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Coastal communities are increasingly vulnerable due to sea level rise and population growth. Managed retreat is
commonly recognized as a strategy that yields multifaced benefits in community adaptation. However, limited
studies have explored the cumulative effects of sea level rise, population migration, and managed retreat on the
community resilience. This study presents a parcel-level land use change model to analysis land-based flood
mitigation strategies in Galveston County, Texas. The developed model integrates a Gradient Boosting Decision
Tree with a flood risk model and diverse datasets. Our model results reveal the spatial patterns of urban
development in Galveston under different relocation policies and the compounding impacts of sea level rise and
population growth. Our findings illustrate that elevating the first floors of buildings can significantly mitigate
flood risks and associated relocation costs. The private adaptation measure, together with government-led
buyout policies, could foster a shift toward more resilient urban development and yield a more affordable
relocation strategy. Our findings emphasize the need for a multidisciplinary approach in building resilient coastal
communities, particularly in the face of escalating climate risks in local communities.

weather impacts and improving local land use planning (Anguelovski
et al., 2016; Davlasheridze et al., 2019).

1. Introduction

Coastal communities increasingly confront by the recurrent chal-
lenges of flooding hazards, exacerbated by the compound risks of coastal
storm surges, intense precipitation from tropical cyclones, and the
ongoing effects of sea level rise (de Koning & Filatova, 2020; de Ruiter
et al., 2020; Haasnoot et al., 2020). These multifaceted effects of coastal
hazards not only threaten the resilience of coastal communities but also
endanger vital coastal habitats (Khan et al., 2014). Moreover, the
continuing urban development in these areas adds complex challenges
for urban policymakers to implement effective risk mitigation strategies
to ensure long-term coastal sustainability. Although scientific under-
standing of climate change adaptation is evolving, addressing these
challenges at local scale necessitates the integration of transdisciplinary
knowledge for accurately quantifying the impacts of coastal extreme
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Land-based adaptation policies, such as managed retreat, property
buyouts, as well as nature-based solutions, have become increasingly
popular in mitigating escalating climate risks and maintaining the long-
term sustainability (Hino et al., 2017; Keesstra et al., 2018; Yin et al.,
2023). The managed retreat is a strategic approach to prevent future
damages of natural disasters by moving people, assets, and in-
frastructures away from high-risk areas. The property buyout program,
which aims to use public funds to relocate high-risk properties in
floodplains, offers homeowners fair market value to relocate to safer
areas (Greer et al., 2022). Unlike other flood risk mitigation projects,
property buyouts usually transfer developed land into conservation land
and are used for flood mitigation projects (Weber & Moore, 2019). Ex-
amples of property buyout programs include FEMA’s Hazard Mitigation
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Fig. 1. The Houston-Galveston Region: Geographical Location in the U.S., and Detailed View of Galveston County’s 100-Year Storm Surge Flood Inundation with

Building Parcels and Footprints.

Grant Program, the Flood Mitigation Assistance Program, and the
Building Resilient Infrastructure and Communities program. Neverthe-
less, existing studies show these property buyout programs are con-
strained by limited funding and could result in equity issue in buyouts
(Peterson et al., 2020; Siders, 2019b).

Risk mitigation and urban development decisions of local govern-
ments are intertwined. Inappropriate risk mitigation decisions would
result in unequal distributions of resources and increase social vulner-
ability to natural disasters (Munoz & Tate, 2016). For example,
neglecting to transform retired land in flood mitigation programs into
beneficiary community assets can lead to unforeseeable ecological and
social issues (Highfield et al., 2014). Nevertheless, acquiring properties
located in floodplain areas and relocating vulnerable residents incurs
substantial costs and adversely affects local tax revenues, utilities, and
other municipal services (Siders & Gerber-Chavez, 2021). The financial
paradox between investing in managed retreat for sustainability and
facing reduced tax return due to exit of the relocated households from
the city, compels most existing relocation programs focusing on a
limited number of less expensive buildings(Siders, 2019a).

With the escalating impacts of climate change due to sea level rise
and increasing population exposure, understanding the evolving risks
and benefits of land-based adaptation in coastal communities becomes
essential. This study focuses on enhancing managed retreat policy-
making in coastal communities. By simulating parcel-level urban
development and flood risk based on historical trends of relative sea
level rise and population growth, our research is centered around two
critical research questions: (1) How will community coastal flood risk
evolve under sea level rise and population growth? (2) What are the
effects of managed retreat policies on the resilience of coastal commu-
nities? Our modeling outcomes provide tools and methods to access the
changing coastal flood risk faced by coastal communities and to support
the development of effective land-based adaptation strategies for these

areas.
2. Literature review

The vulnerability of communities to natural hazard is affected by
both the changing frequency and intensity of these hazards, and by the
varying exposed elements at risk to natural hazards (Papathoma-Kohle
et al., 2007). Climate change strongly affects hazard characteristics and
has been integrated into the assessment of natural hazard risk. For
example, Ju et al. (2019) measured exposure of flooding in San Fran-
cisco under various climate change projections and highlighted the
importance to cope with climate change uncertainties in adaptation
planning. Nevertheless, considering urban development and adaptation
policy, the projections of future climate risk also need to consider
changes of exposed element-at-risk. Elements-at-risk usually refers to
the people, property, systems, or other elements within an area that are
potentially exposed to losses due to a natural hazard (van Westen et al.,
2008). Land uses, population, and buildings are typical examples of el-
ements-at-risk.

