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Abstract

In the realm of survey research, establishing connections within large datasets remains a challenge. This study aims to unveil
underlying connections within extensive survey data, emphasizing the need for a more integrated approach to decipher intri-
cate relationships among survey elements. Utilizing computational semantics, machine learning, and advanced spatiotemporal
models, we developed an all-encompassing database. This novel database is adept at extracting and characterizing features
from a multitude of survey studies, spotlighting relationships among metadata elements such as terms, variables, and topics.
The derived relationships are systematically stored as connectivity matrices. These matrices not only quantify the degree of
interconnectedness among features but also provide insights into their complex interplay. As a result, our system functions
akin to a digital geographical data librarian. Beyond merely serving as a storage tool, this system facilitates interdisciplinary
research. It equips researchers with the capability to discern connections between survey elements, enabling them to identify
the most influential paths among features based on diverse criteria. Such a tool fosters cross-disciplinary integration and
unveils potential ties between seemingly unrelated survey attributes, paving the way for breakthroughs in understanding
and application.
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1 Introduction

Incorporating social survey research into the field of geo-
graphic information science is driven by two compelling
reasons. Firstly, many spatially explicit challenges are inter-
connected with social factors, as they have both drivers and
consequences within the social dimension. Secondly, com-
munity engagement and citizen response play a crucial role
in shaping the research agenda of geography [1]. The toler-
ance and mutual understanding need to be fostered between
social phenomena and their geographic context [2]. To fully
comprehend the far-reaching consequences of human activi-
ties on climate and ecosystems, and the reciprocal feedback
! Department of Landscape Architecture and Urban effects on human society within the framework of coupled
Planning & Center for Geospatial Sciences, Applications human-earth systems (CHES), it is imperative for social
and Technology, Texas A&M University, College Station, scientists and earth scientists to mutually appreciate each
TX 77840, USA , . . . ..
other's perspectives [3]. This collaborative approach is vital
for addressing the gaps and challenges in CHES modeling
and advancing our understanding, ultimately paving the way
for sustainable mitigation and adaptation strategies. Social
scientists need to understand the objective of generating
quantitative socio-economic projections and forecasts in
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earth science, while earth scientists should recognize the
unique perspectives and methodologies through which social
scientists study human behavior and institutions [4]. It is
essential to acknowledge the inherent challenges in predict-
ing human activities and choices. By fostering this interdis-
ciplinary collaboration, fruitful interactions between social
and geographic phenomena can be achieved.

Since the development and application of probability
sampling methods in the early twentieth century, surveys
have become one of the most widely used data collection
tools for empirical social science research on challenging
issues on the earth [5]. Collected in a standardized form
(e.g., questionnaires and structured interviews), survey
data help social scientists gain new knowledge. Many sur-
vey researchers analyze secondary data collected by others
because even for a relatively small sample size, high-quality
survey data can be costly to collect, process, document, and
curate. On the other hand, the research team that collects
its own data usually designs the survey to address specific
research questions and is often limited in its capacity to fully
explore the potential use of the data. Therefore, the dis-
semination of survey data for public use not only improves
transparency and replicability in social science research but
also allows secondary data users to collectively exploit the
full-scope scientific value of each dataset. Finding the right
existing survey for secondary analysis is crucial. Secondary
data users must draw on extensive literature reviews and
their own prior research experiences to identify one or more
candidate surveys. It may take months, if not years, for a
researcher to develop a decent working knowledge about the
strengths and weaknesses of a candidate survey and proceed
with data analysis. This labor-intensive and time-consuming
data search process can be substantially shortened with the
help of large data archive centers.

However, despite many existing tools to promote effective
data use at these data archive centers, data search remains
largely a time-intensive process which requires research-
ers to choose certain search keywords or browse surveys
by certain subject categories pre-defined by archivists [6].
A fundamental challenge is how to better harness the rich
data from multiple surveys that cut across existing discipli-
nary boundaries to inform the development of new theory
and hypothesis testing. A social scientist may quickly iden-
tify candidate survey data on a research topic in line with
his/her research interest and expertise after a few keyword
queries. However, relying on a certain data archive alone,
he/she is probably limited in his/her capacity to discover
other features potentially related to the same topic across
surveys of various disciplinary backgrounds or to pinpoint
the optimal influence chain linking two potentially related
research topics across different surveys. A classic exam-
ple is the social research on the association between racial
segregation and racial inequality in America since the late
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nineteenth century. Within the discipline of sociology alone,
this research inquiry can be traced back to as early as the
beginning of the twentieth century when suggested that
racial residential segregation could affect social interaction
between whites and blacks in harmful ways. It is through
more than one hundred years of constant research efforts
that we are getting better at mapping out various, compli-
cated pathways linking racial segregation to racial inequality.
Residential segregation leads to a concentration of impover-
ished neighborhoods occupied by minorities who are faced
with limited job opportunities, thereby giving rise to eco-
nomic inequality between whites and racial/ethnic minori-
ties [7]. In addition to poverty, racial residential segregation
can also affect racial inequality by eroding social capital
and collective efficacy which in turn increases the rates of
homicide and other violent crimes [8]. Growing up and liv-
ing in segregated neighborhoods expose children of racial/
ethnic minority origins to an elevated level of chronic stress
which can undermine their cognitive development [9] and
academic performance [10]. The resulting racial inequality
in human capital accumulation during childhood is likely to
last, if not amplify, into racial inequality in socioeconomic
status in adulthood. More importantly, these mechanisms
are often intertwined with each other to either reinforce the
preexisting condition of inequality or create a new source of
inequality. It would be time-consuming for a researcher who
only specializes in one aspect of racial segregation (say, the
effect of racial segregation on concentrated poverty) to factor
in chronic stress or food environment as intermediate vari-
ables in the causal chain between segregation and poverty.

