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ABSTRACT

Multiphase flow with boiling in parallel channels is often an efficient approach to managing heat
and energy distribution in several engineering systems. However, two-phase flow with heating in
parallel channels is prone to maldistribution, which can result in sub-optimal performance and, in
some cases, permanent damage to the system. This challenge requires accurate flow modeling in
parallel channels to mitigate or design against the adverse effect of two-phase flow maldistribution.
The nonlinear nature of the multiphase flow model can yield multiple solutions for the same
operating condition, creating significant challenges in predicting flow distribution. This study
addresses this challenge by applying the entropy balance analysis and the conservation of mass,
momentum, and energy to predict two-phase flow distribution in two thermally isolated parallel
channels with a numerical model. Our model predictions and experiments show that equally
distributed flow can become severely maldistributed with a decrease in flow rate, accompanied by
a significant (>30%) change in the entropy generation rate. We show that the entropy balance
analysis can distinguish between stable and unstable flows and identify the most feasible flow

distribution in thermally decoupled parallel channels.
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1 INTRODUCTION

Flow distribution is critical to multi-channel engineering systems, ranging from heat exchangers
and cooling systems to microfluidics and fuel cells. In multi-channel heat exchangers, flow
distribution influences the contribution of each channel to heat transfer and the overall heat transfer
efficiency [1],[2]. In microfluidics, precise flow distribution is vital for sample manipulation,
precise dosing, and efficient reactions [3]. In fuel cells, the distribution of the reactants among
parallel flow channels affects electrochemical efficiency and cell lifetime [4]. However, accurately
predicting and understanding two-phase flow distribution in parallel channels presents significant

challenges.

Several prior studies have been dedicated to analyzing and controlling flow distribution in parallel
channels. In our previous study [5], we showed that the thermophysical properties of the channel
walls can significantly influence flow maldistribution in two parallel channels. Zhang et al. [6]
presented a linear stability analysis to distinguish between stable and unstable flow distributions
in a multi-channel evaporator. In Zhang’s study, a feedback control strategy was developed to
maintain near-equal fluid distribution in a three-parallel channel assembly. Taitel et al. [7]
introduced finite disturbances to demonstrate the stability of transient flow distribution solutions.
Minzer et al. [8] also performed a linear stability analysis on static flow distribution solutions and
showed that flow distribution in a parallel channel assembly depends on the history of the inlet
flow rate. Patankar and Salamon [9] employed the thermal resistance model in developing a
thermo-fluidic model for a parallel channel heat sink. A linear stability analysis was applied to the
unsteady momentum balance equation to distinguish between stable and unstable flow solutions.

Jin [10] conducted a numerical analysis of two-phase flow distribution in interconnected parallel
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channels. Using coefficients representing degrees of thermal and flow coupling, results from Jin’s
model indicate that stronger flow and thermal coupling significantly mitigate two-phase flow

maldistribution in parallel channels.

We apply the mass, momentum, and energy balance equations to predict the flow distribution in a
heated parallel channel system. We also apply linear stability analysis to the unsteady momentum
balance equation [6]-[9]. However, in contrast to prior studies that assume channels with
homogenous flow, this study considers flow channels with regions consisting of single- and two-
phase flows. This study focuses on thermally independent parallel channels, and therefore, unlike
the previous models [9], [10], the effect of thermal coupling is absent in the numerical model

employed in this study.

Linear stability analysis was commonly applied in previous studies to determine the stability of
flow distributions. However, it provides no physical insight into why a stable flow distribution is
preferred over other “mathematically feasible” distributions. Also, linear stability analysis cannot
differentiate between multiple stable distributions corresponding to a given operating condition.
We address these limitations by considering thermodynamic aspects of flow distribution in a

parallel channel system.

Entropy balance provides valuable insight into the directionality and inefficiencies of physical
processes. Based on the second law of thermodynamics, entropy generation quantifies the rate at
which entropy is produced during a physical process. Previous studies have applied entropy
analysis in design optimization [11]-[14], flow regime identification [15], and the rederivation of
Kirchhoff’s law for electric circuits [16]. In this study, we utilize the entropy balance to show the
relationship between flow distribution and the entropy production rate in a parallel-channel

assembly. We use entropy generation to explain the preference for stable over unstable flow
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distributions. Based on the characteristics of entropy generation in the channels and the shared
headers of the channel assembly, we show that this approach can determine the most feasible stable
states in processes prone to flow maldistribution. Consequently, this approach could aid in