Land use/cover change (LUCC) modeling is a crucial approach for
studying spatial-temporal land use changes and assessing urban devel-
opment with environmental impacts (Tong & Feng, 2019). LUCC
modeling could inform decision-making by comparing future urban land
use patterns under different environmental scenarios and planning
policies. Existing LUCC models commonly employ transition probabili-
ties between land uses and neighborhood effects of land use changes to
predict future land use patterns (Pan et al., 2021). For instance, Li et al.
(2021) considered temporal effects of urban development to estimate
future global urban growth under IPCC’s projected climate scenarios.
Using remote sensing observations, higher probabilities were assigned
to new developed urban pixels in the neighborhood to influence changes
from non-urban land to urban land of the central pixel. Wang et al.
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Table 1
Data description.
Dataset Description Source Nature
Cadastral Parcel Land parcels including land value, building value, Galveston Central Appraisal District (https://galvestoncad.org/gis-data/) Polygon Shapefiles for

data area, and building height.

Building Building footprints of Galveston County
footprints
Land use data Land uses in 2011, 2015, and 2020 from NLCD land

cover classification schemes
Population demographical information in census
tract

Census data

Microsoft Planetary Computer’s dataset (https://planetarycomputer.micro
soft.com/dataset/ms-buildings)

National Land Cover Database (NLCD) (https://www.usgs.gov/centers/er
os/science/national-land-cover-database)

United States Census Bureau

individual parcels
Polygon Shapefiles for
individual buildings
Raster imagery with 30-
m resolution

Polygon Shapefiles in
census tract

POI data POI of schools, hospitals, parks, beaches, wetlands, = The archived OpenStreetMap data (https://download.geofabrik.de/) Point Shapefiles
and coast area
Population County level population migration between 2005 United States Statistics of Income Division (SOI) of the Internal Revenue Spreadsheets
migration data and 2021 Service (IRS) (https://www.irs.gov/statistics/soi-tax-stats-migration-data)
Human mobility Daily population flows between census tracts Multiscale Dynamic Human Mobility Flow Dataset in the U.S. during the Spreadsheets
data COVID-19 Epidemic (Kang et al., 2020)
DEM data Tidally adjusted raster digital elevation model The National Oceanic and Atmospheric Administration (NOAA) Raster imagery with 3 m

(https://coast.noaa.gov/dataviewer/#/)
University of Hawaii Sea Level Center (Caldwell et al., 2015)

Sea level data Hourly relative sea level in millimeter from

Galveston, Pier Tide Gauge Station between 1900

and 2020
Flood inundation Flood inundation maps from category 1 to category
data 5 hurricane storm surges

NOAA National Storm Surge Risk Maps (https://www.nhc.noaa.
gov/nationalsurge/#data)

resolution
Spreadsheets

Raster imagery with 30-
m resolution

(2022) considered the time-series influence of the spatial structure of the
neighborhood effects to predict future urban development. Abolhasani
et al. (2016) developed a parcel-based cellular automate model to
simulate urban growth through estimating three neighborhood effect
parameters, including compactness, compatibility, and dependency.
Moeckel (2017) developed a dynamic land use and transportation model
to represent location choices of households by considering utilities of
housing and commuting costs. Recently, researchers have combined
machine learning and neighborhood effects models to simulate future
urban expansion. Zhuang et al. (2022) developed a LUCC model relied
on both machine learning techniques and neighborhood effects to pre-
dict urban expansion through vectorized memory processing using
Graphics Processing Units.

Given the catastrophic impacts of climate hazards, exacerbated by
population growth, land-based risk reduction strategies have drawn
increasing attention. Atoba et al. (2021) demonstrated the potential
benefits of acquiring vacant land in Houston area before it is built up to
mitigate sea-level rise impacts. They highlighted that acquiring vacant
land can be a cost-effective way to reduce repetitive losses of coastal
hazards, and meanwhile avoiding social and institutional problems
associated with traditional buyout programs. To explore the economic
feasibility of land-based risk mitigation policies, Rifat and Liu (2022)
applied an artificial neural network and Markov-chain model to measure
future urban growth patterns under different development strategies
and sea-level rise impacts in southeast Florida. Their study illustrated
that targeted land-use policies can curtail the economic costs associated
with coastal hazards while enhancing the overall community resilience.
Lin et al. (2022) employed land use simulation and maximum entropy
method to identify future urban waterlogging-prone areas to heavy
storms and to predict future land use patterns. Their results revealed the
potential waterlogging risk from large impervious areas in cities. Liu
et al. (2023) considered the derivative consequences of land use changes
on future flood risk, integrating multiple model components into a
model chain, which couples a land use simulation model with sub-
modules to forecast future population and economic growths under
various scenarios, including economic expansion, cropland protection
and ecological preservation. Although existing studies have consistently
observed the increasing impacts of natural hazards to urban commu-
nities, uncertainties associated with climate-related hazards and future
development pose significant challenges to the efficacy of land-based
adaptation strategies (IPCC, 2023). Hence, it is imperative to integrate
knowledge across disciplines to strategically inform the potential im-
pacts of these policies on community development under cumulative

