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A B S T R A C T   

Coastal communities are increasingly vulnerable due to sea level rise and population growth. Managed retreat is 
commonly recognized as a strategy that yields multifaced benefits in community adaptation. However, limited 
studies have explored the cumulative effects of sea level rise, population migration, and managed retreat on the 
community resilience. This study presents a parcel-level land use change model to analysis land-based flood 
mitigation strategies in Galveston County, Texas. The developed model integrates a Gradient Boosting Decision 
Tree with a flood risk model and diverse datasets. Our model results reveal the spatial patterns of urban 
development in Galveston under different relocation policies and the compounding impacts of sea level rise and 
population growth. Our findings illustrate that elevating the first floors of buildings can significantly mitigate 
flood risks and associated relocation costs. The private adaptation measure, together with government-led 
buyout policies, could foster a shift toward more resilient urban development and yield a more affordable 
relocation strategy. Our findings emphasize the need for a multidisciplinary approach in building resilient coastal 
communities, particularly in the face of escalating climate risks in local communities.   

1. Introduction 

Coastal communities increasingly confront by the recurrent chal-
lenges of flooding hazards, exacerbated by the compound risks of coastal 
storm surges, intense precipitation from tropical cyclones, and the 
ongoing effects of sea level rise (de Koning & Filatova, 2020; de Ruiter 
et al., 2020; Haasnoot et al., 2020). These multifaceted effects of coastal 
hazards not only threaten the resilience of coastal communities but also 
endanger vital coastal habitats (Khan et al., 2014). Moreover, the 
continuing urban development in these areas adds complex challenges 
for urban policymakers to implement effective risk mitigation strategies 
to ensure long-term coastal sustainability. Although scientific under-
standing of climate change adaptation is evolving, addressing these 
challenges at local scale necessitates the integration of transdisciplinary 
knowledge for accurately quantifying the impacts of coastal extreme 

weather impacts and improving local land use planning (Anguelovski 
et al., 2016; Davlasheridze et al., 2019). 

Land-based adaptation policies, such as managed retreat, property 
buyouts, as well as nature-based solutions, have become increasingly 
popular in mitigating escalating climate risks and maintaining the long- 
term sustainability (Hino et al., 2017; Keesstra et al., 2018; Yin et al., 
2023). The managed retreat is a strategic approach to prevent future 
damages of natural disasters by moving people, assets, and in-
frastructures away from high-risk areas. The property buyout program, 
which aims to use public funds to relocate high-risk properties in 
floodplains, offers homeowners fair market value to relocate to safer 
areas (Greer et al., 2022). Unlike other flood risk mitigation projects, 
property buyouts usually transfer developed land into conservation land 
and are used for flood mitigation projects (Weber & Moore, 2019). Ex-
amples of property buyout programs include FEMA’s Hazard Mitigation 
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Grant Program, the Flood Mitigation Assistance Program, and the 
Building Resilient Infrastructure and Communities program. Neverthe-
less, existing studies show these property buyout programs are con-
strained by limited funding and could result in equity issue in buyouts 
(Peterson et al., 2020; Siders, 2019b). 

Risk mitigation and urban development decisions of local govern-
ments are intertwined. Inappropriate risk mitigation decisions would 
result in unequal distributions of resources and increase social vulner-
ability to natural disasters (Muñoz & Tate, 2016). For example, 
neglecting to transform retired land in flood mitigation programs into 
beneficiary community assets can lead to unforeseeable ecological and 
social issues (Highfield et al., 2014). Nevertheless, acquiring properties 
located in floodplain areas and relocating vulnerable residents incurs 
substantial costs and adversely affects local tax revenues, utilities, and 
other municipal services (Siders & Gerber-Chavez, 2021). The financial 
paradox between investing in managed retreat for sustainability and 
facing reduced tax return due to exit of the relocated households from 
the city, compels most existing relocation programs focusing on a 
limited number of less expensive buildings(Siders, 2019a). 

With the escalating impacts of climate change due to sea level rise 
and increasing population exposure, understanding the evolving risks 
and benefits of land-based adaptation in coastal communities becomes 
essential. This study focuses on enhancing managed retreat policy-
making in coastal communities. By simulating parcel-level urban 
development and flood risk based on historical trends of relative sea 
level rise and population growth, our research is centered around two 
critical research questions: (1) How will community coastal flood risk 
evolve under sea level rise and population growth? (2) What are the 
effects of managed retreat policies on the resilience of coastal commu-
nities? Our modeling outcomes provide tools and methods to access the 
changing coastal flood risk faced by coastal communities and to support 
the development of effective land-based adaptation strategies for these 

areas. 

2. Literature review 

The vulnerability of communities to natural hazard is affected by 
both the changing frequency and intensity of these hazards, and by the 
varying exposed elements at risk to natural hazards (Papathoma-Köhle 
et al., 2007). Climate change strongly affects hazard characteristics and 
has been integrated into the assessment of natural hazard risk. For 
example, Ju et al. (2019) measured exposure of flooding in San Fran-
cisco under various climate change projections and highlighted the 
importance to cope with climate change uncertainties in adaptation 
planning. Nevertheless, considering urban development and adaptation 
policy, the projections of future climate risk also need to consider 
changes of exposed element-at-risk. Elements-at-risk usually refers to 
the people, property, systems, or other elements within an area that are 
potentially exposed to losses due to a natural hazard (van Westen et al., 
2008). Land uses, population, and buildings are typical examples of el-
ements-at-risk. 

