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Abstract

The element abundances of stars, particularly the refractory elements (e.g., Fe, Si, and Mg), play an important role
in connecting stars to their planets. Most Sun-like stars do not have refractory abundance measurements since
obtaining a large sample of high-resolution spectra is difficult with oversubscribed observing resources. In this
work we infer abundances for C, N, O, Na, Mn, Cr, Si, Fe, Ni, Mg, V, Ca, Ti, Al, and Y for solar analogs with Gaia
Radial Velocity Spectrometer (RVS) spectra (R = 11,200) using TheCannon, a data-driven method. We train a
linear model on a reference set of 34 stars observed by Gaia RVS with precise abundances measured from previous
high-resolution spectroscopic efforts (R > 30,000-110,000). We then apply this model to several thousand Gaia
RVS solar analogs. This yields abundances with average upper limit precisions of 0.04—0.1 dex for 17,412 stars, 50
of which are identified planet (candidate) hosts. We subsequently test the relative refractory depletion of these stars
with increasing element condensation temperature compared to the Sun. The Sun remains refractory depleted
compared to other Sun-like stars regardless of our current knowledge of the planets they host. This is inconsistent
with theories of various types of planets locking up or sequestering refractories. Furthermore, we find no significant
abundance differences between identified close-in giant planet hosts, giant planet hosts, and terrestrial /small planet
hosts with the rest of the sample within our precision limits. This work demonstrates the utility of data-driven

learning for future exoplanet composition and demographics studies.

Unified Astronomy Thesaurus concepts: Stellar abundances (1577); Solar system formation (1530); Solar

abundances (1474)
Supporting material: machine-readable tables

1. Introduction

Know thy star, know thy planet: planets can reflect the
chemical properties of their host star because they are formed
from the same molecular cloud. Studying star—planet
connections of other planetary systems using their host star
chemistry can answer open questions we have about our own
solar system. The Sun shows a trend of relative depletion in
refractory elements’ (Na, Mn, Cr, Si, Fe, Ni, Mg, V, Ca, Ti, Al,
and Y) with increasing condensation temperature compared to
80% of its Sun-like counterparts (Bedell et al. 2018), but the
source of this relative depletion is unknown. Early work from
Meléndez et al. (2009) and Ramirez et al. (2009) posit that the
terrestrial planets have locked up these refractory elements.
More recently, Booth & Owen (2020) suggested that giant
planets (e.g., Jupiter) can create dust traps preventing the infall
of refractory-rich dust onto the host star. In this work we aim to
determine if this apparent refractory depletion is due to the
planets in the solar system by comparing refractory abundances
for solar analogs and identified solar-analog planet hosts.

6 NSF GRFP Fellow.

7 We define an element as “refractory” if its 50% condensation temperature
from Lodders (2003) > 900 K following Flores et al. (2024).
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When broadly considering the relationship between host star
chemistries and their planets, there is a correlation between
planet occurrence and host star iron abundance ([Fe/H] as a
proxy for bulk metallicity) through exoplanet occurrence rate
and demographics studies. Fischer & Valenti (2005) demon-
strated that giant planets are more commonly found around
high-metallicity stars, but there is a lack of consensus on
whether the same relationship holds for smaller terrestrial
planets (Buchhave et al. 2014; Petigura et al. 2018).
Enhancement in abundances of individual elements generally
increases with planet occurrence as well (Wilson et al. 2022).

Thus, precise abundances of planet hosts are a necessity to
understand their planets’ role in shaping their compositions and
vice versa. Individual planet characterization efforts require
observations from ground-based telescopes, and obtaining
follow-up high-resolution spectroscopy for each system is
difficult due to instrument oversubscription. Most Sun-like
stars do not have precise abundance measurements, including
for the refractory elements. This has limited opportunities to
understand the connections between host star and planet
chemical compositions on a demographic scale. However, the
advent of large-scale spectroscopic and astrometric surveys of
stars in our Galaxy and resulting data-driven methods
complement planet characterization efforts quite well. The
Gaia mission (Gaia Collaboration et al. 2016) alone has
measured precise astrometry for over 1.4 billion stars. In its
third data release (DR3; Gaia Collaboration et al. 2023), just
under 1 million medium-resolution spectra were released with
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149 million more expected in the coming years from the Radial
Velocity Spectrometer (RVS) instrument (Recio-Blanco et al.
2016).

To investigate whether the source of the Sun’s refractory
depletion is due to its status as a planet host, we infer
abundances for several thousand solar analogs (Tes: T &
300K, logg: logg, + 0.3, and [Fe/H]: [Fe/H]., 4 0.3 dex, as
defined by Berke et al. 2023) observed by Gaia, a subset of
which are identified planet hosts. We compile abundance
information for solar analogs from archival high-resolution
spectroscopic surveys that also have observed Gaia RVS
spectra. We call this our reference set. We then train a linear
model with TheCannon (Ness et al. 2015) on these spectra
and abundances, apply it to other Gaia stars (our test set) to
infer precise abundances, and examine refractory depletion
trends with respect to the Sun and between planet host
populations.

In Section 2, we discuss the literature solar analogs used to
make up our reference set, the Gaia RVS spectra used to make
up our test set, and the planet host catalogs we crossmatch with
our test set of stars. We outline what TheCannon is, how it is
used to test the robustness of the reference set and the model,
how it is applied to the test set, and how we inferred isochrone
ages for the test set in Section 3. In Section 4, we show
TheCannon results and the resulting refractory depletion
trends with the test set. We also show the precision limits that
the Gaia RVS spectra allow. We conclude with a discussion of
our results in Section 5.

2. Data
2.1. Literature Solar Analogs

To build our reference set sample of stars, we search the
literature for solar analogs (T: 57724300 K, logg.:
4.44+£0.3, and [Fe/H].: 0.0+ 0.3 dex as defined by Prsa
et al. 2016) with >10 precise abundances measured from high-
resolution spectra. We find 1294 unique stars from the Bensby
et al. (2014), Hinkel et al. (2014), Brewer et al. (2016), Brewer
& Fischer (2018), and Bedell et al. (2018) catalogs with
abundance measurements for C, N, O, Na, Mn, Cr, Si, Ni, Mg,
V, Ca, Ti, Al, and Y.

Bensby et al. (2014) conducted a high-resolution (R=
40,000-110,000) spectroscopic survey of 714 F and G dwarf
and subgiant stars in the solar neighborhood. This was done
using the FEROS spectrograph on the ESO 1.5 m and 2.2m
telescopes, the SOFIN and FIES spectrographs on the Nordic
Optical Telescope, the UVES spectrograph on the ESO Very
Large Telescope, the HARPS spectrograph on the ESO 3.6 m
telescope, and the MIKE spectrograph on the Magellan Clay
telescope. Average errors are 56 K for T.¢, 0.08 dex for log g,
and <0.1 dex for [X/Fe], which we convert to [X/H]. Hinkel
et al. (2014) compiled spectroscopic abundance data from 84
literature sources for 50 elements across 3058 stars in the solar
neighborhood, within 150 pc of the Sun. The different
instruments used are more than we can feasibly list here, but
the minimum resolution reported starts at R = 30,000. Average
errors are 100 K for T and 0.03-0.1 dex for [X/H]. Brewer
et al. (2016) and Brewer & Fischer (2018) performed a uniform
spectroscopic analysis ~2700 F, G, and K dwarfs through the
California Kepler Survey with Keck HIRES (R = 70,000). Average
errors are 27 K for T.g, 0.05 dex for logg, and <0.1 dex for
[X/H]. Bedell et al. (2018) conducted a spectroscopic study
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and measured 30 elemental abundances for 79 Sun-like
stars within 100 pc using the HARPS spectrograph (R =
115,000) on the 3.6 m telescope of ESO. These stars had the
smallest average errors with 4 K for T, 0.01 dex for log g,
and <0.02 dex for [X/H].