impacts of sea level rise and population migration.
3. Data and study area

The Houston-Galveston area is one of the most vulnerable regions in
the Gulf of Mexico (Hamideh, 2020). It is a warm and low-lying region
which experiences impacts of warm ocean every summer during hurri-
cane season. Climate-induced Sea Level Rise (SLR) exacerbates the
vulnerability of the low elevation land which is already prone to
flooding. From 2000 to 2017, the Houston-Galveston area has more than
three thousand federally funded residential buyouts, which is the largest
number of property buy outs in the US (Loughran & Elliott, 2019).
Understanding the effects of climate change and alternative risk man-
agement policies in this area could facilitate disaster management and
risk mitigation policymaking for the extensive coastal communities in
the US. Fig. 1 shows the location of Houston-Galveston region, which
consist of 8 counties. In this study, we focus on urban development and
relocation issue in Galveston County. Fig. 1 additionally illustrates the
extent of flood inundation of exposed land parcels and building foot-
prints during a 100-year storm surge event. Since the east and south
parts of Galveston County are coastal areas with low elevation, the
developed land parcels in these regions have much higher flooding risk
compared to the northwest of the county.

Most of the land parcels in Galveston County are near the shoreline of
the Gulf of Mexico. In this study, we collected data from multiple sources
to estimate future community flood risk and land use patterns, as shown
in Table 1. To build the land use simulation model, we use land use data,
building footprints, parcel data, point of interest (POI) data, census level
socio-demographic information and mobility data. Three levels of
spatial data, namely land use, building footprints, and parcel data, were
used to classify landscape features in the simulation. The parcel data was
obtained from the official website of Galveston Central Appraisal Dis-
trict. Three periods of land use data, namely in 2011, 2015, and 2020,
were acquired from the National Land Cover Data (NLCD). We also
retrieved building footprints in Galveston County from Microsoft’s
Global Building Footprints database. We applied this data later to
extract land use, building elevation, DEM, and flood inundation infor-
mation to parcels and combined it with parcel data. Thereafter. The
2019 census block data was accessed from the US census bureau
including households’ socioeconomic attributes, composition, minority
status, et al. POI datasets, including schools, hospitals, parks, beaches,
and wetlands, were from OpenStreetMap. We also collected census tract
level daily mobility flows in Houston-Galveston area to measure
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Fig. 2. An integrated framework of the parcel-level land use simulation model under coastal flood risk.

accessibility of communities. Since relocated households will mainly be
redistributed within the Houston-Galveston region, we measured pop-
ulation migration between Galveston County and nearby counties in this
area. Over one century hourly relative sea level data at Galveston was
collected from University of Hawaii Sea Level Center (Caldwell et al.,
2015). This dataset not only allows us to measure the distribution of
extreme weather events, also enables us to project future trends of sea
level rise in the area. For the analysis of extreme values, we employed
the ‘pyextremes’ package in Python, which is specifically designed for
extreme value analysis. To project future sea level rise trends, we
implemented the Seasonal AutoRegressive Integrated Moving Average
with eXogenous (SARIMAX) regressor model, available in the ‘stats-
models’ package in Python. Ground elevation data and five categories of
simulated storm surges, ranging from category 1 to category 5 hurricane
storm surges, were used to measure flood inundation and adjust the
flood inundation mapping model.

4. Methods

Fig. 2 presents a comprehensive framework of the developed parcel-
level land use model, designed to project future urban land use patterns
in the context of coastal flood risks. Detailed figures within the model
framework are provided in the Supplementary Information (SI). The
right side of Fig. 2 shows three sub-modules of the model, which are land
use classification, regional mobility and migration, and flood risk
modeling. These sub-modules were then cohesively integrated into the
land use simulation on the right side. On the right side of Fig. 2, a
gradient boost decision tree (GBDT) model, trained using classified land
use data from different periods, is employed to assess land use suitability
and then applied to measure land use development under various relo-
cation policies.

