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ABSTRACT 

Multiphase flow with boiling in parallel channels is often an efficient approach to managing heat 

and energy distribution in several engineering systems. However, two-phase flow with heating in 

parallel channels is prone to maldistribution, which can result in sub-optimal performance and, in 

some cases, permanent damage to the system. This challenge requires accurate flow modeling in 

parallel channels to mitigate or design against the adverse effect of two-phase flow maldistribution. 

The nonlinear nature of the multiphase flow model can yield multiple solutions for the same 

operating condition, creating significant challenges in predicting flow distribution. This study 

addresses this challenge by applying the entropy balance analysis and the conservation of mass, 

momentum, and energy to predict two-phase flow distribution in two thermally isolated parallel 

channels with a numerical model. Our model predictions and experiments show that equally 

distributed flow can become severely maldistributed with a decrease in flow rate, accompanied by 

a significant (>30%) change in the entropy generation rate. We show that the entropy balance 

analysis can distinguish between stable and unstable flows and identify the most feasible flow 

distribution in thermally decoupled parallel channels. 



2 

 

Keywords: Entropy generation, flow distribution, parallel channels, stability,  two-phase flow. 

1 INTRODUCTION 

Flow distribution is critical to multi-channel engineering systems, ranging from heat exchangers 

and cooling systems to microfluidics and fuel cells. In multi-channel heat exchangers, flow 

distribution influences the contribution of each channel to heat transfer and the overall heat transfer 

efficiency [1],[2]. In microfluidics, precise flow distribution is vital for sample manipulation, 

precise dosing, and efficient reactions [3]. In fuel cells, the distribution of the reactants among 

parallel flow channels affects electrochemical efficiency and cell lifetime [4]. However, accurately 

predicting and understanding two-phase flow distribution in parallel channels presents significant 

challenges.   

Several prior studies have been dedicated to analyzing and controlling flow distribution in parallel 

channels. In our previous study [5], we showed that the thermophysical properties of the channel 

walls can significantly influence flow maldistribution in two parallel channels. Zhang et al. [6] 

presented a linear stability analysis to distinguish between stable and unstable flow distributions 

in a multi-channel evaporator. In Zhang’s study, a feedback control strategy was developed to 

maintain near-equal fluid distribution in a three-parallel channel assembly. Taitel et al. [7] 

introduced finite disturbances to demonstrate the stability of transient flow distribution solutions. 

Minzer et al. [8] also performed a linear stability analysis on static flow distribution solutions and 

showed that flow distribution in a parallel channel assembly depends on the history of the inlet 

flow rate. Patankar and Salamon [9] employed the thermal resistance model in developing a 

thermo-fluidic model for a parallel channel heat sink. A linear stability analysis was applied to the 

unsteady momentum balance equation to distinguish between stable and unstable flow solutions. 

Jin [10] conducted a numerical analysis of two-phase flow distribution in interconnected parallel 
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channels. Using coefficients representing degrees of thermal and flow coupling, results from Jin’s 

model indicate that stronger flow and thermal coupling significantly mitigate two-phase flow 

maldistribution in parallel channels. 

We apply the mass, momentum, and energy balance equations to predict the flow distribution in a 

heated parallel channel system. We also apply linear stability analysis to the unsteady momentum 

balance equation [6]-[9]. However, in contrast to prior studies that assume channels with 

homogenous flow, this study considers flow channels with regions consisting of single- and two-

phase flows. This study focuses on thermally independent parallel channels, and therefore, unlike 

the previous models [9], [10], the effect of thermal coupling is absent in the numerical model 

employed in this study.   

Linear stability analysis was commonly applied in previous studies to determine the stability of 

flow distributions. However, it provides no physical insight into why a stable flow distribution is 

preferred over other “mathematically feasible” distributions. Also, linear stability analysis cannot 

differentiate between multiple stable distributions corresponding to a given operating condition. 

We address these limitations by considering thermodynamic aspects of flow distribution in a 

parallel channel system.  

