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Abstract. Modifying turbine blade pitch, generator torque, and nacelle direction (yaw) are
conventional approaches for enhancing energy output and alleviating structural loads. However,
the efficacy of such methods is challenged by the lag in adjusting such settings after atmospheric
variations are detected. Without reliable short-term wind forecasting tools, current practice,
which mostly relies on data collected at or just behind turbines, can result in sub-optimal
performance. Data-assimilation strategies can achieve real-time wind forecasting capabilities
by correcting model-based predictions of the incoming wind using various field measurements.
In this paper, we revisit the development of a class of prior models for real-time estimation
via Kalman filtering algorithms that track atmospheric variations using ground-level pressure
sensors. This class of models is given by the stochastically forced linearized Navier-Stokes
equations around the three-dimensional waked velocity profile defined by a curled wake model.
The stochastic input to these models is devised using convex optimization to achieve statistical
consistency with high-fidelity large-eddy simulations. We demonstrate the ability of such models
in reproducing the second-order statistical signatures of the turbulent velocity field. In support
of assimilating ground-level pressure measurements with the predictions of said models, we also
highlight the significance of the wall-normal dimension in enhancing two-point correlations of
the pressure field between the ground and the computational domain.

1. Introduction
Adjustments to the turbine blade pitch, generator torque, and nacelle direction (yaw) are
standard methods for boosting energy production and reducing operation and maintenance
costs by mitigating the impact of atmospheric variability on wind plants. In practice, the
efficacy of such methods is challenged by the lag in adjusting turbine settings as the operator
or control system is informed of varying atmospheric conditions. Short-term wind forecasting
tools provide a solution to this issue by estimating the turbulent flow several diameters ahead of
wind turbines thereby offering sufficient time for the controller to adjust the turbine settings. To
this end, efforts have been made to employ data-assimilation strategies, e.g., Kalman filtering,
for estimating the direction and speed of wind based on SCADA, MET tower, or LiDAR
measurements (see, e.g., [1]). However, the applicability of such approaches can be hindered by
their reliance on computationally expensive models or costly sensing technologies. An alternative
approach, would be to rely on the sequential self-correcting property of the Kalman filter in
assimilating the predictions of reduced-order models of wind farm turbulence with measurements
from inexpensive air-pressure sensors that are distributed across a wind farm.



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 052065

IOP Publishing
doi:10.1088/1742-6596/2767/5/052065

2

Wind

Figure 1. Two-point pressure correlations can be computed between points in measurement
plane at or close to ground level (y = z1) and the model’s computational planes (y = z2 or z3).

To achieve real-time estimation, the prior model used by the Kalman filter must be of low
dimensional and dynamic complexity. A class of models that enables predictions of velocity
fluctuations are given by the stochastically forced linearized Navier-Stokes (NS) equations [2, 3]
around velocity profiles prescribed by engineering wake models, which typically cover a limited
wall-normal range, e.g., a 2D plane at hub height [4, 5]. Accurate estimation also requires a
reliable method for projecting field measurements from various locations throughout the wind
farm to the model’s computational domain. In our case, such measurements for Kalman filtering
are provided by ground-level air-pressure sensors that are distributed across the farm. One
solution to this problem is to utilize a data-driven inference technique such as linear stochastic
estimation (LSE) to project ground pressure to the model’s computational domain, which may
be separated from the ground (e.g., at hub-height). The efficacy of such projection-based
techniques, however, relies on strong two-point correlations of flow quantities between the
measurement and computational domains (Fig. 1). In this paper, we first demonstrate how
such two-point correlations are more pronounced for the pressure field relative to the velocity
field and how they grow stronger as wall-normal separation reduces. Motivated by this finding,
we then develop three-dimensional (3D) stochastic dynamical models of flow fluctuations that
extend beyond the hub height and account for the vertical range affected by the rotor blades.

The remainder of the paper is organized as follows. In Sec. 2, we define the correlation metric
used by our projection scheme and demonstrate the prevalence of two-point pressure correlations
over the wall-normal dimension. In Sec. 3, we formulate the problem of how to model the 3D
velocity fluctuation field around a static (mean) flow field provided by an engineering wake
model. In Sec. 4, we provide details of the curled wake model we use to capture the long-time-
averaged streamwise velocity around an operational wind turbine. In Sec. 5, we linearize the
NS equations around the curled wake profile and devise a colored-in-time stochastic input that
ensures statistical consistency between the linear model and a large-eddy simulation (LES). In
Sec. 6, we demonstrate how our model completes the statistical signature of wind farm turbulence
around an NREL-5MW wind turbine. Finally, we provide concluding remarks in Sec. 7.