We use the respective catalog ID names and crossmatch
them to Gaia stars using the Gaia Archive with a 2” radius. Of
these 1294 stars, only 105 had observed Gaia RVS spectra
available in Gaia DR3 (11 from Bensby et al. 2014; 11 from
Hinkel et al. 2014; 78 from Brewer et al. 2016; Brewer &
Fischer 2018; and five stars from Bedell et al. 2018). Upon
examining the RVS spectra of the literature stars individually,
we find a handful of spectra that deviate from a typical Sun-like
spectrum such as magnetically induced active stars showing
emission at the Ca triplet (Martin et al. 2017). Because we are
interested in finding solar analogs, we want to exclude such
outliers from our eventual reference set. We construct a
“median solar-analog spectrum” by choosing the median RVS
flux value at each wavelength step across the entire literature
sample. The median solar-analog spectrum is then compared to
each individual literature star’s spectrum using two x~ tests.
The spectra here extend from 846.4 to 869.6 nm in steps of
0.01 nm, yielding 2321 wavelength steps. We compare across
(i) the entire spectrum and (ii) at the calcium triplet lines as this
is where the most variance is usually found (Rampalli et al.
2021). We define a reasonable® x2 as <2 times the degrees of
freedom, which corresponds to (i) the number of wavelength
steps making up the entire spectrum (2321) and (ii) the number
of wavelength steps containing the calcium triplet lines (69).
We remove the stars that do not meet this x> threshold. We
then reconstruct the median solar analog with the updated set of
stars and repeat the x* comparison. In this second iteration, we
do not find any stars that have an unreasonably high x*. We are
left with 96 stars, and these are the stars that make up our
reference set. None of the spectroscopic outliers we remove
have unique abundance patterns that deviate from the
abundance distributions of our finalized reference set.

While four catalogs have measurements for C, N, Mn, and
V, that of Bensby et al. (2014) does not. For our analysis with
TheCannon, we initially take the mean of the other catalogs’
measurements for each of these elements and use these mean
values for the Bensby et al. (2014) stars. We do the same for
the Bedell et al. (2018) catalog, which did not report
abundances for N. Ultimately, we choose to exclude stars
from Bensby et al. (2014) to improve our inferred abundance
precision. We describe this decision further in Section 3.1.1.
This decreases our reference set from 96 stars to 85 stars
though we do not make this cut until we use TheCannon to
infer abundances. We still include the Bensby et al. (2014) stars
when deciding what our test set of stars will be.

We show the reference set’s distributions of T.g, log g, and
elements Fe, Mg, C, N, O, Na, Mn, Cr, Si, Ni, V, Ca, Ti, Al,
and Y with respect to H in Figure 1. The Brewer et al. (2016)
and Brewer & Fischer (2018) stars are light blue and labeled as
Br16 and Brl8, respectively, the Hinkel et al. (2014) stars are
orange and labeled as H14, and the Bedell et al. (2018) stars
labeled as B18 are pink. The distributions of stars from each
catalog are wide in comparison to those from Bedell et al.
(2018) since the latter specifically targeted solar twins. We

8 A x* < the number of degrees of freedom indicates the data are being

overfitted, and a x* > 3-5 times the number of degrees of freedom indicates
the data are not being fit well. We choose two to be conservative.
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Figure 1. Distributions of T, log g, Fe, Mg, C, N, O, Na, Mn, Cr, Si, Ni, V, Ca, Ti, Al, and Y with respect to H for the reference set. Brewer et al. (2016) and Brewer
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Table 1

Reference Set Parameters
Column Format Units Example Description
Identifier:
DR3id integer 746545172372256384 Gaia DR3 ID
Coordinates:
ra float degrees 150.249968 R.A.
dec float degrees 31.921762 Decl.
Literature Values:
teff integer K 5742 Tt measurement
logg float dex 4.31 log g measurement
Fe H_ float dex 0.2 [Fe/H] measurement
Mg H_ float dex 0.21 [Mg/H] measurement
C_H_ float dex 0.15 [C/H] measurement
N_H_ float dex 0.13 [N/H] measurement
O_H_ float dex 0.18 [O/H] measurement
Na_H_ float dex 0.23 [Na/ H] measurement
Mn_H_ float dex 0.23 [Mn/H] measurement
Cr_H_ float dex 0.2 [Cr/H] measurement
Si_H_ float dex 0.2 [Si/H] measurement
Ni_H_ float dex 0.24 [Ni/H] measurement
V_H_ float dex 0.2 [V/H] measurement
Ca_H_ float dex 0.23 [Ca/H] measurement
TiH_ float dex 0.19 [Ti/H] measurement
Al_H_ float dex 0.24 [Al/H] measurement
Y_H_ float dex 0.2 [Y/H] measurement
prov string brewer Catalog author
Gaia RVS Parameters:
snr integer 1301 S/N of the star’s RVS spectrum
teff_gspspec integer K 5730 Measured 7. from Gaia RVS
logg_gspspec float dex 4.06 Measured log g from Gaia RVS
feh_gspspec float dex 0.09 Measured [Fe/H] from Gaia RVS

Note. The complete table is available in the online journal and as a CSV with the arXiv submission.

(This table is available in its entirety in machine-readable form.)

show the stars’ Gaia DR3 names, their coordinates, literature
measurements, the signal-to-noise ratio (S/N) of their Gaia
RVS spectra, and a selection of the parameters measured from
the RVS spectra in Table 1.

2.2. Gaia RVS Spectra

Launched in 2013, the Gaia space telescope has created the
largest and most precise 3D kinematic catalog of objects in the
sky. Gaia is equipped with an astrometry instrument (ASTRO),
which measures positions and the photometric instrument (BP
and RP filters), which measures fluxes. Its third instrument, the
RVS, measures line-of-sight velocities and is expected to obtain
>150 million spectra in the Ca triplet region (845-870 nm) at a
resolution of R = 11,200 (Recio-Blanco et al. 2016). With repeat
observations, the S/N will improve as these are combined
(Cropper et al. 2018). The third and latest data release, DR3 (Gaia
Collaboration et al. 2023), provides full astrometric solutions for
over 1.46 billion stars in the Galaxy. DR3 also includes spectra
for just under one million stars from RVS and stellar parameters
from RVS spectra including T, log g, [Fe/H], and [«/Fe] and
abundances for 13 elements: N, Mg, Si, S, Ca, Ti, Cr, Fel, FeTl,
Ni, Zr, Ce, and Nd (Recio-Blanco et al. 2023).

We are ultimately interested in finding solar analogs in the
Gaia RVS spectra sample. Rather than examining all 999,645
spectra, we choose a 3D box in Ty, logg, and [Fe/H] space
centered around the mean Gaia RVS reported T, logg, and
[Fe/H] of the reference set (see Table 1). This way the values are

homogenized in Gaia across the catalogs from the literature. We
select the box to extend 3—5¢ from the mean of the values for the
reference set, which includes all of the reference stars. The box is
defined such that T,¢: 5804 + 868 K, log g: 4.085 + 1.27 dex,
and [Fe/H]: —0.11 + 0.57 dex, and it contains 75,545 stars. We
do a x* comparison with the median solar-analog RVS spectrum
constructed from the reference set and all 75,545 stars from the
3D box in parameter. Using the same x> thresholds when
updating the reference set leaves 64,557 stars with Gaia RVS
spectra that make up our eventual test set.

We also remove the first and last wavelength steps (4 nm)
from each RVS spectrum as there are often spurious flux values
in these regions. This makes up 3% of the spectrum and does
not affect the subsequent analyses.

2.3. Planet Host Catalogs

Our interest in solar-analog planet hosts arises from the the
Sun and its status as a planet host. We start by crossmatching
the 64,557 Gaia RVS stars to the 7993 planet (candidate) hosts
and corresponding stellar and planet parameters from Berger
et al. (2023) by Gaia DR3 ID. This catalog is more expansive
than the exoplanet archive as it includes ~4000 planet
candidates in addition to ~5000 confirmed planets. It reports
homogenized and precise stellar and planet parameters that
were derived using Gaia DR3 photometry, parallaxes, spectro-
photometric metallicities, and isochrone fitting (Huber et al.
2017; Berger et al. 2020). We follow this with a crossmatch by
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Figure 2. Distribution of planets hosted by postanalysis Gaia RVS test set stars
in orbital period-radius space. Super-Earth, Neptune, and Jupiter radii are
demarcated by dashed, dashed—dotted, and dotted lines, respectively. We
classify planets as close-in giant planets (>2.5 R4, <30 day orbital period)
shown as purple circles, giant planet hosts (>2.5 R.,) shown as pink diamonds,
and “terrestrial”/small planets (<2.5 Ry) as green squares.