Land use/cover change (LUCC) modeling is a crucial approach for 
studying spatial-temporal land use changes and assessing urban devel-
opment with environmental impacts (Tong & Feng, 2019). LUCC 
modeling could inform decision-making by comparing future urban land 
use patterns under different environmental scenarios and planning 
policies. Existing LUCC models commonly employ transition probabili-
ties between land uses and neighborhood effects of land use changes to 
predict future land use patterns (Pan et al., 2021). For instance, Li et al. 
(2021) considered temporal effects of urban development to estimate 
future global urban growth under IPCC’s projected climate scenarios. 
Using remote sensing observations, higher probabilities were assigned 
to new developed urban pixels in the neighborhood to influence changes 
from non-urban land to urban land of the central pixel. Wang et al. 

Fig. 1. The Houston-Galveston Region: Geographical Location in the U.S., and Detailed View of Galveston County’s 100-Year Storm Surge Flood Inundation with 
Building Parcels and Footprints. 
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(2022) considered the time-series influence of the spatial structure of the 
neighborhood effects to predict future urban development. Abolhasani 
et al. (2016) developed a parcel-based cellular automate model to 
simulate urban growth through estimating three neighborhood effect 
parameters, including compactness, compatibility, and dependency. 
Moeckel (2017) developed a dynamic land use and transportation model 
to represent location choices of households by considering utilities of 
housing and commuting costs. Recently, researchers have combined 
machine learning and neighborhood effects models to simulate future 
urban expansion. Zhuang et al. (2022) developed a LUCC model relied 
on both machine learning techniques and neighborhood effects to pre-
dict urban expansion through vectorized memory processing using 
Graphics Processing Units. 

Given the catastrophic impacts of climate hazards, exacerbated by 
population growth, land-based risk reduction strategies have drawn 
increasing attention. Atoba et al. (2021) demonstrated the potential 
benefits of acquiring vacant land in Houston area before it is built up to 
mitigate sea-level rise impacts. They highlighted that acquiring vacant 
land can be a cost-effective way to reduce repetitive losses of coastal 
hazards, and meanwhile avoiding social and institutional problems 
associated with traditional buyout programs. To explore the economic 
feasibility of land-based risk mitigation policies, Rifat and Liu (2022) 
applied an artificial neural network and Markov-chain model to measure 
future urban growth patterns under different development strategies 
and sea-level rise impacts in southeast Florida. Their study illustrated 
that targeted land-use policies can curtail the economic costs associated 
with coastal hazards while enhancing the overall community resilience. 
Lin et al. (2022) employed land use simulation and maximum entropy 
method to identify future urban waterlogging-prone areas to heavy 
storms and to predict future land use patterns. Their results revealed the 
potential waterlogging risk from large impervious areas in cities. Liu 
et al. (2023) considered the derivative consequences of land use changes 
on future flood risk, integrating multiple model components into a 
model chain, which couples a land use simulation model with sub- 
modules to forecast future population and economic growths under 
various scenarios, including economic expansion, cropland protection 
and ecological preservation. Although existing studies have consistently 
observed the increasing impacts of natural hazards to urban commu-
nities, uncertainties associated with climate-related hazards and future 
development pose significant challenges to the efficacy of land-based 
adaptation strategies (IPCC, 2023). Hence, it is imperative to integrate 
knowledge across disciplines to strategically inform the potential im-
pacts of these policies on community development under cumulative 

impacts of sea level rise and population migration. 

3. Data and study area 

The Houston-Galveston area is one of the most vulnerable regions in 
the Gulf of Mexico (Hamideh, 2020). It is a warm and low-lying region 
which experiences impacts of warm ocean every summer during hurri-
cane season. Climate-induced Sea Level Rise (SLR) exacerbates the 
vulnerability of the low elevation land which is already prone to 
flooding. From 2000 to 2017, the Houston-Galveston area has more than 
three thousand federally funded residential buyouts, which is the largest 
number of property buy outs in the US (Loughran & Elliott, 2019). 
Understanding the effects of climate change and alternative risk man-
agement policies in this area could facilitate disaster management and 
risk mitigation policymaking for the extensive coastal communities in 
the US. Fig. 1 shows the location of Houston-Galveston region, which 
consist of 8 counties. In this study, we focus on urban development and 
relocation issue in Galveston County. Fig. 1 additionally illustrates the 
extent of flood inundation of exposed land parcels and building foot-
prints during a 100-year storm surge event. Since the east and south 
parts of Galveston County are coastal areas with low elevation, the 
developed land parcels in these regions have much higher flooding risk 
compared to the northwest of the county. 

Most of the land parcels in Galveston County are near the shoreline of 
the Gulf of Mexico. In this study, we collected data from multiple sources 
to estimate future community flood risk and land use patterns, as shown 
in Table 1. To build the land use simulation model, we use land use data, 
building footprints, parcel data, point of interest (POI) data, census level 
socio-demographic information and mobility data. Three levels of 
spatial data, namely land use, building footprints, and parcel data, were 
used to classify landscape features in the simulation. The parcel data was 
obtained from the official website of Galveston Central Appraisal Dis-
trict. Three periods of land use data, namely in 2011, 2015, and 2020, 
were acquired from the National Land Cover Data (NLCD). We also 
retrieved building footprints in Galveston County from Microsoft’s 
Global Building Footprints database. We applied this data later to 
extract land use, building elevation, DEM, and flood inundation infor-
mation to parcels and combined it with parcel data. Thereafter. The 
2019 census block data was accessed from the US census bureau 
including households’ socioeconomic attributes, composition, minority 
status, et al. POI datasets, including schools, hospitals, parks, beaches, 
and wetlands, were from OpenStreetMap. We also collected census tract 
level daily mobility flows in Houston-Galveston area to measure 

Table 1 
Data description.  

