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Abstract

Understanding controls on solute export to streams is challenging because heteroge-

neous catchments can respond uniquely to drivers of environmental change. To

understand general solute export patterns, we used a large-scale inductive approach

to evaluate concentration–discharge (C–Q) metrics across catchments spanning a

broad range of catchment attributes and hydroclimatic drivers. We leveraged paired

C–Q data for 11 solutes from CAMELS-Chem, a database built upon an existing data-

set of catchment and hydroclimatic attributes from relatively undisturbed catchments

across the contiguous USA. Because C–Q relationships with Q thresholds reflect a

shift in solute export dynamics and are poorly characterized across solutes and

diverse catchments, we analysed C–Q relationships using Bayesian segmented

regression to quantify Q thresholds in the C–Q relationship. Threshold responses

were rare, representing only 12% of C–Q relationships, 56% of which occurred for

solutes predominantly sourced from bedrock. Further, solutes were dominated by

one or two C–Q patterns that reflected vertical solute–source distributions. Specifi-

cally, solutes predominantly sourced from bedrock had diluting C–Q responses in

43%–70% of catchments, and solutes predominantly sourced from soils had more

enrichment responses in 35%–51% of catchments. We also linked C–Q relationships

to catchment and hydroclimatic attributes to understand controls on export patterns.

The relationships were generally weak despite the diversity of solutes and attribute

types considered. However, catchment and hydroclimatic attributes in the central

USA typically drove the most divergent export behaviour for solutes. Further, we

illustrate how our inductive approach generated new hypotheses that can be tested

at discrete, representative catchments using deductive approaches to better under-

stand the processes underlying solute export patterns. Finally, given these long-term

C–Q relationships are from minimally disturbed catchments, our findings can be used

as benchmarks for change in more disturbed catchments.
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1 | INTRODUCTION

Long-term observations of stream-water chemistry have been used to

infer the influence of catchment structure and function on solute

export by examining how solute concentrations (C) respond to

changes in discharge (Q; Chorover et al., 2017). These C–Q relation-

ships integrate signals from solute source areas within a catchment,

mobilization processes that transport solutes, and transformation and

retention processes occurring along flowpaths of the stream network

(Gall et al., 2013; Musolff et al., 2015). Inferences derived from C–Q

patterns about the influences of catchment characteristics

(e.g., lithology and land cover/land use) and climate on solute loading

are used to evaluate cross-catchment differences and to inform catch-

ment management (Herndon et al., 2015; Moatar et al., 2017;

Underwood et al., 2017).

Low-frequency (weekly to annual-scale) paired C–Q data are

commonly used to characterize archetypes of catchment solute gener-

ation and transport. Because solute concentrations are strongly

coupled to hydrology, C–Q relationships often take the power-law

form and plot linearly in log–log space (Speir et al., 2024; Wymore

et al., 2023). Metrics from this linear model, including the slope of the

log(C)–log(Q) regression have traditionally been used to classify C–Q

patterns into three main archetypes: (1) enrichment, where concentra-

tion increases with increasing discharge; (2) dilution, where

concentration decreases with increasing discharge; and (3) constant

(often referred to as chemostatic), where concentration is largely sta-

ble with changes in discharge (Creed et al., 2015; Godsey et al., 2009;

Thompson et al., 2011).

Various unifying frameworks have been posited to explain the

emergence of these C–Q archetypes, which can be generalized as

the variable interaction between concentration source areas and

discharge-producing zones (Basu et al., 2010; Musolff et al., 2015)

across vertical (Hornberger et al., 1994; Seibert et al., 2009), lateral

(Herndon et al., 2015) or longitudinal (Dupas et al., 2017) dimensions.

Focus in recent years has been on vertical contrasts in subsurface sol-

ute concentration where these solutes have different origins (Zhi

et al., 2019). Specifically, solutes with greater concentration at depth

(e.g., geogenic solutes predominantly originating from bedrock) tend

to exhibit dilution patterns in receiving streams due to the dominance

of groundwater flow paths at low-flow conditions (Godsey

et al., 2009; Johnson et al., 1969; Neal et al., 1990; Seibert

et al., 2009; Stewart, Shanley, et al., 2022; Zhi et al., 2019). In con-

trast, biogenic solutes more concentrated in litter and upper soil layers

tend to exhibit enrichment patterns in receiving streams due to the

flushing of shallow soils at high-flow conditions (Ebeling et al., 2021;

Hornberger et al., 1994; Zhi & Li, 2020). Popularized as the shallow

and deep hypothesis (Zhi et al., 2019; Zhi & Li, 2020), this theory was

later corroborated for a variety of solutes using process-based models

(Zhi et al., 2019; Botter et al., 2020) or direct measurements of soil

water and groundwater (Stewart, Shanley, et al., 2022; Zhi

et al., 2019), but at one to three catchments only.

Large-sample studies of C–Q dynamics have been published in

recent decades in search of an understanding of solute export

controls that is generalizable across gradients of climate, vegetation

and geological characteristics. Such studies are important for over-

coming the ‘uniqueness of place’ phenomenon (Beven, 2000) that

results from a reliance on single site observations of stream-water

chemistry to develop a generalized theory (Levin, 1992; NSF, 2018).

When used to synthesize data at broad scales, such data-driven induc-

tive approaches can identify emergent patterns that imply processes.

From these process-guided interpretations of patterns, we can then

generate hypotheses and eventually theories for subsequent testing

at discrete, representative catchments (Underwood et al., 2023; Ward

et al., 2022).

Support for the shallow and deep hypothesis as an overarching

framework has been generated by large-sample studies but is gener-

ally limited to singular solutes. For example, Zhi and Li (2020) relied

on reactive transport model simulations and observations from

228 CONUS catchments (7–29 000 km2) to examine nitrate C–Q pat-

terns across gradients of climate, lithology and land use, their study

demonstrated that enrichment C–Q patterns dominated in more agri-

cultural catchments due to the relative nitrate enrichment of shallow

waters as compared with deep waters. Similarly, for 278 catchments

(4.4–23 200 km2) across Germany, Ebeling et al. (2021) examined C–

Q patterns for nitrate, phosphate and total organic carbon, and con-

cluded that nitrate C–Q patterns were controlled by the vertical distri-

bution of source pools.

The shallow and deep hypothesis is appropriate for describing

enrichment or dilution C–Q patterns that are linear (in log–log space)

and emerge in settings where two predominant end-member source

waters with relatively distinct and vertically distributed concentration

sources mix (Stewart, Shanley, et al., 2022). Yet, similar C–Q patterns

(equifinality of archetypes) can also emerge from laterally distributed

source regions (Dupas et al., 2017; Musolff et al., 2017). This theory

may not explain more complex mixing from more than two end-

member source waters (Zhi & Li, 2020) or threshold patterns of C–Q

responses that reflect a spatio-temporal shift in solute sourcing, trans-

formation or mobilization (Musolff et al., 2015; Underwood

et al., 2017).