Hence, a new data tool is needed to assist researchers in
efficiently identifying as many logically sound pathways as
possible from voluminous existing data and published stud-
ies. Most importantly, the new tool needs to have the capac-
ity to offer, through data mining, new possible pathways for
hypothesis testing. For example, neuroscience research has
discovered a moderating role of social and racial contexts
in the long-term effects of past event-related face recog-
nition on affective reactions to people during subsequent
encounters [11]. Such research may provide new insight into
the neuroscientific basis of racial prejudice and discrimina-
tion but may not catch sociologists’ attention in a timely
fashion. Through its computationally efficient search of the
published scientific database, the new data tool may quickly
detect such an implicit connection between the neuroscience
research and sociological research on race/ethnicity and pro-
vide a recommendation to its users to embark on testing the
new hypothesis.

The discovery of complementary but disjointed lit-
erature is known as literature-based discovery. Literature-
based discovery aims to assist researchers in generating
meaningful hypotheses by mining the implicit relationships
between terms in the literature. This field was pioneered by
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Swanson’s work starting from the late 1980s [12-14]. Gen-
erally, the literature-based discovery process starts with the
extraction of terms or concepts. The terms or concepts might
come from an existing knowledge base or be automatically
extracted by techniques such as semantic filtering or cluster-
ing. The similarities between the terms or concepts are then
computed using a variety of techniques, including lexical
analysis, citation analysis, bibliographic coupling methods,
clustering, or heterogeneous bibliographic information net-
work, etc. [15]. Traditionally, the results are presented to
the users with related terms. However, influence chains that
represent a complex chain of intermediate terms could also
be extracted. The past thirty years have seen increasingly
large and diverse datasets for extracting terms and measuring
similarities. At the same time, progressively more automated
and complex algorithms have been investigated to deal with
these data. However, most connectivity matrices, which are
among one of the core components for building the influ-
ence chains, were built on the static data structure, instead of
the dynamic data structure. Currently, two main approaches
exist: (1) process data from third-party databases offline,
which cannot incorporate dynamic updates; and (2) retrieve
related datasets at query time, which cannot reflect accurate
term correlations of the entire database. The semantic relat-
edness in the connectivity matrices could be calculated from
the metadata, or other data sources including Wikipedia and
Wordnet, but there is no systematic investigation on weight-
ing different sources. Besides, it is crucial to leverage user
feedback to adjust the term relatedness adaptively from user
interactions through machine learning techniques. The third
limitation is that most connectivity matrices were built on
simple network structure, which is less efficient for computa-
tion of optimized influence chains with big data. Three chal-
lenges relate to these limitations: (1) Weighted connectivity
matrix, semantic relatedness could be measured from dif-
ferent data sources, as well as user experience; (2) Dynamic
updates, online search based on dynamically updated sur-
vey collections; and (3) Computational efficiency, multiscale
connectivity matrices for efficient computation.

2 Literature review
2.1 Term extraction from textual data

Term extraction is the process of automatically extracting
key and topical terms from documents. The central issue of
term extraction is to determine correct terms from a large
number of candidate terms. The candidate terms are typi-
cally selected through simple methods such as stop-list, part-
of-speech tags, or n-grams. Researchers have investigated
both supervised and unsupervised approaches to address this
issue. The supervised approach relies on designed features

including statistical, structural, or syntactic features [16].
Some researchers tried integrating external resources to con-
struct features. Wikipedia is the most used reference source
[17]. Unsupervised approaches include graph-based rank-
ing, topic-based clustering, and language modeling [16].
Many tools have emerged for term extraction, but issues still
exist, such as incorporating appropriate background knowl-
edge, handling long documents, and improving evaluations
[16]. In practice, a big challenge of building a user-friendly
search system is the existence of synonyms. Automatically
discovering synonyms has been an active topic in natural
language processing tasks. The difficulty of synonym dis-
covery mainly comes from context.