Dataset Description Source Nature 
Cadastral Parcel 

data 
Land parcels including land value, building value, 
area, and building height. 

Galveston Central Appraisal District (https://galvestoncad.org/gis-data/) Polygon Shapefiles for 
individual parcels 

Building 
footprints 

Building footprints of Galveston County Microsoft Planetary Computer’s dataset (https://planetarycomputer.micro 
soft.com/dataset/ms-buildings) 

Polygon Shapefiles for 
individual buildings 

Land use data Land uses in 2011, 2015, and 2020 from NLCD land 
cover classification schemes 

National Land Cover Database (NLCD) (https://www.usgs.gov/centers/er 
os/science/national-land-cover-database) 

Raster imagery with 30- 
m resolution 

Census data Population demographical information in census 
tract 

United States Census Bureau Polygon Shapefiles in 
census tract 

POI data POI of schools, hospitals, parks, beaches, wetlands, 
and coast area 

The archived OpenStreetMap data (https://download.geofabrik.de/) Point Shapefiles 

Population 
migration data 

County level population migration between 2005 
and 2021 

United States Statistics of Income Division (SOI) of the Internal Revenue 
Service (IRS) (https://www.irs.gov/statistics/soi-tax-stats-migration-data) 

Spreadsheets 

Human mobility 
data 

Daily population flows between census tracts Multiscale Dynamic Human Mobility Flow Dataset in the U.S. during the 
COVID-19 Epidemic (Kang et al., 2020) 

Spreadsheets 

DEM data Tidally adjusted raster digital elevation model The National Oceanic and Atmospheric Administration (NOAA) 
(https://coast.noaa.gov/dataviewer/#/) 

Raster imagery with 3 m 
resolution 

Sea level data Hourly relative sea level in millimeter from 
Galveston, Pier Tide Gauge Station between 1900 
and 2020 

University of Hawaii Sea Level Center (Caldwell et al., 2015) Spreadsheets 

Flood inundation 
data 

Flood inundation maps from category 1 to category 
5 hurricane storm surges 

NOAA National Storm Surge Risk Maps (https://www.nhc.noaa. 
gov/nationalsurge/#data) 

Raster imagery with 30- 
m resolution  
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accessibility of communities. Since relocated households will mainly be 
redistributed within the Houston-Galveston region, we measured pop-
ulation migration between Galveston County and nearby counties in this 
area. Over one century hourly relative sea level data at Galveston was 
collected from University of Hawaii Sea Level Center (Caldwell et al., 
2015). This dataset not only allows us to measure the distribution of 
extreme weather events, also enables us to project future trends of sea 
level rise in the area. For the analysis of extreme values, we employed 
the ‘pyextremes’ package in Python, which is specifically designed for 
extreme value analysis. To project future sea level rise trends, we 
implemented the Seasonal AutoRegressive Integrated Moving Average 
with eXogenous (SARIMAX) regressor model, available in the ‘stats-
models’ package in Python. Ground elevation data and five categories of 
simulated storm surges, ranging from category 1 to category 5 hurricane 
storm surges, were used to measure flood inundation and adjust the 
flood inundation mapping model. 

4. Methods 

Fig. 2 presents a comprehensive framework of the developed parcel- 
level land use model, designed to project future urban land use patterns 
in the context of coastal flood risks. Detailed figures within the model 
framework are provided in the Supplementary Information (SI). The 
right side of Fig. 2 shows three sub-modules of the model, which are land 
use classification, regional mobility and migration, and flood risk 
modeling. These sub-modules were then cohesively integrated into the 
land use simulation on the right side. On the right side of Fig. 2, a 
gradient boost decision tree (GBDT) model, trained using classified land 
use data from different periods, is employed to assess land use suitability 
and then applied to measure land use development under various relo-
cation policies. 

4.1. Land use classification 

The land use classification module involves processing the raw 

Fig. 2. An integrated framework of the parcel-level land use simulation model under coastal flood risk.  
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Cities 149 (2024) 104953

5

datasets and merging raster level information to parcel features. We first 
conducted a spatial join of all raster value information to building 
footprints and then merged building footprints with parcel data to get 
cadastral parcels with building and land uses information in different 
years. There are several reasons that we started with building footprints 
and then joined attributes to cadastral parcels. First, although parcel 
data seamlessly covers the whole study area, building footprints are 
small patches and could capture raster information of a specific area 
more accurately. This information includes land use, building heights, 
and flood-related inundations, etc. Second, building footprints can 
uniquely represent individual buildings in the study area. As show on 
the upper left of Fig. 2, the processed building footprints could be 
visualized in a 3D environment with attributes (e.g. improved value) to 
enhance the visualization of buildings. Third, we need parcel data in-
formation to simulate future land use patterns. Although the cadastral 
parcel data downloaded from the Galveston County’s GIS data portal 
was the raw parcel data with duplicated features, the dataset seamlessly 
covers the whole county with important land parcel information, such as 
building values, building code, built year, etc. We found 76,277 dupli-
cated building parcels overlapped to each other in the raw parcel data 
and removed them. We employed land use data from the year 2011, 
2015, and 2020 in conjunction with the building codes of parcel data 
and the Standard Type Land Code Table in Galveston County1 to classify 
the NLCD land cover into 7 categories: residential land, commercial 
land, industrial land, infrastructural land, public land, green land, and 
open space. We cross validated the built year information of a parcel 
with our spatially joined land use in 2011, 2015, and 2020 to ascertain 
whether a land parcel has been developed in each of these specified 
periods. This process helped us reduce errors in land use classification. 
As a result, our final cadastral land parcel has 170,194 unique parcel 
features including land use attributes for three distinct time periods, 
which indicate the development status and timeline for each parcel land. 
For each developed parcel land, there is also an associated improvement 
value, and for undeveloped land, the improvement value is 0. The upper 
right of Fig. 2 shows the classified land uses in the three-time periods. 