Gaia ID to the Exoplanet Archive (NASA Exoplanet Archive
2023) to catch any planet systems not in the Berger et al.
(2023) catalog. In Figure 2, we show the 61 planets hosted by
50 of our test set stars in orbital period-radius space that we
categorize as close-in giant planets, giant planets, and
terrestrial /small planets in Section 4.2.

3. Methods
3.1. Applying TheCannon

We use TheCannon (Ness et al. 2015) implementation from
Ho et al. (2017) to infer increased-precision stellar parameters
and abundances for solar analogs identified with the Gaia RVS
spectra. TheCannon is a data-driven method that can cross-
calibrate between surveys and has been used successfully many
times across various surveys (e.g., Casey et al. 2017; Wheeler
et al. 2020; Wylie et al. 2021; Walsen et al. 2024). TheCannon
builds a model to describe the variability in spectra using a set of
reference stars (called the reference set) with known and precise
stellar parameters and abundances such as T.g, logg, [Fe/H],
[a/Fe], and [X/H], which we more generally call “labels”
following machine-learning terminology. The model is then
applied to a test set of stars with unknown or imprecise existing
labels in the same survey.

A linear’ or more often a polynomial model has been
typically used with TheCannon to connect the reference stars’
labels to their spectra in the training step. If, for example, we
chose a linear model made up of four labels T, log g, [Fe/H],
and [a/Fe] for star n, each flux value for this star, F,, in the
star’s spectrum with a number of wavelength steps, A\, would be
represented as the following equation for training the model,
for a set of n reference objects:

F, = A\(Teten) + Br(logg,) + G([Fe/Hl,)
+ Dy([a/Fel,) + Ey + oy (D)

° Because of the restricted parameter space, we find a linear model is
sufficient to describe the data (which is often the case, e.g., Hogg et al. 2019;
Birky et al. 2020) and that the polynomial model overfits the data.
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Tetrn, log g,, [Fe/Hl,, and [c/Fe], are the labels for the nth
star in the reference set vector, more generally represented as
the label matrix, ,. Ay, By, C\, D), and E are the coefficients
for which TheCannon solves and are more generally
represented by the coefficient matrix, 6. o) is the noise term
and is the rms sum of the observational error on each flux value
(0, and the scatter in the model at each wavelength (s).

During TheCannon’s training step, Equation (1) is
rerepresented as a single-wavelength step log-likelihood
function that is optimized to solve for 6, and s, using the
input /, and the input flux and uncertainty for the n reference
objects. Then, to infer the label matrix for the test set of m stars,
1., the same log-likelihood is optimized, but 6, and s are held
constant instead. Additionally, the optimization is done as a
least-squares fit over the whole spectrum rather than per
wavelength step.

We build a reference set of 85 solar-analog labels measured
in high-resolution (R > 30,000) spectroscopic surveys as
described in Section 2.1. We identify the reference stars
associated with high-S/N Gaia RVS spectra and train a 17-
label linear model (T, log g, [Fe/H], [Mg/H], [C/H], [N/
H], [O/H], [Na/H], [Mn/H], [Cr/H], [Si/H], [Ni/H], [V/H],
[Ca/H], [Ti/H], [Al/H], and [Y/H]) on the high-precision
labels and Gaia RVS spectra with TheCannon. We then
use this model to infer labels for 64,557 spectroscopically
similar Gaia RVS stars (as determined and described in
Section 2.2).

3.1.1. Testing the Validity of the Reference Set

In order to apply TheCannon to our test set of >60,000
stars, it is important to ascertain that the reference set and
associated model are robust. We employ a cross-validation test
after the training time and prior to the test time, where we
iteratively treat each star in the reference set as a “test star.” For
a given test star, we remove its spectrum and labels from the
reference set, and TheCannon trains on the rest of the
reference set to predict the test star’s labels and spectrum. We
run this procedure for every star. In turn, we are able to
evaluate, for each label in the reference set (7., log g, [Fe/H],
[Mg/H, [C/H], [N/H], [O/H], [Na/H], [Mn/HJ, [Cr/H], [Si/
H], [Ni/H], [V/H], [Ca/H], [Ti/H], [Al/H], and [Y/H]), how
well the model’s inferred values match the reference set values
from the literature.

For a single label, if the lo standard deviation of the
ensemble’s TheCannon-predicted values—the literature
values, or (0¢yq) is less than the 1o standard deviation across
the literature values in the reference set (oy;), this shows the
model learned this particular label. If o, = oy, this means the
model is doing no better than randomly drawing from the
reference label distribution. For example, for the [Fe/H] label,
the 1o standard deviation in the literature values is 0.14 dex.
TheCannon can predict the literature [Fe/H] to an average
precision of .y, = 0.04 dex, which is much smaller than the
lo standard deviation of the reference set [Fe/H] values,
indicating TheCannon model is learning the label of [Fe/H]
from the spectra.

TheCannon requires a reference set with a high S/N. We
find that a S/N > 50 (45 stars) is sufficient in that the standard
deviation of the predicted — literature values is generally less
than the standard deviation of the literature values for each
label. We find improved precision with a S/N > 100 (34 stars)
and adopt this limit. With any higher S/N, we have too few
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stars to build a reliable model because the number of stars
reaches the number of coefficients in the model. The cross-
validation test with these 34 stars results in a standard
deviation of 55 K in T, 0.08 dex in log g, 0.036 dex in [Fe/
H], 0.042 dex in [Mg/H], 0.051 dex in [C/H], 0.119 dex in
[N/H], 0.067 dex in [O/H], 0.076 dex in [Na/H], 0.089 dex
in [Mn/H], 0.04 dex in [Cr/H], 0.032 dex in [Si/H], 0.036
dex in [Ni/H], 0.053 dex in [V/H], 0.045 dex in [Ca/H],
0.036 dex in [Ti/H], 0.05 dex in [Al/H], and 0.066 dex in [Y/
H]. We show the literature values versus TheCannon values
with a 1:1 line, the 10 standard deviation of predicted values
from TheCannon —the literature values (o), the mean
error on the label from the literature (i), and the bias (or the
mean difference in predicted and literature values, A) in
Figure 3.

We see [N/H] has the highest standard deviation, and that
there is a pileup of stars at a single literature value of [N/H] in
Figure 3 (second row and second panel). These are the stars
from Bedell et al. (2018) that did not have reported
abundances for N. As discussed in Section 2.1, for reference
stars that did not have certain labels, we assign them the mean
of the population as TheCannon does not formally handle
partial labels. This means that these stars are “badly labeled,”
which in turn yields poorer cross-validation results (e.g., a
higher standard deviation) for N. In previous iterations, we
included the stars from Bensby et al. (2014) which did not
have measurements for four abundances and also made up
one-quarter of the reference set. This yielded poor cross-
validation results that also affected the subsequent analyses,
so we exclude them from our reference set when using
TheCannon.

We compare ..y (as pink circles) with oy, (as gray
squares) for each label; this is summarized in Figure 4. No
Ocval for any label exceeds oy With the newly inferred labels,
TheCannon can also generate model spectra to compare to
the observed spectra. We show an example TheCannon-
generated model spectrum as the blue dashed line and the
RVS spectrum in pink for a reference star in the top panel of
Figure 5. The residuals are plotted in black in the bottom
panel and are on the scale of 0.5% or less, indicating the
model is working very well. The maximum of each reference
star’s residuals found in the reference set are on
average 1.5% £+ 0.9%.