2. Linear Stochastic Estimation
The existence of coherent motions in wall-bounded flows can result in strong two-point
correlations of flow quantities, e.g., pressure and velocity, between points that are near the
wall and points that are away from it [6]. Recently, near-wall pressure fluctuations have been
shown to maintain higher levels of correlation with wall-separated regions up to the logarithmic
region of the boundary layer [7]. This motivates the use of linear stochastic estimators for
projecting ground measurements to wall-separated regions (and vice versa) using normalized
variants of such two-point correlations [7]. Assuming a correlation between pressure within our
model’s computational domain (pm) and on the ground (pg), an estimate of the pressure in the
ground-separated computational plane can be provided through the linear transformation

pm(x, z) = Hmg(x, z) pg(x, z). (1)
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Here, Hmg is the normalized two-point correlation between two wall-parallel planes,

Hmg(x, z) :=
⟨pm(x, z) pg(x, z)⟩
⟨pg(x, z) pg(x, z)⟩

that is trained offline using a time-resolved pressure field resulting from high-fidelity simulations
or field measurements. In this definition, ⟨·⟩ is an expectation operator that is computed over
a sufficiently long time window to ensure statistical convergence in Hmg. Table 1 shows the
normalized two-point correlations computed from LES-generated velocity and pressure fields [8];
see [4, Sec. 5.1] for details of the LES. As evident from this table, correlations of pressure are
more pronounced than of velocity, which is in agreement with earlier studies of boundary layer
flows [7], and their strength grows as the wall-normal separation reduces. This motivates the
development of a 3D reduced-order model for velocity fluctuations that extends beyond hub
height and accounts for the vertical range affected by the rotor blades.

Table 1. Normalized two-point correlations of velocity and pressure between a point on the
ground that is 1 diameter in front of a turbine and points directly above it. Subscripts g, h, and
m denote the ground, hub-height, and target locations, respectively, and ⟨·⟩ is the expectation
operator computed over a long time window.

y/yh 1 0.86 0.71 0.57 0.43 0.29
⟨ugum⟩/⟨ugug⟩ 0.472 0.302 0.362 0.529 0.625 0.642
⟨pgpm⟩/⟨pgpg⟩ 0.776 0.880 0.986 0.994 0.995 0.998

3. Problem formulation
The static predictions of modern engineering wake models (e.g., [9]) constitute a basic flow profile
around which fluctuations of the velocity field evolve. Based on this, the total wind velocity u
impinging a wind farm can be decomposed into the sum of a static base flow ū and dynamic
velocity fluctuations v, i.e.,

u(x, t) = ū(x) + v(x, t).

In this work, we provide a reduced-order model for the dynamics of fluctuations v that can
augment the predictions of the lower fidelity model of ū such that the overall model is statistically
consistent with the result of high-fidelity simulations. To this end, we follow Bhatt et al. [4] in
adopting a modeling framework that is based on the stochastically forced linear time-invariant
(LTI) approximations of complex systems whose dynamics are represented by nonlinear partial
differential equations [10, 11, 12, 13]. In this approach, the fluctuation field v is assumed to
be a zero-mean Gaussian process whose evolution is given by the LTI model with state-space
representation

vt(x, t) = Av(x, t) + B d(x, t) (2)

where vt is derivative of v with respect to time t, x = (x, y, z) is the spatial coordinate, A is the
generator of the linear dynamics, and B is an input matrix that introduces Gaussian process d
into the dynamics.

In Sec. 5, we show how the stochastically forced linearized NS equations can be used as a
physics-based model for the evolution of fluctuations v. We also show how the spectral content of
d can be determined to match a partially available set of second-order velocity correlations. The
resulting dynamical model is of low complexity and thereby well suited for real-time estimation
using conventional Kalman filtering algorithms. Moreover, due to the established statistical
consistency with high-fidelity models, it also provides a solution to Kalman filtering in the
presence of colored-in-time process noise with unknown dynamics [14]. We next provide details
of recently developed engineering wake model for the base flow ū that accounts for the effects
yaw misalignment (e.g., wake deflection).
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4. Curled Wake Model
In this section, we summarize details of a 3D engineering wake model that we use as the base
velocity ū in developing model (2). This curled wake model accounts for the effect of counter-
rotating vortex pairs that lead to a spanwise asymmetry in the wake of active turbines, the
influence of the ground, and the deflection of the wake due to the misalignment of the turbine
rotors with respect to the wind direction; see [15] for additional details.

