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ARTICLE INFO ABSTRACT

Keywords: Land surface models diverge in their predictions of the Amazon forest’s response to climate change-induced
Eddy covariance droughts, with some showing a catastrophic collapse of forests, while others simulating resilience. Therefore,
Carbon

observations of tropical ecosystem responses to real-world droughts and other extreme events are needed. We
report long-term seasonal dynamics of photosynthesis, respiration, net carbon exchange, phenology, and tree
Tropical forests demography and characterize the effect of dry and wet events on ecosystem form and function at the Tapajos
Ecosystem-climate interactions National Forest, Brazil, using over two decades of eddy covariance observations that include the 2015-2016 El
ENSO Nino drought and La Nifia 2008-2009 wet periods. We found strong forest responses to both ENSO events: La
Nina saw forest net carbon loss from reduced photosynthesis (due to lower incoming radiation from increased
cloudiness) even as ecosystem respiration (R.,) was maintained at mean seasonal levels. El Nino induced the
opposite short-term effect, net carbon gains, despite significant reductions in photosynthesis (from a drought-
induced halving of canopy conductance to CO2 and significant losses of leaf area), because drought suppres-
sion of R, losses was even greater. However, long-term responses to the two climate perturbations were very
different: transient during La Nina —the forest returned to its “normal” state as soon as the climate did, and long-
lasting during El Nino -leaf area loss and associated declines in photosynthetic capacity (Pc) and canopy
conductance were exacerbated and extended by feedbacks from higher temperatures and atmospheric evapo-
rative demand and persisted for ~3+ years after normal rainfall resumed. These findings indicate that these
forests are more vulnerable to drought than to excess rain, because drought drives significant changes in forest
structure (e.g., leaf-abscission and mortality) and ecosystem function (e.g. reduced stomatal conductance). As
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future Amazonian climate change increases frequencies of hydrological extremes, these mechanisms will
determine the long-term fate of tropical forests.

1. Introduction

Tropical ecosystems are important biodiversity and biomass reser-
voirs, the Amazon forest being the largest contiguous tropical forest,
significantly contributing to current global water, energy, carbon and
other biogeochemical fluxes. Determining this ecosystem’s response to
climate change is important, as the frequency of extreme events (e.g.,
drought, heat waves, and wet periods) is increasing (IPCC, 2013; Malhi
et al.,, 2009) and it is predicted to have a direct impact on the
land-atmosphere exchange, and forest biomass, structure and demog-
raphy (Barichivich et al., 2018; Davidson et al., 2012; Duffy et al., 2015;
Gloor et al., 2013; Longo et al., 2018; Marengo and Espinoza, 2016;
Masson-Delmotte et al., 2018; Nepstad et al., 2002; Nobre et al., 2016).
For example, the study of tropical ecosystem response to wet extremes
(generally characterized by a reduction in incoming radiation) has been
neglected and may be key in determining forest composition (Esteban
et al., 2021). Moreover, significant debate surrounds even the
present-day effect of drought and seasonal water stress on tropical for-
ests based on two arguments: (1) Water stress limits photosynthesis
through hydraulic constraints, thus decreasing tree performance and
increasing mortality during drought (Betts et al., 2004; Castanho et al.,
2016; Cox et al., 2004; Phillips et al., 2009; Zhang et al., 2015), and (2)
light availability limits forest photosynthesis and growth, leading to
increases in photosynthesis during dry seasons and interannual droughts
when cloud cover decreases (Bonal et al., 2016; Huete et al., 2006;
Hutyra et al., 2007; Saleska et al., 2007). Furthermore, land surface
models that link wet-events and drought-related variations in precipi-
tation, atmospheric moisture and radiation to changes in tropical forest
carbon-uptake; show high uncertainty on both the sign and the magni-
tude of the exchange (Ahlstrom et al., 2012; Allen et al., 2010; Sitch
et al., 2008). New observations are needed to quantify relationships
between environmental drivers and carbon-cycle components of
photosynthesis, respiration, and allocation to growth of leaves and
wood, and how these relations change throughout wet episodes,
drought, and drought recovery periods.

Across Amazonia, the 2015-2016 El Nino drought brought lower
river levels, drier soils, significantly higher temperatures, and increased
atmospheric evaporative demand (Jiménez-Munoz et al., 2016) exac-
erbating an existing drying and warming trend (Ritchie et al., 2022;
Wainwright et al., 2022). Remote sensing products identified important
biomass losses (Yang et al., 2022), structural and/or compositional
changes (Amigo, 2020; Brando et al., 2020; Esquivel-Muelbert et al.,
2019) and reduced photosynthetic activity (Jiménez-Munoz et al.,
2016), particularly in the northeast region of Amazonia. The drought
impacts resulted in significant productivity reductions of 10-15 % in the
eastern forests compared to 2-5 % in western ecosystems (2-5 %) (Koren
et al., 2018). For instance, the western forests of Manaus became a
significant source of COy emissions (Botia et al., 2022). Moreover,
higher vapor pressure deficit (VPD) and decreasing soil moisture
reduced leaf production (Barro Colorado, Panama) (Detto et al., 2018),
increased litter fall (Tapajos National Forest) (Oliveira de Morais et al.,
2021) and limited stomatal conductivity (Panama and Tapajds) (Detto
and Pacala, 2022; Restrepo-Coupe et al., 2023), the result of vegetation
balancing the needs between CO» uptake and H50O losses. Nonetheless,
the impacts of the El Nino droughts did not always result in carbon
losses. For example, at a tropical forest site in French Guiana, El Nino
2015-2016 drought conditions led to substantially lower ecosystem
respiration and moderate reductions in photosynthesis, resulting in
higher carbon uptake (Bonal et al., 2016). In Panama, higher solar ra-
diation helped maintain photosynthetic activity (Bonal et al., 2016), and
stimulated seed production (Detto et al., 2018). In contrast, forest

inventories at intact tropical forests showed, on average, no significant
biomass gain or loss after drought (Bennett et al., 2023). Differences in
species composition and/or climate may explain the differences in
mortality, leaf production/abscission, and vegetation response across
sites. However, one clear challenge is the limited analyses of integrated
micrometeorological and biometric measurements across the basin,
which hampers our ability to directly link vegetation dynamics with
ecosystem fluxes and physiological controls to more clearly identify
mechanisms of response and forecast the short and long-term conse-
quences of drought/wet events on tropical forest ecosystems.

