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Abstract— This paper presents a novel frame-
work for characterizing dissipativity of uncer-
tain dynamical systems subject to algebraic con-
straints. The main results provide sufficient con-
ditions for dissipativity when uncertainties are
characterized by integral quadratic constraints.
For polynomial or linear dynamics, these condi-
tions can be efficiently verified through sum-of-
squares or semidefinite programming. The prac-
tical impact of this work is illustrated through
a case study that examines performance of the
IEEE 39-bus power network with uncertainties
used to model a set of potential line failures.

I. INTRODUCTION

Dissipativity theory [1] relates input-output prop-
erties of dynamical systems to the dissipation of
so-called storage functions over trajectories [2].
Storage functions generalize Lyapunov functions
for closed systems to open systems with inputs and
outputs: rather than decreasing along trajectories,
the time derivative of the storage function along
trajectories is upper bounded by a supply rate that
describes a relation of the system’s inputs and
outputs. Appropriate choices of supply rate lead to
special cases of dissipativity, such as passivity, sta-
bility and L2 gain bounds. Moreover, a dissipativity
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framework allows for incorporation of uncertainties
described by integral quadratic constraints [3], [4].

Classical dissipativity applies to system dynam-
ics described by ordinary differential equations
(ODEs). Here, we develop a dissipativity frame-
work that applies to uncertain systems described
by differential-algebraic equations (DAEs). This
framework unifies the study of key system proper-
ties, ranging from stability to performance, while
accommodating classes of model uncertainty de-
scribed by integral quadratic constraints and obviat-
ing the need to eliminate algebraic equations. DAEs
can model dynamical systems with constraints and
arise in chemical, electrical, and mechanical engi-
neering applications [5], e.g., electric circuit models
constrained to conserve charge, fluid flow modeled
by the Navier-Stokes equations subject to an in-
compressibility constraints, or mechanical system
motion subject to holonomic constraints [6].

Many classical results have been extended from
the ODE to the DAE setting, including control-
lability and observability [7], and controller [8]
and observer [9] design for linear systems. Specific
subclasses of dissipativity that have been examined
for DAEs include positive realness of linear DAE
systems [10] and Lyapunov stability and passivity
of nonlinear DAE systems [11]. However, incor-
poration of uncertainties into dissipativity analysis
of DAE systems is less prevalent; one exception is
[12] which analyzes stability of linear DAE systems
subject to polytopic uncertainties. Despite the vast
literature on disspativity and on DAEs, a general
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dissipativity framework for uncertain and nonlinear
differential-algebraic systems is lacking.

In this manuscript, we extend the notion of
dissipativity to linear and nonlinear DAE systems
with uncertainties and provide sufficient conditions
for dissipativity when the uncertainty is described
by quadratic constraints. For linear or polynomial
dynamics, we show that these conditions can be
verified numerically with linear matrix inequalities
or Sum-of-Squares programming, respectively.

This work is motivated by DAE models with
algebraic constraints arising from network intercon-
nections, e.g., dynamics of multibody systems with
interconnection constraints [13], power networks
with algebraic power flow constraints [14], and
implicit neural networks with outputs defined as the
solutions to fixed-point equations [15]. When the
algebraic constraint is invertible, the DAE system
may be equivalently represented as a standard ODE,
e.g., power network DAEs can be converted to
an ODE through a Kron reduction procedure [16].
However, this suffers a loss of the network structure
that is captured in the algebraic constraint; this is
illustrated in a case study of a power network with
with uncertain line failure presented in Section V.

The remainder of the paper is structured as
follows. In Section II, a DAE model and an IQC
characterization of uncertainties are presented; the
notion of dissipativity for this model is formalized.
Section III derives a sufficient condition for dissipa-
tivity of an uncertain DAE system. This condition is
shown to be confirmable numerically in Section III-
B for polynomial dynamics and Section IV for the
linear setting. A power network with an uncertain
line failure is analyzed as a case study in Section V.

II. PROBLEM SET-UP: UNCERTAIN
DIFFERENTIAL-ALGEBRAIC SYSTEMS

We consider a system with time-invariant state
dynamics, subject to algebraic constraints:

ẋ(t) = f(x(t),v(t),w(t), ξ(t)) (1a)
0 = g(x(t),v(t),w(t), ξ(t)) (1b)

y(t) = h(x(t),v(t)), (1c)

where x(t) ∈ Rn is the state, v(t) ∈ Rm is the
algebraic variable, w(t) ∈ Rp is an exogenous

disturbance, and y(t) ∈ Rq is an output. ξ(t) ∈
Rℓ captures additional dynamics, e.g., uncertainties,
and is modeled as the output of a bounded, causal
system ∆ : Ln2 × Lm2 → Lℓ2:

ξ = ∆(x,v) . (2)

Bold letters denote signals, x : [0, τ ] → Rn,
and non-bold letters denote points, x ∈ Rn. We
assume an equilibrium point exists and is shifted to
x = 0; i.e., f(0, v0, 0, 0) = 0, g(0, v0, 0, 0) = 0 for
some v0. For ξ = 0, (1) is a differential-algebraic
equation (DAE) in semi-explicit form [6], [5].