The three archetypes (i.e., enrichment, dilution and constant)

expand to nine modalities when more nuanced threshold dynamics

are considered (Meybeck & Moatar, 2012; Moatar et al., 2017), in

which the C–Q slope changes at a certain discharge to produce a seg-

mented C–Q pattern in log–log space (Figure 1a). Initially, for ease of

comparison across solutes and across catchments, the search for C–Q

threshold responses was constrained by fixing the changepoint of the

segmented regression at the median flow (Meybeck & Moatar, 2012;

Moatar et al., 2017). A fixed discharge threshold position may ade-

quately capture C–Q patterns for more strongly chemodynamic con-

stituents such as nutrients and sediments (Musolff et al., 2015).

However, this approach may have misestimated the frequency of

threshold responses across solutes and across catchments (Moatar

et al., 2017), potentially hindering a generalized understanding of the

occurrence and frequency of these nonlinear solute dynamics. This

fixed-threshold approach may fail to capture more nuanced threshold

patterns for less chemodynamic solutes including geogenics, in
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particular (Musolff et al., 2017). Previous studies have concluded that

geogenic solutes are less likely to exhibit threshold C–Q patterns

(Godsey et al., 2009; Musolff et al., 2015). However, this may be

because the potential for threshold response has not been examined

in a rigorous way using data-driven approaches across solutes, across

ecoregions and for a broad range of drainage areas.

More recent studies have searched for threshold responses in a

more robust, data-driven way, revealing the presence of discharge

threshold values that ranged considerably above and below the

median discharge. Various data-driven approaches have been used to

define the discharge threshold, followed by statistical tests to confirm

selection of the segmented regression over a simple regression. Previ-

ous approaches included a two-part, piecewise linear regression

(Ebeling et al., 2021; Marinos et al., 2020), an iterative breakpoint(s)

estimator (Diamond & Cohen, 2018; Rose et al., 2018), and Bayesian

segmented regression (Underwood et al., 2017). Several of these

studies have demonstrated a considerable range in threshold Q below

and above the median Q, for example, for sediment and phosphorus

in 18 tributaries of the Lake Champlain Basin, USA (Underwood

et al., 2017) for nitrate at 33 sites in the Mississippi River Basin

(Marinos et al., 2020), and for a range of geogenic to biogenic solutes

at many of 44 sites in Florida (Diamond & Cohen, 2018). Still, these

studies were limited in their number of sites or geographic regions,

or both.

To the best of our knowledge, only two large-sample studies

(>100 sites) have included explicit examination for threshold C–Q

responses at sites in Europe. Ebeling et al. (2021) evaluated both seg-

mented and simple linear regression models for biogenic solutes

(nitrate, phosphate and total organic carbon) at 278 sites (4.4–

23 200 km2) in Germany; however, they chose to report and further

analyse metrics from the parsimonious simple model because the seg-

mented model performed similarly (based on Akaike Information Cri-

terion) and generated only modest improvements in R2 values (<10%)

at up to 25% of the stations (by solute). Moatar et al. (2017) examined

a range of geogenic to biogenic solutes and total suspended solids at

293 sites (50–110 000 km2) in France. Despite constraining their

analysis with a fixed threshold at the median discharge, threshold C–

Q patterns were detected across solute types, including up to 27% of

F IGURE 1 (a) C–Q archetypes A–I are
segmented concentration (C)–discharge
(Q) relationships proposed by Moatar et al.
(2017) and adapted for data-driven
threshold positions (vertical dashed lines)
by Underwood et al. (2017). (b) Percentage
of study catchments (gauge sites)
associated with C–Q archetypes for each
solute. Segmented C–Q relationships with

thresholds are filled with diagonal lines.
Dilution C–Q archetype I dominates
geogenic responses on the left and
enrichment C–Q archetype A dominates
the responses for biogenic solutes on the
right side. Numbers in parentheses are the
total number of catchments where C–Q
models were fit.

KINCAID ET AL. 3 of 17

 10991085, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15197, W

iley O
nline Library on [29/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



sites for geogenics (calcium, magnesium, silica and specific

conductance).

For these long-term (annual to decadal) and low-frequency data in

minimally disturbed catchments, climate and the hydrologic regime are

important drivers of long-term mean concentration and mean discharge

relationships across diverse catchments in the contiguous USA (i.e., arid

catchments tend to have higher concentrations than humid catch-

ments; Li et al., 2022; Stewart, Zhi, et al., 2022). However, solute C–Q

relationships also depend on how catchment structure (e.g., geology,

soils, topography, land cover/land use, etc.) and hydroclimatic drivers

influence solute availability and the spatial heterogeneity of solute

source areas and discharge-generating zones (Basu et al., 2010; Musolff

et al., 2015). Still, establishing links between catchment and hydrocli-

matic attributes and C–Q metrics across diverse catchments can be

challenging, and the strength of the links often depends on the solute

characteristics (Diamond & Cohen, 2018; Ebeling et al., 2021; Pohle

et al., 2021; Wymore et al., 2017). Most studies attempting to link

catchment attributes to C–Q relationships have considered relatively

small geographic regions that either limit hydroclimatic and/or catch-

ment structural diversity (Ali et al., 2017; Diamond & Cohen, 2018;

Ebeling et al., 2021; Musolff et al., 2015; Wymore et al., 2021). Though

Godsey et al. (2019) considered these links across a global gradient of

climate and lithology, they primarily focused on how arid versus humid

catchments controlled the slope of the log(C)–log(Q) relationship. God-

sey et al. (2019) also did not quantify C–Q threshold responses. Thus,

to what extent catchment structure and hydroclimatic drivers shape

segmented C–Q relationships has not been extensively examined

across solutes and across the contiguous USA.

We were motivated to expand the application of segmented

regression methods to a wider group of solutes across the geogenic to

biogenic continuum for a greater number of catchments spanning a

broader range of catchment sizes and properties across the contigu-

ous USA. To do this, we leveraged data from the catchment attributes

and meteorology for large-sample studies dataset (CAMELS; Addor

et al., 2017) that was recently augmented with chemistry and paired

instantaneous discharge observations for multiple solutes (CAMELS-

Chem; Sterle et al., 2024). The relatively undisturbed catchments in

the dataset can be considered reference sites for comparison with

catchments with greater human influences (e.g., agriculture and urban

sites). We used data-driven Bayesian segmented regression to identify

thresholds and quantify nine C–Q archetypes (e.g., enrichment, dilu-

tion, constant or segmented patterns; Underwood et al., 2017). We

also explored links between C–Q archetypes or slopes and 53 catch-

ment attributes from CAMELS. Our overarching approach centred

around inductive observation of patterns of C–Q archetypes and their

metrics, including the presence of thresholds, C–Q slope b and the

ratio of the coefficient of variation (CV) of concentration versus

the CV of discharge across the contiguous USA. From these observa-

tions, we evaluate the following: (1) What are the discharge thresh-

olds that trigger different behaviours for different solute groups?