accurately modeling multiphase flow in several applications.
2 ANALYSIS

2.1 Physical System

This study focuses on a two-parallel-channel assembly sharing the inlet and exit headers (Figure
1), with dimensions similar to physical systems employed in previous related studies [8],[10],[17]-
[23]. Each channel branch has a valve and a long steel tube (30.5 cm) with steady and uniform
heating. Each valve has a flow coefficient, K,, (= 10~%), with an orifice opening, A, ranging from
0 to 100%. Subcooled water (working fluid) enters through the common inlet at T; (=19 °C) and
exits the parallel channel assembly as either liquid, liquid-vapor mixture, or superheated vapor at
P, (= 20 kPa), while heat is transferred from the heaters to the working fluid via the channel walls.
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Figure 1. Thermally decoupled parallel channels with a common inlet and exit.
2.2 Governing Equations
The evolution of multiphase flow within a heated channel (Figure 1) can be described using the
spatially-lumped form of the unsteady mass conservation (Eq. (1)), momentum balance (Eq. (2)),

and energy conservation equations for the fluid and the channel wall (Egs. (3) and (4)).
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The subscript “ph” denotes a fluid phase region, such as the subcooled liquid, liquid-vapor
mixture, and superheated vapor regions in the channel. For example, 1), is the mass flow rate in
each fluid phase region in the channel, with subscript i denoting inlet and e denoting exit of the
region. Similarly, ppn, Apn, Pprs Tpn, Hpn, and [y, are the average fluid density, enthalpy,
pressure, temperature, and convective heat transfer coefficient for each phase, respectively. Ty, ,n
and V,, ,;, describe the average temperature and volume of the channel wall corresponding to each
phase. Flow properties related to channel geometry, specifically L, p, and A, are the channel
length, wetted perimeter, and flow cross-sectional area, respectively. Thermophysical properties

of the channel wall p,, and ¢, ,, are the density and specific heat capacity, respectively.

The pressure drop, AP across a channel branch, consists of the valve (AP,), flow acceleration due

to vapor production (AF,), and frictional (AP;) components, as noted below.

AP = AP, + AP, + APg g + APy, (5)
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In this case, A, is the valve opening, K,, is the valve flow coefficient, p; and p, are the average
fluid density at the inlet and exit, respectively. The pressure drop for the liquid phase region APf ;4
is given by the Darcy-Weisbach equation [5] with friction factor obtained from a previous study
[24], while the pressure drop in the two-phase region (AP ;) is computed using the Lockhart and

Martinelli correlation [8].

The average heat transfer coefficient for the liquid phase region is given by

== ®)
where kj;q, Nuy;, and D are the average fluid thermal conductivity, Nusselt number, and channel
internal diameter, respectively. Nuy;, is calculated based on the assumption of a uniform heat flux
[25]. Similarly, the heat transfer coefficient in the two-phase flow region (Hy,) and the critical heat
flux (CHF) are computed using correlations from prior studies [26][27]. Apart from the
simplification of uniform channel heat flux, we adopt the exit pressure, P, as the reference pressure
for computing saturated fluid properties. Accordingly, the length of the liquid region in a channel,

liiq 1s calculated using inlet, exit, and saturated liquid enthalpies as follows.

_ hliq,sat(Pe)_hi
g = (00 o

The rate of heat loss to the ambient Q,,5s in Eq (4) is unique to a system, which is obtained from
experiments as a function of the temperature difference (T, — T ) and the outer surface area (4),

which is discussed later in model validation.



2.2.1 Static Model
The unsteady terms in Egs. (1) to (4) are eliminated for modeling steady operating conditions,
yielding steady forms of mass conservation, momentum balance, and energy conservation

equations for an entire channel assuming two-phase flow at the exit.

= 1, =1 (10)
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The steady rate of heat transfer into the fluid (Q;) may be expressed as follows.

Qi = m(h, — hy) (14)
The average wall temperature (T,,) and fluid temperature (T') for the channel is calculated using

the following averaging equations.
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Egs. (10) to (13) are solved by posing them as a constrained multivariable function Y (X) and
solving it iteratively to find the set of variables X* that minimizes Y. This minimization problem

is expressed as follows,

X7 =arg Fminslg%}(r)lspmax Y(X) (17

where X is a vector of variables updated in each iteration to minimize Y. F(X) is a vector of
functions describing the range in which X* can be found, F,,,;;, and FE,,,, are constraints describing

the lower and upper bounds of F(X), respectively. In the context of the current study, for a given



m, Qp and A, the steady flow characteristics in a heated channel are obtained by solving the

minimization problem with the following parameters and constraints.

X =[P, Q] (18)
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In the case of two parallel channels with heat loads Qp ; and Qj, ,, valve openings A,; and 4,,,

and flow rate m, the steady flow characteristics are obtained by solving the following minimization

problem.

X = [Pil Qi,li Q.i,Zlm;] (21)
my=1-— m (22)
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Here m] and m; are the flow fractions in the two channels-1 and 2, respectively. 4 is a linear

stability criterion, which has been used in prior studies [9][28]. 4 is the maximum real part of the
eigenvalues of the Jacobian matrix of % [:Zi] [28], and A4, 1s the upper bound for A. It is
2

generally understood that if 1 < 0, the static solution is stable, and if A > 0 the solution is unstable.