The Tapajos National Forest K67 (BR-Sal) site is one of the few long-
term tropical forest eddy covariance towers with over 12 years of
measurements of biometry, meteorology and carbon, water, and energy
fluxes (2001-2005, 2008-2011, 2015-2020). The forest is located near
the confluence of the Amazon and Tapajos rivers, close to Santarém, in
the central eastern Amazon basin (Fig. S1). Observations include two
exceptionally strong El Nino-Southern Oscillation (ENSO) events, the
2008-2009 La Nina, when the wet season was wetter and incoming solar
radiation was lower than the seasonal average, and the 2015-2016 El
Nino, one of the strongest droughts on record (Kim et al., 2011; Marengo
and Espinoza, 2016) (Fig. S1). Across Amazonia the Santarém region
shows one of the most significant correlations between rainfall and
ENSO cycles of drought and flood (Fig. S1). Consequently, our mea-
surements provide a unique opportunity to detect forest responses to
meteorological drivers and seasonal and long-term phenology, carbon
fluxes, and canopy structure characteristics.

Our work aims (1) to quantify changes in carbon flux during drought
and wet events to elucidate how (i) meteorological conditions, (ii) sea-
sonal phenology (represented by the dynamics of ecosystem photosyn-
thetic capacity and leaf area index), and (iii) short-term physiological
responses (represented by ecosystem-level stomatal conductance) drive
higher CO, uptake or efflux at a tropical forest site; (2) to determine
which of the carbon exchange components — photosynthesis measured
as the gross ecosystem productivity (GEP) or ecosystem respiration
(Reco) — dominate the observed net ecosystem exchange (NEE =
GEP+R,), and (3) to examine the longer-term effect (1 to 3 years) of
drought/wet periods on meteorology, canopy structure, phenology and
carbon flux. Our analysis guides improvements in understanding trop-
ical forest form and function, the long term consequences of ENSO
events, and how tropical rainforests may show resilience and recovery.

2. Methods
2.1. Site description

To understand seasonal tropical forest-atmosphere exchange we
measured carbon, water and energy fluxes using the eddy covariance
(EC) method at a 64 m tower located in the equatorial Amazon (2.857 S,
54.959 W) near the town of Santarém, Pard, Brazil. The EC system and
biometry transects were established in 2000 as part of the ecological
component of the Brazilian-led Large Scale Biosphere-Atmosphere
experiment in Amazonia (LBA). The forest canopy has an average
height of 40 m and a total of 249 species (133 sp ha™!) have been
identified at the site (Vieira et al., 2004). The dominant species at the
site are Erisma uncinatum, Manilkara elata, and Chamaecrista xinguensis,
accounting for 12.8 %, 7.8 % and 6.6 % of the total basal area, respec-
tively (Alves et al. in preparation). The forest’s soils have low organic
carbon content and cation exchange capacity and they are predomi-
nantly nutrient-poor clay oxisols and sandy ultisols (Silver et al., 2000).
The site ecology has been previously described in Saleska et al. (2003),
Rice et al. (2004), Pyle et al. (2008), and Hutyra et al. (2007).
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2.2. Eddy covariance measurements

Hourly carbon (Fc; pmolcoz m~2 s, water (Fy20; mmol m2s,
sensible heat (H; W m~2) and momentum (z; kg m~2 s2) fluxes were
calculated as proportional to the mean covariance between fluctuations
of vertical velocity measured by a sonic anemometer and the corre-
sponding scalar — CO, HyO vapor, temperature and horizontal wind
velocity, respectively (Oke, 2015). A close path infrared gas analyzer
(IRGA) measured CO, and H50O. The IRGA was calibrated (zero or no
H>0 or CO», flux) every four hours using N dry air gas and at least every
12 hours running a sequence of air with a known low, medium and high
CO; concentration (e.g. 330, 420 and 480 ppm). The CO, concentration
of the calibration air was regularly modified to adjust for the increase in
atmospheric CO». The H»0 span was determined using ancillary relative
humidity (RH;%) measurements or assuming air moisture at saturation
during the night time. See supplementary information (SI) Table S1 for
EC and ancillary meteorological instrumentation.

Hourly turbulent fluxes were subject to quality control by removing
rainy periods (e.g. raindrops blocking the anemometer path), outliers
due to instrument malfunction (e.g. pump failure), when the calibration
system failed (e.g. No gas run-out) and measurements under low tur-
bulence conditions using a friction velocity (us m s 1) threshold of 0.22
+ 0.02 m s~! (see SI Section 1 and Fig. S2). Fluxes correspond to the
periods: 2002 - 2005, July 2008 - December 2012 and January 2015 -
July 2020 with few interruptions.

2.3. Measurement and calculation of water, carbon and energy cycle
components

The net ecosystem exchange (NEE; pmol m2 s’l) was calculated as
the sum of the fluxes measured at the top of the tower and the CO,
storage flux (NEE = Fc + Sco2) and defined as negative to represent
carbon-uptake by the forest. The ecosystem respiration (Reco; pmol m2
s~1) was calculated by a 5-day to 30-day nighttime NEE moving window
(minimum of eight available hours). Daytime R, was assumed to be
equal to nighttime R, as no linear or exponential relationship was
found between nighttime NEE and Tg; (Fig. S3) (Restrepo-Coupe et al.,
2017). The gross ecosystem exchange (GEE; pmol m 2 s~1) was esti-
mated from the measured daytime by subtracting R, (GEE = -NEE +
Reco)- Gross ecosystem productivity (GEP; pmol m~2 s~ 1) was assumed as
the negative GEE, where GEP=-GEE (Stoy et al., 2006). Light response
curves were used to fill a few missing GEP values (gaps with a maximum
of 40 continuous hours) (Fig. S4). Seasonal carbon flux values presented
in units of gCm 2 d L.