3.1.2. Inferring Labels for the Test Set

Given the robust performance of the model during cross-
validation, we train the model on the entire high-S /N reference
set (34 stars) and apply TheCannon model to our test set of
64,557 stars. For each set of labels for each star, we have an
associated error that is the rms sum of oy, and the unique
noise term, oy, returned in the star’s covariance matrix. We use
the labels and associated errors to generate a model spectrum
and calculate a x? goodness of fit for each star. We remove any
stars with a x2 > 4642, which is 2 times the number of degrees
of freedom, or the number of wavelength steps in the spectrum
(A=2321). We are left with 63,725 stars. TheCannon can
extrapolate in label inference beyond the domain of values set
by the range of the reference set labels. To keep our results
robust, we remove anything outside of the reference set labels
and are left with 17,412 stars. This drop is mainly attributed to
stars being too hot or too cold compared to the temperature
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range of the reference set. As mentioned in Section 2.3, 43 of
these stars have been identified as planet (candidate) hosts.

3.2. Inferring Isochrone Ages from the Test Labels

Since the reference set does not have precise reported ages,
we do not include age in our model. However, we are interested
in exploring the effects of age in our work. We recognize that
because these are main-sequence field stars, the ages inferred
using stellar models will be imprecise. We fit isochrones to
each star and coarsely estimate ages that we use as points of
exploration. We do not report these as robust results for
individual stars. However they serve as a measure of the overall
population age distribution.

We infer ages for our test set with isoclassify (Huber
et al. 2017; Berger et al. 2020). isoclassify uses an
isochrone grid modeling approach. Isochrones from the MIST
database (Paxton et al. 2011, 2013, 2015; Choi et al. 2016;
Dotter 2016) are interpolated and used to calculate a grid of
ages from 0.5 to 14 Gyr (step size of 0.25 Gyr) and metallicities
from —2 to 0.4 dex (step size of 0.02 dex). Given observables,
isoclassify calculates priors and likelihoods and inte-
grates over all points in the grid to derive posterior distributions
following Serenelli et al. (2017).

For simplicity, we only use the spectroscopic properties,
Tefr, log g, and [Fe/H] inferred from TheCannon, as these
are intrinsic properties to the star. We do not account for
reddening as 90% of our stars have Ay < 0.2 from the
calculated reddening in the Gaia bandpasses using Bayes-
tarl9 (Green et al. 2019), so these properties inferred from
the spectra should not be affected. We find that these stars are
on average 5.8 £2.3 Gyr, and we show the distribution of
ages in Figure 6. The average age error across the test set is
1.84 +0.77 Gyr.

4. Results

We successfully infer labels for 17,412 stars. These stars
have inferred labels that are within the label range of our
reference set and a reasonable X2 fit (discussed in Section 3.1.2)
between the RVS spectra and TheCannon-generated models.
We include a table of the 17 labels and label errors inferred
with TheCannon, age and age errors from isoclassify,
and planet host status in Table 2. The average error value on
each label is 61 K for T, 0.09 dex for log g, and 0.04-0.1 dex
for [X/H].

We subtract the model spectra generated with the stars’
labels from the observed RVS spectra and show the residual
flux vectors of our test set in Figure 7 arranged from lowest
(bottom) to highest S/N (top). The residuals look fairly
stochastic with marginally higher residuals for high-S/N stars
but still typically subpercent amplitudes. On average, we find
residuals of 0.04% =+ 0.03%.

Of note are the Ca triplet lines, which have residuals of near
zero, indicating that the model performs very well. This is a
slight departure from Rampalli et al. (2021), where the
strongest residuals were seen for the Ca lines. The cores of the
Ca lines are formed in the stellar chromosphere (e.g., Andretta
et al. 2005). These cannot be properly modeled under the
typical one-dimensional, local thermal equilibrium assump-
tion invoked when deriving stellar parameters (Magic et al.
2013). An important difference between our prior work
and this work is that here we restrict our study to a much
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Figure 3. Literature label values vs. TheCannon model-predicted label values with the 1:1 ratio shown as a black dashed line, the 1o standard deviation of predicted
values fr_om TheCannon — literature values (0cya), the mean error on the label from the literature (G ), and the bias (or the mean difference in predicted and literature
values, A). 7y was not available for 7,¢ and log g as these were not reported for stars from Hinkel et al. (2014).

smaller parameter space that describes solar analogs, and we
see that the linear model can well describe the flux given the
labels. In Rampalli et al. (2021), we covered a broader range
of logg from two to three using a second-order polynomial
model to describe red clump stellar spectra. The Ca line
residuals found there were already small at the percentage
level. Therefore, it is not surprising these residuals decrease

significantly in our work and are not necessarily at odds with
previous results.

We show the coefficients of the model for each label in
Figure Al of the Appendix. This shows at what wavelengths
the model is learning from for each label. We see that most
have the highest amplitudes at the cores and wings of the Ca
lines, similar to Rampalli et al. (2021). While there are shared
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regions of the spectra that the model learns from for each label,
the coefficient shapes are in detail different.

4.1. The Dimensionality and Precision Limits of Gaia RVS
Spectra

In large-scale and low- to medium-resolution spectroscopic
surveys, the concept of dimensionality has been explored at
great length (e.g., Ting et al. 2012; Price-Jones & Bovy 2018;
Griffith et al. 2021; Ting & Weinberg 2022): how many
necessary labels are needed to describe the variance seen in the
spectra and the chemical abundance measurements derived from
these spectra? We explore the dimensionality of Gaia RVS
spectra by seeing how well the four fundamental labels, T,
log g, [Fe/H], and [Mg/Fe] (with [Mg/H] - [Fe/H] represent-
ing alpha enrichment, [«/Fe]) inferred from TheCannon and
ages from isoclassify can predict the other 13 abundances
inferred from TheCannon. If we can perfectly predict the 13
abundances within their errors from these five labels, this
indicates the data are low dimensional and that the labels are all
entirely correlated. This means that we are not gleaning any new
information from the elemental abundances that is not already
reported in the T.y logg, [Fe/H], [Mg/Fe], and age
measurements. The measurement precision that can be reached
by a spectroscopic survey increases with instrument resolution.
Prior work in this realm indicates that very high-resolution, high-
fidelity data (e.g., from the HARPS spectrograph; Mayor et al.
2003) are required to access the information in stellar spectra
beyond that captured in a few labels (e.g., Ness et al. 2022).

Following the methodology outlined in Section 3.1, we
implement a linear regression with Python’s sklearn to
predict element abundances using the five fundamental labels
of T, logg, [Fe/H], [Mg/Fe], and age. Equation (1) is
invoked again but instead of having the labels and coefficients
describe a vector of flux values, the vector is substituted with a
single abundance value. We find that all 13 element labels from
TheCannon are predicted with the five-label regression to
within the errors. This is consistent with results using other
similar-resolution surveys such as ARGOS and RAVE (Casey
et al. 2017; Rampalli et al. 2021). Griffith et al. (2021) show
that even with higher-resolution surveys like APOGEE
(R =22,500), a subset of elements, [Mg/Fe] and [Mg/H], is
all that is needed to predict other abundances. We test this
by using a linear regression model with only [Mg/Fe] and
[Mg/H] and subsequently [Fe/H] and [Mg/Fe] and find that in
both cases indeed two labels are enough to predict the other
abundances within their errors.

It is important to note that the errors reported here, though
dominated by the cross-validation term, o, are upper limit

errors. This is because the errors in the reference labels are
folded into these numbers (Manea et al. 2023). We can measure
the intrinsic dispersion, o, to assess better TheCannon’s
performance and Gaia RVS. oy, is the difference of o, and
the mean error (o, in quadrature for each label. We calculate
a gy, of 0.02 dex for Si and Al all the way to 0.08 dex for N
due to bad input labels as discussed in Section 3.1.1. We report
o for all of the abundances in Table 3. If we consider the two-
label model regression results using intrinsic dispersions rather
than our reported errors, we still find that we can 100% predict
7/13 abundances. There are six exceptions: C (97%), N (94%),
O (87%), Ti (98%), Al (92%), and Y (98%). Thus, even when
considering reference label errors, we still find the abundance
data are low dimensional, consistent with previous studies
(Casey et al. 2017; Griffith et al. 2021; Rampalli et al. 2021).
Obtaining intrinsic abundance information, beyond the 2-5
labels, can only be accessed if the abundance precision is
higher than the intrinsic dispersion measurements for these
abundances (<0.02 dex), as also found in Behmard et al.
(2023). In spite of the low precision on individual
measurements, we are able to test for potential planet host
differences in the amplitudes of the element abundances, in
particular with condensation temperature, given the size of our
data set, as demonstrated in the next section. Because the planet
sample is a small portion of the test set, differences in
individual abundances as a function of planet status could be
present at a level lower than our overall precision.

