are also subject to changes. Upon 
the arrival of new surveys, we can first construct the meta-
knowledge graph for those new surveys, and then incorpo-
rate them into the existing meta-graph.

3.3.2 � Challenges

The integration of survey data is challenging. Each survey 
tends to have many variables. It is not time- and space- effi-
cient to perform the data fusion over large-scale heteroge-
neous graphs. Most importantly, it is also challenging to 
guarantee the accuracy of the graph data integration. Moreo-
ver, it is non-trivial to determine how to efficiently update 
meta-knowledge graphs with a large amount of new survey 
data in a batch.

3.3.3 � Research directions

We can use database techniques to handle large-scale survey 
data integration. Moreover, to ensure the reliability of the 
integrated survey data, we can also apply a probabilistic data 
model to the meta-knowledge graph by inferring confidences 
that two vertices from different meta-graphs represent the 
same terms in different contexts. We can design efficient 
batch algorithms to update meta-knowledge graphs from 
new survey data.

3.4 � Graph query processing

We can study a number of important graph queries, as 
well as personalized search recommendation queries, over 
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large-scale integrated survey data (modeled by meta knowl-
edge graphs) [45].

3.4.1 � Survey recommendation queries

We can consider the personalized search recommendation 
(or prediction), with the help of our integrated big survey 
data. Specifically, according to our integrated meta knowl-
edge graphs for surveys, we can infer the correlations (or 
co-occurrences) of a term/subject from other terms/subjects, 
which may potentially release some research potentials in 
social, behavioral, and economic research.

For example, if two terms “education” and “salary” 
appear frequently in surveys, it may imply that these two 
topics are correlated and worth studying. On the other hand, 
instead of obtaining the knowledge what existing surveys 
study, we can also recommend new knowledge about which 
topics have not been frequently investigated before, which 
might be a potential research direction, or guide the design 
of new surveys.

Inspired by the examples above, we can incorporate the 
domain knowledges of survey, social, behavioral, and eco-
nomic research, and formalize novel personalized search 
recommendation (or prediction) queries over large-scale 
survey data to estimate the correlations among survey terms/ 
subjects/topics for researchers, and predict future survey 
research topics. Formally, we give the definition of the sur-
vey recommendation query below.

Definition 3.1  (Survey Recommendation Queries). Given 
survey meta knowledge graphs, G, a query keyword, k, an 
integer parameter l for surveys, and a ranking function r(k1, 
k2), a survey recommendation query obtains l keywords 
(terms, subjects, topics, etc.), k', that have the highest or 
lowest ranking scores r(k, k') over surveys.

Intuitively, in Definition 3.1, we consider top-l keywords 
that have the highest or lowest correlations with the query 
keyword k in a query region Q within a period of time I, 
which may potentially indicate hot field research or unex-
plored research directions, respectively.

3.4.1.1  Challenges  Due to the large-scale of graph data, it 
is challenging to efficiently and effectively manipulate large 
knowledge graphs, and estimate/predict the inherent cor-
relations among keywords (e.g., terms/subjects) for large-
scale survey data. The straightforward method is to online 
compute the ranking scores for every pair (k, k'), and iden-
tify the ones with highest/lowest ranks, which is however 
rather inefficient.

3.4.1.2  Research directions  We can explore and design 
efficient big data techniques (e.g., the MapReduce frame-

work) to enable intensive ranking score computations over 
large survey graph data. Most importantly, we can use effec-
tive pruning strategies (e.g., by using lightweight pruning 
methods w.r.t. lower/upper bounds of the ranking scores) 
to reduce the search space of the survey recommendation 
query.

3.4.2 � Influence chain queries

Next, we study influence chain queries over large-scale 
integrated survey data (modeled by knowledge graphs). 
Intuitively, we would like to identify the optimized influ-
ence chain between two potentially related, but not directly 
related, terms in surveys, which is very useful for research-
ers to discover how important and through which chain two 
terms are related to each other.

As an example, given two terms, “residential segrega-
tion” and “income inequality”, researchers are interested in 
knowing the connection chain (relationship) between these 
two demographic and economic phenomena across differ-
ent surveys. There may be more than a single connection 
chain since the relationship between racial segregation and 
income inequality may vary in both space and time. For 
example, African American neighborhoods remained highly 
segregated until the 1990s when hypersegregation started 
to become less common with rising income. In contrast, the 
passage of the 1965 Immigration Act led to large inflows of 
Hispanic and Asian immigrants whose segregation levels 
ranged from low to high. Hispanic and Asian neighborhoods 
have experienced notable socioeconomic improvement since 
the 1970s, thereby reducing Hispanic-white and Asian-white 
neighborhood inequality [46]. Nevertheless, in areas with 
a large concentration of undocumented migrants, the level 
of segregation between, in particular Hispanics and whites, 
has actually increased [47]. One may find different chains 
between these two topics in our proposed survey knowledge 
graphs. We can provide researchers with the most convinc-
ing chains that can best describe the transitive relationships 
between two topics.