Consider a 3D domain around the turbine rotor with streamwise (x), wall-normal (y), and
spanwise (z) dimensions. We assume a 3D base velocity ū with a streamwise component
composed of a streamwise-invariant velocity profile U(y) and a spatially varying perturbation
u′(x), and wall-normal and spanwise components, which do not include streamwise varying
perturbations, such that ū = [U+u′, V, W ]T . Perturbations on the wall-normal and spanwise
components of ū are neglected due to their insignificant effects on wake deformation beyond the
spanwise effects already captured by the streamwise-invariant components (U , V , and W ) [15].
The invariant component of the streamwise velocity follows the power law U(y) = Uh(y/yh)

α,
where yh and Uh denote the hub height and the inlet velocity at hub height, and α is the shear
exponent, which is chosen to be 0.2 for neutrally stable on-shore atmospheric conditions. On the
other hand, the wall-normal and spanwise components, which are responsible for the distinctive
kidney-shaped wake profile created by this analytical model, are defined as

V =
N∑
i=1

ziΓi

2π
(
y2i + z2i

) (1− e−(y
2
i +z2i )/σ2

)
, W =

N∑
i=1

yiΓi

2π
(
y2i + z2i

) (1− e−(y
2
i +z2i )/σ2

)
to capture the combined influence of vortices shed by the yawed turbine rotor and a single
wake vortex that captures the effect of the turbine’s rotational motion. Here, N is the assumed
number of discrete shed vortices, σ is the size of the vortex core, and Γi is the strength of each
vortex, which is determined by its distance from the rotor center as

Γi = −16

π
Γ

r2i

ND2

√
1− (2ri/D)2

(3)

ensuring a total circulation strength of Γ = (π/8)ρDU∞CT sin(γ) cos2(γ), with D as the rotor
diameter, γ as the rotor yaw angle, ρ as the air density, and CT as the thrust coefficient for the
given velocity U∞. Ground effects can be incorporated into the model by mirroring the shed
vortices with respect to the ground. Figure 2 depicts how near-surface vorticity patterns differ
with and without ground effects. The other contributor to cross-plane velocities (V and W ) is
the wake rotation, which consists of a tangential velocity distribution within the rotor-projected
area and is modeled by a single vortex of circulation strength

Γwr = 2π
(
a − a2

)
U∞D/λ

where a is the induction factor based on the thrust coefficient CT and λ is the tip speed ratio.
Following Ref. [15], the downstream evolution of the streamwise perturbation is given by

U
∂u′

∂x
+ V

∂ (U + u′)

∂y
+ W

∂u′

∂z
= νeff ∆u′ (4)

where νeff is the effective viscosity and ∆ is the Laplacian. The effective viscosity νeff is
assumed to be the sum of turbulent viscosity given by νT := l2m |du/dy| and a stabilizing viscosity
νRe = (U∞D)/Re. Here, Re is the Reynolds number, lm = κ y/ (1 + κz/λ) is the mixing length
determined by the von Kármán constant κ = 0.4, and λ = 15 is the value of lm in the free
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Figure 2. (a) Cumulative effect of vortices shed from a rotor plane (black circle) with γ = 15◦

yaw. Vorticies with (b) and without (c) ground effects from the rectangular region in (a).

Figure 3. Streamwise evolution of the curled wake profile behind a turbine rotor with γ = 15◦

yaw. Black circles mark the rotor.

atmosphere [16, 17]. The solution u′ to Eq. (4) can be obtained via spatial discretization in all
three dimensions as the downwind march

u′[i+1,j,k] = u′[i,j,k] −
∆x

(U + u′)[i,j,k]

(
V[i,j,k]

(U + u′)[i,j+1,k] − (U + u′)[i,j−1,k]

∆y
+

W[i,j,k]

u′[i,j,k+1] − u′[i,j,k−1]

∆z
− νeff∆u′[i,j,k]

)
. (5)

At the cross-plane going through the rotor, we consider an initial perturbation velocity of −2aU∞
within the rotor-projected area that smooths out to zero (via a Gaussian smoothing scheme) at
the edges. This represents the initial velocity deficit as the wind hits the rotor and its dissipation
towards the lateral boundaries of the domain. This initial profile is then marched downstream
using Eq. 5 to yield the curled velocity profile shown in Fig. 3. We note that in obtaining this
profile, various numerical instabilities were identified and limited by enforcing a grid resolution
of ∆x ≤ 2νeffU/V

2 and ∆z ≥
√
(2νeff∆x)/U ; see [15] for additional details.