4.2. Regional mobility and migration modeling 

We combined census tract level socioeconomic and mobility infor-
mation to our parcel data. We retrieved population flow data in 2019 
before the Covid-19 pandemic from Github (Kang et al., 2020) and 
utilized the weekly population flow data to measure accessibility and 
attractions of each census tract in the whole Houston-Galveston region 
(Higgins et al., 2022). The processed accessibility results are shown on 
the upper right corner of Fig. 1. Our processed land uses and accessibility 
results indicated that the development in the Galveston County is mainly 
driven by the attraction of Houston from the north. We measured pop-
ulation migration using historical yearly population and household 
migration data in Galveston County. This dataset was based on the re-
ported taxpayers’ geographic code changes from one year to the next 
from the Internal Revenue Service (IRS). We determined population 
flow directions from nearby counties to Galveston County in the 
Houston-Galveston area and later determined future population growth 
trends in Galveston County. 

4.3. Flood risk modeling 

Our flood risk model is based on the extreme value and time series 
analysis. We first analyzed the distributions of extreme storm surge 
events based on the historical hourly relative sea level dataset between 
1990 and 2020 at the gauge station in Galveston County. The Peaks Over 

Threshold (POT) extreme values are extracted from the dataset. The 
process was accomplished by first generating a time series of exceed-
ances by selecting values above a certain threshold and then delustering 
the exceedance time series by identifying clusters separated by a given 
time window and then selecting only the highest values within each 
cluster. A Generalized Pareto Distribution (GPD) distribution of storm 
surges was applied to model the extreme value behavior of sea level 
records. The density function of the GPD distribution is as follows: 

F(μ,σ,ξ)(x) = 1−

(

1 +
ξ(x − μ)

σ

)−1

ξ 

In the given equation, ξ is the shape parameter, μ is the location 
parameter, and σ is the scale parameter. The fitted model yielded a 
location parameter 2300, shape parameter of 0.331, and a scale 
parameter of 116.14. The unit of analysis is in millimeter. The historical 
relative sea level data is nonstationary. We assume the nonstationary of 
the historical sea level mainly comes from temporal trends in the data-
set. To examine our assumption, we first removed the temporal tends of 
sea level data and use the Augmented Dickey-Fuller (ADF) test to 
examine the stationary of the new data. We used the MSTL package to 
remove the temporal trends of sea level and the adfuller package to test if 
the new data is stationary. The ADF test for the new data has ADF sta-
tistic smaller than the 1 % critical level, which reject the null hypothesis 
and infer that the new time series is stationary. To project future extreme 
weather events, we also modeled the sea level rise trends and added it to 
our extreme value distributions in projecting future flood risk. 

We modeled flood height and frequency distributions using historical 
sea level dataset and estimated flood height under each category of 
storm surge (Doss-Gollin & Keller, 2023). The flood inundation under 
each category was first estimated using a Bathtub method based on the 
difference between peak storm surge heights from the GEV model and 
the ground elevation. Afterward, we applied storm surge inundation 
maps from SLOSH model to adjust the estimated flood inundations of 
each parcel under each category (Han et al., 2022). We calculated the 
average difference between flood inundations from SLOSH model and 
estimated flood inundations from the Bathtub model for each parcel land 
and incorporate this information in estimating flood damage for any 
return periods and calculating flood risk. We also observed that the 
distance to rivers and coasts may affect flood inundations of buildings. 
We developed a linear model to measure effects of distance to rivers and 
coasts on flood inundation. Since sea level rise could gradually inundate 
low elevated areas, we estimate the changes of distance to rivers and 
coasts based on a linear relationship between DEM and distance to rivers 
and coasts. We measured changes of DEM due to sea level rise and 
translated this information to changes of distance to rivers and coasts in 
projecting future risk. The methods to describe this was incorporated 
into the SI. 

We estimated the flood risk of properties relying on the HAZUS 
model. The HAZUS model was developed by the Federal Emergency 
Management Agency (FEMA) and the National Institute of Building 
Science (NIBS). HAZUS includes standard tools and data for estimating 
risk from earthquakes, floods, tsunamis, and hurricanes (Schneider & 
Schauer, 2006). Although the HAZUS model is a GIS-based modeling 
platform, the tool is distributed with a collection of simplified open- 
source codes (Moffatt & Laefer, 2010). In our study, we adopted the 
open-sourced flood assessment structure tool (FAST) from HAZUS to 
estimate physical damage and economic losses of properties from 
different categories of hurricane storm surge hazards, which can be 
accessed through https://github.com/nhrap-hazus/FAST. We applied 
HAZUS’s FAST to estimate flood damages under different categories of 
storm surge inundations and calculated the expected annual damage as 
the flood risk. The FAST requires information regarding a property’s 
building type, first-floor elevation (FFE), foundation, flood height, 
property value, and content value to estimate flood damages of 
buildings. 