Therefore, to obtain only stable solutions A,,,4, = 0.

2.2.2 Transient Model
The unsteady momentum balance equation (Eq. (2)) applied to a two-parallel-channel system

allows for predicting the evolution of flow fractions, mj and m; in a two-channel system.
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Here A1 and A, are the cross-sectional areas of channels-1 and 2, respectively. P; is obtained

from the unsteady momentum balance equation for the whole channel assembly, as shown below.

Mesat—me _ 72 L ]- (Pi - P, - AP]) (26)

At J=lag;
Here At is the time step applied for numerically estimating dm /dt. Relative to the unsteady mass
and energy conservation equations, the unsteady momentum balance equation has the most
significant influence on the transient evolution of flow distribution in a two-channel system.

Hence, in this study, the transient model solves the main Egs. (10), (12), (13) and (25).

2.3 Flow Distribution and Entropy Generation

The static solution for different flow rates in a heated channel produces the characteristic ‘N’

curves (red and black lines), as shown in Figure 2.

Pressure Drop, AP (kPa)
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Flow Rate, 11 (g/s)

Figure 2. Steady flow distribution solutions in a two-parallel-channel assembly. Lines represent single-channel

characteristic pressure curves for channel-1 (C-1) of diameter 1.4 mm and heat load of 60 W, and channel-2 (C-2) of



diameter 1.5 mm and heat load of 60 W. The markers represent different mathematical solutions for flow

distributions (FD-1 to 3) corresponding to a total flow rate of m = 0.55 g/s.

For a given m in two parallel channels, the steady flow distributions m; and m, each lie on the
characteristic curve corresponding to channels-1 and 2 (C-1 and C-2), respectively. From Figure
2, a fixed m may yield multiple flow distributions (FD-1, 2, and 3). Linear stability analysis of
these solutions [6][8] would indicate that FD-1 and FD-3 are stable and feasible, while FD-2 is
unstable, leaving us with two stable, severely maldistributed flow solutions. In this study, we
conduct an entropy analysis of each solution to identify the most feasible solution from these

“stable” flow distributions.

Entropy analysis is an effective tool for determining the direction of physical processes. For a
process to be feasible, the rate of entropy generated (Sgen) during that process must exceed 0. In a
system of N parallel channels, the rate of entropy generation Sgen at steady state is given by the

following equation.

Sgen = m(se( Pe:he) - Si( Pi:Ti)) - ZN Q.i'j (27)

j=ir,.
The specific entropies at the inlet (s;) and outlet (s, ) of the channel assembly are functions of inlet
pressure P; and temperature T;, and exit pressure P, and specific enthalpy h,, respectively. Entropy
generated within a heated parallel channel assembly consists of entropy generated within each
channel flow stream, entropy generated from splitting the flow at the shared inlet, and entropy

generated from mixing the flow at the shared exit of the network. Entropy generated at the inlet is
typically negligible relative to other contributions [18]. Hence, in this simple arrangement, S'gen

can be expressed using the following equation.

5"gen = Sgen,mix + Z?Izls‘gen,j (28)
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Here S'gem ; is the entropy generation rate within each channel of the parallel network. .S"gen,ml-x is

the rate of entropy generated by heat transfer and expansion corresponding to fluid emerging from

each channel and mixing. For an adiabatic mixing process involving multiple streams with no heat

loss to the environment, Syep mix is a function of the flow distribution m; = # and the heat load

Qn,j

distribution Qj, ; = 7.
’ h

N
Sgen,mix =1m Smix — Z m;Se,j (Pe' he,j) (29)
j=1
Q.Iy;,th
he; = h; + Proe (30)

]

3 MODEL VALIDATION

3.1 Testbed Description

An experimental testbed consisting of a heated tank, gear pump, electronic valve, and evaporator
assembly was constructed (Figure 3) to validate the static and dynamic models. The evaporator
assembly consists of two capillary steel tubes with an internal diameter of 1.4 mm, outer diameter
of 3.18 mm, and length of 30.5 cm, wrapped with 125 W-rated rope heaters and an outer layer of
fiberglass insulation. Coupled to the ends of each steel tube are stop valves and flow meters
(Omega FLR-1008ST, £0.03 g/s). Four thermocouples (Omega T-type, +1°C) are attached to the
wall of each tube at equidistant locations to monitor the wall temperature. Pressure sensors (Omega
PX309-030A5V, £0.52kPa) and additional thermocouples are positioned at the inlet and exit of

the assembly to monitor flow properties at these locations.
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Figure 3. The experimental testbed to study static and dynamic characteristics of flow maldistribution.

