BFTGym: An Interactive Playground for BFT Protocols

Haoyun Qin
University of Pennsylvania
ghy@seas.upenn.edu

Ryan Marcus
University of Pennsylvania
rcmarcus@seas.upenn.edu

ABSTRACT

Byzantine Fault Tolerant (BFT) protocols serve as a fundamental
yet intricate component of distributed data management systems
in untrustworthy environments. BFT protocols exhibit different
design principles and performance characteristics under varying
workloads and fault scenarios. The proliferation of BFT protocols
and their growing complexity have made it increasingly challeng-
ing to analyze the performance and possible application scenarios
of each protocol. This demonstration showcases BFTGym, an in-
teractive platform that allows audience members to (1) evaluate,
compare, and gather insights into the performance of various BFT
protocols under a wide range of conditions, and (2) prototype new
BFT protocols rapidly.

PVLDB Reference Format:

Haoyun Qin, Chenyuan Wu, Mohammad Javad Amiri, Ryan Marcus,
and Boon Thau Loo. BFTGym: An Interactive Playground for BFT
Protocols. PVLDB, 17(12): XXX-XXX, 2024.

doi: XX XX/XXX XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/JeffersonQin/BFTGym.

1 INTRODUCTION

Byzantine Fault Tolerant (BFT) protocols are crucial in distributed
data management systems running in untrustworthy environments.
At their core, these systems utilize State Machine Replication (SMR),
ensuring that non-faulty replicas execute client requests in the same
order despite the concurrent failure of at most f Byzantine replicas.

The existing landscape of BFT protocols demonstrates remark-
able complexity. These protocols [1, 3-7] vary in numerous aspects,
including their authentication techniques, phase structures, com-
munication patterns such as multicast or linear gathering, and view
change processes. This diversity in protocol design yields distinct
performance under varying workloads and fault scenarios. Using
Zyzzyva [6] as an example, when faced with non-responsive nodes,
it shifts from an optimistic and linear fast path to an expensive
slow path with one more phase. This performance degradation is
in sharp contrast to other protocols like PBFT [3], which not only

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Chenyuan Wu
University of Pennsylvania
wucy@seas.upenn.edu

Mohammad Javad Amiri
Stony Brook University
amiri@cs.stonybrook.edu

Boon Thau Loo
University of Pennsylvania
boonloo@seas.upenn.edu

would not degrade, but may experience better throughput due to
fewer messages and resource consumption.

To address the complexities of the BFT protocol landscape, we
have developed Bedrock [2], a comprehensive framework for BFT
protocol analysis and implementation. Bedrock stands out in its
ability to facilitate fair comparisons across a broad spectrum of
BFT protocols by minimizing disparities stemming from different
implementation factors, such as programming languages, software
libraries, and runtime environments. The framework encompasses
implementations of a wide range of existing BFT protocols, includ-
ing notable examples like [1, 3-7]. To enable rapid prototyping of
new protocols, Bedrock allows users to define protocol logic in a
Domain Specific Language (DSL). For unique requirements that
can not be expressed by the built-in DSL, Bedrock enables users to
integrate custom plugins into the framework.

Building upon Bedrock’s solid foundation, we introduce BFTGym,
a platform designed to further simplify and enhance the experimen-
tation of BFT protocols. While Bedrock provides the analytical
and implementation backbone, BFTGym focuses on minimizing
the experimental burden and maximizing interactivity and user
engagement. BFTGym features an intuitive and interactive user
interface, which accepts users’ specifications for client workloads,
system settings and fault scenarios. At the same time, the interface
provides users with instant feedback and real-time performance
visualizations. We believe such an interactive tool and seamless
experimentation experience are beneficial to the database systems
community, seeing how out-of-the-box experimentation tools and
platforms such as Hugging Face, Jupyter, and Gradio has fostered
the development in the field of Machine Learning.

We will demonstrate BFTGym and its capabilities through two
demonstration scenarios. The first one explores the functionality of
BFTGym as an interactive platform. Here, system developers who
want to choose a suitable consensus protocol for their system are
empowered to dynamically adjust workloads and inject faults, with
the platform providing immediate performance feedback. This in-
teractive aspect is further enhanced by a comparison panel, which
facilitates the analysis and comparison of different experimental
trials, helping to understand the complex interactions between var-
ious workloads, fault scenarios, and the behaviors of different BFT
protocols. The second one focuses on how BFTGym aids the devel-
opment of new BFT protocols. By leveraging Bedrock’s easy-to-use
DSL and its flexible system architecture, BFTGym offers consensus
experts a conducive environment for the rapid prototyping of new
BFT protocols. This aspect of BFTGym not only streamlines the
development process, but also provides a testing ground for the
practical viability and performance of new protocols.

https://doi.org/XX.XX/XXX.XX
https://github.com/JeffersonQin/BFTGym
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

-

Frontend
Web Demo

Controller

Instructions | BFT Worker (Validator / Client)
N~— { Core } [Plugin } { State }
Manager Manager
Data Collection

Figure 1: Overview of BFTGym.