1 The Standard Type Land Code Table in Galveston County was accessed: htt 
ps://www.galvestontx.gov/DocumentCenter/View/8823/Land-Development 
-Regulations-PDF. 
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We estimated the first-floor elevation of buildings in Galveston using 
a dataset of 3D measurements from selected residential buildings, pro-
vided by Diaz et al. (2022). A linear model was developed to relate 
ground elevation of these buildings to the difference between their first- 
floor elevation and ground elevation. This difference represents the 
extent of house elevation by homeowners as a measure to mitigate flood 
risk. To estimate the flood risk of buildings, we only measured land 
parcel with improved values in the county, which means flood risk will 
be 0 for vacant land and retired land. The content value of a property 
was also estimated based on improvement values of properties using 
FEMA’s NFIP policy dataset (Han & Ye, 2022). In the flood risk 
component of Fig. 2 and the SI, we show the derived flood frequency 
distribution, the distributions of ratios between content values to 
building values, and the linear model between FFE and ground DEM of 
residential buildings in Galveston County. We applied these models to 
generate input parameters for the HAZUS-FAST. For each type of 
building, we measured flood risk by estimating the accumulated per-
centage of damage to its total value in a 30-year analysis. If the esti-
mated risk is between 0 and 1, it means the total risk of a building in 30 
years will be lower than the total value of the building. Otherwise, it will 
be higher than the total value of the building. 

4.4. Machine learning model for land suitability analysis 

We applied the gradient boost machine (GBM) in land use change 
suitability modeling with various variables. Land use suitability can be 
generally understood as a measure of the likelihood of a land parcel for a 
specific purpose. GBM is an ensemble learning technique that converts a 
group of weak machine learning predictors into strong learners (Tao & 
Cao, 2022). More specifically, the gradient boost decision tree (GBDT) 
model was used in the land use suitability modeling. In GBDT, each 

decision tree is fit on a modified version of the original dataset. In this 
study, we chose the AdaBoost algorithm from the Scikit-Learn library to 
build our model. The AdaBoost first trains a decision tree by treating 
each observation in the training sample with equal weight initially. After 
training the first decision tree, the weights of variables will be adjusted 
based on the previous decision tree. More specifically, the weights will 
increase for samples that are difficult to classify and decrease for sam-
ples that are easy to classify. The AdaBoost will also assign higher 
weights to trained classifiers with higher accuracy. Therefore, the final 
model is added up by a sequential of decision tree models. 

Multiple spatial variables, including census tract level sociodemo-
graphic information and accessibility, POI data, DEM, slope, flood risk 
information, distances to roads and road densities, and percentage of 
developed land in the neighborhood, were used as inputs to train the 
gradient boost decision tree model. We listed details of these variables in 
the SI. As shown in Fig. 2, the model was further calibrated and vali-
dated for generating land use suitability maps. After we obtained the 
trained land use suitability model, we combined it with a set of criteria 
to simulate urban land use changes. 

In simulating future urban land use changes, we first excluded 
wetland, parks, protected area, and all buyout land from the candidate 
list of new developed land. For potential new development land, we 
defined the land use transition rules as follows: we measured both the 
probabilities of neighborhood influence and urban land transition 
probability from the GBDT. If the maximum value of neighborhood in-
fluence probability pN,k1 ,i for land use k1 of parcel i and the highest 
transition probability pGBM,k2 ,i of urban land use k2 of parcel i from the 
GBDT model have the same building land use code, we choose the max 
between pN,k,i and pGBM,k,i. Otherwise, we choose either the pN,k2 ,i or 
pGBM,k1 ,i, which has the same land use with the building land use code. In 
very rare cases, where the land uses with the maximum transition 

Fig. 3. Key Attributes in Model Simulation, including DEM, Water Body Proximity, Flood Risk, Building First Floor Elevations, Improved Value of Parcels, and 
Estimated Flood Insurance Costs. 
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probabilities in both the GBDT model and neighborhood influence are 
different from the building land use code, we choose the probability 
from the GBDT model. Relying on a linear relationship between the 
improvement value, land value, and areas of land parcels, we randomly 
generated an improvement value for new developed urban land. 

4.5. Scenario design 

We designed four relocation scenarios to simulate future land use 
changes in Galveston County by 2050, considering the impact of sea 
level rise. These scenarios incorporate future population changes, based 
on net migration data in the county, and sea level rise projections from 
historical data, serving as the boundary conditions for our model. Sce-
nario 1 focuses on government buyouts of high-risk properties, where 
the existing flood risk exceeds their property values. New urban de-
velopments are simulated relying on land use transition rules. The 
amount of new urban developments is estimated based on population 
projections in the county. Additionally, the areas vacated by relocation 
will be added back to the new urban development demand in the next 
year, implying that property owners will move to new locations in the 
county. To preserve existing natural resources, land parcels with natural 
resources, such as beaches, wetlands, and parks, were not allowed to 
change to other land uses. 

In Scenario 2, we assume the county officials of Galveston County 
will enforce a buyout policy targeting properties in high-risk flood 
zones. Targeted regions encompass land parcels in flood V zones and 
certain A zones within 2 km of the coast. Based on previous buyout re-
quirements, only properties with a value of less than $275,000 will be 
included in the buyout plan (Siders & Gerber-Chavez, 2021). We assume 
building owners will evaluate their relocation decisions by comparing 
the total costs and benefits of the acquisition. If the total flood risk and 
cost of building, including flood insurance costs in 30 years, is higher 
than the total value of the building, the property owners will agree to 

relocate to new locations within the county. We estimated the annual 
insurance costs of households using FEMA’s insurance rates table (Han 
et al., 2022). Different from Scenario 2, Scenario 3 adopts a forward- 
looking strategy, evaluating buildings in all flood A zones and the V 
zones. Building flood risk will be dynamically updated every 10 years, 
reflecting the latest sea level rise projection. The relocation decision will 
be the same as Scenario 2, however, relocated property owners do not 
relocate to low-risk areas within the county. This scenario aims to access 
potential population loss due to sea level rises. Since our population 
migration data indicates sudden population loss in the county due to 
coastal flood damages, we conducted 100 Monte Carlo simulations in 
Scenario 4 based on the GPD distribution to estimate the likelihood of 
properties experiencing repeated flooding. Properties with over a 50 % 
chance of recurring flood damage are marked for relocation or buyout. 
Like Scenarios 3, new developments are prohibited in the buyout regions 
in this scenario. 