Entropy balance provides valuable insight into the directionality and inefficiencies of physical 

processes. Based on the second law of thermodynamics, entropy generation quantifies the rate at 

which entropy is produced during a physical process. Previous studies have applied entropy 

analysis in design optimization [11]–[14], flow regime identification [15], and the rederivation of 

Kirchhoff’s law for electric circuits [16]. In this study, we utilize the entropy balance to show the 

relationship between flow distribution and the entropy production rate in a parallel-channel 

assembly. We use entropy generation to explain the preference for stable over unstable flow 
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distributions. Based on the characteristics of entropy generation in the channels and the shared 

headers of the channel assembly, we show that this approach can determine the most feasible stable 

states in processes prone to flow maldistribution. Consequently, this approach could aid in 

accurately modeling multiphase flow in several applications.  

2 ANALYSIS 

2.1 Physical System 

This study focuses on a two-parallel-channel assembly sharing the inlet and exit headers (Figure 

1), with dimensions similar to physical systems employed in previous related studies [8],[10],[17]-

[23]. Each channel branch has a valve and a long steel tube (30.5 cm) with steady and uniform 

heating. Each valve has a flow coefficient, 𝐾𝑣 (= 10−8), with an orifice opening, 𝐴𝑣 ranging from 

0 to 100%. Subcooled water (working fluid) enters through the common inlet at 𝑇𝑖 (=19 ℃) and 

exits the parallel channel assembly as either liquid, liquid-vapor mixture, or superheated vapor at 

𝑃𝑒 (= 20 kPa), while heat is transferred from the heaters to the working fluid via the channel walls. 

 

Figure 1. Thermally decoupled parallel channels with a common inlet and exit.  

2.2 Governing Equations 

The evolution of multiphase flow within a heated channel (Figure 1) can be described using the 

spatially-lumped form of the unsteady mass conservation (Eq. (1)), momentum balance (Eq. (2)), 

and energy conservation equations for the fluid and the channel wall (Eqs. (3) and (4)).   
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𝐴𝑐𝑠 (𝐿
𝑑𝜌

𝑑𝑡
)

𝑝ℎ
= (𝑚̇𝑖 −  𝑚̇𝑒)𝑝ℎ                                                           (1) 

𝐿

𝐴𝑐𝑠

𝑑𝑚̇

𝑑𝑡
= 𝑃𝑖 − 𝑃𝑒 − ∆𝑃                                                       (2) 

𝐴𝑐𝑠

𝑑(𝜌ℎ − 𝑃)𝑝ℎ

𝑑𝑡
= 𝑝𝐻𝑝ℎ(𝑇𝑤 − 𝑇)𝑝ℎ + (

𝑚̇𝑖ℎ𝑖 − 𝑚̇𝑒ℎ𝑒

𝑙
)

𝑝ℎ
                                    (3) 

𝜌𝑤𝑐𝑝,𝑤 (𝑉𝑤

𝑑𝑇𝑤

𝑑𝑡
)

𝑝ℎ
= (𝑄̇ℎ + 𝑚̇𝑖ℎ𝑖 − 𝑚̇𝑒ℎ𝑒 − 𝑄̇𝑙𝑜𝑠𝑠 )

𝑝ℎ
                                          (4) 

The subscript “𝑝ℎ” denotes a fluid phase region, such as the subcooled liquid, liquid-vapor 

mixture, and superheated vapor regions in the channel. For example, 𝑚̇𝑝ℎ is the mass flow rate in 

each fluid phase region in the channel, with subscript 𝑖 denoting inlet and 𝑒 denoting exit of the 

region. Similarly, 𝜌𝑝ℎ, ℎ𝑝ℎ,  𝑃𝑝ℎ, 𝑇𝑝ℎ, 𝐻𝑝ℎ, and  𝑙𝑝ℎ are the average fluid density, enthalpy, 

pressure, temperature, and convective heat transfer coefficient for each phase, respectively. 𝑇𝑤,𝑝ℎ 

and 𝑉𝑤,𝑝ℎ describe the average temperature and volume of the channel wall corresponding to each 

phase. Flow properties related to channel geometry, specifically 𝐿, 𝑝, and 𝐴𝑐𝑠 are the channel 

length, wetted perimeter, and flow cross-sectional area, respectively. Thermophysical properties 

of the channel wall 𝜌𝑤 and 𝑐𝑝,𝑤 are the density and specific heat capacity, respectively.  