2.2 Connectivity matrix and semantic similarity

The connectivity matrix is essentially a matrix of semantic
similarity measures between terms in surveys. Similar to a
spatial connectivity matrix that defines the spatial connec-
tions among different addresses, a conceptual connectivity
matrix defines the conceptual connections among different
terms. The connectivity matrix can be formulated as a graph
for calculating optimized chains between terms. The element
in the matrix represents the semantic similarity between
features. The most commonly used computation methods
include correlation-based relevance, such as Pearson correla-
tion, and vector cosine-based relevance [18]. The relevance
calculation is highly domain-specific in terms of the features
considered in the calculation and associated weights. For
survey metadata, the features may include title, summary,
subject, space, time, related publications, and so on. The
vectors for each feature can be computed by using infor-
mation retrieval methods such as TF-IDF, topic modeling
methods such as Latent Dirichlet Allocation (LDA) [19].

Measuring the semantic relatedness between documents
or terms has been one of the main themes in computational
linguistics since the 1990s [20]. Researchers have developed
various types of methods for computing the semantic relat-
edness, including graph-based approaches such as normal-
ized path length, or the context-based approaches such as
co-occurrence methods, or information theoretic methods.
Applications of semantic similarity includes online data
sources such as Wikipedia [21], knowledge graphs [22, 23],
or specific domains such as biomedical science [24]. The
knowledge resources used to measure the semantic related-
ness include the linguistically constructed data sources such
as WordNet, and collaboratively constructed sources such as
Wikipedia. Researchers have also started to investigate the
use of knowledge graph (such as DBpedia) to compute the
semantic relatedness [23]. An evaluation of different meas-
ures is given in [25].

Although many different measures exist, choosing the
right measure could be problematic in practice without
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proper weighting and adjustment. Given the diversity and
volume of the terms, it’s not possible to ask researchers
explicitly to weight different measures because it’s time-
consuming and expensive. Thus, it is crucial to collect the
implicit feedback from users who interact with the system
and adjust the weighted connectivity matrix accordingly.
This process of learning from user input to adjust internal
knowledge is studied well in the community of recom-
mender systems [26]. Generally there are two categories of
recommender algorithms, collaborative filtering that learn
from user interest of items, and content-based filtering that
break down an item in terms of its attributes. How to effec-
tively integrate implicit user feedback and knowledge about
Mixed similarity learning to solve the issue of data sparsity
from relying on single data source, including heterogeneous
information network [27], collaborative deep learning [28],
heterogeneous-constraint item similarity model [29], and
mixed similarity learning [30].

2.3 ldentification of influence chains
in literature-based discovery

The identification of influence chains is conceptually finding
paths between two terms. Pathfinding algorithms such as the
Dijkstra’s algorithm have been applied to numerous stud-
ies and applications across a wide array of disciplines. For
example, people have used the pathfinding functions daily on
their mapping services. Pathfinding in knowledge discovery
has been commonly used to measure concept similarity [31].
In literature-based discovery, researchers have envisioned
the extension of the Swanson ABC model, incorporating
higher-order co-occurrences to allow more than one interme-
diate term [32]. Recent years have seen growing interest in
this direction. Wilkowski et al. (2011) suggested a discovery
browsing method that guides users’ search chains between
two concepts through graph analysis [33]. Song, Heo, and
Ding (2015) proposed a semantic path analysis method to
enable the generation of possible hypotheses from biological
terms [34]. Hahn-Powell, Valenzuela-Escéarcega, and Surd-
eanu (2017) introduced a graph-based approach to identify-
ing influence relations from publications, which allows users
to explore direct and indirect influence chains [35]. Most
of these studies have been focused on biomedical applica-
tions, but interest in this direction has also started to emerge
among researchers in other fields. For example, researchers
have investigated heuristic algorithms to identify semantic
chains between concepts in Wikipedia [36].

2.4 Knowledge graph storage and search
Resource Description Framework (RDF) has been widely

used for decades in the applications of the Semantic Web,
which is a W3C standard to define resources and their logical
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relationships [37]. RDF has several data models, for exam-
ple, triple store, C-store (or column store), property tables,
and graphs. RDF data are usually represented by either RDF
triples (in the form of < subject, predicate, object >) or RDF
knowledge graphs. Examples of RDF graph data include
DBpedia [38], YAGO [39], Wordnet [40], and so on.

Due to the large size of the multi-scale connectivity
matrices, graph partitioning can be employed to reduce the
space cost of large and sparse connectivity matrices. Tech-
niques of distributed storage systems [41] and sparse matri-
ces [42] can be leveraged in the graph partitioning process.

3 Method

An integrated approach for discovering the linkages can be
suggested among big survey data (Fig. 1). A large-scale inte-
grated database with terms extracted from survey studies
can be developed by applying computational semantics and
machine learning. The database can capture the relations
of multiple terms embedded in the survey metadata. These
relations can be stored as multi-scale connectivity matri-
ces that measure the relatedness between terms considering
complex sematic relationships. The online tool can function
as a digital data librarian and help facilitate interdisciplinary
research by enabling investigators to identify the optimized
influence chains between terms based on different criteria.
Those influence chains link terms based on the hierarchi-
cal structure of subjects. Terms are linked further to sur-
vey studies, as well as related authors and publications, in
a hierarchical and network structure. This can enable the
generation of a broad range of novel research questions and
scientific hypotheses in a much more efficient and flexible
way than previous approaches.