Heat loss characterization for different mass flow rates is shown in Figure 4. For these experiments
conducted in a controlled lab environment, heat loss takes place to the ambient air at the
temperature T, (= 24 °C). The heat loss from the channel to the environment, expressed in non-
dimensional form in terms of Nusselt number, is Nu;,ss = 9.7 + 0.5. The range of flow rates tested

in the experiment corresponds to 270 + 23 < Rep, < 855 + 30.
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Figure 4. Heat loss characterization.
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3.2 Model Validation

In Figure 5(a), a heat load of 70 W is supplied to each channel while fluid is supplied through the
inlet header to the parallel channel assembly. Initially, at a high flow rate, the flow is uniformly

distributed among each channel (Figure 5(a-1)) while Sgen decreases with m (Figure 5(a-i1)).
However, as m is gradually decreased, the flow becomes severely maldistributed and .S"gen
increases. After the flow distribution becomes nonuniform, Sgen decreases with a subsequent

decrease in 7. The maximum uncertainties in flow fraction (r*) and entropy generation rate (S gen)

are 1+0.15 and 0.0025 W/K, respectively [29].
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Figure 5. Model validation for both static and dynamic conditions.

For the transient experiment, channel-1 and channel-2 are supplied with a steady heat load of 40
W and 60 W, respectively, while the assembly is initially supplied with a flow rate m of 1 g/s, as
shown in Figure 5(b-1). Like the static experiment, initially, the flow is equally distributed in the
two channels. However, when the 1 is abruptly decreased to 0.46 g/s, the flow becomes severely
maldistributed, with channel-1, in this case, receiving the bulk of the flow and channel-2
experiencing almost no flow, as shown in Figure 5(b-ii). For the transient experiment, the
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maximum uncertainty in the flow fraction (m*) is £0.11 [29]. The static and transient model

predictions agree with experimental data.

In the subsequent application of the model for predicting flow distribution at different conditions,
the channels are assumed to be perfectly insulated (Q;,5s = 0). For most cases, the model considers
a mass flow rate, m in the range 0 < m < 1.2 g/s and channel diameters, D such that 1.1 < D <

1.7 mm. The flow conditions analyzed in this study correspond to 0 < Rep, < 1125.
4 RESULTS

4.1 Entropy Generation in a Single-Channel

Flow boiling in a single channel is characterized by thermal and hydraulic resistances. These
resistances are sources of irreversibility and contribute significantly to entropy production within
the channel. Hydraulic resistance, primarily due to frictional forces, causes a pressure drop AP =
P; — P, as flow occurs through the channel. Likewise, heat transfer across a finite thermal
resistance requires a temperature difference, AT, = T,, — Tr between the wall and the fluid. Hence,
AP and AT,, represent the departure from ideal flow and heat transfer with no entropy generation.
Therefore, AP and AT, are indirect measures of irreversibility in flow and heat transfer processes,

respectively. Figure 6 shows the variation of AP, AT, and Sgen with m for different combinations

of heat loads (Q}) and channel internal diameter (D) for a single channel.
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Figure 6. Variation of single-channel steady-state flow properties with (a) varying m and Q,, at D = 1.4 mm, and (b)
varying ri and D at Q,, = 60 W.
A large m generally corresponds to single-phase liquid at the channel exit, indicated by a positive
slope of curves on the far right of each plot. As m decreases, the fluid at the channel exit becomes
a two-phase vapor-liquid mixture, resulting in a change in slope from positive to negative in the
AP versus m curves. The slope of the curves for other parameters remains positive but becomes
steeper, indicating rapid variation with changes in m. A very small m on the far left of each plot
corresponds to superheated vapor flow at the channel exit. In this region, the slope of the AP versus
m curves becomes positive again, while the other curves change from positive to a steep negative

slope due to the occurrence of critical heat flux (CHF) — a region corresponding to significantly

inefficient heat transfer or high AT,,, and consequently, large irreversibility (S gen)-

The variation in Q}, has no significant impact on AP for single-phase liquid at the channel exit, as
shown in Figure 6(a-ii). However, AP increases with an increase in Q,, when two-phase mixtures

and superheated vapor exit the channels. A change in D results in a significant variation in AP,

15



with AP increasing for smaller D in Figure 6(b-ii) due to a larger hydraulic resistance to flow. A
larger Q,, increases AT, and Sgen (Figure 6(a-1) and Figure 6(a-iii)), while variations in D have no
significant impact on AT, and Sgen (Figure 6(b-1) and Figure 6(b-iii)). Generally, both flow and
heat transfer irreversibilities contribute to entropy production to different extents. For the system
analyzed in this study, thermal irreversibilities are more significant than flow irreversibilities.
Consequently, for a fixed flow rate, m and heat load, Q, although a smaller diameter, D
corresponds to larger viscous losses, the corresponding increase in Sgen is not significant, as
evident in Figure 6(b-ii). On the other hand, an increase in Q,,, keeping 1 and D fixed corresponds
to higher AT,, and thermal irreversibilities with a noticeable rise in Sgen. The variation in AT,,, and