5. Stochastic Dynamical Modeling of Wake Turbulence
In pursuit of a prior 3D reduced-order model for Kalman filtering, we follow the stochastic
modeling framework of Zare et al. [12, 13] in capturing the dynamics of velocity fluctuations
using the linearized NS equations. This approach has been previously employed in developing
2D models of hub-height turbulence that reproduce statistical signatures of multi-turbine wind
farm flows in accordance with LES [4, 5]. We assume knowledge of a structured set of second-
order statistics of wind farm flow. This information, together with an initial prediction of the
wind velocity provided by an engineering wake model, such as the curled wake model described
in the previous section, can be used to complete the statistical signature of the flow using an
optimization-based method we summarize herein.
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5.1. Stochastically Forced Linearized Navier-Stokes Equations
The dynamics of velocity v and pressure p fluctuations around the base flow ū are governed by
the linearized NS and continuity equations

vt = − (∇ · ū)v − (∇ · v) ū − ∇p +
1

Re
∆v − K−1v + d

0 = ∇ · v
(6)

where v = [u, v, w ]T denotes the vector of velocity fluctuations, ∇ is the gradient operator,
Re = U∞D/ν is the Reynolds number defined in terms of the velocity U∞, rotor diameter D,
and kinematic viscosity ν, and d = [ du, dv, dw ]T is a zero-mean stationary stochastic input
that triggers a statistical response of the linearized dynamics; see, e.g., [18, 13] for details on
the formulation of the stochastically forced linearized equations. In obtaining these equations,
length, velocity, time, and pressure have been non-dimensionalized by D, U∞, D/U∞, and ρU2

∞.
Equations (6) use a volume penalization technique to account for the effect of solid

obstructions of the flow caused by turbine structures, e.g., turbine rotors, nacelles, and towers.
This technique avoids the necessity for resolving the grid and implementing no-slide/no-
penetration boundary conditions in complex geometries by reducing the velocity to zero in
regions where K−1 → ∞ and having no effect on the velocity elsewhere as K−1 → 0 [19]. In
this approach, the function K(x) plays the role of a permeability function that captures the 3D
turbine structure. To this end, we use the smooth 3D filter function

K−1(x) =
mK

π3
[arctan (aK(x− x1)) − arctan (aK(x− x2))]× (7)

[arctan (bK(y − y1)) − arctan (bK(y − y2))] [arctan (cK(z − z1)) − arctan (cK(z − z2))]

where mK determines the magnitude of the function, aK , bK , and cK determine the slope of
the function in various directions, and constants xi, yi, and zi determine the spatial region over
which the turbine structure affects the velocity field, with subscripts 1 and 2 corresponding
to the start and end of this region, respectively. When accounting for the presence of yawed
turbines, the coordinates and spatial limits x1,2, y1,2, and z1,2 are rotated by the yaw angle.
In practice, moderate values are assigned to the slope parameters as larger values can cause
differentiability issues. On the other hand, our numerical experiments show that small values of
mk can result in spurious spikes in turbulence levels before turbine structures, while very large
values can eliminate the velocity field. It is therefore important to tune this parameter to a
sufficiently large value in order to ensure a satisfactory drop in the velocity field in regions that
are influenced by the turbine structure. The colorplots in Fig. 4 show various views of a 3D
resistance function K−1(x) used to generate the results in the next section.