(2) Are there dominant C–Q archetypes and patterns of C–Q metrics

for different solute groups? (3) Do hydroclimatic drivers and catch-

ment structure relate to C–Q responses?

We used this inductive approach to highlight a few intriguing

hypotheses for future deductive investigations of hydroclimatic and

catchment controls on solute export.

2 | DATA AND METHODS

A schematic overview of our methods is found in Figure S1. Further,

the version of the CAMELS-Chem dataset analysed here, accompany-

ing R scripts, and Supporting Information files are available via Hydro-

Share (Kincaid & Underwood, 2024; https://doi.org/10.4211/hs.

eddb06e91a914618a89a63bb2c2774e0).

2.1 | CAMELS-Chem data

Our study used the recently released CAMELS-Chem database (Sterle

et al., 2024). The original CAMELS dataset (Addor et al., 2017) com-

piled catchment attributes and meteorology data for 671 catchments

from the U.S. Geological Survey (USGS) National Water Information

System (NWIS; U.S. Geological Survey, 2023). These are minimally

disturbed catchments filtered from the Hydro-Climatic Data Network

(Lins, 2012) and represent a full range of ecoregions (Omernik, 1987).

The CAMELS-Chem relational database augmented the CAMELS

dataset with USGS NWIS water chemistry data for 18 common water

quality constituents and instantaneous discharge from 589 of the

671 catchments and includes paired C–Q data from 1924 through

2020. We focused on 11 of the solutes and categorized them loosely

based on their origins into geogenic (from chemical weathering; cal-

cium [Ca], magnesium [Mg], silica [Si] and sodium [Na]), biogenic (from

biogeochemical reactions and associations with soils; dissolved

organic C and N [DOC, DON], nitrate [NO3] and aluminium [Al]) and

transitional groups (having both geogenic and biogenic or external ori-

gins; chloride [Cl], potassium [K] and sulphate [SO4]).

To avoid anomalous data and C–Q responses, we restricted our

analyses to USGS gaging stations where a minimum of 20 concurrent

concentration (mg L�1) and discharge (mm d�1) measurements were

collected over >3 years and spanned more than 50% of the observed

range in discharge (maximum Q–minimum Q). Of the 589 catchments

in CAMELS-Chem, 276 catchments met our criteria for at least one

solute. However, the number of catchments varied by solute, ranging

from 53 for DON to 249 for Cl (Table S1). Median record lengths

across all catchments ranged from 14 years for Al to 31 years for Cl

and SO4, with a maximum record length of 95 years for Ca, Cl, Mg, Si

and SO4 (Table S1). Summaries of concentrations and discharge for

each solute are also available in Table S1.

2.2 | C–Q linear and segmented regressions

To answer research questions 1 and 2, we modelled C–Q relationships

for each catchment–solute combination using a data-driven Bayesian

approach to simple and segmented linear regression. In addition to

4 of 17 KINCAID ET AL.
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the power-law function (C = aQb), we also investigated the potential

presence of a single Q threshold (breakpoint in the regression) indica-

tive of functional changes in linear C–Q relationships (Underwood

et al., 2017). To estimate the power-law intercept (a), breakpoint

(where present) and slope (b) of the pre- and post-threshold values,

we compared simple linear and segmented regressions of the

log10(C)–log10(Q) relationship using a Bayesian computational

approach via the ‘mcp’ package (Lindeløv, 2020; v. 0.3.1) in R (R Core

Team, 2021; v. 4.1.1). For the segmented regression, we assumed that

there was a single, if any, breakpoint in the C–Q relationship; and

thus, we specified our segmented model with two segment formulas

where the second segment had a joined slope and no change in the

intercept. We evaluated model performance to determine whether

the segmented regression with a breakpoint outperformed the simple

regression. To do this, we compared leave-one-out cross-validation

(LOOCV) and Widely Applicable Information Criterion (WAIC) values

for both models (Vehtari et al., 2017) using the ‘loo’ R package

(Vehtari et al., 2020; v. 2.4.1). The 95% credible intervals were esti-

mated as the highest posterior density interval using the ‘tidybayes’ R
package (Kay, 2021; v. 3.0.1) around the point estimates for intercept,

breakpoint, and pre- and post-threshold slopes. Vague priors were

established for all parameters so that the posterior distributions would

be influenced most by the observed data (Gelman et al., 2004).

2.3 | C–Q archetype classification and metrics

To further answer research question 2, we evaluated the posterior

distributions on C–Q model parameters from Section 2.2 to classify

C–Q relationships for each solute into one of nine C–Q archetypes

(Moatar et al., 2017; Figure 1a) following the criteria presented in

Underwood et al. (2017). Positive b values for which 95% credible

intervals did not span zero indicated enrichment responses. Negative

b values indicated dilution responses. When b did not differ from zero

(95% credible interval spans a zero value), we referred to this

response as constant. Though others have referred to b values near

zero as chemostatic (e.g., Creed et al., 2015; Godsey et al., 2009), we

instead followed the convention of Thompson et al. (2011) and

reserved the term chemostasis to describe relatively low variability in

concentration as compared with discharge, consistent with others

(Dupas et al., 2017; Ebeling et al., 2021; Minaudo et al., 2019; Musolff

et al., 2017; Underwood et al., 2017).

We computed the ratio of the coefficient of variation (CV) of concen-

tration versus the CV of discharge to assess the relative variability of con-

centration versus discharge and to quantify chemostatic versus

chemodynamic behaviour (Musolff et al., 2015). Chemostatic behaviour

occurs when discharge variability is high relative to concentration variabil-

ity and often arises from a homogenization of solute stores in the catch-

ment (Basu et al., 2010; Musolff et al., 2017; Thompson et al., 2011).

Chemodynamic behaviour occurs when concentration variability is high

relative to discharge variability and may arise from temporally variable

connectivity between solute sources and streamflow generating zones in

the catchment (Basu et al., 2010; Bende-Michl et al., 2013).

2.4 | Spatial distributions of C–Q relationships
and links to catchment attributes

2.4.1 | Hierarchical clustering of catchment
attributes

To understand how C–Q relationships varied among catchments with

similar attributes (i.e., research question 3), we first clustered catchments

into groups using 53 numerical and categorical catchment attributes

from the original CAMELS dataset that likely link to C–Q relationships

(Table S2). We also calculated the mean surface water temperature and

pH from the chemistry dataset (Section 2.1). We clustered catchments

using an agglomerative hierarchical clustering analysis. Prior to cluster-

ing, we imputed the few missing continuous values (�1% of all values)

using the expectation–maximization algorithm on five bootstrapped

samples of the incomplete data with the ‘Amelia’ R package (Honaker

et al., 2011; v. 1.8.0). We then created the dissimilarity matrix for the

mixed variable types using the ‘daisy’ function in the ‘cluster’ package
(Maechler et al., 2021; v. 2.1.2) in R using Gower's (1971) general dis-

similarity coefficient. Here, the dissimilarity between two rows is based

on the weighted mean of the contributions of each variable. We per-

formed the clustering analysis using Ward's (1963) clustering criterion

via the ‘hclust’ function in base R. Finally, we selected the optimal num-

ber of clusters using the elbow curve method (Thorndike, 1953).

