Verifying Declarative Smart Contracts

Haoxian Chen
ShanghaiTech University
Shanghai, China
hxchen@shanghaitech.edu.cn

Yuepeng Wang
Simon Fraser University
Burnaby, BC, Canada
yuepeng@sfu.ca

ABSTRACT

Smart contracts manage a large number of digital assets nowa-
days. Bugs in these contracts have led to significant financial loss.
Verifying the correctness of smart contracts is, therefore, an im-
portant task. This paper presents an automated safety verification
tool, DCV, that targets declarative smart contracts written in De-
Con, a logic-based domain-specific language for smart contract
implementation and specification. DCV proves safety properties
by mathematical induction and can automatically infer inductive
invariants using heuristic patterns, without annotations from the
developer. Our evaluation on 23 benchmark contracts shows that
DCV is effective in verifying smart contracts adapted from pub-
lic repositories, and can verify contracts not supported by other
tools. Furthermore, DCV significantly outperforms baseline tools
in verification time.

ACM Reference Format:

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau
Loo. 2024. Verifying Declarative Smart Contracts. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE "24), April 14-20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3639203

1 INTRODUCTION

Smart contracts are programs that process transactions on blockchains
- a type of decentralized and distributed ledgers. The combination
of smart contracts and blockchains has enabled a wide range of
innovations in many fields including banking [12], trading [13, 35],
and financing [45], etc.

Nowadays, smart contracts are collectively managing a massive
amount of digital assets 1. However, alongside their widespread
adoption, they have also suffered from security vulnerabilities [1-3],
resulting in significant financial losses for users and organizations.

! According to Etherscan, as of the writing of this paper, the top ERC20 tokens are
managing billions of dollars worth of tokens.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639203

Lan Lu
University of Pennsylvania
Philadelphia, PA, USA
lanlu@seas.upenn.edu

Brendan Massey
University of Pennsylvania
Philadelphia, PA, USA
masseybr@seas.upenn.edu

Boon Thau Loo
University of Pennsylvania
Philadelphia, PA, USA
boonloo@seas.upenn.edu

One of the key challenges with smart contracts is that once they
are deployed and executed on blockchains, terminating their exe-
cution or updating the contracts becomes extremely difficult. This
lack of flexibility can be particularly problematic when new vulner-
abilities are discovered, as it limits the ability to rectify potential
issues in deployed contracts.

Given these challenges and the potential financial risks involved,
the need to formally verify the correctness of smart contracts before
their deployment becomes increasingly crucial.

Existing formal verification approaches often directly verify the
implementation of smart contracts by symbolically executing the
compiled EVM bytecode [6, 26, 28, 32, 36]. While this approach is
general, allowing it to be applied to all existing EVM-based smart
contracts without modification, modeling the intricacies of the EVM
stack introduces additional complexity, thus limiting the scalability
of these approaches. Moreover, high-level properties are hard to
be specified and checked on the bytecode as it lacks the high-level
structure of the contracts.

In contrast, model-based verification approaches can achieve
better scalability by specifying a formal model of the smart contract
separately from its implementation. With this formal model and the
implementation, two primary verification problems are addressed:
(1) Does the formal model satisfy the desired properties [17, 33]?
(2) Is the implementation consistent with the formal model [20]?
While this verification approach is generally more efficient, as the
formal model abstracts away implementation details irrelevant to
the verification task, it does require additional effort from the user
to specify the formal model. Additionally, the steep learning curves
of formal specification languages may limit the adoption of such
verification approach.

In this paper, we aim to achieve a good balance between the
efficiency and the usability of smart contract verification, by lever-
aging the concept of executable specification for smart contracts.
In particular, we target smart contracts written in DeCon [18], a
domain-specific language for smart contract specification and im-
plementation. A DeCon contract is a declarative specification for
the smart contract by itself, making it more efficient to reason about
than the low-level implementation in Solidity. It is also executable,
in that it can be automatically compiled into a Solidity program
which can be deployed and run on the Ethereum blockchain. Auto-
matic code generation based on the verified specification can save
developers the manual effort of implementing the contract. The

https://doi.org/10.1145/3597503.3639203
https://doi.org/10.1145/3597503.3639203
https://etherscan.io/tokens
https://doi.org/10.1145/3597503.3639203

ICSE 24, April 14-20, 2024, Lisbon, Portugal

high-level abstraction and executability of DeCon make it an ideal
target for verifying contract-level properties.

We implement a prototype, DCV (DeCon Verifier), for verifying
declarative smart contracts. Properties are specified as declarative
queries for safety violations in the DeCon language. DCV verifies
safety invariants using mathematical induction on the sequence of
transactions. A typical challenge in induction is to infer inductive
invariants that can help prove the target property. Our key insight
for addressing this challenge is that the DeCon language exposes
the exact logical predicates necessary for constructing inductive
invariants, which makes inductive invariant inference tractable.

Another benefit of using DeCon is that it provides uniform in-
terfaces for both contract implementation and property specifi-
cation. Specifically, DeCon models the smart contract states as
relational databases, and properties as violation queries against
these databases. Thus, developers can specify both the contract
logic and its properties in a declarative and succinct way, and finish
the verification and implementation automatically.

This paper makes the following contributions.

o A verification method for smart contracts, targeting contract-
level safety invariants based on a declarative specification
language and the induction proof strategy (Sections 4, 5).

o A domain-specific adaptation of the Houdini algorithm [29]
to infer inductive invariants for automated proof (Section 5).

e An open-source verification tool for future study and com-
parison 2.

e Evaluation that compares DCV with state-of-the-art verifica-
tion tools, on 23 representative benchmark smart contracts.
Specifically, DCV successfully verifies all benchmarks, in-
cluding the ones not supported by other tools. Furthermore,
it is significantly more efficient than other tools in terms of
verification time (Section 6).

2 ILLUSTRATIVE EXAMPLE

State transition
system

Verified

(%_.

DeCon Contract

Q—-

Violation query

Prove by
induction

?

Safety invariant

Unknown

Figure 1: Overview of DCV.

Figure 1 presents an overview of DCV. It takes a smart contract
and a property specification (in the form of a violation query) as
input, both of which are written in the DeCon language (Section 3).
The smart contract is then translated into a state transition system,
and the property is translated into a safety invariant on the system
states. DCV then verifies that the transition system preserves the
safety invariant by mathematical induction. In our prototype, the
verification is performed by Z3 [10], an automated theorem prover.

2Benchmarks are provided in supplementary materials. Source code will be released
after publication.

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

If the verification succeeds, DCV guarantees that the smart con-
tract is safe by ensuring that the violation query result is always
empty, and returns an inductive invariant as a proof. However, if
the verification fails, DCV returns “unknown”, indicating that the
smart contract may not satisfy the specified safety invariant.

In the rest of this section, we use a voting contract as an example
to illustrate the workflow of DCV. This example is adapted from
the voting example in Solidity [7], simplified for ease of exposition.

2.1 A Voting Contract

o

'y Y
=2 Vote Txs un <p) Vote counts

QWinner

Voter Prop. Prop. Count Prop.
— —_

Qo 4 Group by 1 & Selectthe 2

0x02 2 ‘Prop.’ and 2 3 one that

0x03 2 count 3 1 reaches the

quorum

Figure 2: A voting contract

/* Declare relations. x/
.decl recv_vote(proposal: uint)
.decl vote(p: address, proposal: uint)

.decl isVoter(v: address, b: bool)[0]
uint)[0]

.decl wins(proposal: uint, b: bool)[0]

.decl voted(p: address, b: bool)[@]

1
2
3
4
5| .decl votes(proposal: uint, c:
6
7
8

.decl *winningProposal (proposal: uint)
9| .decl *hasWinner(b: bool)

10| .decl *quorumSize(qg: uint)

11| .init isVoter

12

13| /* Voter v cast a vote to proposal p. */

14| vote(v,p) :- recv_vote(p), msgSender(v),

15 hasWinner (false), voted(v, false),
16 isVoter (v, true).