Assumption 1: The initial conditions of (1) are
consistent, e.g., they satisfy the constraints (1b).
Inputs to the system are sufficiently smooth1. Given
consistent initial conditions and sufficiently smooth
inputs, a unique solution x,v, ξ,y, exists for the
system (1)-(2) over an interval of time t ∈ [0, τ ].

Methods for determining admissible initial con-
ditions can be found in, e.g., [17], and existence and
uniqueness of solutions can be confirmed through,
e.g., geometric approaches [18], [19], theory of
differential equations on manifolds [20], or compu-
tational methods [21]. Further details on the solv-
ability of DAEs are beyond the scope of this work;
we refer the reader to [6], [5] and the references
therein for a more comprehensive study.

A. Dissipativity of DAE Systems
We begin by formalizing the notion of dissipa-

tivity for uncertain DAE systems.
Definition 1: Under Assumption 1, the DAE sys-

tem (1)-(2) is dissipative with respect to the supply
rate s(·, ·) if there exists a positive definite function
V (·), called a storage function, such that V (0) = 0
and

V (x(T ))−V (x(0)) ≤
∫ T

0

s(w(t), h(x(t),v(t)))dt

(3)
for all T ∈ [0, τ ].

Note that x,w,v, and ξ in (3) satisfy

0 = g(x(t),v(t),w(t), ξ(t)) (4)

1When ∂g
∂z

is nonsingular, the DAE is of index 1 [6]; for
higher index systems, the solution of (1) will be dependent on
derivatives of the input w [5].
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Fig. 1. Block diagram representation of uncertain system
∆ and virtual filter Ψ. Ψ is utilized to provide a more general
input-output characterization of ∆ via the integral quadratic
constraint

∫∞
0 z(t)⊤Mz(t)dt ≤ 0 for some M = M⊤,

where z is the output of Ψ.

due to constraint (1b) of the system dynamics.
Supply rates of interest include:

• s(w, y) = w⊤y corresponding to passivity,
• s(w, y) = w⊤w − γ2y⊤y corresponding to an
L2 gain bound of γ,

• s(w, y) ≡ 0 corresponding to stability of the
origin; in this case the storage function V (·)
serves as a Lyapunov function.

This definition is difficult to verify in the pres-
ence of unknown ∆. In what follows we derive
sufficient conditions for dissipavity when ∆ is un-
known, but satisfies known quadratic constraints.

B. Integral Quadratic Constraints

We characterize ∆ in (2) through input-output
properties with the framework of integral quadratic
constraints (IQCs) [4], [22]. As depicted in Fig-
ure 1, the input signals x,v and output signal ξ
of ∆ are passed through a “virtual filter” Ψ defined
by the stable linear dynamics:

ψ̇(t) = AΨψ(t) +Bψ

[
x(t)
v(t)
ξ(t)

]
, ψ(0) = 0

z(t) = CΨψ(t) +DΨ

[
x(t)
v(t)
ξ(t)

]
.

(5)

For M =M⊤, ∆ satisfies the hard IQC defined by
(Ψ,M) if ∫ T

0

z(t)TMz(t)dt ≤ 0 (6)

for all T ≥ 0. This is clearly satisfied if

z(t)⊤Mz(t) ≤ 0, ∀t ≥ 0, (7)

and we say ∆ satisfies the pointwise quadratic
constraint defined by (Ψ,M). In the simple case

that Ψ is the identity operator, (6) reduces to∫ T

0

[
x(t)
v(t)
ξ(t)

]⊤

M

[
x(t)
v(t)
ξ(t)

]
dt ≤ 0. (8)

III. CONDITIONS FOR DISSIPATIVITY OF
DIFFERENTIAL-ALGEBRAIC SYSTEMS

This section presents a sufficient condition for
dissipativity of DAE systems with uncertainties
described by IQCs and shows this can be confirmed
numerically for polynomial DAEs.

Theorem 1: Consider the DAE system (1)-(2)
and assume ∆ satisfies the IQC defined by (Ψ,M).
This system is dissipative w.r.t. the supply rate s(·, ·)
if there exist τ, λ ≥ 0, a matrix P∆ ⪰ 0, and a
positive definite V (·) satisfying V (0) = 0 and

▽V (x)⊤f(x, v, w, ξ) + ψ⊤P∆

(
A⊤
ψψ+Bψ

[
x
v
ξ

] )
+
(
A⊤
ψψ+Bψ

[
x
v
ξ

] )⊤
P∆ψ

≤ s
(
w, h(x, v)

)
+ λg(x, v, w, ξ)⊤g(x, v, w, ξ) +

τ
(
Cψψ +Dψ

[
x
v
ξ

])⊤
M

(
Cψψ +Dψ

[
x
v
ξ

])
,

(9)
for all ψ, x, v, ξ, w.