4.1. Land use classification

The land use classification module involves processing the raw
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datasets and merging raster level information to parcel features. We first
conducted a spatial join of all raster value information to building
footprints and then merged building footprints with parcel data to get
cadastral parcels with building and land uses information in different
years. There are several reasons that we started with building footprints
and then joined attributes to cadastral parcels. First, although parcel
data seamlessly covers the whole study area, building footprints are
small patches and could capture raster information of a specific area
more accurately. This information includes land use, building heights,
and flood-related inundations, etc. Second, building footprints can
uniquely represent individual buildings in the study area. As show on
the upper left of Fig. 2, the processed building footprints could be
visualized in a 3D environment with attributes (e.g. improved value) to
enhance the visualization of buildings. Third, we need parcel data in-
formation to simulate future land use patterns. Although the cadastral
parcel data downloaded from the Galveston County’s GIS data portal
was the raw parcel data with duplicated features, the dataset seamlessly
covers the whole county with important land parcel information, such as
building values, building code, built year, etc. We found 76,277 dupli-
cated building parcels overlapped to each other in the raw parcel data
and removed them. We employed land use data from the year 2011,
2015, and 2020 in conjunction with the building codes of parcel data
and the Standard Type Land Code Table in Galveston Gounty” to classify
the NLCD land cover into 7 categories: residential land, commercial
land, industrial land, infrastructural land, public land, green land, and
open space. We cross validated the built year information of a parcel
with our spatially joined land use in 2011, 2015, and 2020 to ascertain
whether a land parcel has been developed in each of these specified
periods. This process helped us reduce errors in land use classification.
As a result, our final cadastral land parcel has 170,194 unique parcel
features including land use attributes for three distinct time periods,
which indicate the development status and timeline for each parcel land.
For each developed parcel land, there is also an associated improvement
value, and for undeveloped land, the improvement value is 0. The upper
right of Fig. 2 shows the classified land uses in the three-time periods.

4.2. Regional mobility and migration modeling

We combined census tract level socioeconomic and mobility infor-
mation to our parcel data. We retrieved population flow data in 2019
before the Covid-19 pandemic from Github (Kang et al., 2020) and
utilized the weekly population flow data to measure accessibility and
attractions of each census tract in the whole Houston-Galveston region
(Higgins et al., 2022). The processed accessibility results are shown on
the upper right corner of Fig. 1. Our processed land uses and accessibility
results indicated that the development in the Galveston County is mainly
driven by the attraction of Houston from the north. We measured pop-
ulation migration using historical yearly population and household
migration data in Galveston County. This dataset was based on the re-
ported taxpayers’ geographic code changes from one year to the next
from the Internal Revenue Service (IRS). We determined population
flow directions from nearby counties to Galveston County in the
Houston-Galveston area and later determined future population growth
trends in Galveston County.

4.3. Flood risk modeling

Our flood risk model is based on the extreme value and time series
analysis. We first analyzed the distributions of extreme storm surge
events based on the historical hourly relative sea level dataset between
1990 and 2020 at the gauge station in Galveston County. The Peaks Over

! The Standard Type Land Code Table in Galveston County was accessed: htt
ps://www.galvestontx.gov/DocumentCenter/View/8823/Land-Development
-Regulations-PDF.
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Threshold (POT) extreme values are extracted from the dataset. The
process was accomplished by first generating a time series of exceed-
ances by selecting values above a certain threshold and then delustering
the exceedance time series by identifying clusters separated by a given
time window and then selecting only the highest values within each
cluster. A Generalized Pareto Distribution (GPD) distribution of storm
surges was applied to model the extreme value behavior of sea level
records. The density function of the GPD distribution is as follows:

Flueg(x) =1~ (1 + p

In the given equation, ¢ is the shape parameter, y is the location
parameter, and o is the scale parameter. The fitted model yielded a
location parameter 2300, shape parameter of 0.331, and a scale
parameter of 116.14. The unit of analysis is in millimeter. The historical
relative sea level data is nonstationary. We assume the nonstationary of
the historical sea level mainly comes from temporal trends in the data-
set. To examine our assumption, we first removed the temporal tends of
sea level data and use the Augmented Dickey-Fuller (ADF) test to
examine the stationary of the new data. We used the MSTL package to
remove the temporal trends of sea level and the adfuller package to test if
the new data is stationary. The ADF test for the new data has ADF sta-
tistic smaller than the 1 % critical level, which reject the null hypothesis
and infer that the new time series is stationary. To project future extreme
weather events, we also modeled the sea level rise trends and added it to
our extreme value distributions in projecting future flood risk.