3.1 Term extraction from textual data

A survey usually contains the following types of features:
title, summary, subject terms, space, time, related publica-
tions, and variables. Each subject term also links to a group
of studies that contain the same subject. Space (geographical
coverage) is represented with a list of place names and can
be linked to administrative entities on different levels. Time
is represented as a single year or a range of years. Related
publications are normally structured in a standardized tag
format such as RIS, or BIB that includes authors, organi-
zations, and other related information. Each variable also
contains the source and description.

Formally, we denote a survey s from all surveys S as a
group of features s={A, G, T, P, V}, where A is a list of sub-
jects A = {al, ay, ...y }, G is a list of administrative units
G=1{g.8--- ,gnz}, Tisalistof dates T = {1}, ¢,, ...,tn3},
P is a list of related publications P = {p,,p,, ..., Pa, },and V
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Fig. 1 The flowchart diagram
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is a list of variables V = {v,v,, ..., Vi }. All objects in a fac-
tor also belong to s. For example, a subject g, in A belongs
to s, denoted as a;, € .

We can extract terms from the variable description. This
is easier than extracting terms directly from survey forms,
since the latter is basically unstructured text, and can easily
lead to an explosion of terms. We can combine a stop word
list, part-of-speech-tags, and pre-defined lexico-syntactic
patterns to select candidate terms, and then apply existing
graph-based ranking methods or machine learning algo-
rithms for term extraction. After the terms are determined,
we can identify synonyms in the terms using synonym dis-
covery algorithms adapted to the context of survey variable
descriptions. Formally, each variable v, corresponds to a set
of terms C,, . The entire term set C for a survey s is decided
by taking the union of C, for all variables. A term ¢; in C
is said to belong to s, denoted as ¢, € s. The term set can
be subsequently compiled into a multi-scale term structure
considering the subject hierarchy.

3.1.1 Challenges

Term extraction is not trivial due to issues such as the entity
resolution, deduplication, and removing the ambiguity of

terms in different contexts. The multi-scale term structure
needs to be validated by professional curators with domain
expertise.

3.1.2 Research directions

We can combine automated tools and experience from pro-
fessional curators. The human-detected analyses based on
the experience provided a contextual understanding and
validation of the machine-detected findings. The existing
thesaurus from targeted application fields can be leveraged
to build the multi-scale term structure.

3.2 Connectivity matrix construction

The construction of a connectivity matrix between differ-
ent terms is a key part, which lays the foundation for graph
formulation and calculation of optimized influence chains
[43]. We consider the term-to-term matrix M;. Since the
terms are extracted from variable descriptions, each term
reversely corresponds to a set of variables, which are
related to several survey studies, and subsequently related
to other terms such as subjects or publications. This chain
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of mediating relations makes it possible to calculate the
term-term similarities through these other features.

This proposed framework can consider six measures
of the connectivity strength between two terms c; and c;,
using various measures:

The Binary measure determines the relationship based
on the presence of both terms in a study. if
Ise S, ¢ e s/\cj €, MT/_/ =1, otherwise MTV_ = 0. This
approach results in a sparse matrix, offering clarity to
users by indicating that terms are related only if they co-
occur in a study.

The Frequency-based measure calculates MTu as the

count of instances where both terms ¢; and ¢; appear
together in a study across all studies S.

For the Similarity-based measure, MTu represents the
similarity between terms. This similarity is computed
using cosine similarity with TF-IDF vectors. Here, each
term ¢ corresponds to a list of surveysS,. If the term ¢
appears k times in a survey s, s will appear k times inS,.In
essence, we treat terms as documents that contain multiple
survey studies as words in information retrieval. Thus, tf(s,
c¢) represents the number of times that survey s appears

inS,, whereas idf(s, C) = log%. The TF-IDF vec-

tor Q. = tf(S, ¢) - idf(S, ¢). The cosine similarity between
c; and ¢; is then defined as cos (0) = #
€] =cp

The Weighted Similarity-based measure extends the
similarity-based approach by considering a weighted aver-
age of multiple features, including time, survey studies,
and related publications.

The Supervised Approach involves constructing mul-
tiple machine learning features from survey metadata. Ini-
tially, a subset of terms C’ is randomly selected from all
terms C. The similarity between terms in’C” is then rated
using a fixed integer scale, such as 0 to 10. These ratings
serve as training samples. Features derived from the sur-
vey metadata include statistical features like TF-IDF vec-
tors, syntactical and lexical features, and knowledge-based
features from external sources like WordNet Similarity.
A machine learning model, such as logistic regression,
is trained using these features, and the values in M; are
predicted based on the best-performing model.

Lastly, the Word Embedding-based measure employs
Word2vec models trained on variable descriptions from
all surveys. The model generates a similarity vector V for
each word in the input text, allowing for the identification
of MT”_ in the vector for either term ¢; or c;.

We can evaluate the efficiency and effectiveness of
these six types of matrices in both user studies and online
experiments. We can provide users with the option and
flexibility to select different types of matrices, so that
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the similarity of the selected type between two terms (or
through an optimized chain) can be calculated.