4.2. Planet Host Comparisons

Of the 17,412 stars in our test set, 50 are known planet
(candidate) hosts, as shown in Figure 2. The 61 planets span a
range of radii and orbital periods. We list the planet parameters
and host star information in Table 4. For our analysis, we further
categorize the sample of planet hosts into the 27 stars hosting
close-in giant planets (R, > 2.5, orbital period < 30 days), the
35 stars hosting giant planets (>2.5 Ry), and the 15 stars that
lack known close-in or distant giant planets and host “terrestrial”
or small planets (<2.5 Rg). The R =2.5 R, boundary is chosen
to have the closest radius value to terrestrial-sized planet radii
(typically <2 Rg) that still maintains a statistically substantial
population of stars. We recognize that the delineation between
“terrestrial” planets and giant planets is somewhat arbitrarily
drawn. We conduct the following comparison tests using cuts of
3,4, and 5 R, and ultimately find the same results. We also call
stars in the test set without identified planets nonplanet hosts,
though we recognize it is highly likely that many of these stars
host as-yet-undetected planets since 50%—70% of Sun-like stars
host planets (Mulders et al. 2018; Zink et al. 2019).
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4.2.1. Refractory Depletion Trends for the Sun

While measuring precise abundances for planet hosts has
many applications, we examine the abundance space of solar-
analog planet hosts compared to the Sun. The Sun has long
thought to be refractory depleted compared to other Sun-like
stars. Bedell et al. (2018) confirmed this with an extensive
high-resolution spectroscopic survey of solar twins, 80% of
which were refractory enriched with increasing condensation
temperature compared to the Sun. Abundance comparison
efforts of solar-analog planet hosts and the Sun suggested that
the missing refractories are trapped by the terrestrial planets
(Meléndez et al. 2009; Ramirez et al. 2009), or the giant planets
created dust traps thereby keeping refractories from the host
star (Booth & Owen 2020). If either of these theories were true,
we would expect to find that planet hosts with terrestrial planets
or giant planets have the same abundances as the Sun.

In Figure 8 we show the mean abundances and report the
confidence on the mean with the error bars (as calculated by the
standard deviation divided by the square root of the number of

stars) compared to the Sun as a function of condensation
temperature for our entire test set, all planet hosts, close-in
giant planet hosts, giant planet hosts, and terrestrial planet
hosts. The condensation temperatures used are the 50%
condensation temperatures calculated for solar-system-compo-
sition gas from Lodders (2003). We examine the trend of
refractory depletion with increasing condensation temperature
starting with Na (958 K) to Y (1658 K). We also convert all of
our abundances from [X/H] to [X/Fe] so our results are
analogous to those of Bedell et al. (2018).

The entire test set does not significantly differ from any kind
of planet host by more than 30. In most cases, they are
chemically indistinguishable within 1-20. We also see that all
four populations are largely refractory enriched compared to the
Sun, replicating the finding of Bedell et al. (2018). We show the
results of fitting a line to each of these populations for just the
refractory elements (Na, Mn, Cr, Si, Ni, Mg, V, Ca, Ti, Al, and
Y) in Figure 9. Visually, it appears that the slope for all of the
test set stars (—1.1 0.4 x 10~* dex K !) resembles the slope
of the terrestrial planet hosts (—1.2 4+ 0.4 x 10~* dex K™ "). This
is unsurprising as it has been shown that most Sun-like stars
likely host smaller planets (Petigura et al. 2013). Similarly, the
slopes for giant planet hosts and close-in giant planet hosts are
almost exactly the same. This also make sense as there is a large
overlap between the close-in giant planet and giant planet
populations in our sample. Astrophysically, close-in giant
planets could be from the same giant planet population but
have just undergone type II migration (Dawson & Johnson
2018). However, we find that all the slopes are indistinguishable
within the 1o errors. These slopes are also on the same order of
magnitude as those reported in Bedell et al. (2018). We also
measure slopes for each individual star compared to the Sun and
find that the Sun is relatively refractory depleted compared to
87% of our solar-analog population (compared to Bedell’s 80%).
This suggests that there is not a significant correlation between
refractory enrichment or depletion and our current knowledge of
planet host status; the Sun remains relatively refractory depleted
compared to all types of planet hosts.
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Table 2

Test-set-inferred Labels
Column Format Units Example Description
Identifier:
DR3id integer 711643129958302592 Gaia DR3 ID
Coordinates:
ra float degrees 134.765818 R.A.
dec float degrees 30.568571 Decl.
TheCannon-inferred Labels:
teff integer K 5915 Tt inferred label
teff_err integer K 55 T inferred label error
logg float dex 4.31 log g inferred label
logg_err float dex 0.08 log g inferred label error
Fe H_ float dex —0.01 [Fe/H] inferred label
Fe_H_err float dex 0.03 [Fe/H] inferred label error
Mg_H_ float dex —0.02 [Mg/H] inferred label
Mg_H_err float dex 0.04 [Mg/H] inferred label error
C_H_ float dex —0.008 [C/H] inferred label
C_H_err float dex 0.05 [C/H] inferred label error
N_H_ float dex 0.007 [N/H] inferred label
N_H_err float dex 0.12 [N/H] inferred label error
O_H_ float dex 0.05 [O/H] inferred label
O_H_err float dex 0.07 [O/H] inferred label error
Na_H_ float dex —0.07 [Na/H] inferred label
Na_H_err float dex 0.08 [Na/H] inferred label error
Mn_H_ float dex —0.1 [Mn/H] inferred label
Mn_H_err float dex 0.09 [Mn/H] inferred label error
Cr_ H_ float dex —-0.03 [Cr/H] inferred label
Cr_H_err float dex 0.04 [Cr/H] inferred label error
Si_H_ float dex —0.005 [Si/H] inferred label
Si_H_err float dex 0.03 [Si/H] inferred label error
Ni_H_ float dex —0.04 [Ni/H] inferred label
Ni_H_err float dex 0.03 [Ni/H] inferred label error
V_H_ float dex —0.05 [V/H] inferred label
V_H_err float dex 0.05 [V/H] inferred label error
Ca_H_ float dex 0.005 [Ca/H] inferred label
Ca_H_err float dex 0.05 [Ca/H] inferred label error
Ti_H_ float dex 0.008 [Ti/H] inferred label
Ti_H_err float dex 0.04 [Ti/H] inferred label error
Al_H_ float dex —0.05 [Al/H] inferred label
Al_H_err float dex 0.05 [Al/H] inferred label error
Y_H_ float dex 0.02 [Y/H] inferred label
Y_H_err float dex 0.07 [Y/H] inferred label error
Other:
age float Gyr 5.84 Derived age from isoclassify
age_err float Gyr 2.67 Derived error in age from isoclassify
planet? integer 0 Does star host planet(s)? N=0, Y =1

Note. The complete table is available in the online journal. Values have been truncated in this table preview to remain concise. [N/H] was inferred using partial labels

in the training step.

(This table is available in its entirety in machine-readable form.)