A standard conversion for eliminating pressure [20] brings the linearized Eqs. (6) into the
evolution form of Eq. (2) where A is a 3× 3 operator valued matrix with blocks Ai,j defined as

A11 = ∆−1
[
(−Uxyy − Uxzz −K−1

yy −K−1
zz − (Uyy + Uzz +K−1

x )∂x − (2Uxy + Vyy + Vzz + 2K−1
y )∂y

− (2Uxz +Wyy +Wzz + 2K−1
z )∂z − (Ux +K−1)∂xx − 2Uy∂xy − (Ux + 2Vy +K−1)∂yy

− 2Uz∂xz − 2(Vz +Wy)∂yz − (Ux + 2Wz +K−1)∂zz − (U∂x + V ∂y∆+W∂z)∆ + (1/Re)∆2
]

A12 = ∆−1
[
−Uyyy − Uyzz −K−1

xy + (K−1
y + Uxy + Vyy +Wyz)∂x − 2Uyy∂y − 2Uyz∂z + Uy∂xx

+2Vy∂xy + 2Wy∂xz − Uy(∂yy − ∂zz)]

A13 = ∆−1
[
−Uyyz − Uzzz +K−1

xz + (Uxz + Vyz +Wzz +K−1
z )∂x − 2Uyz∂y − 2Uzz∂z + Uz∂xx

+2Vz∂xy + 2Wz∂xz − Uz(∂yy − ∂zz)]

A21 = ∆−1
[
Uxxy +K−1

xy + 2Uxy∂x + (Uxx +K−1
x )∂y + 2Ux∂xy

]
A22 = ∆−1

[
Uxyy − Vyzz +Wyyz −K−1

xx −K−1
zz + (−Uxx + Uyy − Uzz − 2K−1

x )∂x + (Uxy − Vzz +Wyz

− K−1
y )∂y + (−2Vyz +Wyy −Wzz − 2K−1

z )∂z + (−2Ux − Vy −K−1)∂xx − 2Uz∂xz − 2Vz∂yz

+(−Vy −K−1)∂yy + (−Vy − 2Wz −K−1)∂zz − U∂x∆− V ∂y∆−W∂z∆+ (1/Re)∆2
]
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(a) (b)

z

x

y

z
(c)

y

x

Figure 4. (a) Top; (b) front; and (c) side views of the resistance function K−1(x) (Eq. (7)) with
mK = 106, aK = bK = cK = 1, x1 = −0.193, x2 = 0.193, y1 = −0.02, y2 = 0.02, z1 = −0.019,
z2 = 0.019 rotated to correspond to a turbine with γ = 15◦ yaw. The top view is taken from
hub height (y = 0), the front view is taken from the rotor plane (x = 0), and the side view is
taken from z = 0. Black lines mark the turbine rotor.

A23 = ∆−1
[
Uxyz − Vzzz +Wyzz +K−1

yz + 2Uyz∂x + (Uxz + V yz +Wzz)∂y + (−2Vzz + 2Wyz

+K−1
z )∂z − Vz∂xx + 2Uz∂xy + Vz∂yy + 2Wz∂yz − Vz∂zz

]
A31 = ∆−1

[
Uxxz +K−1

xz + 2Uxz∂x + (Uxx +K−1
x )∂z + 2Ux∂xz

]
A32 = ∆−1

[
Uxyz + Vyyz −Wyyy +K−1

yz + 2Uyz∂x + (2Vyz − 2Wyy)∂y + (Uxy + Vyy +Wyz +K−1
y )∂z

−Wy∂xx + 2Uy∂xz −Wy∂yy + 2Vy∂yz +Wy∂zz]

A33 = ∆−1
[
Uxzz + Vyzz −Wyyz −K−1

xx −K−1
yy + (−Uxx − Uyy + Uzz − 2K−1

x )∂x + (−Vyy + Vzz

− 2Wyz − 2K−1
y )∂y + (Uxz + Vyz −Wyy −K−1

z )∂z − (2Ux +Wz +K−1)∂xx − 2Uy∂xy

− (2Vy +Wz +K−1)∂yy + 2Wy∂yz − (Wz +K−1)∂zz − (U∂x + V ∂y +W∂z)∆ + (1/Re)∆2
]

We use a finite difference method with extrapolated boundary conditions in the x-direction and
Dirichlet and Neumann boundary conditions in the y and z directions (see [4, Appendix A] for
details) to discretize the differential operators in the evolution model (2) and obtain

v̇(t) = Av(t) + B d(t) (8)

where now v(t), d(t), A, and B are real-valued vectors and matrices of appropriate sizes. As
mentioned earlier, the stochastic input d provides a degree of freedom for shaping the statistics of
the velocity field v. Under steady atmospheric conditions, the linear dynamic system (8) is stable
(A is Hurwitz). This means that if the pair (A,B) is controllable, persistent stochastic excitation
of the linear dynamics yields the steady-state covariance matrix, i.e., V := limt→∞E[v(t)v∗(t)],
that solves the Lyapunov-like equation

AV + VA∗ = −BH∗ − H B∗. (9)

This equation relates the second-order statistics of v to the spectral content of colored-in-time
stochastic input d provided by H := limt→∞E[v(t)d∗(t)] + (1/2)BΩ. The entries of matrix V
in Eq. (9) represent two-point correlations of the velocity field at various spatial locations with
diagonal entries denoting one-point correlations or the variance of v and trace(V) providing the
total kinetic energy of the turbulent flow. In the special case of white state-independent input
d, H = (1/2)BΩ reducing Eq. (9) to the standard Lyapunov equation [12, Appendix B].