We modeled flood height and frequency distributions using historical
sea level dataset and estimated flood height under each category of
storm surge (Doss-Gollin & Keller, 2023). The flood inundation under
each category was first estimated using a Bathtub method based on the
difference between peak storm surge heights from the GEV model and
the ground elevation. Afterward, we applied storm surge inundation
maps from SLOSH model to adjust the estimated flood inundations of
each parcel under each category (Han et al., 2022). We calculated the
average difference between flood inundations from SLOSH model and
estimated flood inundations from the Bathtub model for each parcel land
and incorporate this information in estimating flood damage for any
return periods and calculating flood risk. We also observed that the
distance to rivers and coasts may affect flood inundations of buildings.
We developed a linear model to measure effects of distance to rivers and
coasts on flood inundation. Since sea level rise could gradually inundate
low elevated areas, we estimate the changes of distance to rivers and
coasts based on a linear relationship between DEM and distance to rivers
and coasts. We measured changes of DEM due to sea level rise and
translated this information to changes of distance to rivers and coasts in
projecting future risk. The methods to describe this was incorporated
into the SI.

We estimated the flood risk of properties relying on the HAZUS
model. The HAZUS model was developed by the Federal Emergency
Management Agency (FEMA) and the National Institute of Building
Science (NIBS). HAZUS includes standard tools and data for estimating
risk from earthquakes, floods, tsunamis, and hurricanes (Schneider &
Schauer, 2006). Although the HAZUS model is a GIS-based modeling
platform, the tool is distributed with a collection of simplified open-
source codes (Moffatt & Laefer, 2010). In our study, we adopted the
open-sourced flood assessment structure tool (FAST) from HAZUS to
estimate physical damage and economic losses of properties from
different categories of hurricane storm surge hazards, which can be
accessed through https://github.com/nhrap-hazus/FAST. We applied
HAZUS’s FAST to estimate flood damages under different categories of
storm surge inundations and calculated the expected annual damage as
the flood risk. The FAST requires information regarding a property’s
building type, first-floor elevation (FFE), foundation, flood height,
property value, and content value to estimate flood damages of
buildings.
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We estimated the first-floor elevation of buildings in Galveston using
a dataset of 3D measurements from selected residential buildings, pro-
vided by Diaz et al. (2022). A linear model was developed to relate
ground elevation of these buildings to the difference between their first-
floor elevation and ground elevation. This difference represents the
extent of house elevation by homeowners as a measure to mitigate flood
risk. To estimate the flood risk of buildings, we only measured land
parcel with improved values in the county, which means flood risk will
be 0 for vacant land and retired land. The content value of a property
was also estimated based on improvement values of properties using
FEMA’s NFIP policy dataset (Han & Ye, 2022). In the flood risk
component of Fig. 2 and the SI, we show the derived flood frequency
distribution, the distributions of ratios between content values to
building values, and the linear model between FFE and ground DEM of
residential buildings in Galveston County. We applied these models to
generate input parameters for the HAZUS-FAST. For each type of
building, we measured flood risk by estimating the accumulated per-
centage of damage to its total value in a 30-year analysis. If the esti-
mated risk is between 0 and 1, it means the total risk of a building in 30
years will be lower than the total value of the building. Otherwise, it will
be higher than the total value of the building.

4.4. Machine learning model for land suitability analysis

We applied the gradient boost machine (GBM) in land use change
suitability modeling with various variables. Land use suitability can be
generally understood as a measure of the likelihood of a land parcel for a
specific purpose. GBM is an ensemble learning technique that converts a
group of weak machine learning predictors into strong learners (Tao &
Cao, 2022). More specifically, the gradient boost decision tree (GBDT)
model was used in the land use suitability modeling. In GBDT, each

decision tree is fit on a modified version of the original dataset. In this
study, we chose the AdaBoost algorithm from the Scikit-Learn library to
build our model. The AdaBoost first trains a decision tree by treating
each observation in the training sample with equal weight initially. After
training the first decision tree, the weights of variables will be adjusted
based on the previous decision tree. More specifically, the weights will
increase for samples that are difficult to classify and decrease for sam-
ples that are easy to classify. The AdaBoost will also assign higher
weights to trained classifiers with higher accuracy. Therefore, the final
model is added up by a sequential of decision tree models.

Multiple spatial variables, including census tract level sociodemo-
graphic information and accessibility, POI data, DEM, slope, flood risk
information, distances to roads and road densities, and percentage of
developed land in the neighborhood, were used as inputs to train the
gradient boost decision tree model. We listed details of these variables in
the SI. As shown in Fig. 2, the model was further calibrated and vali-
dated for generating land use suitability maps. After we obtained the
trained land use suitability model, we combined it with a set of criteria
to simulate urban land use changes.

In simulating future urban land use changes, we first excluded
wetland, parks, protected area, and all buyout land from the candidate
list of new developed land. For potential new development land, we
defined the land use transition rules as follows: we measured both the
probabilities of neighborhood influence and urban land transition
probability from the GBDT. If the maximum value of neighborhood in-
fluence probability py, ; for land use k; of parcel i and the highest
transition probability pgeumk,i of urban land use k; of parcel i from the
GBDT model have the same building land use code, we choose the max
between pyx; and pgemii. Otherwise, we choose either the pyg,; or
DaBMk, i» Which has the same land use with the building land use code. In
very rare cases, where the land uses with the maximum transition
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Fig. 4. Parcel land use data in 2011, 2015, and 2020 and validated land use in 2020.

probabilities in both the GBDT model and neighborhood influence are
different from the building land use code, we choose the probability
from the GBDT model. Relying on a linear relationship between the
improvement value, land value, and areas of land parcels, we randomly
generated an improvement value for new developed urban land.