4.2.2. Abundance Differences between Planet Host Populations

Though the mean differences in abundances among the
different types of planet hosts and the entire test set are already
small, we investigate these differences further. We compare
close-in giant planet hosts, giant planet hosts, and terrestrial
planet hosts to the nonplanet hosts (the other 17,362 in the test
set). We show the mean differences in abundances between the
planet hosts and nonplanet hosts (A[X]) in the top right panel
of Figure 10. The terrestrial planet hosts are consistent in
abundance space with the nonplanet hosts. The close-in giant
and giant planet hosts differ from the nonplanet hosts, although
no abundance has a >4¢ difference. We also compare the mean

10

differences for five fundamental stellar parameters, age, T,
logg, [Fe/H], and [Mg/Fe] as the representative [«/Fe]
element (from [Mg/H] - [Fe/H]). The results are shown in the
top left panel. The nonplanet hosts are consistent within 2o for
T.rr, log g, [Fe/H], and [Mg/Fe] to terrestrial planet hosts; there
is a >30 offset of 0.01 dex in age. There are offsets >3¢ of
0.04-0.05 dex in logg and 0.06 dex in [Fe/H] for close-in
giant and giant planet hosts, respectively. This raises the
possibility that any differences in abundances between
nonplanet hosts and planet hosts could be driven by systematic
population differences in age, logg, and [Fe/H] rather than
intrinsic abundance differences from planet architectures. We
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Figure 7. Residuals of the test set ordered from lowest (bottom) to highest S/N (top). The Ca triplet is remarkably well modeled. All other residuals appear stochastic

in nature.
Table 3
oin for Abundance Measurements

Element Ocval (dex) o1 (dex) Oine (dex)
Fe 0.036 0.026 0.025
Mg 0.042 0.032 0.026
C 0.051 0.035 0.037
N 0.119 0.086 0.082
(6] 0.067 0.054 0.041
Na 0.076 0.04 0.064
Mn 0.089 0.034 0.082
Cr 0.04 0.023 0.033
Si 0.032 0.023 0.023
Ni 0.036 0.021 0.03
\% 0.053 0.041 0.034
Ca 0.045 0.027 0.036
Ti 0.036 0.026 0.025
Al 0.05 0.045 0.023
Y 0.066 0.042 0.051

subsequently test and see this is the case, using a doppelganger
comparison test.

We define doppelgangers to be stars that have the same
fundamental parameters (at 1) as our test objects (Behmard
et al. 2023; Sayeed et al. 2024), in labels of age, T, logg,
[Fe/H], and [Mg/Fe]. This enables us to build a control sample
to examine any differences in elemental abundances alone at
otherwise fixed conditions of evolutionary state (age, T, and
logg) and fiducial supernova enrichment levels represented
with Fe and [Mg/Fe]. For each close-in giant, giant, and
terrestrial planet host, we find their associated doppelgangers in
age, T.y, logg, [Fe/H], and [Mg/Fe] within 1o from the
nonplanet host sample. We calculate the mean stellar parameter
and abundance differences between each planet host minus
their N randomly drawn doppelgangers.'® This gives us a
representative distribution of the difference in each planet host
and the doppelganger population. In the second row of Figure
10, we show the mean of these mean differences and standard
error of this mean. The mean differences in stellar parameters

10 Because every planet host does not have the same number of
doppelgangers, N is determined by the star with the fewest doppelgangers.
This star will be compared to all of its doppelgangers, while other stars will be
compared to a subset of their doppelgangers of size N.
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(left bottom panel) between the populations are of course zero
since we are only comparing planet hosts to their
doppelgangers. However, now we see that this in turn makes
all previous nonzero abundance differences seen for planet
hosts, particularly the close-in giant and giant planet hosts,
consistent with zero within at most 20. The mean difference for
[N/H] is still nonzero post-doppelganger correction, but recall
this abundance was poorly labeled during the training step. The
trend toward zero difference between populations agrees with
those presented in Behmard et al. (2023), who also found a
subset of planet hosts from the Kepler mission that are
chemically indistinguishable from their doppelgangers.

We also inspect how other stellar parameters change for
planet hosts when solely conditioning on T, and log g. We find
that there are differences in age, [Fe/H], and [Mg/Fe] that
reflect the overall abundance differences from star-forming
conditions as reflected by supernova elements. We then
iteratively condition on the three stellar parameters that did
have systematic differences (age, logg, and [Fe/H]) one at a
time for all of the planet host populations. We find that
conditioning on [Fe/H] has the largest impact on decreasing the
abundance differences. This makes sense given the well-known
planet-metallicity correlation (Fischer & Valenti 2005). In fact,
we recover this exact finding in that the (close-in) giant planet
hosts are on average more metal rich than the nonplanet and
terrestrial planet hosts, which was causing the significant
nonzero abundance differences in the top right panel of Figure
10. Conditioning on age and log g also decreases the spread in
abundance differences albeit at respectively smaller scales. Thus,
conditioning on all fundamental stellar parameters simulta-
neously results in the greatest decrease in abundance differences.

5. Discussion

In this work, we use TheCannon to train a linear model on
34 solar-analog Gaia RVS stars with high-precision literature
stellar parameters and abundances, measured from high-
resolution data (R >30,000), to infer 7.y logg, and 15
individual abundances ([X/H]) for 17,412 other Gaia RVS
(R~ 11,000) stars, 50 of which are (candidate) planet hosts.
This data-driven analysis yields average upper limit precisions
of 61 K in T, 0.09 dex in log g, and 0.04-0.1 dex in [X/H]
(see Table 2). These are an improvement compared to the RVS



THE ASTROPHYSICAL JOURNAL, 965:176 (18pp), 2024 April 20

Planet (Candidate) Parameters from Berger et al. (2023) and the Exoplanet Archive for Planet Hosts in the Test Set

Table 4

Rampalli et al.