Sgen versus m are similar. These curves differ from the trends in AP versus 7, which also indicate

that the dominant contribution towards irreversibility (in this case) is associated with heat transfer

rather than flow characteristics.
4.2 Entropy Generation due to Adiabatic Mixing of Fluid
The fraction of flow and heat load in each channel influences S’gen,mix. Figure 7 describes the

variation of S gen,mix With the variation in the fraction m; = % of'the total flow rate m, and fraction

Q;‘l = % of the total heat load Q, on channel j of a parallel assembly with two channels.
g h

Therefore, for uniformly distributed flow and heating power, m; = Q;‘l ; =05.
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Figure 7. Variation of S'gen,mix with m; and Qf” form = 1g/s and Q,, = 100 W.
The .S.'gen'mix versus m; corresponding to a Q;‘L j 1s typically a nonlinear curve with a minimum at
m; = Q,*l ;- At this point, the thermal energy content of both fluid streams is the same, and hence,
there is no entropy generation due to the irreversible fluid-to-fluid heat transfer during the mixing
process. At points where m; < Q; js S'gen,mix increases with an increase in Q;‘l j» and at points
where m; > Q,*l js Sgen,mix increases with a decrease in Q;*l ;- This variation shows that the
maximum S'gen'mix occurs when the flow is highly maldistributed (far right or far left regions of

the plot), corresponding to large heat loads with low flow rates and low heat loads with high flow

rates.

4.3 Entropy Generation in a Two-channel Assembly
Figure 8 describes the variation in AP, AT,, 1, AT, ,, m1, M5, and Sgen with m, the combined flow
rate in the two-channel assembly. For large values of m, the flow is almost uniformly distributed

among the channels, AT, jand AT,,, are similar and constant. As m decreases, AP and S'gen

decrease as well.
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Figure 8. Effect of flow maldistribution on flow properties of a two parallel channel assembly with channel-1 (C-1)
characteristics corresponding to D; = 1.4 mm, Qh,l = 60 W, and A,; = 100 % and channel-2 (C-2) characteristics
corresponding to D, = 1.4 mm, Qp,, = 60 W, and A,, = 50 %.

With a further decrease in m, phase change in the working fluid triggers severe flow
maldistribution, characterized by increased flow in channel-2 (C-2) and decreased flow in channel-
1 (C-1). This results in a sharp increase in AT,,; and AP across the assembly but no significant
change in AT,, ,. The onset of CHF in channel-1 and increased hydraulic resistance in channel-2
causes S'gen to increase suddenly with the onset of flow maldistribution. After the onset of flow
maldistribution, the rising AT,, ; due to lower m causes a further increase in Sgen. The influence

of environmental heat loss, Q;pss ON Sgen can be seen in the significant difference in the slopes of

Sgen versus m in Figure 8 (Qloss = O) and Figure 5 (onss > O) in the maldistributed flow region.

4.4 Entropy Generation and Stability of a Flow Distribution

Typically, the predicted solutions for multiphase flow distribution in parallel channels are not
unique (e.g., Figure 2). Modeling could predict both stable and unstable flow distributions for the
same operating conditions. To address this aspect, as mentioned earlier, a stability criterion A

derived from the linear perturbation theory is often used to distinguish between stable (1 < 0)
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and unstable (1 > 0) flow distributions, as shown in Figures 9(a-i) and 9(b-i). To provide a
thermodynamic perspective on the stability of flow distributions, Figure 9 compares the S'gen for

stable flow distribution (black) with an unstable flow distribution profile (red).
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Figure 9. Comparison between stable (1 < 0) and unstable (4 > 0) flow distribution profiles for (a) D; = D, =
1.4mm, A, = Ay, = 100%, and Qp; = 50 W and Q,, = 70 W, and (b) D; =D, = 1.4 mm, Qp; = Qp, =
60 W, A,y = 100% and A, = 50%.

For the results in Figure 9(a), the channels have identical tube geometries and upstream valve
openings, with different heat loads of Qh,l =50W, and Qh,z = 70 W. For a large m, flow is
uniformly distributed and stable, while for small m, the predicted flow distributions can be either
severely maldistributed and stable or moderately nonuniform and unstable, as shown in Figures
9(a-1) and 9(a-ii). For the results in Figure 9(b), the channels have identical geometries and heat
loads, with different valve openings at A,; = 100% and A,, = 50%. Here, for large m, the flow
solutions are stable but expectedly unequally distributed due to the different valve settings.

However, for a small m, the model-predicted flow distribution can be either severely
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maldistributed and stable or uniform and unstable, as shown in Figures 9(b-1) and 9(b-ii). In both
cases involving slightly different operating conditions for the two parallel channels, Figures 9(a-
ii1) and 9(b-iii) show that the Sgen associated with the stable maldistributed flow solutions is
greater than the Sgen associated with the unstable flow predictions. This observation indicates that
the maldistributed flow is thermodynamically preferred over other model-predicted flow
distributions that satisfy the conservation laws and system constraints. Such severe

maldistributions have been observed to occur in experiments, as shown in Figure 5.