Proof of Theorem 1: Integrating (9) from t = 0
to T along trajectories of (1) and (5) and using the
filter initial condition ψ(0) = 0 gives

V (x(T )) +ψ(T )TP∆ψ(t)− V (x(0))

≤
∫ T

0

s
(
w(t), h

(
x(t),v(t)

))
dt +

λ

∫ T

0

(⋆)⊤g(x(t),v(t),w(t), ξ(t))dt︸ ︷︷ ︸
(I)

+

τ

∫ T

0

(⋆)⊤M
(
Cψψ(t) +Dψ

[
x(t)
v(t)
ξ(t)

])
dt,︸ ︷︷ ︸

(II)

(10)

where the terms denoted by (⋆) can each be inferred
by symmetry. By the classical s-procedure, the
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existence of τ, λ ≥ 0 satisfying (10) ensures that
nonpositivity of terms (I) and (II) imply

V (x(T ))− V (x(0)) +ψ(T )TP∆ψ(T ) ≤∫ T

0

s
(
w(t), h

(
x(t),v(t)

))
dt.

(11)

Nonposivity of (I) and (II) follow from (4) and
that ∆ satisfies the IQC defined by (Ψ,M), respec-
tively. (3) follows from (11) since P∆ ⪰ 0. ■

Remark 1: We can view

Ṽ (x, ψ) := V (x) + ψ⊤P∆ψ (12)

as a storage function of the augmented system
of DAE (1) and filter (5). P∆ = 0 amounts to
searching for a storage function of DAE (1) alone;
Searching for a combined storage function (nonzero
P∆) introduces another term to the left hand side
of (9) whose negativity may help this inequality
hold. Without uncertainty or with uncertainty char-
acterized by a pointwise constraint, we may assume
P∆ = 0.

A. Dissipativity of Systems without Uncertainty
Theorem 1 simplifies in the case of no uncer-

tainty, as stated in the following corollary.
Corollary 1: The DAE system (1), with ξ = 0, is

dissipative w.r.t. the storage function s(·, ·) if there
exists λ ≥ 0 and a positive definite V (·) such that
V (0) = 0 and

▽V (x)⊤f(x, v, w, 0) ≤
s
(
w, h(x, v)

)
+ λg(x, v, w, 0)⊤g(x, v, w, 0)

(13)

for all points x, v, w.

B. Numerical Solutions for Polynomial
Dynamics

When the DAE system is described by poly-
nomials, the storage function (12) can be found
numerically with a sum-of-squares approach.

A polynomial p is sum-of-squares (SOS) if
there exist polynomials p1, . . . , pn such that p =∑n
i=1 p

2
i . A polynomial being SOS implies it is

nonnegative. Let Σ[x] be the set of SOS poly-
nomials in x, and Σ[(x, v, w, ξ, ψ)] be the set of
SOS polynomials in x, v, w, ξ and ψ. Then, for
polynomial f, g, and h and a polynomial supply rate
s, we can verify dissipativity through Theorem 1

by finding nonnegative scalars τ and λ, a positive
definite matrix P∆, and a V ∈ Σ[x] such that
V (x)− ϵx⊤x ∈ Σ[x] and

s(w, h(x, v)) + λ · (⋆)⊤g(x, v, w, ξ)

+τ · (⋆)⊤M
(
Cψψ +Dψ

[
x
v
ξ

])
−▽V (x)⊤f(x, v, w, ξ)− ψ⊤P∆ψ

−ψ⊤P∆

(
Aψψ +Bψ

[
x
v
ξ

])
∈ Σ[(x, v, w, ξ, ψ)]

(14)

where ϵ is small and positive and each of the terms
(⋆) can be inferred by symmetry.

Example 1: Consider the polynomial DAE sys-
tem:

ẋ1(t) = −x1(t) + v(t)

ẋ2(t) = −x1(t)− x2(t)

0 = x1(t)
2 +

(
x2(t)

2 + 5
)
v(t).

(15)

Applying (14) to this system to show stability of
the origin gives the following equations

V (x)− ϵx⊤x ∈ Σ[x],

λg(x, v)⊤g(x, v)− ▽V (x)⊤f(x, v) ∈ Σ[(x, v)].