To represent the capacity of the canopy to assimilate CO; via
photosynthesis, independent of short term variation in environmental
drivers, we estimated the ecosystem photosynthetic capacity (Pc; gCm 2
d™1). The seasonal Pc was calculated as the average GEP for a 16-day
period measured under fixed narrow meteorological conditions repre-
sented by bins of photosynthetic active radiation (PAR; pmol m2s D
e. between the mean annual daytime PAR value of 836 + 200 pmol m 2
s71) and daytime mean + one standard deviation of air temperature
(Tqir; C) (27.2242.04 °C), vapor pressure deficit (VPD; kPa) (1.024+0.45
kPa), and cloudiness index (CI) (0.44+0.14) (Restrepo-Coupe et al.,
2017; Wu et al., 2016). PAR, Ty and VPD were measured at the top of
the EC tower and the CI was calculated as 1 minus the ratio of observed
PAR to the theoretical PAR (PARge,). Where PARy,, was derived from
estimates of top of the atmosphere radiation (see Section 2.7). CI ranges
between no clouds (CI=0) and all radiation being diffuse (CI=1).

We fitted photosynthetic light response curves —rectangular hyper-
bola to hourly GEP vs. PAR- to 16-day morning measurements (defined
7:00 - 12:00 LT) and determined the light-saturated net photosynthetic
rate (Pnmax; Pmolcoz m~2s7!) and quantum yield of assimilation (aapg
gC MJ 1), thus those values change with leaf quality (e.g. decrease as the
leaf ages (Xu et al., 2019) or under stress (Gamon, 2015)) (Fig. S4).
Morning observations were selected to avoid low photosynthetic rates
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driven by higher afternoon VPD and Tg; values (associated to low sto-
matal conductance) and other limitations (e.g., photoinhibition,
reduced Rubisco activation and photorespiration (Koyama and Take-
moto, 2014)), rather than by leaf phenology. Vegetation physiological
response, represented by the canopy conductance (Gs; mol m™2 s~ 1), was
calculated directly by the flux-gradient method, which avoids the
assumption of energy balance closure required by the often used
Penman-Monteith method (Wehr and Saleska, 2021). The derivation of
Gs required of Fyypo observations (and its equivalent evapotranspiration,
ET, in units of mm s !). We restricted Fuoo measurements to periods
without rainfall in the previous 12-hours assuming water fluxes were
dominated by transpiration (Restrepo-Coupe et al., 2023). (See Table S3
for descriptors of vegetation form and function.)

To study the effect of Ty and VPD on hourly photosynthesis we fitted
second-degree linear regressions between GEP,/PAR and VPD for
different equal sized T, bins and vice versa. With a similar analysis, we
attempted to separate the effect of VPD and plant available water (cu-
mulative water deficit, CWD as a proxy of soil moisture) on photosyn-
thetic activity. The GEPy, was defined as GEP at PAR values > 1000
pmol m~2 s1. By calculating GEPqq/PAR we aim to remove the effect of
changes in the light environment on photosynthetic activity.

We investigated the role of different mechanisms influencing
photosynthesis — variation in external environmental drivers, versus
variation in structure and photosynthetic capacity of the canopy -
during both ENSO and non-ENSO years by expanding the model pro-
posed by Wu et al. (2017), which itself builds on a long literature of
Light-use Efficiency modeling for simple and tractable representation of
photosynthesis in the field, from local to global scales (Field et al., 1995;
Jarvis et al., 1976; Mahadevan et al., 2008; Monteith, 1972). In the
model, GEP is determined by (1) the intrinsic light-use efficiency of the
canopy, represented by eddy flux-observed light use efficiency (LUEy;
molCO, mol ! photons) under reference environmental conditions
(parameter fe, ref) and (2) environmental conditions, most notably PAR
as well as potentially other environmental factors:

GEProge = LUEref/fen.refprRxfenv (@)

where the parameter f,,, is a dimensionless scaling factor that adjusts for
effects of CI, VPD, PAR saturation, and T, as: :

fow = (1+ (ke  CI)) x (1 — (kypp x VPD))
x (1/(1+ (PAR/PAR,))) x (1 — Krar % (Toir — Topt)z) @

where Wu et al. (2017) found that k¢; = 2.05640.065, fenyrer = 1.225
+0.021, kypp = 191.1e-6 + 3.4e-6, and PAR, = 6216.4 + 13.8. We
observed that when applying the model to our longer dataset, that model
residuals were significantly correlated with temperature, which we
addressed by incorporating temperature into the model. We represented
the effect of temperature with the expression (1-krgir X (Tgir - Topt)z),
where T, (optimum temperature) and kg (temperature coefficient)
are parameters fitted using an iterative procedure which gave kg =
—0.01254 0.0009, and T = 26.293+0.16 °C.

To identify the key seasonal drivers of photosynthesis during both
ENSO events, the model was driven by the average monthly daily cycle
for each of the environmental factors for non-ENSO years and compared
GEP;y04e1 to the same model driven by the variables observed during the
wet/drought event of 2008-2009 and 2015-2016 (e.g. only PAR
HY2008, only CI HY2008, VPD HY2008, and LUE,.sf HY2008) —similar to
a sensitivity analysis (see SI Section 5 for model details and coefficients).