Definition 3.2  Given survey meta knowledge graphs G, a 
source keyword, ks, a destination keyword, kd, and a score 
function score(P) of any chain P, an influence chain query 
obtains optimized chains P, between keywords ks and kd in 
survey knowledge graphs G, such that for any other chains 
P' between ks and kd, we have score(P) > score(P').

In Definition 3.2, the score function score(P) of chain P 
can be given by factors such as the summation of the rel-
evance of edges on chain P, (the inverse of) the shortest path 
distance, the summation of co-occurrence frequencies on 
edges of chain P, and so on. The influence chain query aims 
to obtain the path with the highest score, which indicates the 
one with the strongest transitive relationships between topics 
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ks and kd. Note that, this problem can be also generalized 
to the one where users can select a few important topics 
(in addition to source and destination topics) that influence 
chains must pass through.

3.4.2.1  Challenges  To efficiently tackle the influence 
chain problem, there are several major challenges. First, 
the connectivity matrices in Sect.  2.2 give many met-
rics to define meaningful and effective score functions, 
score(P), to measure the relationship between two terms 
on the chain. What is more, different score functions may 
even conflict with each other. For example, a chain with 
high relevance may have low co-occurrence frequencies 
of edges on the chain. It is thus very challenging to deter-
mine how to select the best, or at least not the worst, score 
functions for research studies.

Second, on large-scale survey knowledge graphs, there 
are many possible influence chains between the source and 
destination terms. It is not efficient to enumerate all of these 
chains and calculate their corresponding scores.

3.4.2.2  Research directions  Since it is possible to have 
multiple, and sometimes conflicting, score functions that 
may determine the relevance of the chain, we can alterna-
tively consider the idea of the skyline. In particular, each 
chain P is associated with a score vector V(P), in which 
each element V(P)[i] contains a score given by a distinct 
score function scorei(P). Then, the skylines of chains are 
those chains P whose vectors V(P) are not dominated by 
other chains, where a chain P1 dominates another one P2, 
if (1) V(P1)[i] ≥ V(P2)[i] holds for all dimensions i, and (2) 
V(P1)[j] > V(P2)[j] holds for some dimension j. In this way, 
we can solve the problem of conflicting score functions 
and return chains that are better than others in at least one 
dimension (with respect to a score function).

Furthermore, to tackle the influence chain query over 
large-scale graphs, the cloud computing (i.e., via MapRe-
duce) can be adopted to distribute survey graphs, connec-
tivity matrices, and queries to multiple servers and enable 
fast computation. In particular, effective graph partition-
ing algorithms can be designed to divide large-scale sur-
vey knowledge graphs into disjoint/overlapping subgraphs, 
based on a cost model. Then, distributed pre-computation 
techniques can be devised for scores of edges in graphs (e.g., 
pre-computing scores w.r.t. surveys in the US and in 2016), 
which can be used for online score retrieval and pruning 
false alarms while answering the query. Moreover, prun-
ing mechanisms can be designed to reduce the search space 
of the problem, for example, by using lower/upper bounds 
of ranking scores or applying the pruning with dominances 
among distinct chains. Finally, cost-model-based indexing 
mechanisms can be used to facilitate efficient processing of 

cloud-based influence chain algorithms under the MapRe-
duce framework.

3.4.3 � Survey keyword search queries

Furthermore, we can investigate the keyword search queries 
over survey graphs. That is, given a set of query keywords, a 
survey keyword search query retrieves a number of surveys 
that contain all query keywords, as well as the relationships 
among these surveys (i.e., the graph structures), where the 
query keywords can be terms, subjects, topics, research 
fields, literature, space, and time.

Definition 3.3  (Survey Keyword Search Queries). Given 
survey meta knowledge graphs, G, a set of query keywords, 
K = {k1, k2, …, kn}, and a score function f(.) for evaluating 
the goodness of the returned subgraph answers, a survey 
keyword search query obtains a subgraph g of G (i.e., g ⊆ G), 
such that (1) vertices of subgraph g contains all query key-
words in K, and (2) a score function f(g) for subgraph g is 
minimized.

As given in Definition 3.3, the survey keyword search 
query returns a subgraph g of survey knowledge graphs G 
such that this subgraph contains all the n query keywords 
and the returned subgraph is the best one in terms of the 
score function f(g). Here, the score function f(g) can be the 
number of edges in subgraph g, or the summation of co-
occurrences associated with edges in subgraph g, and so on. 
We can investigate the best score function that fits research-
ers' requirements in different fields.

3.4.3.1  Challenges  One straightforward method is to 
search the entire meta knowledge graphs, and identify all 
subgraphs with vertices satisfying the keyword constraints. 
Then, we find the best subgraph with the minimal score f(g). 
However, this method is quite inefficient, since there are an 
exponential number of possible subgraphs (especially, in the 
case where survey graphs are of large scale). The keyword 
search problem is usually NP-hard in the literature, which is 
challenging to tackle.

3.4.3.2  Research directions  We can design novel index-
ing mechanisms for organizing terms, subjects, topics, etc. 
and facilitating the speed-up of fast keyword search over 
knowledge graphs. Most importantly, due to the hardness of 
the survey keyword search query, we can develop efficient 
approximation algorithms (e.g., greedy algorithms or sam-
pling methods) for processing this typical keyword search 
problems over the integrated survey graph data.