4.5. Scenario design

We designed four relocation scenarios to simulate future land use
changes in Galveston County by 2050, considering the impact of sea
level rise. These scenarios incorporate future population changes, based
on net migration data in the county, and sea level rise projections from
historical data, serving as the boundary conditions for our model. Sce-
nario 1 focuses on government buyouts of high-risk properties, where
the existing flood risk exceeds their property values. New urban de-
velopments are simulated relying on land use transition rules. The
amount of new urban developments is estimated based on population
projections in the county. Additionally, the areas vacated by relocation
will be added back to the new urban development demand in the next
year, implying that property owners will move to new locations in the
county. To preserve existing natural resources, land parcels with natural
resources, such as beaches, wetlands, and parks, were not allowed to
change to other land uses.

In Scenario 2, we assume the county officials of Galveston County
will enforce a buyout policy targeting properties in high-risk flood
zones. Targeted regions encompass land parcels in flood V zones and
certain A zones within 2 km of the coast. Based on previous buyout re-
quirements, only properties with a value of less than $275,000 will be
included in the buyout plan (Siders & Gerber-Chavez, 2021). We assume
building owners will evaluate their relocation decisions by comparing
the total costs and benefits of the acquisition. If the total flood risk and
cost of building, including flood insurance costs in 30 years, is higher
than the total value of the building, the property owners will agree to

relocate to new locations within the county. We estimated the annual
insurance costs of households using FEMA'’s insurance rates table (Han
et al., 2022). Different from Scenario 2, Scenario 3 adopts a forward-
looking strategy, evaluating buildings in all flood A zones and the V
zones. Building flood risk will be dynamically updated every 10 years,
reflecting the latest sea level rise projection. The relocation decision will
be the same as Scenario 2, however, relocated property owners do not
relocate to low-risk areas within the county. This scenario aims to access
potential population loss due to sea level rises. Since our population
migration data indicates sudden population loss in the county due to
coastal flood damages, we conducted 100 Monte Carlo simulations in
Scenario 4 based on the GPD distribution to estimate the likelihood of
properties experiencing repeated flooding. Properties with over a 50 %
chance of recurring flood damage are marked for relocation or buyout.
Like Scenarios 3, new developments are prohibited in the buyout regions
in this scenario.

5. Results

We integrated the trained GBDT model in the developed parcel land
use model. Fig. 3 illustrates the spatial distributions of key parcel at-
tributes used in our land use change simulation. These variables include
average ground elevation of parcels, distances to rivers and the coast,
calculated parcel flood risk in damage to value ratios, estimated building
first floor height, existing improved value of parcels, and estimated in-
surance costs for residential and commercial buildings. In general,
Galveston County has lower elevations in the southeast areas, but areas
on the south coast, east coast, and Galveston Island have more buildings.
This result reflects the high exposure of buildings to flooding in Gal-
veston County. The calculated first floor elevation suggests private
adaptation by elevating their buildings above ground level to mitigate
flood risk. Our results indicate that, on average, buildings situated in
low-lying areas tend to have a higher elevation relative to those in areas
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Fig. 5. A) Historical population trends and flood damage claims in Galveston County, Texas; B) Projected sea level changes based on historical data in Galves-

ton, Texas.

with higher ground elevations.

We developed the calibration model using parcel land uses in 2011
and 2015, then we applied land use data and the calibrated land use
suitability model in 2015 to validate model results in 2020. Fig. 4 shows
land use of parcel data in 2011, 2015, and 2020, and validated model
results in 2020. By comparing parcel to parcel land uses, the validated
model accuracy is about 93.7 %, which is high enough for scenario-

based land use simulation. Over the past 10 years, urban land use in
Galveston County increased substantially in the north and northwest.
Because of restrictions on building codes, new urban developments are
limited near the south coast. Our simulated land uses in 2020 have a
high consistency with parcel land uses of 2020, with small areas of
differences in the County.