2.4. Forest dynamics

Trees with a diameter at breast height (DBH; cm) greater than 35 cm
were measured, mapped and identified at four permanent 50 m x 1000
m transects that were installed in 1999 adjacent to the EC tower. Tree
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stems > 10 cm DBH were censored in narrower transects (10x1000 m)
running down the middle of the larger sampling area (total area of 3.99
ha) (Pyle et al., 2008; Rice et al., 2004; Saleska et al., 2003). All transects
(total area of 19.75 ha) were censused annually or bi-annually from
1999 to 2017 (Alves et al., 2018). Tree individual aboveground biomass
(AGB; kg) was estimated from allometry (Chave et al., 2014) and carbon
flows associated with annual tree growth (Growth; kgC m™2 yr1),
changes in size class (including recruitment) (A class; kKgC m~?2 yr’l)
and mortality rates (Mortality; kgC m 2 yr~!) were calculated. For
additional forest inventory methods see SI Section 2. Carbon allocated to
leaf litter-fall (Littereqs, gC m2d1) and to leaf, fruits, wood and other
debris (Littery;, gCm™ d™1) were calculated using monthly litter traps as
reported by Rice et al. (2004) and more recent litter samplings (2010 -
present) some of them are here presented for the first time (Fig. S5).
Leaf area index (LAI, m? m~2) was calculated using its relationship
with albedo PAR, the ratio between incoming and reflected by the
canopy PAR, a method modified from Doughty and Goulden (2008):

2PAR,, PAR exp( — kLAIpsz) 3

where PAR is the incoming photosynthetic active radiation and PAR; is
the reflected PAR measured at the top of the tower, SZA is the solar
zenith angle (SZA; deg), and k is the site-specific extinction coefficient (k
= 0.41 cos(SZA)’l). The LAIgpar calculations assumed constant leaf
clumping and tree spatial distribution and were restricted to measure-
ments dominated by direct radiation (PAR>1400 umol m~2s71) and SZA
close to zenith (SZA<30) to minimize the effect of light quality (changes
in the ratio between diffuse and direct radiation). Refer to Table S3 for
additional factors influencing LAI calculations, and consult SI section 6
for a comparison of LAIopar with other LAI methods (Fig. S19).

Net primary productivity allocated to leaf-flush (NPPpeqs; gC m2d1)
was estimated using a simple model where the seasonal change in
photosynthetic capacity (dPc/dt) is defined by the leaf balance (leaf
flush minus loss — litterfall) and the leaf-level carbon assimilation at
saturating light (Amax; gC m 2 s™1) scaled to ecosystem-level by the leaf
mass area (LMA; g m~2). Leaf demography was introduced on the model
using the relationship between LMA and leaf age as described by Cha-
vana-Bryant et al. (2016). Solving the equation resulted in
NPPyeq=dPc/dt LMA Ambx + Litterieqs (see Restrepo-Coupe et al. (2017)
for details).

2.5. Satellite-derived precipitation and radiation and cumulative water
deficit

We employed remotely sensed datasets in instances where ground-
based observations were unavailable or deemed unreliable due to a
significant number of gaps or sensor failures (e.g., precipitation)
(Table S2). We obtained an ancillary record of precipitation and CI
values from a near-by meteorological station located at the town of
Belterra (2.63 S, 54.95 W) with observations starting in 1971 (Brazilian
Institute of Meteorology, INMET). Here, we present basin-wide monthly
0.25 and 0.1 degree resolution precipitation data (1998-2019) from the
Tropical Rainfall Measuring Mission (TRMM) data product (3B43-v7)
(Huffman et al., 2007) and from Global Precipitation Measurement
Mission (GPM-IMERG final run: 2000-2020), respectively (Huffman
et al., 2014). We sampled TRMM and GPM precipitation for the K67
(BR-Sal) site location (P7grpm; mm). GPM was scaled to match TRMM
values —closer to in-situ observations. Dry season was determined using
a rainfall threshold value of 100 mm month !, as proposed by Sombroek
(2001).

We obtained satellite derived incoming all-sky shortwave flux (SW;,
ceres; W m~2) and net radiation (Rncgres; W m~2) at monthly 1-degree
resolution from the L3B EBAF-Surface (v4) global grid from the
Clouds and the Earth’s Radiant Energy System (CERES) (Kato et al.,
2012) and reflectance model values from the MCD43Cl1 v006
MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global
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0.05 Deg CMG daily product (Schaaf and Wang, 2015). We calculated
the enhanced vegetation index (EVI) using the bidirectional reflectance
distribution function (BRDF) adjusted reflectance (blue, red and green
bands) for observer at nadir and solar zenith angle at 15°. The BRDF
corrected EVI values (EVIsz415) represent canopy greenness — vegetation
photosynthetic capacity independent of the influence of sun-sensor ge-
ometry on the reflectance signal (Huete et al., 2006) (see Table S2 for
descriptors of satellite products).

We calculated monthly radiation and precipitation anomalies (Prrym
anomaly) as the departure from the month’s mean normalized by the
standard deviation (Aragao et al., 2007). A simple bucket model was
used to calculate the monthly cumulative water deficit (CWD; mm) as a
function of the previous month CWD, current losses (ET; mm) and gains
(Prrvnp)- In the equation, if CWD>0, CWD=0. Finally, we present CWD
as positive values (CWD = -CWD). In a previous study, Restrepo-Coupe
et al. (2023) observed a statistically significant correlation between
seasonal and hourly CWD and soil moisture values at Tapajos K67. The
regression showed the strongest correlation (R? = 0.9, p-value < 0.01)
when considering water content across a 0 to 10 m profile (6; m® m=3)
and the first 5 m depth (R? = 0.75, p-value = 0.01), as opposed to the
observations from deep soil moisture (7 to 10 m) (R2 = 0.66, p-value <
0.01) (refer to Table S1 for soil sensor depths and SI Section 6 in
Restrepo-Coupe et al. (2023) for additional information).