To implement this, we use the SOSTOOLS MAT-
LAB toolbox [23] and the SeDuMi solver [24]. We
allow V to be a polynomial of degree ≤ 4. For
ϵ = 10−3, SeDuMi finds a solution λ = 0.59504
and V (x) = 0.00017634x41 + 0.0012261x21x

2
2 +

0.0027498x1x
3
2 + 0.0023039x42 + 0.013246x31 −

0.013733x21x2 − 0.055089x1x
2
2 − 0.056305x32 +

0.40316x21 + 0.67688x1x2 + 0.57717x22.
IV. DISSIPATIVITY OF LINEAR

DIFFERENTIAL-ALGEBRAIC SYSTEMS

For linear DAE dynamics, dissipativity can be
verified with feasibility of an LMI. The linear DAE
model is:

ẋ(t)=Ax(t)+Bvv(t) +Bww(t) +Bξξ(t) (16a)
0=Fx(t) +Gvv(t) +Gww(t) +Gξξ(t) (16b)
y(t) = Cx(t) +Dvv(t), (16c)

where
ξ = ∆(x,v) (17)
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can describe nonlinearites such as model uncertain-
ties [25] or saturations [26]. We restrict our attention
to quadratic supply rates:

s(w, y) =

[
y
w

]⊤
X̃s

[
y
w

]
which, using the equality y = Cx + Dvv, can be
written as

s(w,Cx+Dvv)=

[
x
w

]⊤ [
Xxx Xxw
X⊤
xw Xww

] [
x
w

]
(18)

For linear dynamics and quadratic supply rates,
there is no loss [1] in restricting a storage function
V (·) to be quadratic:

V (x) = x⊤Px, P = P⊤ ≻ 0. (19)

A. Linear DAE without Uncertainty
In the case of ξ = 0, feasibility of an LMI is both

necessary and sufficient for dissipativity, as stated
next. The proof of this result is in Appendix A.

Proposition 1: The linear DAE system (16), with
ξ = 0, is dissipative w.r.t. the quadratic supply rate
(18) if and only if there exists λ ≥ 0 and a matrix
P ≻ 0 such thatA⊤P + PA PBv PBw

B⊤
v P 0 0

B⊤
wP 0 0

 ⪯

 Xxx 0 Xxw

0 0 0
X⊤
xw 0 Xww

+λ

 F⊤

G⊤
v

G⊤
w

 [
F Gv Gw

]
.

(20)

B. Linear DAE with Uncertainty
More generally, ξ is the output of an uncertain

system ∆ satisfying a known IQC. The proof of the
following result is presented in Appendix B.

Theorem 2: Consider the linear DAE system
(16)-(17) with ∆ satisfying the IQC defined
by (Ψ,M). This system is dissipative w.r.t. the
quadratic supply rate (18) if there exists λ, τ ≥ 0,
P ≻ 0, and P∆ ⪰ 0 satisfying X(P ) PBw B⊤

ψ P∆

B⊤
wP 0 0

P∆Bψ 0 A⊤
ψP∆ + P∆Aψ


⪯ λ(⋆)⊤

[
F Gv Gξ Gw 0

]
+ τ

 D⊤
ψMDψ 0 D⊤

ψMCψ
0 0 0

C⊤
ψMDψ 0 C⊤

ψMCψ

 ,
(21)

where X(P ) :=

 A⊤P + PA PBv PBξ
B⊤
v P 0 0

B⊤
ξ P 0 0

. (The

matrices in (21) are block partitioned to assist with
readability.)

Remark 2: Conservatism of Theorem 2 arises
from requiring a single storage function Ṽ (·, ·) to
ensure dissipativity for all ∆ satisfying a quadratic
constraint. This conservatism may be tolerable, and
a computational benefit of this conservatism is that
feasibility of a single LMI confirms dissipativity
over the whole uncertainty set.

Often, uncertainties can be captured as the output
of a system ∆ satisfying a pointwise quadratic
constraint. In this case, the parameter P∆, which
accounts for the filter dynamics, can be taken as
zero, and Theorem 2 simplifies.

Corollary 2: Consider the uncertain linear DAE
(16)-(17) with ∆ satisfying the pointwise quadratic
constraint defined by (I,M). This system is dissi-
pative w.r.t. the quadratic supply rate (18) if there
exists λ, τ ≥ 0 and P ≻ 0 satisfying
A⊤P + PA PBv PBξ PBw

B⊤
v P 0 0 0

B⊤
ξ P 0 0 0

B⊤
wP 0 0 0

 ⪯ τM̃ +


Xxx 0 0 Xxw

0 0 0 0
0 0 0 0

X⊤
xw 0 0 Xww

+ λ


F⊤

G⊤
v

G⊤
ξ

G⊤
w



F⊤

G⊤
v

G⊤
ξ

G⊤
w


⊤

(22)

where M̃ :=

[
M 0
0 0

]
.

The usefulness of Corollary 2 is illustrated in the
following example.