While white-in-time forcing is useful for analyzing the receptivity of the flow to external
disturbances [18, 21], it is insufficient to account for statistical signatures computed from
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experimental measurements or the result of numerical simulation [12, 5]. To address this issue, we
employ an optimization-based framework for identifying the spectral content of colored-in-time
forcing that reproduces and completes partially available second-order statistics of atmospheric
turbulence in accordance with high-fidelity LES.

5.2. Identifying Colored-in-time Stochastic Input Via Covariance Completion
Given the dynamic generator A resulting from linearization of the NS equations and a set
of available partial second-order statistics for the velocity field (i.e., velocity variances or
intensities), we seek input matrix B and colored-in-time input d that induce a statistical
response from Eqs. (8) that reproduces the partially known statistical signatures of atmospheric
turbulence around a wind turbine. To this end, we solve the covariance completion problem

minimize
V,Z

− log det(V) + β ||Z||⋆

subject to AV + VA∗ + Z = 0

Vi,j = G, ∀{i, j} ∈ I

(10)

which minimizes a composite objective subject to two linear constraints. The first corresponds
to the Lyapunov-like equation (Eq. 9) and the second constraint seeks to match known velocity
variances from across the farm generated by a high-fidelity model. Matrices A and G are problem
data, and Hermitian matrices V and Z are optimization variables. The matrix G represents the
partially available velocity statistics that correspond to entries of V with indices from set I. The
objective function provides a trade-off between the solution to the maximum-entropy problem
and the complexity of the forcing model, which we quantify as the number of degrees-of-freedom
in the state-space of model (8) that are directly impacted by colored-in-time forcing d. One
way to penalize the latter is to regulate the number of independent columns of input matrix
B, which can be bounded by the rank of matrix Z := −BH∗ −HB∗. As the rank function is
non-convex, problem (10) aims to penalize its convex proxy, i.e., the nuclear norm or sum of
singular values of matrix Z, weighted by β > 0 against the logarithmic barrier function, which
also ensures positive definiteness of the covariance matrix V.

We solve convex optimization (10) using the customized algorithms developed in Ref. [11].
If the solution Z is sign-indefinite, the additive noise d that generates the given steady-state
statistics corresponding to set I is colored-in-time. The coloring filter can be absorbed in the LTI
dynamics (8) in a standard manner yielding the dynamically modified state-space representation

v̇(t) = (A−BKf )v(t) + Bw(t). (11)

Here, w is white noise and matrix Kf is a parameter of the coloring filter with construction
offered in [11, Sec. II.B].

6. Numerical Experiments
We provide a 3D stochastic dynamical model for the flow around a NREL-5MW reference
wind turbine that is yawed γ = 15◦ against the wind. Following the LES that generated the
training dataset [8], we consider the Reynolds number of the impinging flow to be Re = 108;
see [4, Sec. 5.1] for LES details. When length-scales are normalized by the rotor diameter,
the computational domain is given by x ∈ [−2, 4], y ∈ [−0.6, 0.6], and z ∈ [−2, 2], with the
turbine nacelle located at the origin (yh = 0). We use a uniform grid with ∆x=∆z=0.5 and
∆y=0.1, and a second-order central difference scheme to discretize the differential operators in
the linearized equations. Grid convergence is ensured by doubling the number of discretization
points. The curled wake profile we use as the base state for linearization considers CT = 0.7871,
a = 1/3, and λ = 7.6 corresponding to the maximum power from the NREL-5MW turbine. The
LES-generated statistics fed into the optimization framework (Sec. 5.2) contain variances ⟨uu⟩,
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Figure 5. Top (a-d), cross-plane (e-h), and side (i-l) views of ⟨uu⟩ (a,b,e,f,i,l) and ⟨uw⟩
(c,d,g,h,k,l) resulting from LES (left column) and our stochastic model (right column) for a
turbine yawed at 15◦. The wind direction is from left to right. Top views taken from hub
height, front views taken 3D downwind of the turbine, and side views taken from z = 0. Red
dots and black lines mark the training dataset and the rotor, respectively.