17

18| /* Count votes for each proposal p. x/
19| votes(p,c) :- vote(_,p), ¢ = count: vote(_,p).

21| /* A proposal wins by reaching a quorum. =*/
22| wins(p, true) :- votes(p,c), quorumSize(q),
23 c >= (q.

24| hasWinner (true) :- wins(_,b), b==true.

25| winningProposal (p) :- wins(p,b), b==true.
26| voted (v, true) :- vote(v,_).

28| /* Safety: at most one winning proposal. */

29| .decl inconsistency(pl: uint, p2: uint)[0,1]
30| .violation inconsistency

31| inconsistency(pl1,p2) :- wins(pl,true),

32 wins(p2,true),pl!=p2.

Listing 1: A smart contract for voting, written in DeCon [18].

Figure 2 illustrates a voting scenario in a declarative view (i.e.,
everything is represented as a relational table):

(1) Participants cast votes by sending vote transactions, and these
transaction records are stored in the “Vote Txs” table (on the left),
with the voter address and proposal ID (“Prop.”) listed as columns.

Verifying Declarative Smart Contracts

votes = {p1l — 2,
p2—1,

votes = { P+ 0}

hasWinner = False -
hasWinner = False

Initial states States after i Txs

else — 0}

ICSE 24, April 14-20, 2024, Lisbon, Portugal

recv_vote(p1)
A = hasWinner
Avotes[pl]+1<Q

(o oioa)\

votes = {p1 — 3,
p2— 2,
else — 0}

hasWinner = True

(mnoiz)

votes = {pl — 2,
p2— 2,
else — 0}

hasWinner = False

States after i+1 Txs

recv_vote(p2)
A = hasWinner
Avotes[p2]+1=>Q

Figure 3: The voting contract as a state transition system.

(2) For each proposal p, its votes are counted by grouping the
entries in the “Vote Txs” table by the “Prop.” column, and then
counting the number of entries within each group. The counting
results are displayed in the “Vote counts” table (middle).

(3) The proposal that first reaches a quorum is declared as the
winner. Suppose there are 5 participants and the quorum size is 3,
proposal 2 is selected as the winner as it gets 3 votes.

2.2 Smart contract written in DeCon language

Listing 1 shows the implementation of this voting contract in De-
Con [18], which consists of three major components:

(1) Relation declaration and annotation. The relations shown
in Figure 2, along with other auxiliary relations, are declared in lines
1 to 10 of Listing 1. These declarations define the table schema in
relational databases, where each schema consists of the table name
followed by column names and types in parentheses. Optionally,
a square bracket annotates the index of the primary key columns,
indicating that these columns uniquely identify a row. For example,
the relation votes(proposal: uint, c: uint)[0] on line 5 has the
first column, proposal ID, as the primary key because votes are
counted for each unique proposal. If no primary keys are annotated,
all columns are interpreted as primary keys, meaning that the table
is a set of tuples.

A special kind of relation is a singleton relation, annotated by .
Singleton relations only have one row, such as winningProposal in
line 8.

By default all relational tables are initialized empty, except rela-
tions annotated by the init keyword (line 11). These relations are
initialized by the constructor arguments passed during deployment.
(2) Relation definition in inference rules. Each relation is de-
fined in the form of a rule, head :- body. Similar to the rules used
in Datalog programs, the body consists of a list of relational literals,
and is evaluated to true if and only if there exists a valuation of
all variables such that each literal has the corresponding concrete
entries in the table. If the body is true, the head is inserted into the
corresponding table.

For instance, the rule in line 14 specifies that a vote transaction
can be committed if there is no winner yet (hasWinner (false)), the
message sender is a registered voter (isVoter(v,true)), and the

voter has not voted before (voted(v, false)). The literal recv_vote
(p) represents a transaction handler that evaluates to true upon
receiving a vote transaction request. Rules that contain such trans-
action handlers (literal with a recv_ prefix in the relation name) are
referred to as transaction rules. Committing a transaction inserts a
new entry into the transaction table (“Vote Txs” in Figure 2).

Inserting a new vote(v, p) literal also triggers updates to all its
direct dependent rules. A rule is considered directly dependent on
a relation R if and only if a literal of relation R is in its body. In
this case, relation votes and voted are updated next. The chain of
dependent rule updates continues until no further dependent rules
can be triggered, and the transaction handling is finished. Using
this mechanism, the votes for each proposal, as well as the winning
proposal, are automatically updated when new votes are approved.

On the other hand, if the body of a transaction rule evaluates to
false upon receiving a transaction request, the transaction request
is rejected, and no updates are made to any of the affected relations.
(3) Properties as violation query. Line 31 specifies a safety prop-
erty as another relation, which is further annotated as a violation
query in line 32. This relation is defined by the rule in line 33. If
the rule is evaluated to true, it means that there exists two different
winning proposals, indicating a violation to the safety invariant
that there is at most one winning proposal. Such violation query
rule is expected to be always false during the execution of a correct
smart contract.

2.3 Translating DeCon Contract to State
Transition System

In order to perform formal verification, DeCon contracts are en-
coded as state transition systems. The state space comprises all
possible valuations of the relational tables, and each successful
transaction triggers an atomic state transition step (the transaction
atomicity is guaranteed by the underlying Ethereum blockchain).
Such encoding naturally captures the semantics of smart contracts:
reactive programs that listen and respond to requests (transactions).

Figure 3 illustrates part of the transition system translated from
the voting contract in Listing 1. The middle portion (labeled “States
after i Txs”) shows a state that is reached after i transactions from
one of the initial states. At this point in the execution, proposal p;
has received two votes, proposal p; has one, and no winner has

ICSE 24, April 14-20, 2024, Lisbon, Portugal

been declared yet. Two outgoing edges from this state are high-
lighted. The one on top represents a vote(p1) transaction, where
p1 receives an additional vote, thereby achieving the quorum and
becoming the winning proposal. This transaction can be executed
only if certain conditions are met, which are annotated on the
edge (only part of the conditions are shown due to space limit).
The edge is derived from the transaction rule in Listing 1 line 15
(recv_vote(p1) A —hasWinner A ...), and its dependent rules from
line 20 to 28 (votes[p1] > Q A ...). This edge leads to a new state
where proposal p;’s votes is incremented by one, and it becomes
the winner, which is also translated from line 19 to 26.

Similarly, the bottom right shows another transaction where
proposal p2 gets a vote, but hasWinner remains False since no
proposal has reached the quorum.

Section 4.2 formally describes the algorithm to translate a DeCon
smart contract into a state transition system.

Property. The violation query rule (line 31) is translated into the
following safety invariant:

=(3p1, p2. wins[pl] A wins[p2] A p1 # p2) (1)
It states that there do not exist proposals p1 and p2 such that the
violation query is true, which means there is at most one winning
proposal. In the rest of the paper, we will represent predicates in
logical form wins[p] instead of the relational form wins(p, true) for
conciseness.

2.4 Proof by Induction

To prove safety invariants of a smart contract against an infinite
sequence of transactions, DCV adopts the mathematical induction
approach. Given a state transition system, and a safety invariant,
the proof consists of two steps:

(1) Base case: all initial states satisfy the safety invariant.
(2) Induction step: if the safety invariant holds for some state s,
then it also holds for all possible next states s”.