Example 2: (Implicit neural network con-
troller)

Consider a general linear plant with dynamics

ẋp(t) = Apxp(t) +Buu(t) +Bww(t)

y(t) = Cpxp(t)
(23)

in feedback with a controller πθ modeled as the
interconnection of an LTI system and activation
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functions ϕ:

ẋk(t) = Akxk(t) +Bξξ(t) +Byy(t)

u(t) = Cuxk(t) +Duξξ(t) +Duyy(t)

v(t) = Cvxk(t) +Dvξξ(t) +Dvyy(t)

ξ = ϕ(v(t))

(24)

with θ :=

[
Ak Bξ By
Cu Duξ Duy
Cv Dvξ Dvy

]
capturing the learnable

parameters of πθ. In the terminology of [15], this
controller is an “implicit” recurrent neural network,
since Dvξ ̸= 0 results in a fixed-point equation
that implicitly defines the variable ξ. This class of
networks encompasses common architectures such
as fully connected feedforward neural networks,
convolutional layers, and max-pooling layers [15].
By incorporating feedback loops, implicit neural
networks are able to achieve the performance of
feedforward architectures with fewer parameters
[27].

We assume the nonlinearity ϕ is applied ele-
mentwise so that ϕ(v) =

[
ϕ1(v1) · · · ϕn(vn)

]⊤
and each ϕi is sector-bounded. Without loss of
generality2, we take this sector to be [0, 1], which
is satisfied by common activation functions such as
ReLU and tanh, so that[

v
ξ

]⊤ [
0 − 1

2Λ
− 1

2Λ Λ

] [
v
ξ

]
≤ 0 (25)

for any diagonal Λ ≻ 0. The interconnection of
plant (23) and controller π is described by

ẋ(t) = Ax(t) + Bww(t) + Bξξ(t)
0 = Cx(t)− v(t) +Dξ(t)

ξ(t) = ϕ(v(t)),

(26)

where x(t) =
[
xp(t)
xk(t)

]
, and

A =

[
Ap +BuDuyCp BuCu

ByCp Ak

]
, Bw =

[
Bw
0

]
,

Bξ =
[
BuDuξ
Bξ

]
, C = [DvyCp Cv ], D = Dvξ.

2If the sector is given by [α, β] ̸= [0, 1],we may apply the
loop transformation outlined in [28, Sec. II-D] to obtain an
equivalent system sector bounded by [0, 1].

Applying Corollary 2, an L2 gain from w to y of γ
holds for the closed-loop system (26) if there exist
P = P⊤ ≻ 0, diagonal Λ ≻ 0, and nonnegative
scalar λ for which the following LMI holds

A⊤P + PA+ γ2
[
C⊤
p Cp 0
0 0

]
PBw 0 PBξ

B⊤
wP −I 0 0
0 0 0 0

B⊤
ξ P 0 0 0



⪯


0 0 0 0
0 0 0 0
0 0 0 − 1

2Λ
0 0 − 1

2Λ Λ

+ λ


C⊤

0
−I
D⊤

 [
C 0 −I D

]
.

This LMI is convex in P,Λ, and λ, so that
feasibility can be checked numerically given param-
eters θ. This provides a sufficient condition for a
controller πθ to satisfy an L2 gain bound.

Remark 3: Invertibility of the algebraic con-
straint in (26) allows us to “eliminate” the algebraic
variable v and analyze the system in standard ODE
with uncertainty characterized via

ξ(t) = ϕ(Cx(t) +Dξ(t)),

and[
x
ξ

]⊤ [
0 -1

2 C
⊤Λ

-1
2 ΛC

-1
2 (D

⊤Λ+ΛD) + Λ

] [
x
ξ

]
≤ 0.

This alternate approach will not apply to general
DAE systems, whose algebraic constraints may not
be invertible. Even with invertibility, the DAE form
might be advantageous in (i) preserving structure
captured by the algebraic constraint or (ii) avoiding
inversion of a poorly conditioned matrix; both (i)
and (ii) occur in a case study analyzed in Section V.

The case study in the following section further
illustrates the practical use of these results.

V. CASE STUDY: POWER NETWORK WITH LINE
FAILURES

We analyze the performance of a wide-area con-
trol policy for a power network in the event of a
single line failure, also referred to as an N -1 contin-
gency [29]. Designing a separate control policy for
each such contingency one-by-one is computation-
ally burdensome. Thus, it is advantageous to design
a single controller and verify its performance for a
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set of potential N -1 contingencies simultaneously.
In this section we utilize Proposition 2 to perform
this task for the IEEE 39-bus power network [30].