The pressure drop, Δ𝑃 across a channel branch, consists of the valve (∆𝑃𝑣), flow acceleration due 

to vapor production (∆𝑃𝑎), and frictional (∆𝑃𝑓) components, as noted below.  

 ∆𝑃 = ∆𝑃𝑣 + ∆𝑃𝑎 + ∆𝑃𝑓,𝑙𝑖𝑞 + ∆𝑃𝑓,𝑡𝑝 (5) 

 ∆𝑃𝑣 =
1

𝜌𝑖
(

𝑚̇

𝐾𝑣𝐴𝑣
)

2

  (6) 

 ∆𝑃𝑎 = 𝑚̇2 (
1

𝜌𝑒
−

1

𝜌𝑖
)  (7) 
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In this case, 𝐴𝑣 is the valve opening, 𝐾𝑣 is the valve flow coefficient, 𝜌𝑖 and 𝜌𝑒 are the average 

fluid density at the inlet and exit, respectively. The pressure drop for the liquid phase region ∆𝑃𝑓,𝑙𝑖𝑞  

is given by the Darcy-Weisbach equation [5] with friction factor obtained from a previous study 

[24], while the pressure drop in the two-phase region (∆𝑃𝑓,𝑡𝑝) is computed using the Lockhart and 

Martinelli correlation [8].  

The average heat transfer coefficient for the liquid phase region is given by 

 𝐻𝑙𝑖𝑞 =
𝑘𝑙𝑖𝑞 𝑁𝑢𝑙𝑖𝑞

𝐷
   (8) 

where 𝑘𝑙𝑖𝑞, 𝑁𝑢𝑙𝑖𝑞 and 𝐷 are the average fluid thermal conductivity, Nusselt number, and channel 

internal diameter, respectively. 𝑁𝑢𝑙𝑖𝑞 is calculated based on the assumption of a uniform heat flux 

[25]. Similarly, the heat transfer coefficient in the two-phase flow region (𝐻𝑡𝑝) and the critical heat 

flux (CHF) are computed using correlations from prior studies [26][27]. Apart from the 

simplification of uniform channel heat flux, we adopt the exit pressure, 𝑃𝑒 as the reference pressure 

for computing saturated fluid properties. Accordingly, the length of the liquid region in a channel, 

𝑙𝑙𝑖𝑞 is calculated using inlet, exit, and saturated liquid enthalpies as follows. 

 𝑙𝑙𝑖𝑞 = (
ℎ𝑙𝑖𝑞,𝑠𝑎𝑡(𝑃𝑒)−ℎ𝑖

ℎ𝑒−ℎ𝑖
) 𝐿   (9) 

The rate of heat loss to the ambient 𝑄̇𝑙𝑜𝑠𝑠 in Eq (4) is unique to a system, which is obtained from 

experiments as a function of the temperature difference (𝑇𝑤 − 𝑇∞) and the outer surface area (𝐴), 

which is discussed later in model validation.  



7 

 

2.2.1 Static Model 

The unsteady terms in Eqs. (1) to (4) are eliminated for modeling steady operating conditions, 

yielding steady forms of mass conservation, momentum balance, and energy conservation 

equations for an entire channel assuming two-phase flow at the exit.  