P N
gradio
HTTP/REST

Through the demonstration of the two cases, we hope to expose
our audience to an accessible and engaging platform to navigate
the intricate landscape of BFT protocols, fostering a more hands-on
approach to the exploration and development of BFT systems.

2 SYSTEM OVERVIEW

In this section, we give an overview of BFTGym. As shown in Figure
1, the architecture of BFTGym consists of three interconnected
components: the Front-end demo page, the Controller, and the
Bedrock BFT Workers. Each of these components plays a critical
role in the seamless operation and user interaction with the system.

Front-end Web Demo Page. The front-end builds upon Gradio
and acts as the primary interface for users, offering an intuitive
gateway to BFTGym. It is meticulously designed to facilitate user
interaction, allowing for the adjustment of workload and fault
configurations at run-time, the initiation of experiments, and the
analysis and comparison of results. The detailed functionalities and
user interaction will be further elaborated in Section 3.1.

Controller. The Controller serves as the relay between the front
end and BFT workers. It orchestrates instance deployment, conveys
configuration changes, and transmits instructions from the front
end to the BFT workers, while also aggregating their runtime data.
This integral connectivity is achieved through HTTP/RESTful APIs,
ensuring a smooth and responsive communication flow.

Bedrock BFT Workers. Behind the scene of BFTGym are the
BFT Workers of Bedrock [2]. These workers are deployed on a con-
figurable cluster of distributed servers, facilitating studying how
hardware setup affects protocol performance. Each worker plays
the role of either a validator or a client, which comprises three
essential components: the Plugin Manager, the State Manager, and
the Core. The Plugin Manager is a versatile component, enabling
the system to operate in a modular plug-and-play fashion. Its exten-
sibility allows users to integrate custom plugins into the framework,
when they have new protocol design choices that can not be cap-
tured by the built-in DSL. The State Manager tracks the states and
transitions of each worker as defined in the Bedrock DSL for the
specific protocol. Its responsibilities include tracking messages and
calculating quorum conditions, ensuring the smooth phase exe-
cution and transitions of the protocol. The Core forms the kernel
of the worker’s functionality, encompassing the communication
channel between different validators and clients. It also diligently
tracks the execution of requests through various state variables
such as views and sequence numbers, and handles intricate details
like timers and watermarks. In summary, Bedrock BFT Workers
underpins the robust and flexible nature of BFTGym.

3 DEMONSTRACTION SCENARIOS

In this section, we will introduce two use cases of BFTGym: one for
interactive performance experimentation under different workloads

and fault scenarios (Section 3.1) and the other for fast prototyping
of new BFT protocols (Section 3.2).

3.1 Interactive Performance Experimentation

Figure 2 provides an overview of BETGym’s user interface. The tabs
and) on the top allow users to switch between the interactive
playground view and the result comparison view.

System Configurations [§. The BFTGym platform enables users
to configure various fault scenarios and workload conditions.
caters to the specification of faults with two options: (1) non-
responsive faults, where nodes fail to participate in the consensus
process, and (2) slowness attacks, which are particularly detrimen-
tal in leader-based BFT protocols. In such protocols, the delay of
a leader’s proposals might seriously affect system performance. A
compromised leader may manipulate proposal timings to degrade
system throughput and latency subtly enough to avoid triggering
a view change. These slowdowns may also stem from an overbur-
dened leader or a leader with poor hardware resources, albeit with
less severity. adjusts the typical key-value store workload
parameters, including contention level, dataset size, and sizes of
request and reply messages, alongside emulated computation com-
plexity (i.e., additional cycle consumption), workload mixture, and
read-only request proportion. Utilizing Cloudlab as the infrastruc-
ture, BFTGym enables painless deployment setup via by spec-
ifying Cloudlab credentials, experiment and cluster profile name,
which also allows users to instantiate and compare experiments
among different hardware setups in a single unified interface.

Control Panel (). The Control Panel serves as the operational
hub for BFTGym, where users label each trial with a name tag and
select the protocol to be executed in this trial. BFTGym supports six
built-in protocols: PBFT [3], CheapBFT [5], Zyzzyva [6], Prime [1],
HotStuff-2 [7], and SBFT [4]. Notably, this panel also accommodates
custom protocols implemented by users, which will be elaborated
in Section 3.2. The trial is initiated and terminated using the start
and stop buttons at the bottom.