2.4.2 | Statistics for differences in C–Q
relationships across clusters

Continuing with our approach for research question 3, we conducted chi-

square tests of independence to examine differences in the distributions of

C–Q archetypes across the catchment clusters for each solute. To do this,

we used the ‘vcd’ R package (Meyer et al., 2021; v. 1.4–9), which conducts

the test of independence and visualizes the results as a mosaic plot (graphi-

cal representation of a contingency table showing proportions of data in

each group) with Pearson residual-based shadings and labels for visualizing

conditional independence (Zeileis et al., 2007). Residual values greater than

2 or less than�2 represent a significant departure from independence.

To test for differences in the C–Q relationship slope b and CV ratios

(only considering C–Q archetypes without thresholds, i.e., A, E and I)

across catchment clusters, we conducted non-parametric Kruskal–Wallis

rank sum tests. Following the rejection of the null hypothesis (α = 0.05),

we conducted pairwise comparisons of b and CV ratios between clus-

ters using two-sided Conover–Iman tests (α = 0.05/2). To control the

false discovery rate, we adjusted p-values using the Benjamini–

Hochberg procedure (Benjamini & Hochberg, 1995).

2.4.3 | Quantifying links between catchment
attributes and C–Q relationships

We evaluated the strength of the relationships between catchment

attributes and both C–Q archetype and C–Q slope b using random
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forests for feature importance. We also calculated Spearman's rank

correlation coefficients between catchment attributes and the C–Q

slope b for C–Q archetype classifications without thresholds (i.e., A, E

and I) for each solute. However, there were no obvious patterns

within solute groups (i.e., geogenic, transitional, and biogenic) in terms

of common important attributes or categories of attributes

(e.g., climate, hydrology, land cover, etc.) for predicting C–Q arche-

types or slope b. As such, we do not discuss these results extensively,

and all detailed methods and results have been moved to Supporting

Information.

3 | RESULTS

3.1 | C–Q responses with thresholds were
relatively rare

C–Q archetypes were dominated by responses with no thresholds

(C–Q archetypes A, E and I; Figure 1), representing 79%–100% of

solute-specific archetypes. We also considered two alternate seg-

mented C–Q archetypes for both models A and I where post-

threshold slopes were non-zero (not constant; Figure S3); however,

these alternate segmented archetypes comprised only 2% of all C–

Q responses. Thus, we aggregated these alternate segmented arche-

types into the corresponding A and I C–Q archetypes, and do not

discuss these further.

Accordingly, segmented C–Q archetypes (archetypes i.e., B, C,

D, F, G and H) were relatively rare, comprising only 8% of C–Q

responses for Al, NO3 and Si, and a maximum of 19% and 21% for Ca

and DOC, respectively. Geogenic solutes (Ca, Mg, Na and Si)

accounted for the majority (56%) of threshold responses. For three of

the four geogenic solutes, Ca, Mg and Na, and two transitional sol-

utes, Cl and SO4, constant–dilution C–Q archetype F occurred more

frequently than other segmented responses (6%–13% of models for

each solute). For the geogenic solute, Si, the most common seg-

mented C–Q archetype was enrichment–dilution C–Q model C (4% of

the catchments). For the transitional solute, K, dilution–enrichment

segmented C–Q archetype G occurred most frequently (5% of catch-

ments). For three biogenic solutes, Al, DOC and NO3, enrichment-

constant segmented C–Q archetype B occurred more frequently than

other segmented responses (4%–10% of all C–Q archetypes for each

solute).

Flow-exceedance probabilities (i.e., 100 � streamflow percentile)

associated with threshold onset in segmented C–Q archetypes ranged

from 2% to 98% with a median flow-exceedance probability of 32%

(i.e., above average streamflow) across all solutes (Figure S4;

Table S3). In other words, most solutes were dominated by thresholds

that occurred at flows greater than median flow. Specifically, 57% to

100% of threshold responses depending on solute occurred at flows

greater than median flow. The only exception was SO4, which had

one threshold that occurred above and another below median flow.

None of the catchments had more than one solute with a threshold

C–Q response.

3.2 | C–Q responses

3.2.1 | Geogenic solutes (Ca, Mg, Na and Si)

Geogenic solutes tended to be dominated or co-dominated by dilution

C–Q responses. For Ca, Mg and Na, dilution archetype I occurred in

66%–70% of catchments (Figure 1; Tables S4 and S5). Si, on the other

hand, was co-dominated by dilution archetype I and constant

archetype E, which occurred in 43% and 40% of catchments, respec-

tively. C–Q slope b values (for C–Q archetypes A, E and I only;

Figure 2a,d; Table S6) corroborated these patterns, specifically that

geogenic solutes were dominated by dilution C–Q responses (negative

b values). However, dilution responses were relatively weak. Ca, Mg

and Na had median b values of �0.13 (Ca and Mg) to �0.12

(Na) across all catchments, though the interquartile ranges (IQR; range

from the first to the third quartile) remained negative. The median b for

Si was even less negative (�0.03), and the IQR spanned zero (�0.11 to

0.01). In addition to their dilution C–Q responses, the geogenic solutes

were exported chemostatically (CV ratio <0.7 when considering C–Q

archetypes A, E and I only) in 95% to 100% of catchments depending

on solute, with median CV ratios of 0.19, 0.19, 0.20 and 0.15 for Ca,

Mg, Na and Si, respectively (Figure 2b,d; Table S6).

3.2.2 | Transitional solutes (Cl, K and SO4)

C–Q responses for K and SO4 were co-dominated by constant C–Q

archetype E and dilution archetype I, whereas Cl was dominated by

dilution archetype I in 57% of catchments (Figure 1; Tables S4 and

S5). Only 31% of catchments had constant archetype E responses for

Cl. Correspondingly, the median C–Q slope b value for Cl (�0.09) was

slightly more negative than b values for K and SO4 (�0.03 and � 0.06,

respectively; for C–Q archetypes A, E and I only; Figure 2a,d;

Table S6). Reflecting the dominance of dilution archetype I for Cl, the

IQR did not span zero (�0.16 to �0.03), but it did for K and SO4 (K:

�0.10 to 0.01; SO4: �0.14 to 0.03). Like geogenic solutes, all three

transitional solutes were exported chemostatically in 86%–93% of

catchments depending on solute, with median CV ratios of 0.29, 0.22

and 0.30 for Cl, K and SO4, respectively (Figure 2b,d; Table S6).

3.2.3 | Biogenic solutes (Al, DOC, DON and NO3)

In contrast to geogenic and transitional solutes, biogenic solutes were

dominated by C–Q archetype E or enrichment archetype A or both.