A. Power Network & Line Failure Model
The dynamics at each of the 10 generators in the

IEEE 39-bus network are modeled with the classical
swing equations [31]:

δ̇i(t) = Ωωi(t)

ω̇i(t) =
1

2Hi

(
pmi(t) −Diωi(t)−

EivGi(t) sin(δi(t)−θGi(t))
Xdi

) (27)

where Ẽi(t) = Eie
jδi(t) is the internal voltage,

ṽGi = vGi(t)e
jθGi(t) is the bus voltage phasor,

pmi(t) is the mechanical input power, and Hi, Xdi,
and Di are the inertia, internal transient reactance
and damping constants, all for the ith generator.
Linearization about a power flow solution gives

d

dt

[
dδ(t)
dω(t)

]
= A

[
dδ(t)
dω(t)

]
+Bvv(t)

+

[
0

w(t) + u(t)

]
,

(28)

where u and w represent vectors of control and
disturbance signals, respectively, and dδ and dω
denote vectors of the deviation of δ and ω from
their operating points δ0 and ω0 = 0. The generator
dynamics are coupled through the network via the
power flow equations:([

Y11 Y12
Y21 Y22

]
+

[
Yd 0
0 YL

])[
ṽG(t)
ṽL(t)

]
=

[
YdẼ(t)

0

]
where ṽLi(t) = vLi(t)e

jθLi(t) is the voltage pha-

sor at load bus i,
[
Y11 Y12
Y21 Y22

]
is the network admit-

tance matrix, Yd is a diagonal matrix whose entries
are the inverses of the generator internal transient
reactances, 1

Xdi
, and YL is a diagonal matrix whose

entries are the constant impedance models of loads
in the network. Linearizing this complex-valued
equation about the power flow solution and decom-
posing real and imaginary components gives the
linear, real-valued algebraic constraint

0 = F

[
dδ(t)
dω(t)

]
+Gv(t), (29)

where

v(t) :=
[
dvG(t)

⊤ dθG(t)
⊤ dvL(t)

⊤ dθL(t)
⊤ ]⊤

is the deviation of magnitudes (vG,vL) and angles
(θG,θL) of the voltages at generator and load buses
from their operating points, respectively. (Appendix
C provides expressions for A,Bv, F , and G.) We
evaluate performance with the output

y(t) =
[
0 I

] [ dδ(t)
dω(t)

]
=: C

[
dδ(t)
dω(t)

]
. (30)

Remark 4: Note that (28)-(29) could be con-
verted to a standard ODE of the form

d

dt

[
dδ(t)
dω(t)

]
=

(
A−BvG

−1F
) [ dδ(t)
dω(t)

]
+

[
0

w(t) + u(t)

]
The DAE formulation, though, avoids inversion
of the poorly conditioned matrix G. Moreover, G
captures the network structure, which would be
lost in an inversion. Moreover, line failures in the
network may be modeled as low rank updates to the
structured matrix G leading to a simple uncertainty
characterization that would not occur in the ODE
setting.

The linear DAE (28)-(29) is invariant to uniform
shifts in angles, leading to the algebraic property

A

[
1
0

]
= 0, F

[
1
0

]
+G


0
1
0
1

 = 0, (31)

where 1 and 0 denote vectors of all ones and all
zeros, respectively, with dimensions consistent with
the dimension of the vectors of angles. The mode
corresponding to the resulting eigenvalue at zero of
(A−BvG

−1F ) is unobservable from output (30).
1) Line Failure Model
For line failures which minimally change the

power flow solution, we approximate the resulting
changes to the dynamics (34) as additive perturba-
tions to G. For four line failures of interest, 30,
41, 42, and 43 (see Figure 2), we compute these
perturbations ∆G30,∆G41,∆G42 and ∆G43. For
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Fig. 2. IEEE 39-Bus Network with potential line failures
indicated with dashed blue lines.

instance, when line 43 fails the ODE (28) remains
unchanged and the constraint (29) is modified to

0 = F

[
dδ(t)
dω(t)

]
+ (G+∆G43)v(t). (32)

2) Controller Design
We design a static linear controller, assuming ac-

cess to relative angle measurements, e.g. dδ1 − dδ2
and absolute angular velocity measurements, e.g.
dω1. Such a control policy will take the form [32]

u(t) = Kx(t), (33)

where x(t) = Q

[
dδ(t)
dω(t)

]
is a reduced state

vector and Q is matrix whose columns form an
orthonormal basis for the null space of

[
1⊤ 0

]
.

The corresponding reduced dynamics are

ẋ(t)=Ax(t) +Bvv(t) +Bw(w(t) + u(t))

0 = Fx(t) +Gv(t)

y = Cx(t),

(34)

where A = Q⊤AQ, Bv = Q⊤Bv, Bw =

Q⊤ [
0 I

]⊤
, F = FQ and C = CQ. The input-

output behavior of (34) is equivalent to that of
the original system (28)-(30), due to property (31)
and the unobservability of the removed mode from
output y. Removal of this zero mode removes any
implicit equality constraints in (34), which may
cause numerical issues.