4.5 Entropy Generation and Severely Maldistributed Flow Solutions

Based on linear stability criteria shown in Figure 9, severely maldistributed flow solutions are
inherently stable but could be non-unique (Figure 2), which limits the application of the linear
stability analysis since it only distinguishes between stable and unstable flow distributions. For a
given operating condition in a parallel channel system consisting of two perfectly identical tubes,
the severely maldistributed flow solutions are mirror images of each other with the flow
magnitudes reversed. These solutions are also indistinguishable when considering extensive
thermodynamic properties (like Sgen) associated with each solution. However, with the
introduction of non-uniformities in the individual channels, as expected in practical applications,
the entropy balance analysis can evaluate the feasibility of each solution to determine the expected

final state during flow maldistribution.

Let us now consider a flow condition with severe maldistribution in a perfectly insulated
(Qloss =0-0; = Qh) two-channel system with the following steady flow settings: flow rate m,

identical heat loads (Qh,l = Qh,z =Qp/ 2), and identical internal diameters (D; = D). For these
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settings, the predicted flow maldistributions, m, <« m, and m,; > m,, are equivalent with respect

to the entropy generation, Sgen,0~ From Eq. (28),

Sgen,O = Sgen,l + Sgen,z + Sgen,mix (31)
where Sgen,l and Sgen,z are the rate of entropy generation in channels-1 and 2, respectively, and

S'gen,mix corresponds to entropy generation due to the mixing of the two fluid streams.

Introducing non-uniformities in the channel heat loads and dimensions while maintaining the same

total flow rate and total heat load will result in a change in the entropy generation rate by d.S gen,0-

The rate of entropy generation Sgen is then given by

Sgen = Sgen,o + dsgen,o (32)

where dS'gen,o can be expressed using the chain rule as follows.

. S ; as as as . s ;
_ 2 gen,j s gen] gen,j genmix * genmix s
dSgeno = ey (—amj drmi; + th AT dD; + 26 2 dQy +—am;_ dm]> (33)

The constant total mass flow and heat loads in the two channels would require the following.

th,1 = —th,z (35)
From the momentum balance equation, m; is a function of Qh_ j» D;, and the pressure drop AP, as

shown in Figures 6(a-ii) and 6(b-ii). Hence, dm; can be expressed using the chain rule as:

am]

. am]
dm; = AP dAP +

L dgy, + a’”f L dp (36)

Based on the trends shown in Figures 6 and 7, the characteristics of the partial derivative terms in

Egs. (33) and (36) for a severely maldistributed flow in the two parallel channels are summarized
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in Table 1. The magnitudes of the partial derivatives are later used to predict the entropy generation

rate and the expected flow distribution in the parallel channels.

Table 1. Effect of system parameters on S‘gen_ jand m;

Reference Figures m; =~ m m; =0
S em i
—I | 6(a-iii) or 6(b-iii) >0 <0
3Sem i
—I= 6(a-iii) >0 >0
0Qn,j
0Sen i
%}'f" 6(b-iii) ~0 ~0
0Sgenimix 7 <0 >0
a0;;
0 genmix 7 >0 <0
om;
om;
—7 6(a-ii) or 6(b-ii >0 >0
AP (a-ii) or 6(b-ii)
om;
— 6(a-i) ~0 <0
0Qy;
oy ‘
D, 6(b-i) >0 >0

4.5.1 Variation in Diameter
By introducing a minor non-uniformity in the channel geometry by varying one of the diameters,

Eq. (33) reduces to the following.

. N ; as ; as i
2 genj g..- gen,j ] genmix . x
dSgeno = X2, <_am,. iy + “3ed D, + e dm]> (37)

Egs. (34) and (36) give the following equation for the two channels.

iy iy _
?dAP + 6D1 le —_—

amz amz
- ( Sz dAP + 2 dDZ) (38)
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If D, is increased by an infinitesimal amount dD (dD; > 0) without changing D, (dD, = 0), and
the maldistributed flow is such that m; = m and m, = 0, then from Table 1, Eq. (38) is satisfied
only if dAP < 0, which implies dm, < 0 and dm; < 0 (from Eq. (36)), and consequently, dm, >
0 and dmj > 0 (Eq. (34)). Based on the magnitude of the partial derivatives in Table 1 for
channels-1 and 2, we deduce that all the terms in Eq. (37) are = 0 for this case, implying
dsgen'o > 0. Hence, with D; only slightly larger than D, and all other conditions being uniform
across channels-1 and 2, a maldistributed flow with m; = m and m, = 0 is favored since it

increases the irreversibility of the system (dS'gen,O > 0).