⟨vv⟩, and ⟨ww⟩ alongside ⟨uv⟩, ⟨uw⟩, and ⟨vw⟩. In the pursuit of a practical training scheme, we
take these statistics from the inflow region upstream of the turbine and the space immediately
behind its rotor throughout the domain (see red dots in Fig. 5).

Figure 5 compares the LES-generated streamwise variance ⟨uu⟩ and shear stress ⟨uw⟩ to the
results of our stochastic model. The dominant features of the flow, such as high and low intensity
regions, are well-captured, albeit there are spurious regions where the energy is underpredicted
(Figs. 5(f) and 5(j)). The effects of tip vortices and the nacelle are also observed from the side
views (Figs. 5(j) and 5(l)). While our model partly captures these effects, it struggles at the edges
of the computational domain due to the lack of training data. We note, however, that in future
work, such deficiencies may be overcome if the wall-normal extent of our computational grid is
expanded. Other features, such as the wake asymmetry resulting from the turbine’s rotation are
also evident from the top and front views. Our results demonstrate the ability of our stochastic
dynamical models in reproducing much of the statistical signature of the atmospheric turbulence
surrounding this yawed turbine. The quality of completion in regions where LES data is not
made available to the optimization framework is attributed to the Lyapunov-like constraint in
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the covariance completion problem which allows the model to stay authentic to the flow physics
(as captured by the linearized dynamics) while imposing consistency between the data and the
linearized NS dynamics.

7. Conclusions
We extend prior developments on stochastic linear dynamical modeling of wind farm flows to
3D models that are well-suited for flow estimation based on ground pressure measurements.
Such models are particularly useful in estimating wind farm flows that exhibit persistently
strong correlations between the pressure on the ground and at hub height. Our models are
based on the stochastically forced linearized NS equations around a curled wake profile that
captures the effects of yaw misalignment on the downwind evolution of the wake. We employ a
statistical modeling framework that enables the parameterization of colored-in-time process noise
that ensures statistical consistency of our LTI models of velocity fluctuations with high-fidelity
LES in matching normal and shear stresses of the wind. Our models are convenient for real-
time data assimilation using conventional Kalman filtering algorithms due to their (i) physics-
based nature, (ii) linearity, (iii) low computational complexity, and (iv) statistical consistency
in matching important flow quantities. We particularly anticipate a desirable level of robustness
to atmospheric variability due to their physics-based nature. Our ongoing efforts involve the
identification of a minimal set of velocity correlations for training as well as the implementation
of a Kalman-based wind forecasting tool built around such 3D models.
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[9] Bastankhah M and Porté-Agel F 2016 J. Fluid Mech. 806 506–541

[10] Zare A, Jovanovic M R and Georgiou T T 2014 Completion of partially known turbulent flow statistics
Proceedings of the 2014 American Control Conference pp 1680–1685

[11] Zare A, Chen Y, Jovanovic M R and Georgiou T T 2017 IEEE Trans. Automat. Control 62 1368–1383
[12] Zare A, Jovanovic M R and Georgiou T T 2017 J. Fluid Mech. 812 636–680
[13] Zare A, Georgiou T T and Jovanovic M R 2020 Annu. Rev. Control Robot. Auton. Syst. 3 195–219
[14] Zare A 2021 Data-enhanced kalman filtering of colored process noise Proceedings of the 60th IEEE Conference

on Decision and Control pp 6603–6607
[15] Mart́ınez-Tossas L A, Annoni J, Fleming P A and Churchfield M J 2019 Wind Energy Science 4 127–138
[16] Blackadar A 1962 J. Geophys. Res. 67 3095–3102
[17] Sun J 2011 JAMC 50 2030–2041
[18] Jovanovic M R and Bamieh B 2005 J. Fluid Mech. 534 145–183
[19] Khadra K, Angot P and S Parneix J C 2000 Int J Numer Methods Fluids 34 651–684
[20] Schmid P J and Henningson D S 2001 Stability and Transition in Shear Flows (New York: Springer-Verlag)
[21] Ran W, Zare A, Hack M J P and Jovanovic M R 2019 Phys. Rev. Fluids 4 093901 (28 pages)