DR3 Host ID R.A. Decl. Planet ID Radius (Ry) Orbital Period (days)
749676822006222464 tic85293053 156.8377 34.39095 t0i1772.01 2.325 8.051
749676822006222464 tic85293053 156.8377 34.39095 t0i1772.02 4.493 ‘e
6258810550587404672 HD 137496 231.74206 —16.50901 HD 137496 b 1.31 1.621
6258810550587404672 HD 137496 231.74206 —16.50901 HD 137496 ¢ 12.6 479.9
5500031730804862720 tic350931281 90.71014 —55.53292 t0i4403.01 3.097 4.462
4648587831980764160 tic141412823 84.23719 —75.61142 t0i4421.01 2.964 21.701
4716158250340258944 HD 10180 24.47311 —60.51149 HD 10180 ¢ 3.68 5.76
4716158250340258944 HD 10180 2447311 —60.51149 HD 10180 d 345 16.357
4716158250340258944 HD 10180 24.47311 —60.51149 HD 10180 ¢ 5.39 49.748
4716158250340258944 HD 10180 2447311 —60.51149 HD 10180 f 5.24 122.744
4716158250340258944 HD 10180 24.47311 —60.51149 HD 10180 g 491 604.67
4716158250340258944 HD 10180 2447311 —60.51149 HD 10180 h 94 2205.0
4729324799004633472 tic197807043 53.46724 —57.62129 t0i2423.01 14.837 e
4666490423895957376 tic388106759 62.854 —69.47488 t0i810.01 2.32 28.306
4666490423895957376 tic388106759 62.854 —69.47488 t0i810.02 2414 90.849
4666498154837086208 tic25155310 63.37473 —69.22659 t0i114.01 9.459 3.289
6411016151376518144 tic403135192 333.55961 —59.56832 10i2226.01 3.636 0.902
1433586454781584896 tic224596152 254.5033 57.30526 t0i1734.01 2.435 28.874
4903786336207800576 tic281781375 12.97603 —59.34367 t0i204.01 2.391 43.828
4910452812646300544 tic206541859 18.04853 —56.92538 1014406.01 10.706 30.082
636363799347569408 epic211945201 136.5742 19.40205 epic211945201.01 6.106 19.492
636363799347569408 epic211945201 136.5742 19.40205 epic211945201.01 6.206 19.492
2581918597853527424 epic220621788 12.77001 9.51677 epic220621788.01 2.378 13.682
2079613685738988800 kic8176564 295.43967 44.03901 K02720.01 1.256 6.572
5710154317045164416 tic1003831 130.29515 —16.03633 t01564.01 7.363 1.651
5762607889340459008 tic149845414 135.5458 —3.42082 t0i12545.01 2.274 7.994
3486043573401367168 tic98957720 181.0008 —28.32535 t0i3501.01 18.622 15.349
4822523493384074496 tic167661160 79.70936 —36.03769 t0i2479.01 3.073 36.838
4655671573080397056 tic231077395 67.65781 —70.35491 t0i2238.01 2.147 3.39
4743138925656526976 tic201793781 34.68431 —54.85972 10i248.01 2.208 5.991
4762694805108531840 tic382045742 79.32368 —59.06839 t0i13355.01 2.215 15.66
1602005522755589760 tic224313733 234.09914 57.89074 t011856.01 12.396 39.402
1630906044157332224 tic307958020 256.8431 62.47554 t0i14633.01 3.002 543.878
5054967123443063936 tic142868621 50.94274 —31.2652 10i2446.01 4.184 18.686
3604866386264961792 epic212357477 202.01618 —15.93798 epic212357477.01 2.236 6.327
3616931735377523712 K2-292 205.37587 —9.94607 K2-292 b 2.63 16.984
6239702034929248512 K2-287 233.07434 —22.35835 K2-287 b 9.494 14.893
2534280057557160704 epic220207374 20.992 0.25935 epic220207374.01 1.608 8.268
5820908638718592256 tic361711730 243.88501 —69.2171 t0i15027.01 10.983 10.244
2104104723128736128 kic6266866 284.59168 41.63933 K05254.01 0.832 232916
6385929006882225024 tic405425498 337.51776 —67.85014 t0i2227.01 2.744 4.222
4964562700427198720 tic138727432 32.91429 —37.89299 t0i853.01 16.464 6.865
3777506754255516800 tic124573851 158.9007 —5.18136 101669.01 2.559 3.945
3778075717162985600 tic169226822 160.55877 —3.835 t01675.01 14.399 4.178
6173451477191225984 tic271168962 210.19357 —30.58361 t0i828.01 13.582 5.322
4813630986935633152 tic13883872 73.74111 —41.34421 t0i4322.01 2.267 13.419
5260585074966996864 tic141770198 91.8755 —76.69058 t0i4555.01 2.192 522.627
5262245367587966208 tic142087638 98.44214 —74.1901 t0i2404.01 3.924 20.363
5262245367587966208 tic142087638 98.44214 —74.1901 t0i2404.02 8.978 74.605
5262245367587966208 tic142087638 98.44214 —74.1901 10i2404.03 6.941 746.066
3406687485600728192 epic247098361 73.7668 18.65432 epic247098361.01 9.945 11.169
6266769537305193856 epic250106132 236.44605 —14.20768 epic250106132.01 3.496 22.122
6283723285046532864 tic46096489 214.68301 —20.27544 t0i818.01 12.719 3.119
3211188618762023424 tic43647325 76.08189 —6.22978 t0i1423.01 14.788 3.162
2506859165273343488 tic332715376 32.67117 —0.67888 t0i14354.01 2.724 10.631
4617735638779366016 tic318608749 9.12614 —83.56707 t0i1100.01 4.138 20.073
45456357610673408 epic210550063 61.13186 16.21665 epic210550063.01 2.643 2.166
6357524189130820992 tic317060587 337.51024 —75.64656 t011052.01 2.434 9.14
4866555051425383424 tic77253676 69.70423 —36.68132 t0i697.01 2.527 8.608
4870809920906672384 tic170729775 67.98437 —34.45554 10i2449.01 11.682 16.654
4877544322252002048 tic1167538 70.99759 —31.90664 t0i2447.01 10.005 ‘e

12
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Figure 8. Mean abundance measurements of our sample with standard errors of the means (standard deviation divided by the square root of the number of stars) as a
function of condensation temperature compared to the Sun. Top: all test set solar analogs appear as as navy filled circles and identified planet hosts as orange
hexagons. The Sun appears relatively refractory depleted with increasing condensation temperature compared to these samples replicating Bedell et al. (2018), and the
solar analogs and planet hosts are chemically indistinguishable within 2—-3¢. Bottom: all test set solar analogs are shown as navy filled circles, close-in giant planet
hosts as purple unfilled circles, giant planet hosts as pink unfilled diamonds, and terrestrial /small planet hosts as green unfilled squares. The Sun still appears relatively
depleted compared to these four samples, which are still chemically indistinguishable within 2-3c.

measurement precisions, which are 70 K for T, 0.11 dex for
log g, and 0.15 dex for [Fe/H] compared to 0.036 dex from our
results shown in Table 3.

In compiling the reference set, we used data from five different
survey efforts (Bensby et al. 2014; Hinkel et al. 2014; Brewer
et al. 2016; Bedell et al. 2018; Brewer & Fischer 2018). Our
model works remarkably well despite typically seen offsets in
literature labels due to different instruments and analysis methods
used across these surveys. We see this in our initial cross-
validation test described in Section 3.1.1. That is, when treating
each star in the reference set itself as a test star and applying the
model trained without that star, we can recover the literature
element abundance values to precisions of 0.05£0.02 dex
(Figure 3). TheCannon also uses the inferred labels to generate
model spectra that we can compare to the observed RVS spectra.
We show an example spectrum from the cross-validation in
Figure 5 and a summary of the residuals (data—model) of the
TheCannon-generated spectra and the RVS spectra for the test
set in Figure 7. Residuals are on average <1%.

5.1. The Limits of Gaia RVS-inferred Abundances

An important consideration when using data-driven methods
for low- to medium-resolution surveys is what precision can be

13

obtained. High-resolution spectrographs are advantageous for
spectroscopy due to the high-precision measurements achieved.
However, we are able to obtain surprisingly high precision at
much lower resolution (Ting et al. 2017). Achieving high
precision is relevant in the context of the abundance
dimensionality. It appears that the dimensionality of the
abundance space is low, and the many abundances we infer
can be well predicted using age, T, log g, and a small subset
of elements. We find even just two element measurements
([Mg/H] and [Mg/Fe] or [Fe/H] and [Mg/Fe]) are enough to
predict the other elements, similar to Griffith et al. (2021). The
intrinsic information in the elements beyond what information
is captured in T, logg, [Fe/H], [Mg/Fel, and age requires
higher resolution and more precise observations to access, if
such information is present. We find we do not have the
precision to measure any intrinsic scatter in the majority of the
other 13 elements we derive when using our five-label model to
predict these abundances. Using just two labels, we can predict
abundances to >87%, even after adjusting our error estimates
from TheCannon to account for the input reference label
errors. Measuring potential and significant differences in
abundances due to planet architectures therefore requires
precisions higher than what we achieve (<0.02 dex), because
we need to access information beyond what is already captured
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Figure 9. Linear fits of test set solar analogs (navy filled circles), close-in giant planet hosts (purple unfilled circles), giant planet hosts (pink unfilled diamonds), and
terrestrial /small planet hosts (green squares) for element mean abundances and respective standard errors of the means from Na (958 K) to Y (1659 K). The slopes are
indistinguishable within the errors, suggesting the increased relative depletion with condensation temperature of the Sun is unrelated to our current knowledge of

planet host status.

in the 2-5 labels. Additionally, the impact of time-variable
stellar atmospheres and surface motions may add complexity to
measuring accurate and precise abundances at this level (Spina
et al. 2020). This level of measurement precision for element
abundances is more readily achievable with Gaia RVS spectra
of S/N 2200 (see Figure 4 of Ting et al. 2017), which only
include 2% of our current sample though this can be reached in
future data releases after spectra are coadded with multiple
visits. This precision is certainly more accessible with high-
resolution spectroscopy (R > 100,000).

While we have 44 stars in our test set with the same
abundances and stellar parameters as the Sun within their
errors, we have not necessarily found 44 solar birth siblings.
The prospect of finding stellar birth siblings, which presumably
have identical abundances, also requires this extremely high
precision, and it may also be out of reach even at abundance
precisions ~ 0.02 dex (e.g., Ness et al. 2018). Using the
potential differentiating power of abundances also requires
measuring elements from multiple nucleosynthetic families
(e.g., Freeman & Bland-Hawthorn 2002; Manea et al. 2023).