5. Results 

We integrated the trained GBDT model in the developed parcel land 
use model. Fig. 3 illustrates the spatial distributions of key parcel at-
tributes used in our land use change simulation. These variables include 
average ground elevation of parcels, distances to rivers and the coast, 
calculated parcel flood risk in damage to value ratios, estimated building 
first floor height, existing improved value of parcels, and estimated in-
surance costs for residential and commercial buildings. In general, 
Galveston County has lower elevations in the southeast areas, but areas 
on the south coast, east coast, and Galveston Island have more buildings. 
This result reflects the high exposure of buildings to flooding in Gal-
veston County. The calculated first floor elevation suggests private 
adaptation by elevating their buildings above ground level to mitigate 
flood risk. Our results indicate that, on average, buildings situated in 
low-lying areas tend to have a higher elevation relative to those in areas 

Fig. 4. Parcel land use data in 2011, 2015, and 2020 and validated land use in 2020.  
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with higher ground elevations. 
We developed the calibration model using parcel land uses in 2011 

and 2015, then we applied land use data and the calibrated land use 
suitability model in 2015 to validate model results in 2020. Fig. 4 shows 
land use of parcel data in 2011, 2015, and 2020, and validated model 
results in 2020. By comparing parcel to parcel land uses, the validated 
model accuracy is about 93.7 %, which is high enough for scenario- 

based land use simulation. Over the past 10 years, urban land use in 
Galveston County increased substantially in the north and northwest. 
Because of restrictions on building codes, new urban developments are 
limited near the south coast. Our simulated land uses in 2020 have a 
high consistency with parcel land uses of 2020, with small areas of 
differences in the County. 

We integrated the developed land use suitability model above with 

Fig. 5. A) Historical population trends and flood damage claims in Galveston County, Texas; B) Projected sea level changes based on historical data in Galves-
ton, Texas. 
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the population forecast and the sea level rise projection to simulate four 
scenarios of future land uses by 2050. To forecast future population 
trends, we applied a linear predictive model, and for projecting future 
sea level rise, we utilized the SARIMAX time series model based on 
historical relative sea level data dating back to 1900. We measured the 
population change as net household growth and sea level trends in 
millimeters, as depicted in Fig. 5. Fig. 5(A) indicates an overall 
increasing trend of population migration for both in state migration and 
total migration, while there are fluctuations, including abrupt declines 
and subsequent recoveries in net population growth. A comparison with 
annual flood damage claims from FEMA’s flood insurance dataset for 
Galveston County reveals a correlation that significant population drops 
tend to follow years with high flood damage claims. This pattern in-
dicates that coastal disasters could temporarily reduce population in the 
area. Fig. 5(B) presents yearly mean sea level data dating back to 1900. 
It is evident that a significant temporal trend of rising mean sea level is 
observed in history, with the mean water level having increased by more 
than 1 m over the course of the past century. To incorporate impacts of 
future sea level rise in the area, we analyzed over a century’s historical 
daily relative sea level observations from Galveston. We applied the 
SARIMAX regressors model to estimate the mean, the maximum, and the 
minimum temporal trends of sea level, as depicted in Fig. 5(B). The 
projected maximum and the minimum sea level trends offer insights into 
potential extreme events. Our focus for accessing future impacts of sea 
level rise is on the projected mean sea level trends. This approach pro-
vides a more accurate prediction of the impact of mean sea level rise, 
rather than extreme and less frequent occurrences. 

Despite we estimated the average first-floor heights of buildings 
using a linear model, it is possible that not every building will meet 
retrofit requirements for first-floor elevation from the FEMA. To un-
derstand the impacts of first-floor elevation on simulation outcomes, we 
analyzed the simulated model results under different scenarios, both 
including and excluding first floor elevations. Fig. 6 and Fig. 7 show 

simulated scenario results excluding building first floor heights. Fig. 6 
presents the projected land uses by 2050 under different relocation 
policies. In scenario 1, we considered relocating only high-risk proper-
ties, which have flood risk damage to building value ratio above 1. This 
led to new urban land developments primarily in green land and open 
space on the central and northwest of the county. In Scenario 2, the 
government acquires high-risk residential buildings within 2 km of 
coastal flood zones. As a result, more buildings in flood-prone areas 
would be relocated due to high flood risk and utility costs. Subsequent 
urban development are observed in areas with higher ground elevations. 
Scenario 3 outlines a long-term, dynamic relocation plan with a forward- 
looking approach. Buildings will be dynamically evaluated their flood 
risk within 30 years based on the latest information on sea level rise and 
once the projected future risk exceeds the property value, the building 
will be retired. In Scenario 3, all residential properties that are within 
flood A zones or flood V zones will be considered in the buyout plan. 
Consequently, many properties in Galveston Island and the northeast 
coast are changed to retired buildings. Scenario 4 focuses on mitigating 
flood risk by removing buildings with repetitive flooding. This scenario, 
resembling a managed retreat, leads to significant property buyouts and 
relocation to higher grounds, especially for residents of Galveston Island 
and the eastern coast. This results in urban shrinkage in these coastal 
areas. Fig. 7 uses Monte Carlo simulation to depict community flood 
risk, taking into account the year of construction of new urban land. 
These dynamic assessment results indicate an increasing flood vulner-
ability in Galveston County, exacerbated by ongoing urban development 
and sea level rise. Scenarios 1 and 2 result in similar flood risk at the end 
of simulation period, suggesting that merely relocating properties 
without considering building elevation, as in Scenario 2, doesn’t 
significantly reduce community flood risk. Community flood risk in 
Scenario 4 is markedly lower than other scenarios, attributed to exten-
sive managed retreat. It suggests that even minor flood occurring 
frequently, also known as nuisance flooding during sunny days, could 