Constant archetype E was dominant for DON and NO3, occurring in

57% and 48% of catchments, respectively. The second most common

response for DON and NO3 was enrichment archetype A (40% and

35% of catchments, respectively). Al and DOC responses were most fre-

quently enrichment archetype A (51% and 48%, respectively), though a

large proportion of catchments had constant archetype E responses for

these solutes (42% and 31%, respectively). Reflecting the shift to either

constant or enrichment C–Q responses, the median b values were all
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positive, with a minimum of 0.06 for DON and a maximum of 0.25 for

Al (for C–Q archetypes A, E and I only; Figure 2a,d; Table S6). NO3 was

the only biogenic solute with an IQR that spanned zero (�0.03 to 0.21).

Generally, biogenic solutes shifted towards constant and enrichment C–

Q archetypes and positive b values relative to geogenic and transitional

solutes. However, only two of the solutes, NO3 and Al, had IQRs for CV

ratios that spanned 0.7 (third quartile: 0.73 and 1.01, respectively, when

considering C–Q archetypes A, E and I only) and were exported chemo-

dynamically in 29% and 44% of catchments, respectively (Figure 2b,d;

Table S6). The remaining biogenic solutes, DOC and DON, both had

median CV ratios of 0.33 and were exported chemodynamically in only

9% and 13% of catchments, respectively.

3.3 | Hierarchical clustering of study catchments

Clustering the catchments using CAMELS attributes (see text in Sup-

porting Information) resulted in five distinct clusters generally

F IGURE 2 For concentration (C)–
discharge (Q) relationship archetypes
without thresholds (A, E, I; Figure 1):
(a) the distributions of slope b of the C–Q
relationship and number of catchments in
parentheses; (b) the ratio of the
coefficients of variation (CV) for C and
Q. The horizontal dashed line at 0.7
represents the threshold for chemostatic

(CV ratio <0.7) and chemodynamic
(CV ratio >0.7) responses. The CV ratio
axis was limited to values between 0 and
3 for visual clarity, and thus 4 CV ratios
>3 are not shown (Cl = 3.3, 3.6;
Mg = 4.4; SO4 = 3.5). Violin plots
(shaded regions) represent the mirrored
density distribution of the values.
Boxplots within the violin plots represent
the median and interquartile range.
(c) Example figure to guide interpretation
of plots in (d). (d) Slope b versus the CV
ratio to visualize export regimes. Vertical
error bars represent 95% credible
intervals for b. The bounds in the upper
and lower left areas of plots were defined
solely by CVQ and b (not CVC), and have
been derived from the mean and
standard deviation of Q from all data
(Musolff et al., 2015). The CV ratio axis
was also limited to values between 0 and
3 for visual clarity.
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F IGURE 3 Legend on next page.
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segregated by geographic location (Figure 3; see Figure S5 for elbow

plot used to determine the optimal cluster number).

3.4 | Linking geographic location to C–Q
responses

3.4.1 | Geogenic solutes (Ca, Mg, Na and Si)

Most departures from typical export behaviour for geogenic solutes

occurred in the first three clusters located in the central and eastern

USA, with the most divergent responses occurring in cluster

3 (Figures 4b and S7). Further, most departures occurred for

dilution-dominated Ca and Mg. In general, cluster 3 had the highest

proportion of threshold responses across all clusters (24%; 120 of

497 C–Q archetypes in cluster 3). Of the 120 threshold responses

in cluster 3, 64% of these were for geogenic solutes, accounting for

33% of all geogenic C–Q archetypes in cluster 3. For example, Ca

and Mg had fewer dilution archetype I responses (Pearson residuals

[PR]: �2.9 and � 2.4 for Ca and Mg, respectively; PR values greater

than 2 or less than �2 represent a significant departure from inde-

pendence), more enrichment-dilution archetype Cs (PR: 3.6 and 2.5,

respectively), and constant-dilution archetype Fs (PR: 3.6 and 5.2).

Mg also had more constant archetype E responses than expected

(PR: 2.0). Similar to Ca and Mg, Na had more constant-dilution

archetype F responses in cluster 3 (PR: 4.1). For Ca, Mg and Si, the

highest median b occurred in cluster 3 (�0.07, �0.11 and 0.00,

respectively; Tables S6 and S7). For Si, cluster 3 was the only clus-

ter where the median b was not negative. The median CV ratio for

all geogenic solutes across all clusters was <0.7 (Figure S2;

Table S6).

3.4.2 | Transitional solutes (Cl, K and SO4)

Most departures from typical export behaviour for transitional solutes

also occurred in the first three clusters. Most of the departures were

for SO4, many of which reflected shifts in Ca and Mg export behav-

iour. For example, in cluster 1, SO4 had a larger proportion of constant

C–Q archetype E (PR: 2.6; Figures 4b and S7) and fewer dilution

archetype I responses (PR: �2.7). Consequently, SO4 had the highest

(and only positive) median b in cluster 1 when considering C–Q arche-

types without thresholds (i.e., A, E and I; Figure 4d; Tables S4 and S5).

In cluster 2, like Mg, SO4 had fewer constant-dilution archetype Fs

(PR: �2.4). Median b values for SO4 were second highest in cluster

2, continuing an east-to-west trend in decreasing median b values for

SO4 where the most negative median b occurred in cluster 5 (though

the median was only significantly different than the median in cluster

1; Tables S6 and S7). Like geogenic solutes, cluster 3 had the most

departures from normal for transitional solutes. And, like Ca and Mg,

SO4 had more than expected enrichment-dilution archetype C (PR:

3.1) and constant-dilution archetype F responses (PR: 4.1). Conse-

quently, SO4 had fewer than expected constant archetype E

responses (PR: �2.2). Further, as was the case for Ca, Mg and Si, K

had the highest median b in cluster 3 (�0.01). Conversely, in adjacent

cluster 4, the most negative median b value occurred for K, similar to

Ca, Mg and Na.

3.4.3 | Biogenic solutes (Al, DOC, DON and NO3)

In general, no meaningful departures from typical export behav-

iour occurred for DON. For Al, DOC and NO3, departures

occurred across all clusters except cluster 2. Most of the depar-

tures were for NO3. For example, there were fewer enrichment

C–Q archetype A responses (PR: �2.1; Figures 4b and S7) and

more dilution archetype I behaviour (PR: 2.0) for NO3 in cluster

1. Correspondingly, median b values for NO3 (�0.04) were low-

est in cluster 1, and it was the only cluster where NO3 median

b values were negative (Figure 4d; Tables S6 and S7). In general,

there was an east-to-west trend in increasing median b values

for NO3 where the highest median b occurred in cluster 5 (0.26)

and was 1.7 times greater than the next highest median b value

for NO3 (cluster 3: 0.15). Conversely, the highest median b for

Al (0.63) occurred in cluster 1 and was 1.5 times greater than

the next highest median slope b value of 0.41 in cluster 5. For

DOC, the highest median b (0.20) occurred in cluster 4 and the

lowest in the adjacent cluster 3. Median CV ratios for biogenic

solutes also departed from typical values in a few clusters

(Figure S2; Tables S6 and S8). Cluster 3 had the only median CV

ratio <0.5 for NO3. Conversely, cluster 5 had the only median CV

ratio >0.5 for DOC, though the median was only significantly dif-

ferent from clusters 1 and 3 (Table S8). Cluster 5 also had the

only median CV ratio >1 for Al, but there were no significant sta-

tistical differences in median CV ratios across catchment

clusters.