2.6. Hydrological year, derivation of monthly time series and other
statistical analysis

Day-time hours were selected as those when the top of the atmo-
sphere radiation (TOA; W m~2) (Goudriaan, 1986) was above a 5 W m™2
. Variables were labeled with the subscript daytime (e.g. GEPqytime). We
calculated monthly and 16-day EC observations as the mean of the
average day-time daily cycle for the period to avoid assigning less
weight to hours when measurements can be scarce (e.g. late afternoon
when rainfall may be common). Hydrological years were defined from
the start of the dry season (July) to the end of the wet period (June) and
named HYyyyy, where yyyy is July’s calendar year (e.g. HY2000:
July2000 to June2001). We calculated the series long-time trends by
applying a seasonal adjustment (removing the seasonal component) and
using a stable seasonal filter (annual moving average) (Brockwell and
Davis, 2002).

We present linear, second degree polynomial, rectangular hyperbola
and exponential regressions when appropriate —coefficients were fitted
using the least squares method. We calculated the statistical significance
of all models using either the coefficient of determination (RZ), the
Pearson correlation coefficient (R) and/or the p-value as a measure of
probability of the null hypothesis (no correlation between variables).
When both variables show some level of uncertainty and/or we wanted
to minimize the effect of outliers we used Type II linear regressions. The
analysis was implemented in Matlab 2019b.

3. Results

Here we contrast the seasonality of carbon fluxes, leaf phenology,
and meteorology in a tropical forest during two significant ENSO events
that brought abnormally wet conditions (2008-2009 La Nina) and
drought (2015-2016 El Nino) to observations during non-ENSO years.
To learn more about the mechanisms driving seasonal and interannual
changes in photosynthesis we calculated different ecological indicators
of vegetation response (e.g.: Pc and Gs), performed regression analysis
and implemented a gross ecosystem productivity model. We report the
long term trends in photosynthesis, ecosystem respiration, environ-
mental variables and forest function and structure —including stomatal
conductance, tree inventories, litter production, and leaf area indices.
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3.1. Characterizing meteorology during the La Nina HY2008 and the El
Nino HY2015 at K67

At K67 (BR-Sal), the average seasonal precipitation cycle was
characterized by a five month dry-season (July to December) correlated
with higher Tg;, VPD, turbulence, and incoming radiation and lower
cloud cover (Fig. S6). Average annual precipitation was 1985 mm where
120 mm corresponded to dry-season rainfall. By contrast, annual pre-
cipitation totals during La Nina and El Nino were 2404 and 945 mm,
respectively. Wet-season precipitation drove most of the positive
anomalies during La Nina and the dry-season was particularly dry and
long during El Nino (~seven months with an average of 24 mm
month™1). These exceptional values were seen across the basin, with
positive and negative Pgromary for the hydrological years July 2008-June
2009 and July 2015-June 2016 (Fig. S1). During both ENSO events
seasonal daytime u+, VPD and T; showed significant deviations from the
mean —cool humid air during La Nina, hot conditions with high atmo-
spheric evaporative demand during El Nino. During the 2015-2016
ENSO the all-time relationships between variables (e.g. Tuir daytime VS-
VP, Ddaytime; P TRMM anomaly VS-. SWin CERES anomaly, among Others) changed;
however, they were maintained during La Nina. For example, during the
HY2015 drought, VPDgaytime increased at a faster rate than the Ty
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daytime, indicating extremely dry atmospheric conditions and creating a
pressure gradient that promoted leaf water loss (Fig. S7). Furthermore,
during the 2015-2016 El Nino, Prgpp decreased more rapidly than
incoming radiation (SWi, ceres) (Fig. S8).

3.2. Seasonal carbon fluxes

Observations indicated that during the dry-season, R, remained at
near-constant low levels of ~8 gC m~2 d~! and gradually increased as
soon as the wet season began, reaching a maximum of 9.6 gCm ™2 d ™! by
mid-wet period (Fig. 1c). In contrast, seasonal GEP values increased as
the dry-season progressed and were maintained at a maximum of ~9 gC
m~2 d~! mid-dry to mid-wet season. We observed a significant decrease
in photosynthesis during both —-La Nina (wet-season) and El Nino (all-
year) events (Fig. 1a). During HY2015, dry-season reductions in GEP
were balanced and surpassed by low R, values, resulting in not sta-
tistically significant differences in net carbon flux (NEE) from the long
term average; however, considerable carbon uptake was observed dur-
ing the wet season driven by the low R, (Fig. 1a, c and e). In contrast,
during HY2008 lower photosynthetic activity and average seasonal R,
values translated into higher wet-season NEE -significant carbon loss
(Fig. 1e). While a positive and significant linear correlation existed
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Fig. 1. Santarém K67 (BR-Sal) seasonal values day-time 16-day of (a) gross ecosystem productivity (GEP; gC m 2 s’l); (b) ecosystem respiration (Reco; 8C m2 s’l);

(c) net ecosystem exchange (NEE; gC m2s Y ecosystem-level canopy stomatal conductance (Gs, mol m2s 1) and (d) photosynthetic capacity (Pc; gC m2s .
Hydrological years July 2009-June 2010 (blue line), July 2015 — June 2016 (red line) and mean (black line) and standard deviation (dark gray area) of all available
observations (2002-2006, 2008-2013 and 2015-2020). July-November gray-shaded area is the average dry season defined as rainfall < 100 mm month~! using
satellite-derived measures of precipitation.
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between GEP and R, the 2008-2009 La Nina event saw R, increasing
at a faster than GEP, and the relation was not significant during the
drought — primarily attributed to the small magnitude of the slope —
despite an increase in GEP during the HY2015 wet season, R,., remained
low (Fig. 2g).

The GEP and R,, values observed during El Nino drought remained
abnormally low even after rainfall resumed — 2015 to 2018 (Fig. S13).
However, trends in NEE did not suggest a departure from the all-time
average after HY2015.