In practice, the connectivity matrices can be very sparse,
but of large scale (with many terms). We can study how to
partition the sparse matrix to reduce the space cost. Spe-
cifically, the connectivity matrix can be equivalently repre-
sented by a graph where vertices are terms, and edges are
associated with weights, indicating the similarities between
any two terms (vertices). Therefore, we can also design
effective cost-model-based graph partitioning algorithms to
divide a large graph (matrix) into smaller subgraphs (small
partitioned matrices) and reduce the storage space of con-
nectivity matrices.

3.2.1 Challenges

The challenges of constructing connectivity matrices lie
with both the computation and storage. For the compu-
tation of the first four types of connectivity matrices, the
naive approach is to calculate the relevance or similarity
between all terms sequentially. However, this method is
time- and space- inefficient given a large number of terms.
The machine learning models for the fifth and sixth types
can not fit in a single machine either. Therefore, the problem
of how to leverage cloud computing techniques to effectively
compute large-scale connectivity matrices is a challenging
issue. The storage of connectivity matrices is also challeng-
ing, especially when the number of terms is large. What is
more, due to the sparseness or skewness of survey data, we
may not be able to identify accurate similarity between any
two terms (even if we apply advanced similarity measures/
approaches). Therefore, it is also challenging how to effec-
tively compute “good” similarity scores among terms.

3.2.2 Research directions

Observing the large-scale and data sparsity of connectivity
matrices, we can design effective data partitioning tech-
niques to divide the survey studies and/or publications.
Then, instead of constructing a single large and sparse
matrix, we can construct offline multiple small connec-
tivity matrices (equivalently, partition a large graph from
each connectivity matrix into subgraphs, based on our
devised cost model) for those (highly correlated) terms
over surveys/publications. In addition, we can also main-
tain the similarities among small connectivity matrices,
which can support fast online retrieval of term similarity
across surveys. When the smaller connectivity matrices
are still of large scale, we can further perform the data
partitioning recursively and obtain a finer resolution of
matrix data, forming a hierarchical multi-scale structure.
To allow the storage and processing over large scale matrix
data, we can leverage cloud computing to deploy the data
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partitions (e.g., partitioned connectivity matrices in differ-
ent scales) to different servers, and design novel parallel
and distributed algorithms (e.g., following the MapReduce
framework) to efficiently compute and query connectivity
matrices. To facilitate efficient data retrieval during the
cloud computing, we can develop space-efficient indexes
for matrices to efficiently access/retrieve the data on server
nodes, and utilize data compression methods to summarize
and transmit the output matrix, which can significantly
reduce the communication cost over the network during
the cloud computing of connectivity matrices.

In order to accurately estimate unbiased similar-
ity scores among terms, in addition to survey data, we
can explore other data sources such as knowledge bases
(e.g., Wikipedia, WordNet, etc.), and consider incorporat-
ing similarity values among times in these external data
sources to compute unbiased similarity measure. Specifi-
cally, given any two terms, we can obtain their different
similarity values, from different similarity measures/
approaches (e.g., as discussed above) and data sets (includ-
ing surveys and external data sources). Then, we can use
a machine learning approach to find appropriate weights
for weighing these similarity values and calculating a
final similarity score. The input of the machine learning
problem is a number of similarity values from different
data sources or approaches, whereas the output is a set
of expected final similarity scores for pairs of terms. We
can train the learning process by providing user feedback
about final similarity scores and back propagate the errors
to adjust parameters during the learning process. Finally,
we can use this machine learning approach to derive simi-
larity scores for pairs of terms, which can be used for data
analytics over survey data.

3.3 Large-scale knowledge graph integration

We can utilize the extracted terms from survey metadata
to construct knowledge graphs from connectivity matri-
ces. Specifically, for the metadata of surveys (e.g., terms
extracted from survey metadata), we obtain a knowledge
graph where each vertex is a term, and each edge between
any two vertices corresponds to the relationships of two
terms [44]. In future research, survey contents (e.g., survey
answers) can also be leveraged to construct the knowledge
graph, where each answer to a survey can be represented
by a knowledge graph, and each node is a survey question
that is associated with both question and answers terms
(keywords), and each directed edge between two nodes
represents the relationship of two survey questions (e.g.,
if the answer is yes, then skip to the answer associated
with Question 10).

3.3.1 Metadata for survey knowledge graphs

In order to integrate surveys into a single database, we can
first construct a meta-knowledge graph for each survey study.
Since different survey studies use distinct sets of terms (with
different relationships among these terms), we obtain the
meta-knowledge graphs of different graph topologies. Due
to the heterogeneity of survey data, we then merge these
meta-knowledge graphs into a single large-scale meta-graph.
That is, those vertices from distinct graphs but with the same
vertex labels (i.e., terms) can be merged together (each
vertex is associated with term sources). If two edges from
two different graphs connect the same two vertices, then
edges are merged, but associated with a multi-set of weights
from 2 graphs (as well as survey sources of edges). Here,
the weights of the edges can be obtained from offline pre-
computed multi-scale connectivity matrices, as mentioned
in Sect. 2.2 (in the case that they are not stored due to the
data partitioning, we can compute the weight online, that is,
the similarity between two terms).