F IGURE 3 (a) Study catchments coloured by cluster number determined from hierarchical clustering of CAMELS attributes (Table S2).
(b) Median z-scores (the number of standard deviations by which the median attribute value for a cluster of catchments is above or below the

mean attribute value across all clusters) for all numerical critical zone attributes. Each row of plots corresponds to a cluster of catchments in
(a) and the colour of each row title panel on the right corresponds to the cluster number shown in (a). The colour of each bar in the plots
corresponds to the general category of each attribute. The numbers in each plot indicate the 10 catchment attributes with the highest absolute
median z-score for each cluster of catchments, where 1 is the highest and 10 the lowest. Boxplots of the raw value ranges for each attribute in
each cluster are shown in Figure S6a. The distribution of catchments among levels of the categorical critical zone attributes (dom_land_cover,
geol_1st_class, geol_2nd_class, high_prec_timing and low_prec_timing; Table S2) used in the hierarchical clustering of catchments is shown in
Figure S6b.
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F IGURE 4 (a) Study catchments coloured by concentration (C)–discharge (Q) archetype for each solute. (b) Distributions of C–Q archetypes
across clusters shown in Figure 3a. Segmented C–Q relationships with thresholds are filled with diagonal lines. Numbers in parentheses are the
total number of catchments where C–Q models were fit for each cluster. (c) Study catchments coloured by the slope b of the C–Q relationship
for C–Q archetypes without thresholds (A, E, I; Figure 1) for each solute. (d) Distributions of slope b across clusters in (a). Boxplots represent the
median and interquartile range. Results of the chi-square tests of independence to test for differences in the distribution of C–Q archetypes
across catchment clusters are visualized in Figure S7. Results of Kruskal–Wallis rank sum tests and Conover–Iman tests of multiple comparisons
using rank sums to test for differences in the slope b across catchment clusters are in Table S7.
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3.5 | Linking catchment attributes to C–Q
responses

The most important catchment attributes for classifying C–Q arche-

types were unique to each solute. In other words, there were no obvi-

ous patterns within solute groups (i.e., geogenic, transitional and

biogenic) in terms of common important attributes or categories of

attributes (e.g., climate, hydrology, land cover, etc.) for predicting C–Q

archetypes (see Supporting Information and Figure S8). Similarly,

there were no obvious patterns for predicting slope b among solute

groups, as measured by random forest regression models and Spear-

man's rank correlations (Figure S8b and S9).

There were also no strong relationships between catchment size

and the chemostatic or chemodynamic export regime of solutes in this

study (Figure S10).

4 | DISCUSSION

4.1 | Threshold patterns in C–Q relationships are
rare and vary in their distribution across space and
solute

Threshold responses in C–Q relationships are important to under-

stand because they provide insight into different functional stages of

solute flux and can impact the accuracy of predictive models that are

needed to inform management strategies (Diamond & Cohen, 2018;

Pohle et al., 2021). Across catchments and solutes in this study,

threshold responses were rare, representing only 12% of responses

(233 of 1934) across our 276 catchments of the contiguous USA. Of

these responses, 56% occurred for geogenic solutes, and only 14% for

biogenic solutes. In a changing climate where increased frequency and

magnitude of storms are projected, increasing concentrations at some

Q threshold could present water quality challenges; however, such

post-threshold flushing patterns accounted for only 1% (24 of 1934)

of C–Q responses for solutes assessed in this study. When thresholds

were detected, they occurred at flows greater than median discharge

(Figure S4). Thus, our results contradict previous studies suggesting

that most threshold responses occur at median discharge (Diamond &

Cohen, 2018; Moatar et al., 2017), and are consistent with Marinos

et al. (2020) who found a range of discharges for NO3 C–Q threshold

responses in the Upper Mississippi River Basin, USA.

The frequency of solute threshold responses observed in this

study was on the lower end of what has been observed in western

Europe where researchers explored C–Q responses for multiple sol-

utes across a large number of catchments. In France, 46% of

catchment–solute combinations had threshold responses for C–Q

relationships (Moatar et al., 2017). The solute with the least number

of threshold responses, Si, still had threshold responses in 21% of the

observed catchments. However, Moatar et al. (2017) may have mises-

timated the frequency of threshold responses because they restricted

their search for C–Q threshold responses by fixing the changepoint of

their segmented regressions at median flows. In Germany where

researchers focused on biogenic solutes, 25% of catchment–solute C–

Q responses were threshold responses (Ebeling et al., 2021).

The lower frequency of threshold responses in this study as com-

pared to western Europe may result from differences in the distribu-

tion of land uses between the two datasets. Catchments in both

western European studies were frequently dominated by urban and

agricultural land uses, whereas the original CAMELS catchments were

intended to represent minimally disturbed landscapes. When others

have focused on catchments that are more intensively impacted by

agriculture in our cluster 3 region (Figure 3a), they found that NO3 C–

Q relationships frequently exhibited threshold responses as a result of

agricultural practices (Ma et al., 2022; Marinos et al., 2020). Specifi-

cally, nitrogen fertilization creates vertical nitrogen stratification in

agricultural soils where baseflows are sourced from lower-nitrogen

subsurface layers and event flows are primarily sourced from shallow

soils with higher nitrogen content (Ma et al., 2022). Tile drainage can

exacerbate the two-stage C–Q relationship by serving as a conduit for

shallow soil water with uniformly high nitrogen concentrations at

higher discharges (Cain et al., 2022; Ma et al., 2022; Marinos

et al., 2020).

The lower frequency of threshold responses in our study may also

relate to the number of paired C–Q samples for each site–solute rela-

tionship. In this study, catchments with detected threshold C–Q

relationships were characterized by more observations (median: 115;

IQR: 55–170) than catchments where no threshold response was

identified (median: 70; IQR: 35–154). The studies in France and

Germany limited their analyses to gauging stations with a minimum of

300 and 70 paired concentration and discharge observations, respec-

tively. Conversely, the minimum number of paired observations in our

study was set at 20 following Zarnetske et al. (2018). Thus, having

more samples at sites that capture the full range of solute dynamics

arising from variable seasonal or catchment wetness conditions (Burns

et al., 2019; Knapp et al., 2022) may allow us to more robustly charac-

terize any threshold patterns that exist.