3.3. Environmental controls on seasonal carbon fluxes

We observed a significant negative correlation between seasonal R,
and Tyir daytime, as Well as to VPDgqyrime and a positive relationship with
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Py for all available observations. Drought conditions, high VPD and
Tair, translated into accelerated reductions in carbon efflux (Fig. 2) and
the intercept between R,, and Prgpy changed during the El Nino event.
When there was no precipitation during HY2015, R,., was ~6 gC m2
d~! —lower than the all-time mean of ~8 gCm 2 d~! (Fig. $10).
Hourly photosynthetic activity at saturated light showed to be
controlled by VPD rather than Tg; or soil moisture (CWD as proxy) -GEP
linearly decreased as atmospheric evaporative demand increased
(Fig. S9). However, at a seasonal scale, the relationship between
photosynthesis and VPD was non-statistically significant, nor were the
all-time regressions between GEP and Ty or Rn (Fig. 2). By contrast,
during the 2015-2016 ENSO, environmental drivers were significantly
correlated with seasonal values of photosynthesis —increasing tempera-
ture, radiation and atmospheric demand correlated with lower GEP (R?
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Fig. 2. Santarém K67 (BR-Sal) linear regression between daytime 16-day gross ecosystem productivity (GEPgqy; 8§C m~2d™") to (a) cumulative water deficit (CWD;
mm), (b) satellite derived (CERES) all-sky net radiation (Rn cgres; W m~2) and (c) daytime vapor pressure deficit (VPDgqytime; kPa). Regression ecosystem respiration
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Hydrological years July 2009-June 2010 (blue line and dots), July 2015 — June 2016 (red line and dots) and mean (gray line and dots) of all available observations
(2002-2006, 2008-2013 and 2015-2020). The 95 % confidence intervals for regression coefficient estimates as gray areas.
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= 0.20, 0.53, 0.27, respectively, p-values <0.001). Although increasing
water deficit conditions (CWD) translated into higher GEPqyime during
the drought period, photosynthetic activity (intercept and overall
values) was significantly lower than the all-time regression (Fig. 2).

To isolate the effect of the different environmental controls on
photosynthesis during both ENSO events we used an Light-use Efficiency
GEP model (Fig. S16-S18). At K67 (BR-Sal), photosynthesis was driven
by biotic factors (here represented by LUE;), incoming light (including
day length), VPD, T, and light quality (diffuse/direct radiation, CI as
proxy). Our GEPp,y4e1 showed reductions in photosynthesis during the La
Nina were driven by low values of PAR and phenology (LUEy as proxy).
By contrast, El Nino low photosynthetic activity was driven by lower
photosynthetic capacity with a moderate contribution from high VPD
values (Fig. S18) (see SI Section 5).

3.4. Biological controls on seasonal carbon fluxes

Leaf phenology metrics such as leaf abscission and production, and
Pc have closely related seasonal cycles. During the dry season high
values of leaf litter fall were balanced by high leaf-flush activity (NPPjeqs
fush) — this resulted in a high leaf area index (LAIpar). Litterieqs was
negatively correlated to Pc. By contrast, elevated values of leaf quality
(@anm) and a second peak in leaf quantity (LAIpag) observed during the
mid-wet to mid-dry season (October-March) (Fig. 3) coincided with
increasing photosynthetic capacity (Pc) (Fig. 1). The fast photosynthetic
response at low light levels (aap) observed during El Nino dry-season
was offset by lower values of photosynthesis at saturated light (Ppmax)
(Fig. 3 and S14).

Here, we report an increase in Litterjeqs and Littery; and a decrease in
LAI during the wet season of the 2015-2016 ENSO. Our HY2015 NPPjeqs.
flush model showed short lived higher leaf production during the tran-
sition from dry to wet season (Fig. 3) —not enough to increase total LAI
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values. Moreover, wet-season El Nino reductions in leaf quantity were
accompanied by a decrease in the quantum yield of assimilation (osp)
—which describes leaf quality— after an-all time high observed at the
beginning of the HY2015 (July-December dry season). After the drought
ended and rainfall resumed, Ppn increased and remained at levels
above the all-time average (Fig. S14). Leaf photosynthetic response to
light showed no significant short or long-term change related to La Nina.

Leaf quantity and quality were significantly low after the wet-season
of the 2015-2016 El Nino drought and subsequent years, with oy
values decreasing from December 2015 onward and LAlgpag: from
HY2015 to HY2018 (Fig. S14). Unleashing long-term changes in
phenology (Pc) accompanied by variations in forest physiology, here
represented by lower Gs, and by higher VPD and Ty values from
HY2015 to HY2018, despite precipitation resumed in 2017 (monthly
rainfall was comparable to the climatic mean) (Fig. 4, S11 to S13). The
EVIga15 (proxy for Pc -leaf quantity and quality) confirmed a significant
and sustained reduction in photosynthetic capacity at K67 (BR-Sal)
during the drought — EVI,;5 values reached the ~20-year record
minima (Fig. 4).