When (34) describes the nominal open-loop sys-
tem, the dynamics of the system with line 43
removed and in feedback with control (33) are

ẋ(t) = Aclx(t) +Bvv(t) +Bww(t) (35a)
0 = Fx(t) + (G+∆G43)v(t) (35b)

y(t) = Cx(t), (35c)

where Acl := (A+BuK). We choose K to
place all closed-loop eigenvalues in the half plane
{z; ℜ(z) < −0.5}.

3) Uncertainty Characterization
Rather than confirmining dissipativity for line

failures one-by-one, we prioritize computationally
tractability as the number of line failures of interest
grows and construct a (conservative) uncertainty
set containing each contingency. Dissipativity is
confirmed over this set through one LMI using
Proposition 2. An added benefit of this approach
is the implicit incorporation of robustness, and we
will see that the conservatism introduced for our
example is quite small.

To create this uncertainty set, we compute the dif-
ferences ∆Gi−∆G43 for i = 30, 41, 42. The mag-
nitudes of the singular values of these differences
drop off rapidly, and thus we approximate each by
a “structured” [33] rank three matrix, where “struc-
ture” corresponds to preserving the physical prop-
erty (31): ∆G41−∆G43 = H1J

⊤
1 ,∆G42−∆G43 =

H2J
⊤
2 ,∆G30−∆G43 = H3J

⊤
3 , with Hi, Ji ∈

R78×3. Then,

0 = Fx+ (G+∆G43)v +
3∑
i=1

1−θi
2 HiJ

⊤
i v, (36)

θi ∈ [−1, 1], covers the algebraic constraint corre-
sponding to each of the four line failures of interest,
e.g., θ1 = θ2 = θ3 = 1 and θ1 = −1, θ2 =
θ3 = 0 correspond to the removal of line 43 and
41, respectively. This uncertainty is incorporated as

ẋ(t) = AclBx(t) +Bvv(t) +Bww(t),

0 = Fx(t) +Gvv(t) +Gξξ(t),

y(t) = Cx(t),

(37)

where
Gξ=

[
H1 H2 H3

]
,

Gv=G+∆G43+
1
2

(
H1J

⊤
1 +H2J

⊤
2 +H3J

⊤
3

) (38)
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and ξ(t) =
[
ξ1(t)

⊤ ξ2(t)
⊤ ξ3(t)

⊤ ]⊤
is the

output of some ∆ satisfying the pointwise quadratic
constraints[

ξi
v

]⊤ [
Xi

−1
2 YiJ

⊤
i

−1
2 JiY

⊤
i

−1
4 JiXiJ

⊤
i

] [
ξi
v

]
≤ 0 (39)

for any Xi = X⊤
i and Yi = −Y ⊤

i [4].
Remark 5: This uncertainty set could be equiva-

lently characterized by a polytopic set as in [12, Sec.
3]. Characterization (39) results in a lower dimen-
sional LMI condition and allows us to incorporate
the uncertainty set parameters Xi, Yi as additional
design variables for more flexibility.
B. H∞ Norm Bound over a set of Line Failures

We compute a bound on the L2 gain from w to
y of (37)-(38) with ∆ satisfying (39) using Propo-
sition 2. We formulate the corresponding convex
optimization problem

min
P,λ,X1,Y1,X2,Y2,γ2

γ2

s.t. P ≻ 0, Xi = X⊤
i , Yi = −Y ⊤

i , λ ≥ 0,
A⊤
clP+PAcl+C⊤C PBv 0 PBw

B⊤
v P 0 0 0
0 0 0 0

B⊤
wP 0 0 −γ2I



⪯ λ


F⊤

G⊤
v

G⊤
ξ
0

 [ F Gv Gξ 0
]
+


0 0 0 0

0 −1
4

∑3
i=1

(
JiXiJ

⊤
i

)
W 0

0 W⊤ X 0
0 0 0 0



(40)

where W := −1
2

[
J1Y

⊤
1 J2Y

⊤
2 J3Y

⊤
3

]
and X

is the block diagonal matrix of {X1, X2, X3}. We
solve (40) numerically in MATLAB using CVX
[34] with the SeDuMi solver [24] resulting in an
L2 gain bound of γ = 2.31 over the uncertainty set.
To evaluate conservatism, we compute the L2 gain
corresponding to each of the four line removals:

Line removed 30 41 42 43
Closed-loop
H∞-norm 2.215 2.222 2.219 2.217

We compute L2 gains over the full uncertainty set
via a grid search - the maximum value obtained

is 2.2719, occurring at θ1 = 0.1, θ2 = 0, θ3 = 0
in (36); note that this point does not correspond
to a physical line removal. Our bound γ = 2.31
is 3.98% over the true maximal L2 gain over the
four line removals of interest and 1.68% over true
bound for the full uncertainty set. Thus, for this case
study, neither the choice of a larger uncertainty set
nor the restriction to a single storage function (see
Remark 2) cause much conservatism.