One of the biggest challenges in automatic induction proof is
finding inductive invariants. In some cases, a true safety invariant
may not be inductive, which means that although the safety in-
variant is true for all possible states, it can still fail the induction
proof step. To successfully complete the induction step, an induc-
tive invariant inv(s) needs to be found, such that inv(s) A prop(s)
is inductive, where s is the state variable.

For example, the safety invariant in Equation 1 cannot be proved
inductively on its own. Because the verifier cannot eliminate a
spurious counterexample in the induction step: after a proposal is
declared winner, another proposal receives a new vote and becomes
another winner. We need extra inductive invariants to rule out such
spurious counterexamples:

Yu € Proposal. wins[u] = hasWinner (2)

which asserts that if any proposal u € Proposal is marked as the
winner, the predicate hasWinner must also be true. Since the vote
rule requires ~hasWinner, such counterexample is unreachable and
the induction proof is successful.

Inductive invariants are typically inferred in a guess-and-check
manner [29], where a set of candidate invariants are enumerated
until an inductive one is found. However, such approaches heavily
rely on good heuristics to generate a set of candidate invariants.

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

Decl := .declR
Annot = .(init | violation | public) R
(Relation)R = SR|SG|TR
(Simple) SR = .decl Str(Schema)[K]
(Singleton) SG = .decl Str(Schema)
(Transaction) TR = .decl *recv_Str(Schema)
(Primary keys) K = [k1,k2,...]
Schema = Str:T1, Str:T2,...
(Type) T = address | uint | int | bool

Figure 4: Syntax of DeCon relation declaration and annota-
tion.

The insight of DCV is that, rules in DeCon contracts provide a con-
cise and high-quality source of logical predicates for constructing
inductive invariants. Since they only concern high-level logic and
do not include implementation details, the extracted predicates are
much smaller in size than those extracted from lower-level imple-
mentations, greatly speeding up the invariant search process. For
instance, the predicates in Equation 2 (wins[u], hasWinner), are pre-
sented in the rules in Listing 1. We describe the details of predicate
extraction and inductive invariant generation in Section 5.

3 THE DECON LANGUAGE

A DeCon contract consists of three main blocks: (1) Relation decla-
rations, (2) Relation annotations, and (3) Rules.

‘ (Contract) P = Decl | Annot | Rule ‘

Relation declarations. As shown in Figure 4, there are three kinds
of relation declaration syntax:

o Simple relations (SR) have a string for a relation name, fol-
lowed by a schema in parenthesis, and optional primary key
indices in a square bracket. The schema consists of a list of
column names and types. When inserting a new tuple to a
table, if a row with the same primary keys exists, then the
row is replaced by the new tuple.

e Singleton relations (SG) are relations annotated with a *
symbol. These relations have only one row. Row insertion is
also an update for singleton relations.

e Transaction relations (TR) are relations with prefix recv_,
interpreted as an event trigger for incoming transaction re-
quests. For example, in line 15 Listing 1, the literal recv_vote
(p) is triggered to be true when the contract receives a vote
transaction, with parameter p being the proposal ID.

In addition, special relations are reserved for blockchain en-
vironment. For example, relation *msgSender(p: address) stores
incoming message sender address. DeCon also reserves relations
for message values, current block number, contract constructors,
etc. Reserved relations cannot be declared by programmers.
Relation annotations. Three kinds of relation annotations are
supported: (1) init indicates that the relation is initialized by a
constructor argument passed during deployment, (2) violation
means that the relation represents a safety violation query, and

Verifying Declarative Smart Contracts

Rule = H(x):- Body
Body := Join | R(X),y = Agg : R()
Join = R(x) | Pred, Join
Agg = sumn | max n|minn| count
Pred =R(x)|C(x)|y=F(x)
(Condition)C => | < | 2| < | # | ==
(Function) F ==+]| — | x |/

Figure 5: Syntax of DeCon rules. H(x) and R(x) are relational
literals, with H and R being the relation name, and x is an
array of variables or constants. For the max, min, and sum
aggregators, n is a variable in a numerical domain.

(3) public generates a public interface to read the contents of the
corresponding relational table.

Rules. Figure 5 shows the syntax of DeCon rules. A DeCon rule is of
the form head : - body, which is interpreted from right to left: if the
body is true, then it inserts the head tuple into the corresponding
relational table.

A rule body is a conjunction of literals, and is evaluated to true if
there exists a valuation of variables 7 : V + D such that all literals
are true. 7 maps a variable v € V to its concrete value in domain D.
Given a variable valuation 7, a relational literal is evaluated to true
if and only if there exists a matching row in the corresponding rela-
tional table. Other kinds of literals, including conditions, functions,
and aggregations, are interpreted as constraints on the variables.

In particular, DeCon supports three kinds of rules. Their differ-
ences in syntax and semantics are described as follows:

(1) Join rules are rules that have a list of predicates in the rule
body, and contain at least one relational literal. A predicate can be
either a relational literal, a condition, or a function,

(2) Transaction rules are a special kind of join rules that have
one special literal in the body: transaction handlers. A transaction
handler literal has recv_ prefix in its relation name, and is evaluated
to true when the corresponding transaction request is received.
The rest of the rule body specifies the approving condition for the
transaction,

(3) Aggregation rules are rules that contain a relational literal
R(x) and an aggregator y = Agg n : R(§j), where Agg can be either
max, min, count, or sum. For each valid valuation of variables in
R(x), it computes the aggregate on the matching rows in R(7). Take
the following rule from the voting contract as an example.

votes(p,c):-vote(_,p),c=count:vote(_,p).

For each unique value p in the second column of table vote, the
aggregator ¢ = count: vote (_,p), counts the number of rows in
table vote whose second column equals p.

DeCon contracts are executable on the Ethereum blockchain [18].
To execute, they are first compiled into Solidity [8], which is further
compiled to bytecode for the Ethereum blockchain.

Expressiveness. DeCon is able to express a wide range of smart
contracts (Table 1), including the most popular open standards like
ERC20 and ERC721. Certain functions, such as cryptographic hash
functions and randomized functions, fall beyond the scope of rela-
tional logic, and are thus not supported by DeCon. Verifying such

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Algorithm 1 EncodeRule(r, R, T, 7).

Input: (1) A DeCon rule r, (2) the set of all DeCon rules R, (3)
a map from relation to its modeling variable T, (4) a trigger 7,
the newly inserted literal that triggers r’s update.
Output: A formula over S X S, encoding r’s body condition,
and all state updates triggered by inserting r’s head literal.

1: Body < EncodeRuleBody(T, 7, r)

2: Dependent < {EncodeRule(dr,R,T,7’) | (dr,7’) €

DependentRules(r, R, 7)}

: (H,H’) « GetStateVariable(T, r.head)

: Update «— GetUpdate(H, r, tau)

: TrueBranch < Body A (H' = Update) A (A depependent 9)

: FalseBranch < —Body A (H' = H)

: return TrueBranch ® FalseBranch

N o0 G W

smart contracts with DCV’s approach would require a modeling of
these computations that is precise and practically verifiable, which
is an intriguing direction for future research. DeCon also explicitly
disallows recursion to ensure predictable and cost-effective gas
consumption, but recursion is rare and not recommended as a good
practice in smart contract development [18].