We observed other significant forest structure changes at our study
site during HY2015, with higher mortality during and after the drought
event (September 2015 and 2017 inventories) — most of the total
biomass reductions (kg m~2 yr 1) driven by the loss of smaller in-
dividuals (diameter, DBH <35 cm) from a few softwood, mid-canopy,
shallow-rooted species (preliminary analysis from a small sample).
Reduced growth was substantial for all trees in the 2015 inventory
(Fig. S15). After the 2015-2016 El Nino, high mortality and slow growth
of small trees (DBH <35 cm) translated into slightly reduced above
ground biomass estimates for the 2017 forest inventory. By contrast,
2009 biometry measurements (after La Nina) showed reduced mortality
and higher growth for large trees (DBH >55 cm) (Fig. 4 and S15).
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Fig. 3. Santarém K67 seasonal values day-time 16-day of (a) net primary productivity allocated as leaf production (NPPjeq¢.fiush; §C m~2d'); (b) leaf area index from
photosynthetic active radiation (LAIzpag; m? m~2) and from LiDAR measurements (LAl jpag m? m~2); (c) leaf-fall (Littery;; gC m~2 d~!) and (d) quantum yield of
assimilation (aap; gC MJ -, Hydrological years July 2009-June 2010 (blue line) and July 2015 — June 2016 (red line). Fine dark gray lines indicate individual
hydrological years, their average (black line) and mean + standard deviation (dark gray area) based on all available observations (2002-2006, 2008-2013 and
2015-2020). July-November light gray-shaded area is the average dry season defined as rainfall < 100 mm month ! using satellite-derived measures of precipitation.
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Fig. 4. Santarém K67 (BR-Sal) seasonal 16-day values of day-time ecosystem-
level canopy conductance (Gs/Gsmqx) and photosynthetic capacity (Pc/Pcpqy) as
a fraction of their maxima. Mean of all Gs/Gs; available observations
(2002-2006, 2008-2013 and 2015-2020) (blue line), standard deviation
(shaded light blue area) and deseasonalized —long-time trends obtained by
applying a seasonal adjustment (removing the seasonal component) and using a
stable seasonal filter (annual moving average) (dark thick blue line). The
average Pc/Pcpqy (red lines), standard deviation (red shaded area) and desea-
sonalized time series (dark thick red line). (b) Enhanced vegetation index (EVI)
from the MCD43C1 v006 CMG daily product (Schaaf and Wang, 2015; Schaaf
et al., 2002) bidirectional reflectance distribution function (BRDF) adjusted
reflectance calculated for observer at nadir and solar zenith angle at 15°
(EVIga15). (¢) Tree mortality values from annual forest inventories (Mortality;
kgC m~2 year™!), here presented per size class <20 cm diameter breast height
(DBH) trees (blue bars and lines), 20-35 cm DBH (green bars and lines), 35-55
cm DBH (yellow bars and lines), stems >55 cm DBH (red bars and lines), and
total mortality (gray bars and lines). Bars defined by the expectation and the 25
and 75 % confidence intervals calculated by bootstrapping combined with
random attribution (assuming the year when the individual went missing was
different than the year of the sample) (Longo, 2014). Gray-shaded areas are dry
season conditions defined as satellite-derived precipitation < 100 mm month~?.
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4. Discussion

The ability to maintain long-term EC flux measurements and forest
dynamics inventories is critical to the task of scaling mechanisms from
individuals to ecosystems. Across Amazonia two ENSO events brought
extreme precipitation, temperatures and moisture regimes. At K67
Tapajos National Forest the 2008-2009 La Nina was characterized by
high rainfall, low temperature and VPD during the wet-season and the
2015-2016 El Nino brought drought conditions, offering the opportu-
nity to contrast tropical forest response to climatic extremes and re-
covery times. Our results show: (1) an increase in carbon loss during the
wet event, when high values of NEE were driven by low photosynthetic
activity induced by low incoming radiation, this despite to high Gs
values; (2) overall, there was either short-lived uptake or carbon
neutrality throughout the drought period, attributed to the simultaneous
suppression of both productivity and respiration, (3) reductions in
photosynthesis were linked to loss of vegetation capacity (both —leaf
quantity and quality) during the dry-season and reductions in canopy
stomatal conductance response to high VPD. (4) Low Gs values reported
during El Nino, and a few years after the drought can be related to
significant changes in leaf physiology— increasing vegetation controls
limiting transpiration and photosynthetic activity. Here we discuss these
results in the context of environmental and phenological drivers and its
significance when determining forest resilience and susceptibility to
climate anomalies.

4.1. What is the effect of extreme climatic events on seasonal carbon flux
components (photosynthesis and respiration)?

Whereas La Nina’s reductions in photosynthetic activity were not as
significant as those observed during the El Nino drought, the 2008-2009
GEP drove the HY2008 carbon imbalance, here represented by high NEE
values. By contrast the low ecosystem respiration (Rec,) drove the short
lived uptake during the El Nino. Where R,, encompasses autotrophic
respiration (vegetation growth, maintenance, and reproduction) (Rp),
and heterotrophic respiration (decomposition) (Rp). Therefore, we could
infer from the positive correlation between GEP and R, during non-
ENSO years (Fig. 2g) and previous estimates at a nearby forest (R, =
0.72R¢c, and Ry, = 0.28R,.,) (Miller et al., 2011) that at K67, the CO4
efflux was dominated by autotrophic respiration. However, the regres-
sion GEP v. R, changed during both ENSO events, suggesting that
under abnormally dry or wet conditions heterotrophic respiration may
have had a more significant contribution to R, either through sup-
pression or enhancement (Fig. 2h). During La Nina, increased soil
moisture may elevate rates of decomposition (Giweta, 2020), while the
abnormally low photosynthetic activity values during El Nino may have
been balanced by equally low values of R, and consequently R,,. During
the drought, across the Amazon, leaf measurements, live and dead
woody tissue, and soil respiration revealed that although leaf dark
respiration was maintained, the wood and leaves efflux was reduced as
LAI declined, as well as the necromass decomposition diminished (Meir
et al., 2008).

4.2. Does the seasonal relationship between meteorological values and
GEP, R, and NEE changes under abnormally dry or wet conditions?

Although photosynthesis decreased during the El Nino, the corre-
sponding values of Ty and VPD at which maximum GEP values were
observed, increased reaching values up to 30.6 C and 2.2 kPa. Our
dataset confirms that high VPD values are the main driver of hourly GEP
reductions rather than T, (as in Smith et al. (2020)) and/or soil water
content (CWD as proxy) (opposite to modeling work by Fang et al.
(2021)). Linked to the 2015-2016 ENSO and the next three years, we
observed a decoupling of Tg; vs. VPD — which shows a faster increase in
air dryness that may be reflected in the lower Gs values. Moreover, our
observations do not show signs of higher GEP due to increased radiation
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nor Tgr. The reported drying and warming trends observed at the
Tapajos region, along with vegetation responses, highlight that the
predicted enhanced productivity due to CO5 enrichment or high tem-
perature may not be applicable to all tropical forests. Fertilization effects
can only occur if the increase in T is moderate and accompanied by
excess precipitation (Gustafson et al., 2017).