Continuing the aforementioned research on racial segre-
gation and inequality, a classic example is Thomas Schell-
ing’s [48] model, in which he demonstrated that individuals’ 
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uncoordinated, modest in-group preferences would collec-
tively result in the highly segregated residential pattern 
at the macro level. Such models of micro–macro linkages 
have been termed as “generative” social science research 
since they combine theoretical and computational models to 
explain the emergence of macro societal regularities (e.g., 
norms, collective actions, and epidemics) from the behav-
ior of interdependent micro-level agents. These generative 
models are theoretically-driven, highly dynamic and often 
involve feedback loops and interdependent nonlinear pro-
cesses. One recent study used an agent-based model to show 
that urban slums emerge as a result of interactions between 
multiple human agents (families, real estate developers, and 
politicians) and multiple aspects of the environment (hous-
ing sites, electoral wards, economic growth, and popula-
tion migration) [49]. Another study also used simulation 
experiments to examine to what extent racial disparity in 
diet behavior could be reduced by improving the quality of 
neighborhood schools and to what extent the reduction in 
racial disparity might depend on the presence or absence of 
social influence, as well as healthy versus unhealthy social 
norm. We can build on the recent advance in studies of com-
plex systems to derive generative models that link micro-
level behaviors and macro-level population phenomena from 
data mining of the survey data archives. The tool can help 
identify possible influence chains between different agents 
and help researchers understand the complex structure of the 
system. Users can search optimized influence chains with 
related surveys and terms from these two input terms.

3.5 � Visual analytics of knowledge graphs

Owing to the vast scale of the survey knowledge graphs with 
which we engage, comprehending and discerning the intui-
tion behind the survey data can be challenging. A practi-
cal approach is the visualization of these knowledge graphs 
through interactive visual interfaces. Specifically, as each 
survey captures responses from individuals across various 
geographical regions and different years, a potent tool is 
the temporal and spatial mapping of survey data. This can 
be done by assigning different colors to represent specific 
statistics. Such a visual representation provides researchers 
with a lucid understanding of the intrinsic survey data. It 
can assist them in discerning the relationships between two 
topics within the knowledge graphs, identifying anomalies 
or unusual events, grasping public behavioral responses, 
and more. Additional features of visual analytics encompass 
delving deeper into the survey data, visualizing responses 
based on specific keywords, displaying answers to personal-
ized survey recommendation queries, and survey path que-
ries, as alluded to in the preceding subsection.

We can create a visual analytics module tailored for 
survey knowledge graphs. This will grant researchers the 

ability to visualize survey data across various dimensions, 
such as spatial, time, term, variable, topic, and many more. 
Our aim is to design an intuitive visual interface, allowing 
users to easily browse, interact with, and inquire about sur-
vey data. Additionally, our portal lets researchers save and 
share their impact paths. This not only facilitates learning 
from one another but can also spark new research ideas and 
pave the way for future surveys. When a user opts to share 
an impact path, it will be categorized based on the surveys, 
terms, and subjects within that path. As a result, when other 
users search for a specific term, subject, or survey study, the 
relevant impact paths will be suggested to them.

4 � Discussion and conclusion

Further avenues of research could concentrate on the devel-
opment and refinement of survey methodologies. In-depth 
exploration of search result quality assessment merits 
closer scrutiny. To enhance the user experience and inter-
face design of the survey data analytics tool, research efforts 
should be directed toward understanding user preferences, 
needs, and behaviors, which can lead to the creation of more 
user-friendly and efficient tools that facilitate seamless data 
exploration and analysis. Additionally, the investigation of 
cloud computing platforms' potential benefits can be pursued 
to enhance the scalability and accessibility of survey data 
analytics. Optimizing the framework's performance will be 
essential to efficiently handle large-scale datasets. Encour-
aging interdisciplinary collaboration is vital for fostering 
partnerships and facilitating knowledge exchange.

Utilizing insights derived from survey data can lead to 
evidence-based decision-making, better understanding of 
public perceptions, and improved assessment of intervention 
impacts. To foster transparency, replicability, and collabora-
tion within the research community, policymakers should 
advocate for open data policies that enable easy access to 
and sharing of survey datasets. Furthermore, policymakers 
can play a crucial role by providing funding for the develop-
ment and implementation of cloud computing platforms and 
advanced technologies that facilitate survey data analytics. 
This investment can significantly enhance the scalability and 
effectiveness of survey data research. To ensure researchers, 
practitioners, and policymakers are well-equipped to utilize 
survey data analytics effectively, it is essential to invest in 
training programs and capacity building. Facilitating col-
laborations between academia and industry is vital in order 
to transfer survey data analytics tools and methodologies 
into practical applications. Such partnerships can benefit 
businesses, urban planning, and public services. Lastly, it 
is imperative to develop and uphold ethical guidelines and 
standards for conducting survey data research. These meas-
ures will safeguard data privacy and protect the interests of 
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survey participants and stakeholders, ensuring responsible 
and ethical research practices.
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