4 PROGRAM TRANSFORMATION

4.1 Declarative Smart Contracts as Transition
Systems

This section introduces the algorithm to translate a DeCon smart
contract into a state transition system (S, I, E, Tr) where

o S is the state space: the set of all possible valuations of all
relational tables in DeCon.

e] C S is the set of initial states that satisfy the initial con-
straints of the system. All relations are by default initialized
to zero, or unconstrained if they are annotated to be initial-
ized by constructor arguments.

o E is the set of transaction types. Each element in E corre-
sponds to a type of transaction in DeCon (analogous to a
transaction function definition in Solidity).

e Tr C S X E X S is the transition relation, generated from
DeCon rules. Tr(s, e, s’) means that state s can transit to
state s via transaction e.

In the rest of this section, we introduce the algorithm to generate
the transition relation from a DeCon smart contract.

4.2 Transition Relation

The transition relation Tr is defined by a formula tr: S X EX S =
Bool. Given s,s” € S,e € E, s can transition to s’ in one step via
transaction type e if and only if tr(s, e, s”) is true. Equation 3 defines
tr as a disjunction over the set of formulas encoding each transac-
tion rule. The procedure EncodeRule is defined by Algorithm 1.

tr = \/ [EncodeRule(r, R, T, r.trigger) A e = r.TxName] (3)
reTR

The EncodeRule procedure takes four inputs: (1) a DeCon rule

r, (2) the set of all DeCon rules R, (3) a map from relation to its

modeling variable T, (4) and a trigger 7 , the newly inserted literal

ICSE 24, April 14-20, 2024, Lisbon, Portugal

I,7FR(X) ¢

(Join1)

T,z + Pred ~ ¢

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

I,z + H(g):- Join — ¢3

I,7+H(j):-R(x) — ¢

T =insert R(Z) s’ = T(H)[k].value +n

It +H(j):-R(x),s =sumn:R(Z) > s =

T = insert R(Z) ¢ = c = T(H)[k].value + 1
T,z + H(§):-R(%),c = count : R(z) — ¢

> (Sum+)
s

(Count+)

T,z + H(j):-Pred, Join < ¢1 A ¢2

(Join2)

7 =delete R(Z) s’ =T(H)[k].value —n
— - - 5 (Sum-—)
It +H(j):-R(x),s =sumn:R(Z) > s=s

t = delete R(Z) ¢ := ¢ = T(H)[k].value — 1

Tz F H(G) - R&).c = count : R@) = g Cownt™)

T = insert R(Z) m’ = ['(H)[k].value

I,7+ H(®j):-R(x),m = max n: R(2) = ite(n > m’/,m=n,m=m’)

(Max)

T = insert R(Z) m’ =T(H)[k].value

I,t+H®@):-R(x),m=minn:RZ) = ite(n<m/,m=nm=m’)

(Min)

Figure 6: Inference rules for the EncodeRuleBody procedure.

that triggers r’s update. In particular, a trigger 7 takes the form
insert [literal] or delete [literall. This procedure is invoked
recursively to encode all dependent rules of a transaction into a con-
straint. The initial inputs are the transaction rules, and the trigger
insert [recv_tx] representing a new incoming transaction request.
RandT remain unchanged across invocations. The procedure works
as follows.

(1) Encode individual rules. In step 1, r’s body is encoded as a

boolean formula, BodyConstraint, by calling a procedure EncodeRuleBody

(Section 4.3). Take the rule for vote transaction in line 15 of Listing 1
as an example. Its body is encoded as:

—hasWinner A —hasVoted[v] A isVoter|v]

(2) Encode dependent rules. Step 2 first selects direct dependent
rules of r from the set of all DeCon rules R, by calling a subroutine
DependentRules(r, R, 7). It returns a set of tuple (dr, ”), where dr is
a direct dependent rule of r, and 7’ is the corresponding trigger for
dr. A rule dr is directly dependent on rule r if and only if r’s head
relation appears in dr’s body. Following the example in Listing 1,
rules for votes (line 19) and voted (line 26) both depend on vote,
because they contain vote in the body.

Triggers for dependent rules are generated as follows. If 7 is
insertion, the next trigger ¢’ is also insertion of the rule head literal.
For instance, 7 =insert recv_vote(p) results in 7/ =insert vote(
v,p), by the vote rule (line 14).

In addition, when inserting a new literal with primary keys,
existing literals with the same primary key need to be deleted. For
example, relation votes has the proposal as the primary key, when
its count is incremented, both insert votes(p,n+1) and delete
votes(p,n) will be returned as 7’.

If 7 is deletion, then 7’ is deletion of the head literal.

(3) Generate update constraints. Step 3 generates state variables
for head relation, where H and H’ are for the current and next step
respectively. Step 4 generates the head relation update constraint:

H.insert(r.head), if r = insert _
GetUpdate(H, r, 7) = . 4)
H.delete(r.head), if r = delete _

where concrete forms of H.insert and H.delete methods depend
on the modeling variable’s type. For instance, relation votes is
modeled as mapping Proposal => uint. By the votes rule (line 19),

insert vote(p,v) results in the update: Store(votes, p, votes[p] + 1).

Step 5 and 6 get constraints for the true and false branches of
the rule derivation, respectively. Step 7 returns the final formula
as an exclusive-or of the true and false branches, which encodes
r’s body and how its update affects other relations in the contract.

4.3 Encoding Rule Bodies

The procedure EncodeRuleBody is defined by two sets of inference
rules:

o I',7 + r — ¢ states that a DeCon rule r is encoded by a
boolean formula ¢ under context I" and r.

o T, 7 Pred ~ ¢ states that a predicate Pred is encoded by a
formula ¢ under context I' and 7.

The contexts (I' and 7) of both judgments are defined in the same
way as the input of Algorithm 1.

Figure 6 shows the inference rules that define the first judgment
T, 7 + r < ¢. They are interpreted as follows.
Join rules are encoded as conjunctions of body predicates, each of
which is encoded from a literal in the rule body. The encoding of
individual literals is introduced later in this section.
Sum and Count have separate inference rules for tuple insertion
(+) and deletion (~), where k represents the primary keys of relation
H, extracted from the array 7, and I'(H)[k].value reads the current
aggregate result. Take this rule for instance:

votes(p,c) :- vote(_,p), ¢ = count: vote(_,p).

with 7 = insert vote(v,p). It is encoded as ¢ = votes[p].value + 1.
Max and Min are encoded as conditional constraints. If the match-
ing field n in the inserted tuple R(X) is greater (resp. smaller) than
the current maximum (resp. minimum) m’, then the new maximum
(resp. minimum) is n. Otherwise it remains the same.

Note that they are only encoded for tuple insertions, based on
the assumption that they only apply to transaction relations (tables
that stores the transaction records), which are append only and
have no primary keys. In other words, they have no tuple deletion.

This assumption is made for two reasons. First, updating Max
and Min for tuple deletion is complicated, because if the current
maximum or minimum is deleted, the second largest or smallest
element needs to be fetched and become the new aggregation result.
Such update requires storing the whole table and even maintaining

Verifying Declarative Smart Contracts

sorted table entries. Second, Ethereum has strict limits on the com-
putation and storage of each smart contract and its transactions.
Maintaining maximum and minimum for tables with delete opera-
tion is very expensive to be executed on Ethereum. We survey smart
contracts in public repositories and find no contract with such logic.
Therefore, DCV adds such assumption and greatly simplifies the
rule encoding.

Encoding individual literals. Following are the inference rules
for judgment: T, 7 + Pred ~» ¢, which encodes individual literals.

rrel =R (Lit1) r.rel # R
T, 7 F R(%) ~ True T,7 + R(x) » C(R)[k] =

- (Lit2)
v

where k represents the primary keys in relational literal R(x), ex-
tracted from X, and @ represents the remaining fields in . When
R(x) is the inserted literal (Lit1), it is encoded as True without any
constraints. Otherwise, it is interpreted as a constraint where the
value R[k] matches & (Lit2).

c (Condition)r (Function)

I,t+C TFy=F(x)wy=F(x)

Conditions and functions are directly encoded as they are, as shown
in the above rules.