Fig. 6. Land use projections in 2050 excluding building first floor heights in different relocation scenarios.  
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lead to significant cumulative damage in vulnerable areas. 
Fig. 8 and Fig. 9 present the outcomes of simulated scenarios that 

include buildings’ first floor heights. These findings suggest that 
elevating buildings in vulnerable areas can effectively reduce overall 
flood risk, and lessen the costs need for extensive managed retreat. Fig. 8 
shows that the whole county has few retired buildings under the current 
situation. However, a moderate number of buildings in coastal areas are 
projected to relocate under Scenario 2 and 3, with an increased number 
of retired buildings in Scenario 4, which indicates a proactive response 
in high-risk areas. 

In Fig. 9, we observe that the average community damage in all 
scenarios is significantly lower than those depicted in Fig. 7, due to the 
elevation of properties in flood-prone areas. Notably, Scenario 4 in Fig. 9 
demonstrates an annual community flood risk less than 4 million dollars 
after 30 years. This scenario indicates the most favorable adaptation 
outcome, combining managed retreat and private risk mitigation. 

Table 2 presents results across all scenarios, both including and 
excluding the elevation of building first floors. Simulated results include 
the areas of vacant land, the developed land in different time periods, 
the area and the number of retired urban land, and the total costs 
associated with retired land. In the first decade of simulation, there is 
notable increase of urban land in Scenario 1 and 2 attributed to the 
compensation of relocated land areas. Consequently, the growths of new 
land from 2020 to 2030 in these Scenarios are significantly more pro-
nounced compared to subsequent periods. When buildings’ first floor 
elevations are considered, the area of retired land are considerably less 
than in scenarios excluding building first floor heights. This, in turn, 
leads to substantially less total costs in relocation. 

6. Discussion 

Although land-based adaptation strategies, like property buyouts 
and managed retreat, are often critiqued for being inefficient, costly, and 
political controversial, they are increasingly important due to the 
escalating risk of populations to coastal flooding (Hauer et al., 2021). 
Above modeling results reveal the disparate impacts of coastal flooding 
under different relocation policies and individual risk mitigation efforts 
in reducing community flood vulnerability under sea level rise. 

The extreme value analysis indicates that the non-stationarity in 
historical sea level data primarily stems from the trends in sea level rise. 
By removing these trends, the sea level data is stationary. This allows us 
to model the coastal flooding risk through modeling the extreme value 
distributions and the temporal trends of sea level rise separately. This 
approach enables us to incorporate effects of both extreme events and 
sea level rise into flood risk modeling. A limitation of our analysis is the 
exclusion of the high uncertainty surrounding future sea level rise due to 
climate change. We based our model on a stable environment following 
historical trends. Nevertheless, even without considering the uncer-
tainty, the risks of coastal floods and sea level rise pose significant 
challenges to coastal communities. Private adaptation measures are 
essential for mitigating existing flood risk. Thus, integrating effective 
enforced risk mitigation and property buyout policies in vulnerable 
areas is crucial to foster resilient communities. 

Federal programs often require cost-share or investments in tech-
nical staffs by local governments. For example, the Hazard Mitigation 
Assistance statistics from FEMA shows cost-sharing ratios between fed-
eral and local governments for various acquisition projects, ranging 
from 50 % to 90 %, which can be challenging for financially limited local 
governments (Bukvic & Borate, 2021). Our scenario results show that 

Fig. 7. Monte Carlo projections of community average flood damage in different relocation scenarios: impact of urban development and sea level rise, excluding 
building first floor heights. 

Y. Han et al.                                                                                                                                                                                                                                     



Cities 149 (2024) 104953

11

community flood risk can be significantly mitigated by removing 
buildings with repetitive flood risk, especially when this is combined 
with strategies for raising buildings’ first floor heights. To balancing 
long-term sustainability needs with the challenge of rising sea levels and 
increasing flood risk, it is crucial to promote private adaptation through 
incentives for property owners and to develop a tailored relocation 
strategy that addresses the distinct needs of individual stakeholders and 
the capabilities of local governments. Our scenario analysis also indi-
cated that if buyout participants relocate to lower-risk areas within the 
county without pursuing private adaptation, government-supported 
buyouts alone may not be able to effectively mitigate community 
flood risk. Nevertheless, if properties are successfully relocated outside 
of the hazardous area, the property tax base of the local government 
would be reduced. Incorporating these financial considerations into 
future model simulation would be important for developing effective 
climate adaptation strategies for Galveston County. 