Results Visualization [§. BFTGym provides real-time perfor-
mance visualization during active trials. Upon trial initiation,
illustrates system throughput with respect to time, while dis-
plays the latest committed sequence number across all replicas.
This feature is particularly insightful as it can disclose the presence
of non-responsive faults through the visual discrepancies in the se-
quence numbers. To visualize past trials, users can click on dropbox
to select a trial and use the button on the right to refresh.

Dynamic Configurations [J and Status Indicators [J. Users
have the flexibility to change the configurations of and
dynamically during trials. Changes are applied to the current trial
upon clicking the update button [&. Each BFT worker periodically
polls the controller for the latest configuration file, with §§ signaling
the successful application of new configurations for each worker.

Results Comparison View), [J. The comparison view of BFT-
Gym, encapsulated within tabs [} for session selection and f§ for
graphical output, is critical for the empirical analysis of BFT pro-
tocols. Users can select various sessions to compare using on
the upper side. The lower side of the view, annotated by [, depicts
the throughput of different trials in one graph, facilitating a direct

Trials to compare
Interactive Playgr

2024-0119 19:14:55 mS10 - pbft x 2024-0119 20:06:36 MSIO0 - zyzzyva

2024-0119 21:48:30 MS10 - cheapbft x .Il

2024-01-22 09:17:06 MSI0 - hotstuff x .- Fault

Step 1- Configurations

2024-0119 20:43:17 MS10 - prime

2024-0119 22:46:22 MS10 - sbft

BFTGym: An Interactive Playground for BFT Protocols

Results - Plots

o [— Non-responsive Nodes (IDs seperated by) 2024-0119 19:14:55 mS1O - pbft 8
Ny ’ 1
R
4 In-dark - enabled
I D ALNVAN | ~\»‘}:~ B e Lo e o
g TP [“r PT 1 ' True m
' 0 SR R A Lo
140 L 1, o
Slowness of proposal in milliseconds ;
Workload v i
o
100 V
flwovkload
Dataset size
Update
100
Units Status
Requestize ()
Controller: Updated Replica 0: Updated Replical: Updated Replica 2: Updated
1000000
Replica 3: Updated Client: Updated unt . ;
Reply ize () St s Qmint O
1000000 Cloudlab Configurations «
Compute Factor Step 2 - Control Panel m
o
T Name = ErEme
Workload Ratio for (0/0, 0/4, 4/0, 4/4) (Add up to), seperated by ")
1000 default pbft -
o
Figure 2: Screenshot of BFTGym’s user interface.
performance comparison across protocols. The plot §§ in Figure & Plot System Throughput
2 illustrates a comparative analysis for six built-in protocols con-
ducted on the Cloudlab m510 cluster under f = 1 and a standard 0/0 oo eyt
workload (0KB request and reply size), where we have this typical —gmo
performance ranking in descending order of Zyzzyva, Hotstuff-2, =
. -
CheapBFT, SBFT, Prime and PBFT under this fault-free scenario. 200 T’

Below, we further highlight two insightful performance compar-
isons we found using BFTGym. As the first example, Figure 3(a)
shows how non-responsive faults affect protocols’ performance.
The experiment is performed under a standard 0/0 workload on
a 4-machine Cloudlab m510 cluster for 30 minutes, with a non-
responsive fault started in the middle. We discover that Zyzzyva’s [6]
throughput dropped significantly due to its speculative execution
design, while CheapBFT [5] received a performance gain given less
number of messages to process. The second example compares the
performance robustness of protocols when the slowness fault takes
place. The system is configured with a 1/0 standard workload with
20-millisecond leader slowness. As shown in Figure 3(b), to our
surprise, the winner is not Prime [1], which is specifically designed
to handle slowness attacks by proactive leader replacement. Rather,
HotStuff-2 [7] renders the best performance, benefiting from its
linear responsive view-change and leader rotation, amortizing the
cost of one slow leader to all nodes across the cluster.

3.2 Fast Protocol Prototyping

The unique strength of BFTGym is to expedite the prototyping
process for new BFT protocols, by leveraging the versatility of

time elapsed (s) 1422
throughput 2073.33
trial zyzzyva

[100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400
time elapsed (s)

trial
O cheapbft O zyzzyva

(a) 0/0 standard workload with non-responsive fault launched at the middle

Z Plot System Throughput
400

<o JO WM*‘ AT -MWM F‘M jw ey o
5,000

£ s000 [Ty Wr*r r"r"f" vww*www.wﬂ.yn

E 3,000 ’

- 2,000 Y I —[[
1,000 time elapsed (s) 1452

throughput 2413.33

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1% trial cheapbft

time elapsed (s)

trial
O cheapbft O zyzzyva O pbft

sbft O hotstuff O prime

(b) 1/0 standard workload with 20 millisecond slowness fault

Figure 3: Two insightful performance comparisons found
using BFTGym.