Rule derivation and recursion. Rule recursion means that a rule
is dependent on itself. A rule r, is dependent to another rule rp,
(ra — rp) if rp’s head relation appears in r,’s body. This depen-
dency relation is transitive: ry — rp, Arp = re = rq — rc.
Using this dependency annotation (—), rule recursion means rq —

.. > Tg.

Different from traditional Datalog, where recursion is a powerful

feature to concisely express sophisticated queries, DeCon prohibits
recursion for gas efficiency reasons [18]. Therefore, DCV only con-
siders non-recursive rules. The absence of recursion keeps the size
of the transition constraint linear to the number of rules in the
DeCon contract, thus making the safety verification tractable.
Blockchain environment variables, including sender address
and value of transactions, block number, address of the contracts,
are modeled as symbolic constants. Since DCV focuses on verify-
ing contract logic designs, addresses and integers are modeled as
mathematical integers (unbounded), which allows more efficient
reasoning with Z3’s integer theory.
Multi-contract Interactions are specified implicitly by DeCon
rules that join relations from different contracts. Such interactions
are performed via message passing. Unlike prior work checking for
message handling errors, DCV assumes message delivery and han-
dling are always successful, and instead focuses on the functional
correctness. Note that such interactions are limited to functions
without mutual recursions. Mutual recursions are not supported
because it breaks the atomicity assumption of a transaction.

4.4 Safety Invariant Generation

Each violation query rule gr in a DeCon contract is first encoded
as a formula ¢ such that T, 7 qgr < ¢. Note that the context T is
the same mapping used in the transition system encoding process.
The second context, trigger 7, is a reserved literal check(), which
triggers the violation query rule after every transaction.

Next, the safety invariant is generated from ¢ as follows:

Prop = =(3x € X. ¢(s, x))

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Algorithm 2 Procedure to find inductive invariants.

Input: a transition system ts, a map from relation to its model-
ing variable I', and a set of DeCon transaction rules R.
Output: an inductive invariant of ts.

return A, cc ¢

: end function

: P « |, ¢g ExtractPredicates(r, T')

: C « GenerateCandidateInvariants(P)
: return FindInductivelnvariant(C, ts)

1: function FINDINDUCTIVEINVARIANT(C,ts)

2: for inv in C do:

3: if refutelnv(inv, C, ts) then

4 return FindInductivelnvariant(C \ inv, ts)
5 end if

6: end for

7:

8

9

[EIN
=

where X is the state space for the set of non-state variables in ¢.
The property states that there exists no valuations of variables in
X such that the violation query is non-empty. In other words, the
system is safe from such violation.

5 VERIFICATION METHOD
5.1 Proof by Induction

Given the state transition system translated from the DeCon smart
contract, the target property prop(s), which is translated from the
violation query, is proven by mathematical induction. In particular,
let S be the set of states in the transition system, and E be the set of
transaction types (vote is the only transaction type in the example
in Listing 1). Givens, s’ € S, e € E, let init(s) indicate whether s is in
the initial state, and tr(s, e, s”) indicate whether s can transition to
s’ via transaction type e. The mathematical induction is as follows:

Prooflnd(init, tr, prop) = Base(init, prop)
Alnduction(tr, prop)
Base(init, prop) = Vs € S. init(s)
= inov(s) A prop(s) (5)
Induction(tr, prop) = Vs,s” € S,e € E.
inu(s) A prop(s) A tr(s, e, s”)
= inv(s’) A prop(s’)

where inv(s) A prop(s) is an inductive invariant inferred by DCV
such that prop(s) is proved to be an invariant of the transition
system.

Algorithm 2 presents the procedure to infer inductive invariants.
It first extracts a set of predicates P from the set of transaction
rules R (Section 5.2). Then it generates a set of candidate invariants
using predicates in P, following two heuristic patterns (Section 5.3).
Finally, it invokes a recursive subroutine FINDINDUCTIVEINVARIANT
to find an inductive invariant.

The procedure FINDINDUCTIVEINVARIANTS is adopted from the
Houdini algorithm [29]. It iteratively refutes candidate invariants
in C, until there is no candidate that can be refuted, and returns the
conjunction of all remaining invariants. The subroutine refuteInv
is defined in Equation 6, which refutes a candidate invariant if it is

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Algorithm 3 ExtractPredicate(r, I').

Input: a transaction rule r, a map from relation to its modeling
variable T.
Output: a set of predicates P.

. T < r.trigger

: Py —{p|ler.body,,t+1~ p}

: Py < {pAq|p € Py, q € MatchingPredicates(p, r)}

: return Py U Py

R

not inductive:

V=(ts.init = inv)
V=[(Acec©) Ats.tr = inv’]

refutelnv(inv, C, ts) =

(6)

where inv’ is adopted by replacing all state variables in inv with
their corresponding variable in the next transition step.

Given a set of candidate invariants C, this algorithm guarantees
to find the strongest inductive invariant that can be constructed in
the form of conjunction of the candidates in C [29].

5.2 Predicate Extraction

Algorithm 3 presents the predicate extraction procedure. It first
transforms each literal in the transaction rule into a predicate, and
puts them into a set Py. Some predicates in Py do not contain enough
information on their own, e.g., predicates that contain only free
variables, because the logic of a rule is established on the relation
among its literals, e.g., two literals sharing the same variable v
means joining on the corresponding columns. On the contrary,
predicates that contain constants, e.g. hasWinner == true, convey
the matching of a column to a certain concrete value, and can thus
be used directly in candidate invariant construction.

Therefore, in the next step, each predicate p in Py is augmented
by one of its matching predicates in matchingPredicates(p, r), which
is the set of predicates in rule r that share at least one variable with
predicate p. This set of augmented predicates is P;. Finally, the
union of Py and P; is returned.

5.3 Candidate Invariant Generation

This section introduces the candidate invariant generation algo-
rithm and the design rationale. The goal of the algorithm is to
find invariants that, when combined with the property we want to
verify, are inductive and sufficient to imply the target property.

A property is inductive if it can be proven using the induction
proof in Equation 5. To prove a property by induction, we need to
find invariants that can eliminate spurious counterexamples that
the verifier might find. Spurious counterexamples are assignments
to contract states that can never be reached from the initial state.

Consider the voting contract presented in Listing 1, where the
objective is to establish through mathematical induction that there
is at most one winner. During the induction step, the verifier may
present a spurious counterexample: a participant is declared the
winner (wins[ul==True), and subsequently, another vote is cast for
a different participant, providing enough votes to declare it as a
winner as well. One way to suppress this counterexample is to
establish the invariant that, when a participant has been declared

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

winner, the variable hasWinner is always true:
wins[u] = hasWinner

Recall that the vote transaction requires hasWinner to be false, so
this spurious counterexample is prevented from happening.
Invariant template. In the above implication, it is important to
note that the premise constitutes a predicate within the target prop-
erty, while the conclusion is a negation of one of the predicates in
transaction rules. This observation is generalized into the following
invariant pattern:

p = —q

Here, q is instantiated by predicates extracted from transaction
rules, and p is by (1) predicates extracted from property specification
rules, and (2) negated predicates extracted from initialization rules.
Predicates are extracted using Algorithm 3.