Alternately, if D, is decreased by dD (dD, < 0) without changing D; (dD; = 0), and the
maldistributed flow is such that m; = 0 and m, = m, then from Table 1, Eq. (38) is satisfied if
dAP > 0, which implies dm, > 0 and dmj > 0 (from Eq. (36)), and consequently dri, < 0 and
dm; < 0 (Eq. (34)). Again, based on the magnitude of the partial derivatives in Table 1, we expect
all the terms in Eq. (37) to be < 0, implying d.S"gen,O < 0. Hence, for these conditions wherein D,
is only slightly larger than D, with all other operational parameters being uniform across the

channels, a maldistributed flow such that m; ~ 0 and m, = m is unlikely.

Also, in this case, if D; and D, differ only by an infinitesimal amount dD, an equally distributed
two-phase flow (1, = m, =~ m/2) is unlikely. We know this from the previous section (4.5) since
the corresponding Sgen is much less than the Sgen for a severely maldistributed flow, which is

thermodynamically preferred. Even the stability criterion (4) derived from the linear perturbation
theory would indicate a maldistributed flow. Therefore, for the boiling-induced two-phase flow in

the parallel channels, where Qh,l = Qh,z and D, is only slightly larger than D,, S'gen corresponding

to my > m, is greater than Sgen corresponding to m,; << m,. Based on the magnitude of S'gen,
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m, > m, is thermodynamically more favorable and is likely the final maldistributed state. This
result implies that when flow maldistribution occurs during boiling-induced two-phase flow in a
two-parallel-channel assembly with slightly differing internal diameters and equal heat loads, the
flow is highly concentrated in the channel with the larger diameter while that with the smaller

diameter is starved of fluid. This outcome is corroborated in previous experimental studies [5],[30].

4.5.2 Variations in Heat Load
If non-uniformity is introduced by adding dQ;, to channel-1 and decreasing dQ;, from channel-2,
we have dQp, > 0 and dQ',*l’1 > 0, while dQ,, < 0 and dQ;_Z < 0. Eq. (33) reduces to the

following.

. s P
dSgeno = X2 (ﬂdm

s en, as en,mix as en,mix < %
- a0, + DL 4+ DI i) (39)

o J ; om; 7

In this case, Egs. (34) and (36) yield the following.

6m1 6m1 amz amz

Jan AP + 5 d Qs = ( oan AP + 252 dQy, 2) (40)

If the maldistributed flow is such that m; = 0 and m, = m, then from Table 1, Eq. (40) is satisfied
if dAP > 0, which implies dm, > 0 and dm; > 0 (using Eq. (36)), and consequently, dm; < 0
and dmj < 0. Based on Table 1, for j = 1 and 2, we can deduce that all the terms in Eq. (39) are

gen 2

genz th 2, which is < 0. However, from Table 1, | Sgenl >

> 0, except , implying
dsgen'o > 0. In essence, for two channels that are geometrically identical and differ only slightly

in the wall heat loads such that Qh,1 1s marginally larger than Q'h,z, the maldistributed flow with

my; = 0 and m, = m is favored since it tends to increase the system’s irreversibility.
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Alternately, if the maldistributed flow is such that m,; = m and m, = 0, we can go through a

similar reasoning to conclude that dm,; > 0 and dmj > 0, and consequently, dm, < 0 and

dm; < 0. More importantly, for these conditions, dS"gen,O <0.

Therefore, for a case of a severely maldistributed flow in a two parallel channel system with D; =
D, and Qh,l only slightly larger than Qh’z, the S"gen corresponding to m,; < m, is greater than the
Sgen corresponding to m, > m,. Even in this case, equally distributed flow (1, = m, = m/2)
corresponds to S'gen much less than that of a maldistributed flow. Therefore, based on the
magnitude of Sgen for these operating conditions, m; << m, is thermodynamically favored and is
likely the final maldistributed state. Hence, when flow maldistribution occurs in a two parallel
channel assembly with slightly varying heat loads and identical geometry, flow is concentrated in

the channel with a smaller heat load while the other channel with a larger heat load is starved of

the fluid. This outcome is also corroborated in previous studies [5],[30].

Based on the conclusions from both scenarios, Figure 10 compares the Sgen for maldistributed
flow states (black) that are likely to occur with the S‘gen for unlikely maldistributed flow states
(red). All operational conditions are identical except for the channel internal diameters in Figure
10(a) and channel heat loads in Figure 10(b). At higher total flow rates, the flow distribution is
uniform in the two channels (Figures 10(a-1) and 10(b-1)). The model predictions do not indicate
any deviations in Sgen (Figures 10(a-11) and 10(b-i1)). However, at lower flow rates, flow
maldistribution is expected. The expected flow distribution is a small flow rate in channel-1 and a
large flow rate in channel-2 since D; < D, and Qh,l > Qh,2~ The unlikely flow distribution is a
large flow fraction in channel-1 and a smaller flow fraction in channel-2. A comparison of S'gen

associated with both flow solutions (1, > m, and m; < m,) shows that the expected stable flow
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distribution is m,; <« m, since it corresponds to a larger Sgen than that associated with the unlikely
flow distribution m; > m,. Note that the stability criteria based on linear perturbation theory

would not differentiate between the two cases and indicate that both cases (11, > m, and m; <

m,) are stable (with 4 < 0).