Of the locations where we observed threshold C–Q responses,

cluster 3 in the central USA (Figure 3a) had the highest proportion of

threshold responses (24% of all responses in cluster 3). The majority

(67%) of the threshold responses in cluster 3 were constant–dilution

C–Q archetype F responses (Figure 1a), and Ca, Cl, Mg, Na and SO4

had C–Q archetype F responses in 10%–38% of cluster 3 catchments

depending on solute. In France where studied catchments were fre-

quently dominated by urbanization and agriculture, Ca, Mg and con-

ductivity exhibited the same threshold response in �25% of

catchments (Moatar et al., 2017). Despite targeting minimally dis-

turbed catchments, the dominant land use in >50% of CAMELS-Chem

catchments in cluster 3 (38 of 67) was a mixture of cropland and natu-

ral vegetation or just croplands (Figure 3b). Of the solute–catchment

C–Q responses in cluster 3 that were constant–dilution archetype F,

70% (56 of 80) had the cropland mixture or just croplands as the dom-

inant land use. As such, the constant–dilution threshold response may

be typical of catchments dominated by agriculture. Additionally, clus-

ter 3 catchments are also underlain by unconsolidated, carbonate-rich

sediments (Figure 3b) and have a high probability of streamflow
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intermittency (Messager et al., 2021) with frequent low or no-flow

states and/or groundwater-driven contributions to streamflow. There-

fore, the constant–dilution threshold response may emerge from the

frequent occurrence of low streamflow that is dominated by deeper

groundwater enriched with base anions and cations from chemical

weathering at depth. As discharge increases, streamflow becomes

diluted by shallow groundwater from weathered unconsolidated

sediments and soils that are less enriched with geogenic anions and

cations. Tile drainage could also produce a similar effect in diluting

ion-rich deeper groundwater as discharge increases. Thus, given the

mixture of dominant land covers/land uses among catchments with

the constant–dilution C–Q responses, agricultural practices may not

be the only driver of these threshold behaviours, but they may amplify

them in the landscape.

4.2 | Dominant C–Q patterns differ across solute
groups

Dominant C–Q patterns differed across solute groups. Specifically,

geogenic solutes Ca, Mg, Na and Si largely exhibited weakly diluting

C–Q responses across the study catchments. The geogenic solutes

were also generally exported chemostatically (Figure 2b,d). These

results correspond to findings from previous studies that examined a

similarly broad range of catchment sizes across gradients in climate,

topography and geology (Godsey et al., 2009; Godsey et al., 2019;

Moatar et al., 2017). Specifically, C–Q responses for geogenic solutes

are weakly diluting to quasi-constant.

Transitional solutes, Cl, K and SO4, have both geologic and bio-

genic sources, and C–Q responses for these solutes were co-

dominated by dilution and constant responses. They were also

exported chemostatically across most catchments, though chemody-

namic responses occurred more frequently than for geogenic solutes,

possibly because these solutes have multiple sources including both

atmospheric deposition and subsurface rock dissolution. For example,

Cl and SO4 can be deposited atmospherically with rain (Berner &

Berner, 2012) and originate from weathering of silicates, shale and

evaporites (Diamond & Cohen, 2018; Mayer et al., 2010; Musolff

et al., 2015). K is a nutrient present in fertilizers, can leach from

organic matter, be deposited atmospherically and originate from sili-

cate weathering at depth (Alfaro et al., 2004; Likens et al., 1994; Sar-

dans & Peñuelas, 2015).

Conversely, biogenic solutes more frequently exhibited enrich-

ment C–Q responses, reflecting lower concentrations at baseflow

than at high flows as the shallow and deep hypothesis predicts. How-

ever, DON and especially NO3 had more constant and negative C–Q

responses than DOC or co-transported Al. Variability in NO3 C–Q-

responses within and among catchments has been demonstrated by

others (Moatar et al., 2017; e.g., Ebeling et al., 2021; Knapp

et al., 2022) and reflects the heterogeneity in vertical NO3 concentra-

tion gradients among catchments that result from the dynamic nature

of NO3 cycling and transport throughout the subsurface (Ebeling

et al., 2021). However, others have shown that variability of biogenic

solute (e.g., DOC, nutrients and metals) C–Q responses can result

from temporal variability in lateral hydrologic connectivity of the

stream to the adjacent riparian area/floodplain mediated by catch-

ment wetness (Boyer et al., 1997; Knapp et al., 2022; Vidon &

Hill, 2004). Catchment wetness interacts with the large lateral and

vertical heterogeneity in biogenic solute concentration, increasing

concentration variability relative to discharge variability and driving

the chemodynamic behaviour more frequently observed for solutes

associated with soils (Knapp et al., 2022). Alternatively, or likely in

addition to the vertical gradient of biogenic solutes in the subsurface,

the pulse-shunt concept (Raymond et al., 2016) may explain the

increased frequency of enrichment C–Q responses for more bio-

reactive solutes. Specifically, high-discharge events reduce the resi-

dence time of bio-reactive solutes, limiting the ability for biological

uptake of these solutes during larger hydrologic events.

4.3 | Data-driven, inductive analysis yields
hypotheses to be tested using deductive approaches

Our focus in this study has been on a data-driven analysis to evaluate

the occurrence and frequency of solute C–Q metrics and response

types, including threshold responses, across broad scales of the con-

tiguous USA and for solute types of diverse origin. While we observed

C–Q patterns across geographically segregated catchment clusters,

links between C–Q metrics (archetype and slope) and catchment and

hydroclimatic attributes were frequently weak (Figure S8). Previous

studies have also struggled to establish strong links (Ali et al., 2017;

Musolff et al., 2015; Pohle et al., 2021; Wymore et al., 2017) at conti-

nental and annual scales due to several likely confounding factors.

Seasonality and storm events affect C–Q relationships (Kincaid

et al., 2020; Knapp et al., 2020; Knapp et al., 2022; Minaudo

et al., 2019), and analyses of long-term low-frequency C–Q data can

fail to capture seasonal and event-induced dynamics (Fazekas

et al., 2020), especially when sample sizes are low. In addition to these

temporal dynamics, study of C–Q relationships can fail to capture the

influence of the spatial heterogeneity of solute source and discharge

generating zones as streams reflect the integrated catchment

response. Hot spots (McClain et al., 2003) or control points

(Bernhardt et al., 2017) that disproportionately contribute streamflow

and solute mass in heterogeneous catchments may not be well repre-

sented by catchment-average attributes. This study underscores the

need for derived catchment-scale attributes that better characterize

heterogeneity of solute sources—ideally developed from remote-

sensing resources (e.g., land cover/land use and soil quality; Obade &

Lal, 2013) to facilitate broad-scale ecohydrological studies. For exam-

ple, Ebeling et al. (2021) computed two metrics to characterize the lat-

eral component of source heterogeneity for diffuse NO3 and

phosphate sources in agricultural catchments using land cover maps

and horizontal flow distances. To quantify vertical source heterogene-

ity, Ebeling et al. (2021) calculated the mean of the ratio between

potential seepage NO3 concentrations and estimated groundwater

NO3 concentrations.
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Our inductive analysis can be used as a catalyst for ‘thought
experiments’ to refine research questions or identify hypotheses for

further testing using deductive investigative approaches at a regional

or site scale. We provide example hypotheses generated from our

study results.