For predicates containing primary keys, such as the wins[u]
predicate where u represents the primary key of the relation wins,
DCYV incorporates a universal quantifier for the variable u. Thus,
the previously mentioned invariant is of the comprehensive form:

Yu € Proposal. winslu] = hasWinner

DCV then unions all possible template instantiations into the set

of candidate invariants.

6 EVALUATION

Table 1: Benchmark properties for group one.

Benchmarks Properties

ERC20 Account balances add up to totalSupply.

ERC721 All existing tokens have an owner.

ERC777 No default operator is approved for individual
account.

ERC1155 Each token’s account balances add up to that
token’s totalSupply.

wallet No negative balance.

crowFunding (1) No missing fund.

(2) Mutual exclusion of refund and withdraw.

(3) Cannot refund after target amount is raised.
brickBlockToken (1) No transfer before unpause.

(2) No distribute token before sale finalized.

(3) No evacuate before upgrade.

(4) Always be puased after upgrade.
finalizableCrowdSale | (1) No token sale after finalization.

(2) No premature finalization.
cappedCrowdSale (1) No illegal finalization.

(2) No token sale after finalization.
controllableToken Account balances add up to totalSupply.
partitionToken Account balances add up to totalSupply in

each partition.
paymentSplitter No overpayment.
vestingWallet No early release.
voting At most one winning proposal.
auction Each participant can withdraw at most once.

Verifying Declarative Smart Contracts

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Table 2: Verification efficiency measured in time (seconds). TO stands for time-out after 1 hour, OM stands for out of memory,
Unknown (?) means the verifier cannot verify the property, and Errors (X) means the verifier exits due to internal errors.

Group Name #Rules LOC | DCV Inv.? Solc Solc-verify VeriSmart
ref. DeCon | ref. DeCon | ref. DeCon
Open standards | ERC20 19 389 | 0.78 25.07 X X 64.03 ? 0.56
and examples ERC721 13 520 | 0.88 TO X X 57.21 0.31 ?
ERC777 31 562 0.90 TO ? 22.06 ? ? ?
ERC1155 18 645 0.97 11.14 TO 15.10 64.83 ? ?
wallet 12 67 0.82 0.16 ? 4.87 ? ? 0.56
crowFunding-p1 14 85 0.85 1.00 X ? 21.00 TO ?
crowFunding-p2 1.47 v ? ? ? 5.00 TO ?
crowFunding-p3 1.24 v ? ? ? ? TO ?
BrickBlockToken-p1 36 595 | 0.86 v ? ? ? ? 1.35 1.15
BrickBlockToken-p2 1.61 v ? ? ? ? 1.36 ?
BrickBlockToken-p3 2.18 v ? ? ? ? TO 1.26
BrickBlockToken-p4 2.25 ? ? 5.83 1.00 TO ?
FinalizableCrodSale-p1 22 457 | 1.29 v ? ? ? ? TO ?
FinalizableCrodSale-p2 0.80 ? ? ? TO ?
CappedCrowdSalea-p1 25 435 | 1113V ? ? ? TO ?
CappedCrowdSalea-p2 1.36 v ? ? ? TO ?
paymentSplitter 6 166 | 1.22 TO 13.94 | 851 ? TO ?
vestingWallet 7 113 0.82 TO ? 21.62 10.45 ? ?
voting 6 36 0.86 v X TO ? ? ? ?
auction 13 146 | 2.27 v TO ? ? ? ?
controllableToken 23 55 0.90 43.26 2.72 X 56.00 TO 0.51
partitionToken 16 70 0.79 0.41 0.31 5.84 6.91 0.16 0.36
Top ERC20 bnb 24 172 0.86 3.27 0.66 10.06 28.68 ? ?
tokens link 20 308 0.84 0.51 X 64.63 25.08 0.26 0.86
ltcSwapAsset 25 655 | 0.80 TO X X 50.70 ? 1.97
matic 25 510 0.85 2.26 X 67.37 26.84 ? 0.91
shib 22 508 0.86 0.99 X 70.26 22.41 244.99 0.56
tether 27 474 0.81 51.00 X X 30.75 OM ?
theta 21 213 0.77 321.65 0.91 20.66 19.10 TO ?
whbtc 28 731 | 0.82 TO X X 59.56 ? 0.86
Count 30 30 10 12 5 12 17 6 11

Implementation. We implement the smart contract transforma-
tion and inductive invariant generation algorithms in Scala and use
Z3 [10] to check the satisfiability of generated formulas. Quantified
formulas are handled by Z3’s default heuristics.

Benchmarks. We collect 23 benchmark contracts in two groups.
The first group consists of 12 contracts from open libraries [5, 7]
and examples from prior research [9]. To be included, each contract
must meet two criteria: (1) expressible in DeCon language, and (2)
has contract-level safety properties annotation, or interpretable
documentation. These contract-level properties are invariants that
hold across an infinite sequence of transactions. Table 1 shows
the contract names and their target properties. The second group
comprises eight of the most popular ERC20 contracts, ranked by
circulating market cap maintained by Etherscan [12]. Filtering out
contracts without source code or having unsupported features, the
remaining are verified against the common ERC20 token property.
Baselines. We compare against solc [8], solc-verify [26] and VeriS-
mart [41]. Solc, the Solidity compiler maintained by the Ethereum
community, features a built-in checker for verifying assertions in

source programs. We use version 0.8.13 for this experiment. Solc-
verify extends solc 0.7.6 with strategies like specification annotation
and modular program verification. VeriSmart, a safety verifier, en-
hances verification efficiency by autonomously discovering trans-
action invariants. We employ the latest VeriSmart commit [15]
compatible with our machine and the latest solc version (0.5.11)
supported by the tool. While Verx [36] and Zeus [28] were consid-
ered, they are not publicly available.

Experiment setup. We adapted benchmark contracts for compat-
ibility with all comparison tools. Modifications included removing
recursion from the delegate vote function in the voting contract, sub-
stituting inline assembly in Solidity contracts with native code, and
making minor syntax adjustments to meet specific Solidity version
requirements. Additionally, VeriSmart underwent preprocessing
steps for successful verification, including flattening contracts with
external libraries and inlining long chains of function invocations
from DeCon-generated contracts.

ICSE 24, April 14-20, 2024, Lisbon, Portugal

With these adjustments, we implemented DeCon counterparts
for each reference Solidity contract. Verification tasks were per-
formed on three contract versions: (1) DeCon contracts with DCV,
(2) reference Solidity contracts with baseline tools, and (3) Solidity
contracts generated from DeCon with baseline tools. Verification
time for each task was measured within a one-hour time budget.
Experiments were executed on a server with 20 3.7GHz cores and
250GB memory, operating in single-threaded mode.

Results: DCV is highly efficient. Table 2 shows the evaluation
results. DCV verifies all contract properties within 10 seconds, and
the majority finish in one second.

On the contrary, solc successfully verifies only 12 reference con-
tracts, with one taking an extended 321 seconds. It times out on six
contracts and encounters SMT solver invocation errors on two, a
known issue documented on the GitHub repository issue tracker [4],
sensitive to operating system and Z3 library versions.

Solc-verify verifies 12 reference contracts and reports unknown
on 12. It encounters errors on six contracts due to challenges in
analyzing certain parts of the OpenZepplin libraries.

VeriSmart verifies six contracts, times out on 12, runs out of
memory on one, and reports unknown for the rest of the contracts.