Due to dynamic updates of survey data, the metadata for
survey knowledge graphs are also subject to changes. Upon
the arrival of new surveys, we can first construct the meta-
knowledge graph for those new surveys, and then incorpo-
rate them into the existing meta-graph.

3.3.2 Challenges

The integration of survey data is challenging. Each survey
tends to have many variables. It is not time- and space- effi-
cient to perform the data fusion over large-scale heteroge-
neous graphs. Most importantly, it is also challenging to
guarantee the accuracy of the graph data integration. Moreo-
ver, it is non-trivial to determine how to efficiently update
meta-knowledge graphs with a large amount of new survey
data in a batch.

3.3.3 Research directions

We can use database techniques to handle large-scale survey
data integration. Moreover, to ensure the reliability of the
integrated survey data, we can also apply a probabilistic data
model to the meta-knowledge graph by inferring confidences
that two vertices from different meta-graphs represent the
same terms in different contexts. We can design efficient
batch algorithms to update meta-knowledge graphs from
new survey data.

3.4 Graph query processing

We can study a number of important graph queries, as
well as personalized search recommendation queries, over
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large-scale integrated survey data (modeled by meta knowl-
edge graphs) [45].

3.4.1 Survey recommendation queries

We can consider the personalized search recommendation
(or prediction), with the help of our integrated big survey
data. Specifically, according to our integrated meta knowl-
edge graphs for surveys, we can infer the correlations (or
co-occurrences) of a term/subject from other terms/subjects,
which may potentially release some research potentials in
social, behavioral, and economic research.

For example, if two terms “education” and “salary”
appear frequently in surveys, it may imply that these two
topics are correlated and worth studying. On the other hand,
instead of obtaining the knowledge what existing surveys
study, we can also recommend new knowledge about which
topics have not been frequently investigated before, which
might be a potential research direction, or guide the design
of new surveys.

Inspired by the examples above, we can incorporate the
domain knowledges of survey, social, behavioral, and eco-
nomic research, and formalize novel personalized search
recommendation (or prediction) queries over large-scale
survey data to estimate the correlations among survey terms/
subjects/topics for researchers, and predict future survey
research topics. Formally, we give the definition of the sur-
vey recommendation query below.

Definition 3.1 (Survey Recommendation Queries). Given
survey meta knowledge graphs, G, a query keyword, k, an
integer parameter / for surveys, and a ranking function r(k1,
k2), a survey recommendation query obtains [ keywords
(terms, subjects, topics, etc.), k', that have the highest or
lowest ranking scores r(k, k') over surveys.

Intuitively, in Definition 3.1, we consider top-/ keywords
that have the highest or lowest correlations with the query
keyword k in a query region Q within a period of time I,
which may potentially indicate hot field research or unex-
plored research directions, respectively.

3.4.1.1 Challenges Due to the large-scale of graph data, it
is challenging to efficiently and effectively manipulate large
knowledge graphs, and estimate/predict the inherent cor-
relations among keywords (e.g., terms/subjects) for large-
scale survey data. The straightforward method is to online
compute the ranking scores for every pair (k, k'), and iden-
tify the ones with highest/lowest ranks, which is however
rather inefficient.

3.4.1.2 Research directions We can explore and design
efficient big data techniques (e.g., the MapReduce frame-
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work) to enable intensive ranking score computations over
large survey graph data. Most importantly, we can use effec-
tive pruning strategies (e.g., by using lightweight pruning
methods w.r.t. lower/upper bounds of the ranking scores)
to reduce the search space of the survey recommendation

query.
3.4.2 Influence chain queries

Next, we study influence chain queries over large-scale
integrated survey data (modeled by knowledge graphs).
Intuitively, we would like to identify the optimized influ-
ence chain between two potentially related, but not directly
related, terms in surveys, which is very useful for research-
ers to discover how important and through which chain two
terms are related to each other.

As an example, given two terms, “residential segrega-
tion” and “income inequality”, researchers are interested in
knowing the connection chain (relationship) between these
two demographic and economic phenomena across differ-
ent surveys. There may be more than a single connection
chain since the relationship between racial segregation and
income inequality may vary in both space and time. For
example, African American neighborhoods remained highly
segregated until the 1990s when hypersegregation started
to become less common with rising income. In contrast, the
passage of the 1965 Immigration Act led to large inflows of
Hispanic and Asian immigrants whose segregation levels
ranged from low to high. Hispanic and Asian neighborhoods
have experienced notable socioeconomic improvement since
the 1970s, thereby reducing Hispanic-white and Asian-white
neighborhood inequality [46]. Nevertheless, in areas with
a large concentration of undocumented migrants, the level
of segregation between, in particular Hispanics and whites,
has actually increased [47]. One may find different chains
between these two topics in our proposed survey knowledge
graphs. We can provide researchers with the most convinc-
ing chains that can best describe the transitive relationships
between two topics.