We integrated the developed land use suitability model above with
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Fig. 6. Land use projections in 2050 excluding building first floor heights in different relocation scenarios.

the population forecast and the sea level rise projection to simulate four
scenarios of future land uses by 2050. To forecast future population
trends, we applied a linear predictive model, and for projecting future
sea level rise, we utilized the SARIMAX time series model based on
historical relative sea level data dating back to 1900. We measured the
population change as net household growth and sea level trends in
millimeters, as depicted in Fig. 5. Fig. 5(A) indicates an overall
increasing trend of population migration for both in state migration and
total migration, while there are fluctuations, including abrupt declines
and subsequent recoveries in net population growth. A comparison with
annual flood damage claims from FEMA’s flood insurance dataset for
Galveston County reveals a correlation that significant population drops
tend to follow years with high flood damage claims. This pattern in-
dicates that coastal disasters could temporarily reduce population in the
area. Fig. 5(B) presents yearly mean sea level data dating back to 1900.
It is evident that a significant temporal trend of rising mean sea level is
observed in history, with the mean water level having increased by more
than 1 m over the course of the past century. To incorporate impacts of
future sea level rise in the area, we analyzed over a century’s historical
daily relative sea level observations from Galveston. We applied the
SARIMAX regressors model to estimate the mean, the maximum, and the
minimum temporal trends of sea level, as depicted in Fig. 5(B). The
projected maximum and the minimum sea level trends offer insights into
potential extreme events. Our focus for accessing future impacts of sea
level rise is on the projected mean sea level trends. This approach pro-
vides a more accurate prediction of the impact of mean sea level rise,
rather than extreme and less frequent occurrences.

Despite we estimated the average first-floor heights of buildings
using a linear model, it is possible that not every building will meet
retrofit requirements for first-floor elevation from the FEMA. To un-
derstand the impacts of first-floor elevation on simulation outcomes, we
analyzed the simulated model results under different scenarios, both
including and excluding first floor elevations. Fig. 6 and Fig. 7 show

simulated scenario results excluding building first floor heights. Fig. 6
presents the projected land uses by 2050 under different relocation
policies. In scenario 1, we considered relocating only high-risk proper-
ties, which have flood risk damage to building value ratio above 1. This
led to new urban land developments primarily in green land and open
space on the central and northwest of the county. In Scenario 2, the
government acquires high-risk residential buildings within 2 km of
coastal flood zones. As a result, more buildings in flood-prone areas
would be relocated due to high flood risk and utility costs. Subsequent
urban development are observed in areas with higher ground elevations.
Scenario 3 outlines a long-term, dynamic relocation plan with a forward-
looking approach. Buildings will be dynamically evaluated their flood
risk within 30 years based on the latest information on sea level rise and
once the projected future risk exceeds the property value, the building
will be retired. In Scenario 3, all residential properties that are within
flood A zones or flood V zones will be considered in the buyout plan.
Consequently, many properties in Galveston Island and the northeast
coast are changed to retired buildings. Scenario 4 focuses on mitigating
flood risk by removing buildings with repetitive flooding. This scenario,
resembling a managed retreat, leads to significant property buyouts and
relocation to higher grounds, especially for residents of Galveston Island
and the eastern coast. This results in urban shrinkage in these coastal
areas. Fig. 7 uses Monte Carlo simulation to depict community flood
risk, taking into account the year of construction of new urban land.
These dynamic assessment results indicate an increasing flood vulner-
ability in Galveston County, exacerbated by ongoing urban development
and sea level rise. Scenarios 1 and 2 result in similar flood risk at the end
of simulation period, suggesting that merely relocating properties
without considering building elevation, as in Scenario 2, doesn’t
significantly reduce community flood risk. Community flood risk in
Scenario 4 is markedly lower than other scenarios, attributed to exten-
sive managed retreat. It suggests that even minor flood occurring
frequently, also known as nuisance flooding during sunny days, could
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Fig. 7. Monte Carlo projections of community average flood damage in different relocation scenarios: impact of urban development and sea level rise, excluding

building first floor heights.

lead to significant cumulative damage in vulnerable areas.

Fig. 8 and Fig. 9 present the outcomes of simulated scenarios that
include buildings’ first floor heights. These findings suggest that
elevating buildings in vulnerable areas can effectively reduce overall
flood risk, and lessen the costs need for extensive managed retreat. Fig. 8
shows that the whole county has few retired buildings under the current
situation. However, a moderate number of buildings in coastal areas are
projected to relocate under Scenario 2 and 3, with an increased number
of retired buildings in Scenario 4, which indicates a proactive response
in high-risk areas.

In Fig. 9, we observe that the average community damage in all
scenarios is significantly lower than those depicted in Fig. 7, due to the
elevation of properties in flood-prone areas. Notably, Scenario 4 in Fig. 9
demonstrates an annual community flood risk less than 4 million dollars
after 30 years. This scenario indicates the most favorable adaptation
outcome, combining managed retreat and private risk mitigation.