For Solidity contracts generated from DeCon, solc verifies five,
solc-verify verifies 17, and VeriSmart verifies 11. The performance
difference between the reference version and the DeCon-generated
version is potentially caused by the fact that DeCon generates stand-
alone contracts that implement all functionalities without external
libraries. On the other hand, DeCon implements contract states
(relations) as mappings from primary keys to tuples, which may
incur extra analysis complexity compared to the reference version.
The effects of inductive invariant inference. As indicated by
the “inv.?” column in Table 2, among the 30 properties we tested,
10 were not inductive and required inductive invariant inference.
DCV is able to discover inductive invariants that prove the target
properties for all contracts.

In summary, DCV is highly efficient in verifying contract-level
safety invariants, and can handle a wider range of smart contracts
compared to other tools. Baseline tools face challenges due to their
overly precise modeling of contract implementation and their in-
ability to discover inductive invariants. By taking advantage of
the high-level abstractions of the DeCon language, DCV achieves
significant speedup over the baseline tools.

Qualitative comparison with bounded model checking (BMC)
tools. BMC tools unroll loops up to a certain times and then verify
safety within that bound. For example, ESBMC-Solidity [42] veri-
fies individual transactions and can find vulnerabilities like integer
overflow in specific functions. However, it cannot verify invariants
across multiple transaction executions. EthBMC [23] also uses BMC
to verify smart contracts, but it only focuses on a specific set of vul-
nerabilities. Unlike these BMC tools, DCV can prove any property
that a user specifies, for infinite transaction traces.

Threats to validity. The validity of our findings is subject to
certain threats: (1) benchmark selection: while DeCon is flexible
enough to specify most contracts in the financial domains, it does
not support some features found in other domains, such as crypto-
graphic algorithms, or low-level constructs like checking interfaces
of another contract. A few contracts requiring these features are

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

excluded from the benchmarks. However, these features can usu-
ally be abstracted away in separate user-defined functions that are
verified — an avenue of future work; (2) property types: DCV only
supports safety invariants, which should hold across an infinite
sequence of transactions. Other forms of properties, e.g., arithmetic
safety, and constraints on states before and after a transaction, is
out of the scope of DCV, and thus is not included in the benchmark
properties; and (3) DeCon-Solidity compiler: the correctness of the
DeCon-Solidity compiler has not been formally verified. Potential
discrepancies between the DeCon specification and the generated
Solidity code could affect the evaluation results. Formally verifying
DeCon compiler is an important avenue for future work.

7 RELATED WORK

Smart contract verification. The challenge of verifying smart
contracts has been extensively addressed in the literature [26, 28,
32, 36, 38, 41, 46]. Several methods, including VeriSmart [41], Smar-
tACE [47], and VetSC [22], focus on safety verification, with some
capable of generating counterexamples as sequences of transactions
to disprove safety properties.

DCV distinguishes itself by employing a high-level executable

specification language, DeCon, as the verification target. While this
choice improves verification efficiency, DCV is limited to contracts
written in DeCon, in contrast to other tools that operate on existing
contracts in Solidity or Move.
Formal semantics of smart contracts. KEVM [20] and ACT [11]
introduces formal semantics for smart contracts, and can automati-
cally verify that a Solidity program (the compiled EVM bytecode)
implements its formal specification. ACT can also prove contract
invariants, but it relies on users to provide inductive invariants.

Formal semantics of EVM bytecode have also been formalized in
F* [25] and Isabelle/HOL [16]. Scilla [39] is a type-safe intermediate
language for smart contracts that also provides formal semantics.
They offer precise models of the smart contract behaviors, and sup-
port deductive verification via proof assistants. However, working
with a proof assistant requires non-trivial manual effort. On the
contrary, DCV provides fully automatic verification.
Vulnerability detection. Securify [44] encodes smart contract se-
mantic information into relational facts, and uses Datalog solver
to search for property compliance and violation patterns in these
facts. Oyente [31] uses symbolic execution to check generic secu-
rity vulnerabilities, including reentrancy attack, transaction order
dependency, etc. Maian [34] detects vulnerabilities by analyzing
transaction traces. Unlike the sound verification tools, which re-
quire some amount of formal specification from the users, these
work require no formal specification and can be directly applied to
any existing smart contracts without modification, offering a quick
and light-weight alternative to sound verification, although may
suffer from false positives or negatives.

Fuzzing and testing. Fuzzing and testing techniques [14, 21, 24,
27, 40] can complement deductive verification tools in several ways.
Firstly, they operate in a black-box mode, suitable for contracts
without source code access. Secondly, while they may not guar-
antee the absence of bugs, they offer better scalability, which can
be an advantage for complex properties that formal verification
tools struggle with. Lastly, they provide concrete counter-examples,

Verifying Declarative Smart Contracts

which offers valuable insights for debugging. By combining deduc-
tive verification with fuzzing and testing, developers can validate
smart contracts in a more comprehensive and robust way.
Run-time verification. Run-time verification has also been ex-
tensively explored in literature [18, 19, 30, 37]. DeCon [18], for
instance, provides a run-time verifier with provenance support for
visualizing counter-examples. Solythesis [30] proposes novel algo-
rithm to minimize run-time monitoring overhead. While run-time
verification is generally more scalable than static verification, it
incurs run-time overhead and increases transaction fees. Moreover,
the difficulties of updating smart contracts after their deployment
undermines the importance of validation during development.

8 CONCLUSION

We present DCV, an automatic safety verification tool for declara-
tive smart contracts written in the DeCon language. It leverages
the high-level abstraction of DeCon to generate succinct models of
the smart contracts, performs sound verification via mathematical
induction, and applies domain-specific adaptations of the Houdini
algorithm to infer inductive invariants. Evaluation shows that it is
highly efficient, verifying all 23 benchmark smart contracts, with
significant speedup over the baseline tools.

Our experience with DCV has also inspired interesting directions
for future research. First, although DCV can verify a wide range
of contracts in the financial domain, we find certain interesting
applications that require non-trivial extensions to the modeling
language, including contract inheritance, interaction between con-
tracts, and functions that lie outside relational logic. Second, we
aim to explore verification beyond safety invariants. Properties
expressed in temporal logic [36, 43] and high-level semantics [22]
represent promising areas. Last, the current approach involves
rewriting smart contracts in DeCon. An intriguing direction is to
infer the DeCon counterpart of an existing smart contract, thus
potentially reducing the manual effort required in the verification
process. By addressing these challenges and extensions, we aim to
push the boundaries of smart contract verification and enhance the
applicability of declarative programming languages in this domain.

9 ACKNOWLEDGEMENT

We thank anonymous reviewers for their insightful feedback. This
work is supported by the ShanghaiTech Startup Fund, NSERC Dis-
covery Grant, and NSF Grant CNS-2104882 and CNS-2107147.

REFERENCES

[1] King of the ether throne — post-mortem investigation.
kingoftheether.com/postmortem.html, 2016.

[2] Understanding the dao attack. https://www.coindesk.com/learn/2016/06/25/
understanding-the-dao-attack/, 2016.

[3] Not a fair game - fairness analysis of dice2win. https://blogs.360.net/post/
Fairness_Analysis_of Dice2win_EN.html, 2018.

[4] Cannot replicate smtchecker example output. https://github.com/ethereum/
solidity/issues/13073, 2022.

[5] Openzeppelin. https://github.com/OpenZeppelin/openzeppelin-contracts, 2022.

[6] Smtchecker and formal verification. https://docs.soliditylang.org/en/v0.8.17/
smtchecker.html, 2022.

[7] Solidity by example. https://docs.soliditylang.org/en/v0.8.17/solidity-by-example.
html, 2022.

[8] The solidity contract-oriented programming language.
ethereum/solidity, 2022.