Dy < Dy Qh.l > Qh,Q

YY) *-*il‘ki (a—1i)

Y

hﬁi&j'** ‘ (b*i)

’fE 0.5 AAARAL 0.5 A A0 A A

(AAAAAAAMA () DAAAAANA

0.16 5
0.14 %004 0.12 - %04
0.12) 0, 0.1/%, o
0.1 0.08 OO
0.08 000000 () ()6 €O 00 0O
0.6 0.8 1.0 0.6 0.8
m (g/s) m(g/s)

C-1 (Expected) A C-2 (Expected) #  Expected O
C-1 (Unlikely) & C-2 (Unlikely) +  Unlikely ©

Sgen (W/K)

Figure 10. Comparison between expected (likely) and unlikely maldistributed flow states in a two parallel channel
assembly for (a) D; = 1.3 mm, D, = 1.4 mm, and Q,; = Qn, = 60 W, and (b) @, = 60 W, Qn,z =50 W and

D; =D, = 1.4 mm.
4.5.3 Parametric Study of Diameter and Heat Load
Figure 11 compares S'gen for severely maldistributed flow solutions with m; > m, (blue) and

Dy
D1+D,

my < m, (red) as a function of Dy = (left) and Q;l = Q+(12 (right). In Figure 11(left),
h,2

Qn1

when Di < 0.5, model predictions with m, > m; have a larger Sgen compared to predictions with
m, > m,. Likewise, when Dy > 0.5, S'gen is larger when m; > m, than m; < m,. In Figure
11(right), S'gen generally increases with an increase in Q n1 due to higher irreversibility associated
with a larger heat load. With Q n1 < 0.5, model predictions with m; > 7, have a larger S'gen than
my <K m,. With Q?m > 0.5, a larger S'gen i1s associated with m,; < m, than m; > m,. In
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conclusion, the model-predicted flow distributions associated with a higher Sgen are

thermodynamically favored over other flow distributions satisfying the conservation laws.

0.15, + 1y << Moy 0.2 +7 my << Mo
\M\ ® Thy >> 1 ® My >> M
% 0.1 > 0.15 P
= . e ¥ hd
> ™ PO T
i) +
0056 ¢ * * . 01 «
045 0.5 055 045 0.5 0.55
Dy Qhi

Figure 11. Comparison between Sgen (at m = 0.5 g/s) corresponding to m,; < m, and m,; > m, maldistributed
flow solutions for different values of D; (at Qh,l = Qh‘z = 60Wand D, = 1.4 mm) and Q,*11 (atD; =D, =

1.4 mm and Qp,, = 60 W).

S CONCLUSION

This study analyzes the relationship between two-phase flow distribution and entropy generation
rate in a parallel channel assembly to address the challenge of a multiplicity of flow distribution
solutions associated with the same conditions. The nonlinearity of the characteristic curves
associated with two-phase flow in single channels indicates that stable theoretical solutions to flow
distribution in a multi-channel network are often non-unique. In order to solve this challenge,
previous studies applied linear stability analysis to determine the feasibility of a solution. However,
this approach provides no underlying reason why a flow distribution is preferred over others, and

it is limited in its applicability to distinguishing between stable and unstable flow distributions.

Therefore, we explore using an entropy analysis to predict the flow distribution in a two-parallel-
channel network. In this study, entropy generation in parallel channel networks is divided into
entropy generation within individual channels and entropy generation during the mixing of fluids

at the shared headers of the parallel channel network. The entropy analysis in a single channel with
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a constant heat load shows that hydraulic sources of irreversibility mainly drive entropy generation
before the occurrence of CHF, while thermal sources of irreversibility become dominant after the
occurrence of CHF. Also, entropy generation from mixing fluid at the shared exit is a function of
the disparity in the thermal content of each channel fluid stream. We show that entropy generation
in a severely maldistributed flow is greater than any unstable flow distribution under the same
conditions. Therefore, during phase change and within given system constraints, severely
maldistributed flow is thermodynamically favored over equally distributed flow or marginally
nonuniform flow. Although severely maldistributed flow solutions are stable, these solutions are
also non-unique. To distinguish between non-unique severely maldistributed flow solutions, we
apply the trends observed from flow analyses in a single channel and in the common header of the
parallel channel network to the differential equations describing the change in entropy generation
rate. Through this, we show that for flow maldistribution under certain conditions, the resulting
stable flow distribution corresponds to the highest rate of entropy generation, which is
thermodynamically favored and will occur spontaneously. This conclusion is fundamental in
understanding flow distribution in parallel channels and is applicable in optimizing the design of

robust thermal systems against flow maldistribution.

6 SUPPLEMENTARY MATERIAL

The supplementary material describes the iterative process for solving the flow equations in the

single and two-channel systems.
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