Table 2 presents results across all scenarios, both including and
excluding the elevation of building first floors. Simulated results include
the areas of vacant land, the developed land in different time periods,
the area and the number of retired urban land, and the total costs
associated with retired land. In the first decade of simulation, there is
notable increase of urban land in Scenario 1 and 2 attributed to the
compensation of relocated land areas. Consequently, the growths of new
land from 2020 to 2030 in these Scenarios are significantly more pro-
nounced compared to subsequent periods. When buildings’ first floor
elevations are considered, the area of retired land are considerably less
than in scenarios excluding building first floor heights. This, in turn,
leads to substantially less total costs in relocation.
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6. Discussion

Although land-based adaptation strategies, like property buyouts
and managed retreat, are often critiqued for being inefficient, costly, and
political controversial, they are increasingly important due to the
escalating risk of populations to coastal flooding (Hauer et al., 2021).
Above modeling results reveal the disparate impacts of coastal flooding
under different relocation policies and individual risk mitigation efforts
in reducing community flood vulnerability under sea level rise.

The extreme value analysis indicates that the non-stationarity in
historical sea level data primarily stems from the trends in sea level rise.
By removing these trends, the sea level data is stationary. This allows us
to model the coastal flooding risk through modeling the extreme value
distributions and the temporal trends of sea level rise separately. This
approach enables us to incorporate effects of both extreme events and
sea level rise into flood risk modeling. A limitation of our analysis is the
exclusion of the high uncertainty surrounding future sea level rise due to
climate change. We based our model on a stable environment following
historical trends. Nevertheless, even without considering the uncer-
tainty, the risks of coastal floods and sea level rise pose significant
challenges to coastal communities. Private adaptation measures are
essential for mitigating existing flood risk. Thus, integrating effective
enforced risk mitigation and property buyout policies in vulnerable
areas is crucial to foster resilient communities.

Federal programs often require cost-share or investments in tech-
nical staffs by local governments. For example, the Hazard Mitigation
Assistance statistics from FEMA shows cost-sharing ratios between fed-
eral and local governments for various acquisition projects, ranging
from 50 % to 90 %, which can be challenging for financially limited local
governments (Bukvic & Borate, 2021). Our scenario results show that
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Fig. 8. Land use projections in 2050 including building first floor heights in different relocation scenarios.

community flood risk can be significantly mitigated by removing
buildings with repetitive flood risk, especially when this is combined
with strategies for raising buildings’ first floor heights. To balancing
long-term sustainability needs with the challenge of rising sea levels and
increasing flood risk, it is crucial to promote private adaptation through
incentives for property owners and to develop a tailored relocation
strategy that addresses the distinct needs of individual stakeholders and
the capabilities of local governments. Our scenario analysis also indi-
cated that if buyout participants relocate to lower-risk areas within the
county without pursuing private adaptation, government-supported
buyouts alone may not be able to effectively mitigate community
flood risk. Nevertheless, if properties are successfully relocated outside
of the hazardous area, the property tax base of the local government
would be reduced. Incorporating these financial considerations into
future model simulation would be important for developing effective
climate adaptation strategies for Galveston County.

7. Conclusion

This study developed a comprehensive parcel-level land use change
model encompassing various components and scenarios of land use and
flood risk mitigation in Galveston County, Texas. By incorporating
population change forecasts and future extreme events modeling using
empirical datasets, our model results paint a picture of dynamic and
evolving landscape in response to environmental changes in a highly
vulnerable coastal community of the US. Our findings offer valuable
insights into the efficacy of future urban development patterns and
community flood risk under population growth, sea level rise, and
managed retreat strategies. The validated model results show a high
accuracy and provide a reliable approach for future urban planning. The
developed cadastral parcel-based model could reflect ownership of land
units and facilitate coastal land management in response to sea level
rise.
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Our results reveal that elevating first floor of buildings significantly
reduce the extent of required land relocation and associated costs. This
adaptation for buildings not only reduces community flood risk, but also
makes managed retreat more manageable and less expensive. In sce-
narios where building first floor elevation is considered, the retired land
area and total community flood damage are markedly lower. Under
relocation policies, especially in Scenario 3 and 4, the land development
patterns indicate a shift toward more resilient urban development.
Despite the effectiveness of these strategies, the financial burden on
local governments to implement large scale managed retreat strategies
highlights the need for a holistic approach to policy-making that con-
siders both economic and environmental sustainability. Future studies
could more focus on developing affordable managed retreat strategies
(Siders, 2019b), incorporate social equity in relocation analysis (Shi
et al., 2021), and also include future sea level rise uncertainties under
climate change (White et al., 2021). Nevertheless, the dynamic in-
teractions between flood risk, sea level rise, and population changes in
coastal communities cannot be ignored. The findings observed in this
study in response to sea level rise and population migration could build a
foundation for future research on local adaptation actions to climate
change challenges.

In conclusion, measuring community resilience under different
adaptation policies require a multidisciplinary approach to integrate
urban planning, hydrological simulation, climate science, and social
science in the modeling process. Our developed model demonstrates
that a multifaceted approach in flood risk mitigation, combining private
adaptation measures such as building elevation with government-led
initiatives like managed retreats and property buyouts, is crucial for
building resilient communities.
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Area of developed Land 2040-2050 (km?) Excluding First Floor Height 48.54 69.47 51.46 47.27
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