[9] Verx smart contract verification benchmarks.
verx-benchmarks, 2022.

https://www.

https://github.com/

https://github.com/eth-sri/

[18

[19

[20

[21

[23

[24

[25]

[26]

[31

[32

®
&

(34

[35

[36]

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Z3. https://github.com/Z3Prover/z3, 2022.

Act. https://github.com/ethereum/act, 2023.

Erc-20 top tokens. https://etherscan.io/tokens, 2023.

Non-fungible tokens (nft). https://etherscan.io/tokens-nft, 2023.

Scribble. https://github.com/ConsenSys/Scribble, 2023.

Verismart commit on may 31, 2020. https://github.com/kupl/VeriSmart-public/
commit/858af814fbdab0c9d85b758e4c4575402ebf2bdf, 2023.

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards
verifying ethereum smart contract bytecode in isabelle/hol. In Proceedings of
the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs,
pages 66-77, 2018.

Franck Cassez, Joanne Fuller, and Horacio Mijail Antén Quiles. Deductive ver-
ification of smart contracts with dafny. In International Conference on Formal
Methods for Industrial Critical Systems, pages 50—66. Springer, 2022.

Haoxian Chen, Gerald Whitters, Mohammad Javad Amiri, Yuepeng Wang, and
Boon Thau Loo. Declarative smart contracts. In ESEC/FSE °22, 2022.

Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,
Hang Zhu, Gang Chen, Zheyuan He, et al. Soda: A generic online detection
framework for smart contracts. In NDSS, 2020.

Xiaohong Chen, Daejun Park, and Grigore Rosu. A language-independent ap-
proach to smart contract verification. In International Symposium on Leveraging
Applications of Formal Methods, pages 405-413. Springer, 2018.

Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. Smartian: Enhancing smart contract fuzzing with static and
dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 227-239. IEEE, 2021.

Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu, and
Mu Zhang. Towards automated safety vetting of smart contracts in decentralized
applications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 921-935, 2022.

Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC: A bounded
model checker for smart contracts. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2757-2774. USENIX Association, August 2020.

Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. Echidna:
effective, usable, and fast fuzzing for smart contracts. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
557-560, 2020.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework
for the security analysis of ethereum smart contracts. In International Conference
on Principles of Security and Trust, pages 243-269. Springer, 2018.

Akos Hajdu and Dejan Jovanovié. solc-verify: A modular verifier for solidity
smart contracts. In Working conference on verified software: theories, tools, and
experiments, pages 161-179. Springer, 2019.

Bo Jiang, Ye Liu, and Wing Kwong Chan. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 259-269. IEEE, 2018.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: analyzing
safety of smart contracts. In Ndss, pages 1-12, 2018.

Shuvendu K Lahiri and Shaz Qadeer. Complexity and algorithms for monomial
and clausal predicate abstraction. In International Conference on Automated
Deduction, pages 214-229. Springer, 2009.

Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime
validation. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 438-453, 2020.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages 254-269, 2016.

Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti E] Hyvéri-
nen, and Natasha Sharygina. Accurate smart contract verification through direct
modelling. In International Symposium on Leveraging Applications of Formal
Methods, pages 178-194. Springer, 2020.

Zeinab Nehai, Pierre-Yves Piriou, and Frederic Daumas. Model-checking of smart
contracts. In 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages
980-987. IEEE, 2018.

Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings of
the 34th Annual Computer Security Applications Conference, ACSAC 18, page
653-663, New York, NY, USA, 2018. Association for Computing Machinery.
Benedikt Notheisen, Magnus Godde, and Christof Weinhardt. Trading stocks on
blocks-engineering decentralized markets. In International Conference on Design
Science Research in Information System and Technology, pages 474-478. Springer,
2017.

Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE sympo-
sium on security and privacy (SP), pages 1661-1677. IEEE, 2020.

https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://blogs.360.net/post/Fairness_Analysis_of_Dice2win_EN.html
https://blogs.360.net/post/Fairness_Analysis_of_Dice2win_EN.html
https://github.com/ethereum/solidity/issues/13073
https://github.com/ethereum/solidity/issues/13073
https://github.com/OpenZeppelin/openzeppelin-contracts
https://docs.soliditylang.org/en/v0.8.17/smtchecker.html
https://docs.soliditylang.org/en/v0.8.17/smtchecker.html
https://docs.soliditylang.org/en/v0.8.17/solidity-by-example.html
https://docs.soliditylang.org/en/v0.8.17/solidity-by-example.html
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/eth-sri/verx-benchmarks
https://github.com/eth-sri/verx-benchmarks
https://github.com/Z3Prover/z3
https://github.com/ethereum/act
https://etherscan.io/tokens
https://etherscan.io/tokens-nft
https://github.com/ConsenSys/Scribble
https://github.com/kupl/VeriSmart-public/commit/858af814fbdab0c9d85b758e4c4575402ebf2bdf
https://github.com/kupl/VeriSmart-public/commit/858af814fbdab0c9d85b758e4c4575402ebf2bdf

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. Sereum: Pro-
tecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934, 2018.

Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. ethor:
Practical and provably sound static analysis of ethereum smart contracts. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 621-640, 2020.

Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov,
and Ken Chan Guan Hao. Safer smart contract programming with scilla. Pro-
ceedings of the ACM on Programming Languages, 3(OOPSLA):1-30, 2019.
Sunbeom So, Seongjoon Hong, and Hakjoo Oh. {SmarTest}: Effectively hunting
vulnerable transaction sequences in smart contracts through language {Model-
Guided} symbolic execution. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1361-1378, 2021.

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. Verismart:
A highly precise safety verifier for ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1678-1694. IEEE, 2020.

Kunjian Song, Nedas Matulevicius, Eddie B de Lima Filho, and Lucas C Cordeiro.
Esbmc-solidity: an smt-based model checker for solidity smart contracts. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:

Haoxian Chen, Lan Lu, Brendan Massey, Yuepeng Wang, and Boon Thau Loo

Companion Proceedings, pages 65-69, 2022.

[43] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig.

Smartpulse: automated checking of temporal properties in smart contracts. In
2021 IEEE Symposium on Security and Privacy (SP), pages 555-571. IEEE, 2021.
Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. Securify: Practical security analysis of smart con-
tracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 67-82, 2018.

Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and Fei-Yue Wang.
An overview of smart contract: architecture, applications, and future trends. In
2018 IEEE Intelligent Vehicles Symposium (IV), pages 108-113. IEEE, 2018.
Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born,
Immad Naseer, and Kostas Ferles. Formal verification of workflow policies for
smart contracts in azure blockchain. In Working Conference on Verified Software:
Theories, Tools, and Experiments, pages 87-106. Springer, 2019.

Scott Wesley, Maria Christakis, Jorge A Navas, Richard Trefler, Valentin Wiistholz,
and Arie Gurfinkel. Verifying solidity smart contracts via communication ab-
straction in smartace. In International Conference on Verification, Model Checking,
and Abstract Interpretation, pages 425-449. Springer, 2022.

	Abstract
	1 Introduction
	2 Illustrative Example
	2.1 A Voting Contract
	2.2 Smart contract written in DeCon language
	2.3 Translating DeCon Contract to State Transition System
	2.4 Proof by Induction

	3 The DeCon Language
	4 Program Transformation
	4.1 Declarative Smart Contracts as Transition Systems
	4.2 Transition Relation
	4.3 Encoding Rule Bodies
	4.4 Safety Invariant Generation

	5 Verification Method
	5.1 Proof by Induction
	5.2 Predicate Extraction
	5.3 Candidate Invariant Generation

	6 Evaluation
	7 Related work
	8 Conclusion
	9 Acknowledgement
	References