VI. CONCLUSION
A general framework for analyzing dissipativity

of DAE systems with uncertainties described by
IQCs was provided. It was shown that dissipativity
could be confirmed numerically in the case of
polynomial or linear dynamics. Analysis of the
IEEE 39-bus power system subject to line failures
provided a case study. The sufficient condition for
dissipativity derived introduces conservatism. This
conservatism was insignificant in the presented case
study; quantifying or minimizing this conservatism
are potential extensions of this work.
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APPENDIX

A. Proof of Proposition 1
By the lossless s-procedure (see, e.g., [35]), the

existence of λ ≥ 0 satisfying (20) is equivalent to
nonpositivity of x

v
w

⊤  F⊤

G⊤
v

G⊤
w

 [
F Gv Gw

]  x
v
w

 (41)

implying x
v
w

⊤( A⊤P + PA PBv PBw
B⊤
v P 0 0

B⊤
wP 0 0


−

 Xxx 0 Xxw
0 0 0

X⊤
xw 0 Xww

) x
v
w

 ≤ 0.

(42)

Since V (·) is quadratic, and thus continuously dif-
ferentiable, dissipativity (Definition 1) with ξ = 0
can be confirmed through an equivalent differential
characterization that for all x, v, w we have that

0 = g(x, v, w, 0) ⇒ ▽V (x)⊤f(x, v, w, 0) ≤ 0.
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Nonpositivity of (41) is equivalent to 0 =
g(x, v, w, 0) for linear g of the form (16b), and
condition ▽V (x)⊤f(x, v, w, 0) ≤ 0 reduces to (42)
for linear f of form (16a) and quadratic V . ■

B. Proof of Theorem 2:
Assume (21) holds, and left and right the inequal-

ity by
[
x⊤ v⊤ ξ⊤ w⊤ ψ⊤ ]

and its transpose to
arrive at

x⊤P (Ax+Bvv +Bww +Bξξ) + (⋆)⊤Px+

ψ⊤P∆

(
A⊤
ψψ(t)+Bψ

[
x(t)
v(t)
ξ(t)

])
+ (⋆)⊤P∆ψ(t)

≤
[
x
w

]⊤ [
Xxx Xxw

X⊤
xw Xww

] [
x
w

]

+ λ


x
v
ξ
w


⊤ 

F⊤

G⊤
v

G⊤
ξ

G⊤
w

 [
F Gv Gξ Gw

] 
x
v
ξ
w


+ τ

(
Cψψ +Dψ

[
x
v
ξ

])⊤
M

(
Cψψ +Dψ

[
x
v
ξ

])
,

where each of the terms (⋆) may be inferred by
symmetry; this is condition (9) for dissipativity in
the linear setting so that the result follows immedi-
ately from Theorem 1. ■

C. Power Network Model Parameters:

The ODE parameters are given by

A =

[
0ng×ng

Ω · Ing

diag(−E◦VG◦cos(δ−θG)
2H◦Xd

) diag(−D2H )

]
B =

[
0ng×ng 0ng×ng 0ng×nl

0ng×nl

B21 B22 0ng×nl
0ng×nl

]
,

where B21 = diag
(

−E◦sin(δ−θG)
2H◦Xd

)
, and

B22 = diag
(
E◦VG◦cos(δ−θG)

2H◦Xd

)
.

To define F and G, we decompose the following
matrices into real and imaginary parts:

Yd = Y dre + iY dim,

Y G =

[
Y11 + Yd
Y21

]
= Y Gre + iY Gim,

Y L =

[
Y12

Y22 + YL

]
= Y Lre + iY Lim.

With this notation,

F =


Y dim · diag(E ◦ cos(δ) 0ng×ng

0nl×ng
0nl×ng

Y dim · diag(E ◦ sin(δ) 0ng×ng

0nl×ng
0nl×ng


G =

[
GVG

GθG GVL
GθL

]
,

where

GVG
=

[
Y Gre · diag(cos θG)− Y Gim · diag(sin θG)
Y Gre · diag(sin θG) + Y Gim · diag(cos θG)

]
GθG =[
−Y Gre · diag (VG ◦ sin θG)−Y Gim · diag(VG ◦ cos θG)
Y Gre · diag (VG ◦ cos θG)−Y Gim · diag (VG ◦ sin θG)

]
GVL

=

[
Y Lre · diag (cos θL)− Y Lim · diag (sin θL)
Y Lre · diag (sin θL) + Y Lim · diag (cos θL)

]
GθL =[
−Y Lre · diag (VL ◦ sin θL)−Y Lim · diag (VL ◦ cos θL)
Y Lre · diag (VL ◦ cos θL)− Y Lim · diag (VL ◦ sin θL)

]
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