At K67 (BR-Sal), the rise in forest mortality during and after the El
Nino was mainly driven by small individuals (DBH<35 cm). This con-
trasts with results from the nearby Seca Floresta rain out experiment
which showed mortality of large adult trees as driving canopy gap for-
mation and declines in litterfall production (Brando et al., 2006; Nepstad
et al, 2007). While the experimental drought excluded 60 % of
throughfall (~3-years) (Nepstad et al., 2002), here we report how
increased VPD, rather than plant available water drove reductions in
GEP —perhaps explaining differences in mortality. Both the partial
throughfall exclusion experiment and the ENSO 2015-2016 showed
reductions in growth of small individuals. Biomass loss and reduced
growth are clear indications of vegetation stress and forest disturbance
—flux (e.g. GEP), environmental (e.g. VPD) and other ground and remote
sensing measurements (e.g. EVI) data signaled a slow recovery (+3
years).

4.3. Vegetation strategies and carbon flux during extreme events

Radiation and leaf phenology contributed to lower photosynthetic
activity throughout the La Nina wet event. Similarly, we showed how
Pc/LUE;es and VPDgqytime drove reductions in GEP during the drought.
Where the photosynthetic capacity (Pc and greenness indices) are driven
by both the quality (e.g. age, Anqx) and quantity of leaves (e.g. LAI).
Here, we report long-term losses in leaf quantity (LAIgpag) during and
after the El Nino event. Moreover, at K67 Smith et al. (2019) showed
how the seasonal changes in the vertical distribution of LAI were more
significant than the total change; thus lower canopy LAI decreased as the
upper canopy LAI increased during the dry season -their observations
showed seasonal trends magnified during the 2015-2016 EI Nino.
Interpreting quantum yield of assimilation (a4pp) as a measure of leaf
quality, we report a significant increase during the dry-season drought —
coinciding with leaf-flush and increased upper canopy LAI —this may be
related to the fact that top canopy (sun-exposed sacrificial) leaves sub-
jected to greater stress (light, atmospheric evaporative demand, tem-
perature and wind) show lower quality (thicker, smaller, and have less
chlorophyll) compared to understory shaded leaves (Souza et al., 2018).
The higher top canopy LAI coincided with low Ppnean- By contrast,
during the El Nino “wet-season”, possible feedback effects (reduction in
ET) added to the lack of precipitation, which translated into higher VPD
and Tg;r, lower canopy conductance (leaf physiological response, as in
low aapp) and resulted in low photosynthetic activity.

We could anticipate other changes related to the timing of different
phenological cycles, for example, favoring species that flush at a
different times of the year or going into senescence during the dry-
season (Scranton and Amarasekare, 2017). Alternatively, as Barros
et al. (2019) found at our study site, there was a distinct (less diverse)
community assembly of hydraulic traits and taxa associated with high
drought tolerance (when compared to a less seasonal equatorial forest
site, Manaus, K34). These K67 (BR-Sal) species were characterized by
greater xylem embolism resistance and were able to maintain a similar
hydraulic safety margin during the peak of the drought (December
2015) compared to the previous year (Barros et al., 2019). Indeed, at
ecosystem level we observed the sustained abnormally low Gs, ET, aapy,
and photosynthetic activity from November 2015 to March 2016;
however, the long term Gs, aap, and Pc indicated longlasting pheno-
logical and physiological changes, and the 2017 forest inventories
indicated a significantly higher than usual mortality in small size classes
— future work will identify the species that would have been subject to
embolism and death and compare their hydraulic traits to those of in-
dividuals that survived and/or did thrive.
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5. Conclusion

Across the Amazon basin over the past few decades, rainfall data
suggest an increase in the frequency of anomalously severe floods and
droughts, and the intensification of the hydrological cycle, where dry
season precipitation has slightly decreased, and wet season and annual
mean precipitation have increased (Gloor et al., 2015). However, land
surface model simulations of biomass and productivity have shown
difficulties in replicating the strong effect that climate extremes exert
across short time scales, thus long-term observations and measurements
of tropical forest dynamics during drought are scarce (Castanho et al.,
2016). Here, we have shown the other side of drought, when high pre-
cipitation, low incoming radiation, and phenological changes, drove
short-lived carbon losses, indicating that light and vegetation capacity
can significantly limit productivity. Moreover, long-term measurements
of tropical forest dynamics demonstrate how light drives dry-season
increases in photosynthesis and key phenological cycles (e.g. leaf flush
and abscission -forest “green-up”) (Huete et al., 2006; Hutyra et al.,
2007; Restrepo-Coupe et al., 2013; Saleska et al., 2007; Wu et al., 2016).
Yet, we have shown how anomalous dry periods have long-term (lasting
three to four years after drought) consequences on site climate (atmo-
spheric demand and Tg;), vegetation physiology (Gs, Pnmaxam and aan),
phenology (Pc) and structure (LAIgpar, and mortality). Moreover, our
results point to water stress —driven by VPD rather than T, soil mois-
ture (CWD as proxy), nor to access to groundwater (~100 m depth
(Nepstad et al., 2002)), as a key driver not only of photosynthesis, but of
ecosystem respiration, decreasing tree performance, and increasing
mortality, possibly resulting on altering forest functional diversity
(Barros et al., 2019; Betts et al., 2004, Brum et al., 2018; Castanho et al.,
2016; Cox et al., 2004; Phillips et al., 2009; Zhang et al., 2015) with
significant consequences for ecosystem carbon exchange, the effect of
fertilization and forest resilience.
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Hourly eddy covariance data presented and analyzed here (from
2002 to 2020) are posted at the Ameriflux K67 (BR-Sal) repository
(https://ameriflux.1bl.gov/sites/siteinfo/BR-Sal). Seasonal (16-day av-
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