Definition 3.2 Given survey meta knowledge graphs G, a
source keyword, ks, a destination keyword, kd, and a score
function score(P) of any chain P, an influence chain query
obtains optimized chains P, between keywords ks and kd in
survey knowledge graphs G, such that for any other chains
P'between ks and kd, we have score(P) > score(P").

In Definition 3.2, the score function score(P) of chain P
can be given by factors such as the summation of the rel-
evance of edges on chain P, (the inverse of) the shortest path
distance, the summation of co-occurrence frequencies on
edges of chain P, and so on. The influence chain query aims
to obtain the path with the highest score, which indicates the
one with the strongest transitive relationships between topics
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ks and kd. Note that, this problem can be also generalized
to the one where users can select a few important topics
(in addition to source and destination topics) that influence
chains must pass through.

3.4.2.1 Challenges To efficiently tackle the influence
chain problem, there are several major challenges. First,
the connectivity matrices in Sect. 2.2 give many met-
rics to define meaningful and effective score functions,
score(P), to measure the relationship between two terms
on the chain. What is more, different score functions may
even conflict with each other. For example, a chain with
high relevance may have low co-occurrence frequencies
of edges on the chain. It is thus very challenging to deter-
mine how to select the best, or at least not the worst, score
functions for research studies.

Second, on large-scale survey knowledge graphs, there
are many possible influence chains between the source and
destination terms. It is not efficient to enumerate all of these
chains and calculate their corresponding scores.

3.4.2.2 Research directions Since it is possible to have
multiple, and sometimes conflicting, score functions that
may determine the relevance of the chain, we can alterna-
tively consider the idea of the skyline. In particular, each
chain P is associated with a score vector V(P), in which
each element V(P)[i] contains a score given by a distinct
score function scorei(P). Then, the skylines of chains are
those chains P whose vectors V(P) are not dominated by
other chains, where a chain P1 dominates another one P2,
if (1) V(P1)[i] > V(P2)[i] holds for all dimensions i, and (2)
V(P1)[j]1> V(P2)[j] holds for some dimension j. In this way,
we can solve the problem of conflicting score functions
and return chains that are better than others in at least one
dimension (with respect to a score function).

Furthermore, to tackle the influence chain query over
large-scale graphs, the cloud computing (i.e., via MapRe-
duce) can be adopted to distribute survey graphs, connec-
tivity matrices, and queries to multiple servers and enable
fast computation. In particular, effective graph partition-
ing algorithms can be designed to divide large-scale sur-
vey knowledge graphs into disjoint/overlapping subgraphs,
based on a cost model. Then, distributed pre-computation
techniques can be devised for scores of edges in graphs (e.g.,
pre-computing scores w.r.t. surveys in the US and in 2016),
which can be used for online score retrieval and pruning
false alarms while answering the query. Moreover, prun-
ing mechanisms can be designed to reduce the search space
of the problem, for example, by using lower/upper bounds
of ranking scores or applying the pruning with dominances
among distinct chains. Finally, cost-model-based indexing
mechanisms can be used to facilitate efficient processing of

cloud-based influence chain algorithms under the MapRe-
duce framework.

3.4.3 Survey keyword search queries

Furthermore, we can investigate the keyword search queries
over survey graphs. That is, given a set of query keywords, a
survey keyword search query retrieves a number of surveys
that contain all query keywords, as well as the relationships
among these surveys (i.e., the graph structures), where the
query keywords can be terms, subjects, topics, research
fields, literature, space, and time.

Definition 3.3 (Survey Keyword Search Queries). Given
survey meta knowledge graphs, G, a set of query keywords,
K={kl,k2, ..., kn}, and a score function f{.) for evaluating
the goodness of the returned subgraph answers, a survey
keyword search query obtains a subgraph g of G (i.e., gC G),
such that (1) vertices of subgraph g contains all query key-
words in K, and (2) a score function f(g) for subgraph g is
minimized.

As given in Definition 3.3, the survey keyword search
query returns a subgraph g of survey knowledge graphs G
such that this subgraph contains all the n query keywords
and the returned subgraph is the best one in terms of the
score function f(g). Here, the score function f(g) can be the
number of edges in subgraph g, or the summation of co-
occurrences associated with edges in subgraph g, and so on.
We can investigate the best score function that fits research-
ers' requirements in different fields.

3.4.3.1 Challenges One straightforward method is to
search the entire meta knowledge graphs, and identify all
subgraphs with vertices satisfying the keyword constraints.
Then, we find the best subgraph with the minimal score f(g).
However, this method is quite inefficient, since there are an
exponential number of possible subgraphs (especially, in the
case where survey graphs are of large scale). The keyword
search problem is usually NP-hard in the literature, which is
challenging to tackle.