Request . Prepare Commit -Decide . Reply

Client
node 0 M
node 1 \\\
node 2 \\. .
node 3 \E / E

TN AN
/N
[N/

p=a

protocol properties - role: nodes
general: state: idle
leader: rotate to:

request-target: primary - state: wait_commit_all
condition:

roles involved type: message

roles: message: prepare
- primary quorum: 1
- nodes response:
- client - target: primary
message: prepare
phase definitions - role: primary
phases: state: wait_prepare
- name: normal to:
states: - state: wait_commit_primary
- idle condition:

- wait_prepare
- wait_commit_primary

type: message
message: prepare

- wait_commit_all quorum: 2f + 1
- wait_decide response:
- executed - target: nodes

messages:
- name: request role: nodes

request-block: true state: wait_commit_all

name: reply to:

request-block: true - state: wait_decide

- name: prepare condition:
request-block: true type: message

message: commit

- commit message: commit
- decide quorum: 1
response:

- name: checkpoint - target: primary

messages: message: commit
- checkpoint - role: primary
state: wait_commit_primary
data flow to:
transitions: - state: executed
from: update: sequence
- role: client condition:
state: idle type: message
to: message: commit
- state: executed quorum: 2f + 1
update: sequence response:
condition: - target: nodes

type: message
message: reply
quorum: f + 1

message: decide
- target: client
message: reply
- role: nodes
state: wait_decide
to:

- state: executed
update: sequence
condition:

type: message
message: decide
quorum: 1
response:
- target: client
message: reply

Figure 4: HotStuff-2 communication pattern and its Bedrock
DSL. Corresponding code snippet and message patterns are
annotated using the same color. Fully annotated version avail-
able here: https://haoyunqin.com/files/hotstuff-2-dsl.yaml.

the Bedrock [2] DSL. We will exemplify this functionality through
Hotstuft-2 [7], a recently proposed BFT protocol, demonstrating
the streamlined workflow for protocol development.

Bedrock DSL enables protocol developers to express the specifica-
tions of a BFT protocol succinctly. As shown in Figure 4, the protocol
is defined in terms of general properties, roles, phases, and transi-
tions. By HotStuff-2’s design, the protocol is configured to rotate its
leader every a few sequence numbers. Roles involved here are the
primary, nodes (i.e. replicas), and the client. The phase config-
uration is expressed through states e.g. idle, wait_prepare, and
wait_commit_primary, along with messages e.g. request, reply,
prepare, and commit. The logical flow of the protocol is further de-
tailed in the transition section, delineating the conditions for state
changes. For instance, a node transits from idle to wait_commit_-
all upon receiving a prepare message, and will subsequently issue
a prepare message to the primary. All transitions in the code are
highlighted using the same color as in the protocol diagram.

The protocol prototype is then made available in BFTGym within
three steps: (1) place the protocol DSL code under the configuration
directory; (2) select custom through the protocol dropdown box
in [@; (3) enter the protocol name in the custom protocol field.
Once selected, the custom protocol is seamlessly integrated into the
experimental workflow, benefiting from the same functionalities as
other built-in protocols, such as initiating and stopping trials, and
engaging in comparative analysis with existing protocols.

4 CONCLUSION

In this paper, we presented BFTGym, an interactive playground for
BFT protocols. Our case studies have demonstrated that BFTGym
can effectively serve as an interactive platform tailored for system
developers, and a fast prototyping tool for consensus experts. We
believe BFTGym will enhance understanding and innovation in BFT
consensus within the distributed data management community.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback
and suggestions. This work is funded by NSF grants CNS-2104882.

REFERENCES

[1] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine
replication under attack. Transactions on Dependable and Secure Computing 8, 4
(2011), 564-577.

[2] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,
Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine Fault
Tolerance: A Unified Platform for BFT Protocols Analysis, Implementation, and
Experimentation. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 371-400.

[3] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173-186.

[4] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. In Int. Conf.
on Dependable Systems and Networks (DSN). IEEE/IFIP, 568-580.

[5] Ridiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schréder-Preikschat, and Klaus Stengel. 2012.
CheapBFT: resource-efficient byzantine fault tolerance. In European Conf. on
Computer Systems (EuroSys). ACM, 295-308.

[6] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. Operating Systems

Review (OSR) 41, 6 (2007), 45-58.

Dahlia Malkhi and Kartik Nayak. 2023. HotStuff-2: Optimal Two-Phase Responsive

BFT. Cryptology ePrint Archive (2023).

=

https://haoyunqin.com/files/hotstuff-2-dsl.yaml

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstraction Scenarios
	3.1 Interactive Performance Experimentation
	3.2 Fast Protocol Prototyping

	4 Conclusion
	Acknowledgments
	References