7. Conclusion 

This study developed a comprehensive parcel-level land use change 
model encompassing various components and scenarios of land use and 
flood risk mitigation in Galveston County, Texas. By incorporating 
population change forecasts and future extreme events modeling using 
empirical datasets, our model results paint a picture of dynamic and 
evolving landscape in response to environmental changes in a highly 
vulnerable coastal community of the US. Our findings offer valuable 
insights into the efficacy of future urban development patterns and 
community flood risk under population growth, sea level rise, and 
managed retreat strategies. The validated model results show a high 
accuracy and provide a reliable approach for future urban planning. The 
developed cadastral parcel-based model could reflect ownership of land 
units and facilitate coastal land management in response to sea level 
rise. 

Our results reveal that elevating first floor of buildings significantly 
reduce the extent of required land relocation and associated costs. This 
adaptation for buildings not only reduces community flood risk, but also 
makes managed retreat more manageable and less expensive. In sce-
narios where building first floor elevation is considered, the retired land 
area and total community flood damage are markedly lower. Under 
relocation policies, especially in Scenario 3 and 4, the land development 
patterns indicate a shift toward more resilient urban development. 
Despite the effectiveness of these strategies, the financial burden on 
local governments to implement large scale managed retreat strategies 
highlights the need for a holistic approach to policy-making that con-
siders both economic and environmental sustainability. Future studies 
could more focus on developing affordable managed retreat strategies 
(Siders, 2019b), incorporate social equity in relocation analysis (Shi 
et al., 2021), and also include future sea level rise uncertainties under 
climate change (White et al., 2021). Nevertheless, the dynamic in-
teractions between flood risk, sea level rise, and population changes in 
coastal communities cannot be ignored. The findings observed in this 
study in response to sea level rise and population migration could build a 
foundation for future research on local adaptation actions to climate 
change challenges. 

In conclusion, measuring community resilience under different 
adaptation policies require a multidisciplinary approach to integrate 
urban planning, hydrological simulation, climate science, and social 
science in the modeling process. Our developed model demonstrates 
that a multifaceted approach in flood risk mitigation, combining private 
adaptation measures such as building elevation with government-led 
initiatives like managed retreats and property buyouts, is crucial for 
building resilient communities. 
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Table 2 
The simulated areas of developed undeveloped, and retired land in different scenarios.  

Land use change First floor height Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Area of undeveloped land (km2) Excluding First Floor Height  539.53  517.45  497.70  516.14 

Including First Floor Height  530.10  504.15  505.07  521.51 
Area of developed land Before 2020 (km2) Excluding First Floor Height  254.80  220.46  245.59  224.79 

Including First Floor Height  276.50  256.60  248.42  245.23 
Area of developed Land 2020–2030 (km2) Excluding First Floor Height  94.24  171.39  55.99  62.10 

Including First Floor Height  64.10  82.07  57.87  58.40 
Area of developed Land 2030–2040 (km2) Excluding First Floor Height  56.16  51.62  57.45  57.68 

Including First Floor Height  51.56  55.41  54.80  59.96 
Area of developed Land 2040–2050 (km2) Excluding First Floor Height  48.54  69.47  51.46  47.27 

Including First Floor Height  47.66  48.76  53.71  44.38 
Area of retired land (km2) Excluding First Floor Height  39.41  58.60  62.36  62.58 

Including First Floor Height  0.63  23.56  50.69  41.09 
Number of retired land parcels Excluding First Floor Height  23,490  39,773  44,076  47,898 

Including First Floor Height  198  23,695  34,217  37,298 
Total costs of retired land parcels (million) Excluding First Floor Height  2443.53  5517.16  6804.28  8848.93 

Including First Floor Height  2.78  3142.66  4938.25  5531.11  
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Data availability 

The datasets supporting the findings of this study are comprehen-
sively included within the article and its supplementary data. The 
analytical figures and results were generated using Python, with the 
corresponding code available at our Github repository: https://github. 
com/yuh2017/retreatfromfloodzone.git. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cities.2024.104953. 
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White, G., Zink, A., Codecá, L., & Clarke, S. (2021). A digital twin smart city for citizen 
feedback. Cities, 110, Article 103064. https://doi.org/10.1016/j.cities.2020.103064 

Yin, D., Zhang, X., Cheng, Y., Jia, H., Jia, Q., & Yang, Y. (2023). Can flood resilience of 
green-grey-blue system cope with future uncertainty? Water Research, 242, Article 
120315. https://doi.org/10.1016/j.watres.2023.120315 

Zhuang, H., Chen, G., Yan, Y., Li, B., Zeng, L., Ou, J., Liu, K., & Liu, X. (2022). Simulation 
of urban land expansion in China at 30 m resolution through 2050 under shared 
socioeconomic pathways. GIScience & Remote Sensing, 59(1), 1301–1320. https:// 
doi.org/10.1080/15481603.2022.2110197 

Y. Han et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0264-2751(24)00167-7/rf0220
http://refhub.elsevier.com/S0264-2751(24)00167-7/rf0220
https://doi.org/10.1016/j.cities.2020.103064
https://doi.org/10.1016/j.watres.2023.120315
https://doi.org/10.1080/15481603.2022.2110197
https://doi.org/10.1080/15481603.2022.2110197

	Retreat from flood zones: Simulating land use changes in response to compound flood risk in coastal communities
	1 Introduction
	2 Literature review
	3 Data and study area
	4 Methods
	4.1 Land use classification
	4.2 Regional mobility and migration modeling
	4.3 Flood risk modeling
	4.4 Machine learning model for land suitability analysis
	4.5 Scenario design

	5 Results
	6 Discussion
	7 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