3.4.3.2 Research directions We can design novel index-
ing mechanisms for organizing terms, subjects, topics, etc.
and facilitating the speed-up of fast keyword search over
knowledge graphs. Most importantly, due to the hardness of
the survey keyword search query, we can develop efficient
approximation algorithms (e.g., greedy algorithms or sam-
pling methods) for processing this typical keyword search
problems over the integrated survey graph data.

Continuing the aforementioned research on racial segre-
gation and inequality, a classic example is Thomas Schell-
ing’s [48] model, in which he demonstrated that individuals’
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uncoordinated, modest in-group preferences would collec-
tively result in the highly segregated residential pattern
at the macro level. Such models of micro—macro linkages
have been termed as “generative” social science research
since they combine theoretical and computational models to
explain the emergence of macro societal regularities (e.g.,
norms, collective actions, and epidemics) from the behav-
ior of interdependent micro-level agents. These generative
models are theoretically-driven, highly dynamic and often
involve feedback loops and interdependent nonlinear pro-
cesses. One recent study used an agent-based model to show
that urban slums emerge as a result of interactions between
multiple human agents (families, real estate developers, and
politicians) and multiple aspects of the environment (hous-
ing sites, electoral wards, economic growth, and popula-
tion migration) [49]. Another study also used simulation
experiments to examine to what extent racial disparity in
diet behavior could be reduced by improving the quality of
neighborhood schools and to what extent the reduction in
racial disparity might depend on the presence or absence of
social influence, as well as healthy versus unhealthy social
norm. We can build on the recent advance in studies of com-
plex systems to derive generative models that link micro-
level behaviors and macro-level population phenomena from
data mining of the survey data archives. The tool can help
identify possible influence chains between different agents
and help researchers understand the complex structure of the
system. Users can search optimized influence chains with
related surveys and terms from these two input terms.

3.5 Visual analytics of knowledge graphs

Owing to the vast scale of the survey knowledge graphs with
which we engage, comprehending and discerning the intui-
tion behind the survey data can be challenging. A practi-
cal approach is the visualization of these knowledge graphs
through interactive visual interfaces. Specifically, as each
survey captures responses from individuals across various
geographical regions and different years, a potent tool is
the temporal and spatial mapping of survey data. This can
be done by assigning different colors to represent specific
statistics. Such a visual representation provides researchers
with a lucid understanding of the intrinsic survey data. It
can assist them in discerning the relationships between two
topics within the knowledge graphs, identifying anomalies
or unusual events, grasping public behavioral responses,
and more. Additional features of visual analytics encompass
delving deeper into the survey data, visualizing responses
based on specific keywords, displaying answers to personal-
ized survey recommendation queries, and survey path que-
ries, as alluded to in the preceding subsection.

We can create a visual analytics module tailored for
survey knowledge graphs. This will grant researchers the
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ability to visualize survey data across various dimensions,
such as spatial, time, term, variable, topic, and many more.
Our aim is to design an intuitive visual interface, allowing
users to easily browse, interact with, and inquire about sur-
vey data. Additionally, our portal lets researchers save and
share their impact paths. This not only facilitates learning
from one another but can also spark new research ideas and
pave the way for future surveys. When a user opts to share
an impact path, it will be categorized based on the surveys,
terms, and subjects within that path. As a result, when other
users search for a specific term, subject, or survey study, the
relevant impact paths will be suggested to them.

4 Discussion and conclusion

Further avenues of research could concentrate on the devel-
opment and refinement of survey methodologies. In-depth
exploration of search result quality assessment merits
closer scrutiny. To enhance the user experience and inter-
face design of the survey data analytics tool, research efforts
should be directed toward understanding user preferences,
needs, and behaviors, which can lead to the creation of more
user-friendly and efficient tools that facilitate seamless data
exploration and analysis. Additionally, the investigation of
cloud computing platforms' potential benefits can be pursued
to enhance the scalability and accessibility of survey data
analytics. Optimizing the framework's performance will be
essential to efficiently handle large-scale datasets. Encour-
aging interdisciplinary collaboration is vital for fostering
partnerships and facilitating knowledge exchange.
Utilizing insights derived from survey data can lead to
evidence-based decision-making, better understanding of
public perceptions, and improved assessment of intervention
impacts. To foster transparency, replicability, and collabora-
tion within the research community, policymakers should
advocate for open data policies that enable easy access to
and sharing of survey datasets. Furthermore, policymakers
can play a crucial role by providing funding for the develop-
ment and implementation of cloud computing platforms and
advanced technologies that facilitate survey data analytics.
This investment can significantly enhance the scalability and
effectiveness of survey data research. To ensure researchers,
practitioners, and policymakers are well-equipped to utilize
survey data analytics effectively, it is essential to invest in
training programs and capacity building. Facilitating col-
laborations between academia and industry is vital in order
to transfer survey data analytics tools and methodologies
into practical applications. Such partnerships can benefit
businesses, urban planning, and public services. Lastly, it
is imperative to develop and uphold ethical guidelines and
standards for conducting survey data research. These meas-
ures will safeguard data privacy and protect the interests of
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survey participants and stakeholders, ensuring responsible
and ethical research practices.
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