4.3.1 | Hypothesis 1: Examine support for the
shallow and deep hypothesis

The shallow and deep hypothesis states that the vertical profile of solute

concentrations from shallow soils to deeper regolith and fractured bed-

rock shapes solute C–Q patterns in surface water at the catchment out-

let (Zhi et al., 2019; Zhi & Li, 2020). Examples of prior support for this

hypothesis include using a catchment-scale reactive transport model to

link modelled subsurface water chemistry with stream chemistry (Wen

et al., 2020; Zhi et al., 2019; Zhi & Li, 2020) and a direct comparison of

solute concentration profiles in the subsurface to C–Q patterns (Stewart,

Shanley, et al., 2022). Our study provides further support for the shallow

and deep hypothesis at a continental scale, given the transition from

dominantly dilution C–Q responses for geogenic solutes to dominantly

enrichment C–Q responses for biogenic solutes (Figure 1).

Given our study's support for the shallow and deep hypothesis

(Section 4.2), we hypothesize that spatial heterogeneity (or distribution)

of solutes in the vertical direction (from soils to bedrock) plays a more

dominant role than source distribution in the lateral, landscape direction

in determining C–Q patterns of surface water at the catchment outlet.

Testing this hypothesis in catchments selected from representative

geographic clusters using deductive approaches including process-

based models could enhance understanding of these gradients. Studies

in the vein of Zhi et al. (2019) and Stewart, Shanley, et al. (2022) could

be replicated at additional observatories with sufficient vertical and lat-

eral characterization across a range of geographic regions. If stream-

water chemistry can be used to infer the vertical distribution and con-

centration levels of solutes as Stewart, Shanley, et al. (2022) demon-

strated, this could be particularly useful because solute concentration

data in soil and rocks are arduous and expensive to obtain.

4.3.2 | Hypothesis 2: Evaluate shifting threshold
patterns in the face of disturbance

We hypothesize that threshold patterns will become more common

for nutrients and bio-reactive solutes (e.g., carbon, nitrogen and phos-

phorus) with a changing climate. Given the observed nonstationarity

in climate across the contiguous USA (Hirsch, 2011) and the regional

differences in projected hydrometeorological trends (Hayhoe

et al., 2007; IPCC, 2013), various regions may have been (and may

continue to be) exposed to different magnitudes, frequencies and

directionality of hydrologic drivers. Where winter snowfall turns to

rain and snow retention declines, the role of snow in mediating water

budgets, vegetation and fire (and their interactions) may change in

profound ways (Gergel et al., 2017; Siirila-Woodburn et al., 2021).

Threshold patterns observed for the CAMELS-Chem C–Q record

(1924–2020) may reflect catchment-specific transitions occurring

within this period from dry to wet conditions (Knapp et al., 2022) or

from dominantly biogeochemical processes to hydrologically domi-

nated conditions (Musolff et al., 2015; Underwood et al., 2017). Addi-

tionally, aspects of catchment structure may be important in

mediating the balance of hydrological and biogeochemical processes

to govern stream-water chemistry dynamics at the catchment scale

(Underwood et al., 2023) and contribute to system resilience in the

face of disturbance. In a more deductive approach to investigation,

data-driven methods (e.g., Bayesian hierarchical models) could be

employed to test our hypothesis and identify shifting threshold posi-

tions by season, or by decade. Additionally, process-based models

could facilitate a sensitivity analysis to estimate the water-budget

effects from fire and changing snow storage and to quantify feed-

backs between catchment structure and disturbance.

4.3.3 | Hypothesis 3: Examine role of hydrologic
drivers in disproportionate threshold responses in Great
Plains

We hypothesize that the combined physical structure and ecohydrologi-

cal characteristics (Figure 3b) of Great Plains (cluster 3) catchments may

lead to a greater frequency of threshold responses (C–Q archetypes C

and F) for geogenic solutes as compared with other geographic regions.

On an annualized basis, cluster 3 catchments have frequent low or no-

flow states and/or groundwater-driven contributions to streamflow

(Messager et al., 2021), and the seasonal distribution of streamflow is

different for this cluster than other clusters (Figure 3b) with higher dis-

charge during the late spring and summer following snowmelt (Scott

et al., 2019). Thus, the constant behaviour under low-flow conditions

may reflect the extended contribution of geogenic-rich groundwater.

Stream drying and intermittency may further contribute to high geogenic

concentrations under low-flow conditions through evapo-concentration

(Brooks & Lemon, 2007). Higher discharge in this region generally

reflects inputs of snowmelt-derived water less enriched with geogenic

solutes, resulting in the dilution behaviour observed under high-flow

conditions (Scott et al., 2019; Warix et al., 2021). More deductive stud-

ies of these catchments via process-based models and higher frequency

sampling may help determine the contribution of hydrologic drivers as

controls on the observed threshold responses for geogenic solutes.

5 | CONCLUSIONS

We analysed C–Q relationships, including threshold relationships, for

multiple solutes in minimally disturbed catchments across the contigu-

ous USA. Resulting patterns provide key insights into controls on sol-

ute export. First, C–Q relationships with threshold responses were

relatively rare compared with other studies in more intensively dis-

turbed catchments, potentially indicating that urbanization and agri-

cultural practices alter both solute pools and transport pathways and
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ultimately C–Q relationships. However, more frequently paired C–Q

observations that capture a larger range of flows at a given site may

reveal a greater occurrence of threshold patterns resulting from vari-

able seasonal or catchment wetness conditions (Burns et al., 2019;

Knapp et al., 2022). Second, and similar to others, we found solute-

specific ranges of C–Q metrics (Ebeling et al., 2021; Minaudo

et al., 2019; Moatar et al., 2017; Zarnetske et al., 2018) across the

contiguous USA, which support the shallow and deep hypothesis that

C–Q relationships tend to be shaped by vertical solute–source distri-

butions in catchments controlled by solute characteristics

(e.g., solubility) that determine mobilization, transport, retention and

ultimately solute export archetypes (Zhi et al., 2019; Zhi & Li, 2020).

Third, both geographic location and catchment and hydroclimatic

attributes contributed to C–Q relationship patterns for some solutes;

however, we struggled to establish strong links to attributes, likely

because the CAMELS attributes were developed at relatively coarse

scales that do not sufficiently characterize solute–source variability in

catchments. Fourth, our data-driven inductive approach revealed

emergent patterns across solute groupings and regions of the contigu-

ous USA. From process-guided interpretations of these patterns, we

generated hypotheses that can be tested—along with others gleaned

from patterns presented here—at discrete, representative catchments

using deductive approaches to better understand the processes

underlying solute export patterns. Finally, given these long-term C–Q

relationships are from minimally disturbed catchments, our findings

can be used as benchmarks for change in more disturbed catchments.
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