We infer [X/H] for the majority of the elements. Bedell et al.
(2018) and Adibekyan et al. (2016) discuss the merits of using
[X/Fe] versus [X/H], which we consider here. [X/Fe]
represents the enhancement or depletion of a given element
from the norm of stars for a given bulk metallicity, [Fe/H], and
can mitigate trends related to Galactic chemical evolution
compared to [X/H]. [X/H] represents the elemental abundance
with respect to the production of elements in the Big Bang. We
choose to use [X/H] as the most direct transfer of labels from
the training set. We test how well TheCannon performs using
[X/Fe] versus [X/H] and find that TheCannon has a poorer
performance and a higher bias for many labels.

It is also important to recognize the differences between
abundance inferences and physical abundance measurements.
In particular, C, O, Na, V, Al, and Y absorption lines are not
present in the RVS wavelength region, which would typically
prevent measurements of these elements in a traditional
abundance analysis. However, TheCannon can use other
lines to infer abundances for these elements (see the
coefficients in the Appendix). Additionally, some elements
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such as O produce variations across the entire spectrum due to
electron donorship (e.g., Ting et al. 2018), so in a number of
cases it is appropriate to use the full spectrum to infer an
element, not simply the specific absorption lines.

5.2. The Sun Remains Relatively Refractory Depleted

Our finding that the element abundances between the
populations of identified planet hosts and other solar-analog
stars are indistinguishable can be used to help interpret the
Sun’s relative refractory depletion. The Sun has been shown to
be relatively depleted in refractory elements with increased
condensation temperature compared to 80% of other Sun-like
stars (Bedell et al. 2018). In our work, we also find this trend
holds true for the Sun compared to 87% of our solar-analog test
set regardless of planet host status (Figures 8 and 9). The same
trend holds true for the 382 most solar-like stars in our test set
with the same age, T, log g, [Fe/H], and [«/Fe] as the Sun
within their errors. Thus, the source of this apparent refractory
depletion trend in the Sun remains an open question.

Early work such as Meléndez et al. (2009) and Ramirez et al.
(2009) suggest that refractory depletion trends can change
depending on planet host type. More specifically stars like the
Sun, with terrestrial planets, show this trend because terrestrial
planets lock up the refractories. Such planet hosts will appear
refractory depleted compared to those hosting close-in giant
planets. This suggestion has been challenged by the modeling
work of Kunitomo et al. (2018) who show >16 M, of refractory-
rich material, far exceeding that of the terrestrial planets, is
needed to make up the deficit seen in the Sun. Our work also
challenges this theory empirically given that we see, regardless of
the type of planet host, the Sun still remains relatively refractory
depleted with increasing condensation temperature in compar-
ison. What was likely being seen in Meléndez et al. (2009) and
Ramirez et al. (2009) were small but systematic differences in the
fundamental stellar parameters among the identified planet-
hosting populations that propagated to abundance differences
rather than intrinsic abundance differences.

Our results, given the precision limits, are inconsistent with
the theory suggested by Booth & Owen (2020). They posit that
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Figure 10. Mean label differences between close-in giant planet hosts (purple circles), giant planet hosts (pink diamonds), and terrestrial /small planet hosts (green
squares) and nonplanet hosts. Top: there are differences in the five fundamental parameters (left) that could describe the differences seen in abundance space on the
right, though no nonzero differences are more than 4o. The error on the mean is the rms sum of the standard deviation of planet hosts divided by the square root of the
number of planet hosts plus the standard deviation of test set stars divided by the square root of the number of test set stars. Bottom: the five fundamental parameters
have been “doppelganger corrected” (left). All identified planet hosts are compared solely against nonplanet hosts with the same age, T, log g, [Fe/H], and [Mg/Fe]
within the errors. This decreases the spread in nonzero differences even further to <2o. Error bars are the standard error of the mean.

giant planets, like Jupiter, could create dust traps that sequester
refractory-rich dust and prevent it from falling into the host
star. This has been suggested as an explanation for the
abundance differences and measured refractory depletion trend
of ~5 x 107> dex K ™' in the wide binary system HD196067—
HD196068 (Flores et al. 2024), which is similar to the slope we
measure for giant planet hosts (6 x 10> dex K~ ', Figure 9).
However, we see in the top panel of Figure 10 that giant planet
hosts (close in or not) are chemically indistinguishable within
the errors from stars that are not known giant planet hosts.
Hiihn & Bitsch (2023) recently calculated that abundance
differences due to dust traps from giant planets are ~0.01 dex.
So while giant planets could sequester elements, it is not
happening at a precision we are necessarily able to detect. The
solar analogs in this work do appear enriched compared to the
Sun at scales larger than those shown in Hithn & Bitsch (2023)
across all planet host types. Thus, the source of the Sun’s
refractory depletion seems to not only be from the planets it
currently hosts (if it is at all).

There are obvious biases in our planet sample due to
detection incompleteness. This is particularly true for objects
with smaller radii and long periods in spite of the close-in giant
planets in our sample having plausibly experienced type II
migration from the outer part of their disks. We present these
results with this caveat and do not outright refute any theories
of planets suppressing refractories. Rather, we show there is no
significant link between planet host status and stellar refractory
composition emerging based on our current observations.

From our work, we calculate that the Sun is in the 13th
percentile of the solar-analog abundance pattern distribution.
The planet hosts we study are likely sampled from this
abundance distribution. We confirm this is true by randomly
drawing 43 stars from our test set that are not the 43 identified
planet hosts 100 times. We measure the slope of their mean
refractory abundances as a function condensation temperature
and find an average slope of —1.1 £0.2 x 10~* dex K~ '. This
is in agreement with the results from our linear fits shown in
Figure 9. This indicates that the Sun is indeed a bit lower in the
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general Sun-like star abundance pattern distribution but is still
reasonably part of a continuous distribution. Therefore, the
refractory element trends may not actually require any special
explanations.

5.3. Prospects for Exoplanet Composition and Formation
Studies

This catalog is a demonstration of the utility of data-driven
learning in the era of big data surveys. There are certainly limits
to the precision and dimensionality of Gaia RVS data.
However, we have been able to infer abundances for 17,412
stars and 50 planet (candidate) hosts using a reference set made
up of stars from different high-resolution spectroscopic
surveys.

Host star abundances can play a role in constraining
exoplanet compositions and formation pathways. While the
compositions of planets can span a wider range than that of
their host stars (Plotnykov & Valencia 2020), rocky planets
have been shown to mirror the [Fe/Mg] and [Si/Mg] ratios of
their host stars. In our own solar system, Earth and Mars have
[Fe/Mg] and [Si/Mg] ratios that match the Sun’s to within
10% (Unterborn & Panero 2019). Rodriguez Martinez et al.
2023 finds this is true of K2-106 b, and Adibekyan et al. (2021)
generally finds a strong correlation (although not 1:1) between
planet iron mass fraction and host star composition. This
underscores the importance of refractory elements in rocky
planet structure. We infer abundances for Si, Fe, Mg, and nine
other refractory elements. Abundance measurements of volatile
elements like C and O, which we also infer, are also useful as
they can trace the formation and migration of planets using the
various molecular ice lines present in the protoplanetary disk
(Oberg et al. 2011). In order to differentiate between planet
populations among stars, Hinkel & Unterborn (2018) calculate
that precisions of 0.01 dex for [Si/H] and 0.02 for [Fe/H] are
needed. The precision only increases for other elements. Our
average upper limit precisions for Si and Fe are 0.04 dex. These
precisions improve to 0.02 and 0.03 dex if we account for input
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reference label errors. While this entire catalog may not be used
to infer or differentiate between planet compositions just as yet,
we have used these data to understand the extent of the Sun’s
apparent refractory depletion compared to >17,000 solar
analogs. With near all sky surveys like Gaia, data-driven
methods like TheCannon, and increased future exoplanet
discoveries from the upcoming Plato Mission (Rauer et al.
2014) and the Nancy Grace Roman Space Telescope (Spergel
et al. 2015), we can assess such abundance and stellar
parameter trends for stars hosting planets on a much larger
and more robust scale.
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