 𝑚̇𝑖 =  𝑚̇𝑒 = 𝑚̇ (10) 

 𝑃𝑖 − 𝑃𝑒 = ∆𝑃  (11) 

 𝑝[𝑙𝑙𝑖𝑞𝐻𝑙𝑖𝑞(𝑇𝑤 − 𝑇)𝑙𝑖𝑞 + 𝑙𝑡𝑝𝐻𝑡𝑝(𝑇𝑤 − 𝑇)𝑡𝑝] = 𝑚̇(ℎ𝑒 − ℎ𝑖) (12) 

 𝑚̇(ℎ𝑒 − ℎ𝑖) = 𝑄̇ℎ − 𝑄̇𝑙𝑜𝑠𝑠 (13) 

The steady rate of heat transfer into the fluid (𝑄̇𝑖) may be expressed as follows.   

 𝑄̇𝑖 =  𝑚̇(ℎ𝑒 − ℎ𝑖) (14) 

The average wall temperature (𝑇𝑤) and fluid temperature (𝑇) for the channel is calculated using 

the following averaging equations. 

 𝑇𝑤 = (𝑇𝑙𝑖𝑞 +
𝑄̇𝑖

𝐻𝑙𝑖𝑞𝑝𝐿
)

𝑙𝑙𝑖𝑞

𝐿
+ (𝑇𝑡𝑝 +

𝑄̇𝑖

𝐻𝑡𝑝𝑝𝐿
)

𝑙𝑡𝑝

𝐿
 (15) 

 𝑇 =
𝑇𝑙𝑖𝑞𝑙𝑙𝑖𝑞+𝑇𝑡𝑝𝑙𝑡𝑝

𝐿
 (16) 

Eqs. (10) to (13) are solved by posing them as a constrained multivariable function 𝑌(𝑋) and 

solving it iteratively to find the set of variables 𝑋∗ that minimizes 𝑌. This minimization problem 

is expressed as follows, 

 𝑋∗ = arg min
𝐹𝑚𝑖𝑛≤𝐹(𝑋)≤𝐹𝑚𝑎𝑥

𝑌(𝑋) (17) 

where 𝑋 is a vector of variables updated in each iteration to minimize 𝑌. 𝐹(𝑋) is a vector of 

functions describing the range in which 𝑋∗ can be found, 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥 are constraints describing 

the lower and upper bounds of 𝐹(𝑋), respectively. In the context of the current study, for a given  
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𝑚̇, 𝑄̇ℎ and 𝐴𝑣, the steady flow characteristics in a heated channel are obtained by solving the 

minimization problem with the following parameters and constraints.  

 𝑋 = [𝑃𝑖, 𝑄̇𝑖] (18) 

 𝑌 = (|
𝑃𝑖−𝑃𝑒−∆𝑃

∆𝑃
| + |

𝑄̇ℎ−𝑄̇𝑖−𝑄̇𝑙𝑜𝑠𝑠

𝑄̇𝑙𝑜𝑠𝑠
|) (19) 

 𝑃𝑖 ≥ 𝑃𝑒 , 𝑄̇𝑖 ≤ 𝑄̇ℎ, 𝑌 ≤ 10−4 (20) 

In the case of two parallel channels with heat loads 𝑄ℎ,1 and 𝑄ℎ,2, valve openings 𝐴𝑣1 and 𝐴𝑣2, 

and flow rate 𝑚̇, the steady flow characteristics are obtained by solving the following minimization 

problem.  

 𝑋 = [𝑃𝑖, 𝑄̇𝑖,1, 𝑄̇𝑖,2, 𝑚̇1
∗] (21) 

 𝑚̇2
∗ = 1 −  𝑚̇1

∗  (22) 

 𝑌 =
1

min(∆𝑃1,∆𝑃2)
∑ |𝑃𝑖 − 𝑃𝑒 − ∆𝑃𝑗|2

𝑗=1 +
1

min(𝑄̇𝑖,1,𝑄̇𝑖,2)
∑ |𝑄̇ℎ,𝑗 − 𝑄̇𝑖,𝑗 − 𝑄̇𝑙𝑜𝑠𝑠,𝑗|2

𝑗=1  (23) 

 𝑃𝑖 ≥ 𝑃𝑒 , 𝑄̇𝑖,1 ≤ 𝑄̇ℎ,1, 𝑄̇𝑖,2 ≤ 𝑄̇ℎ,2, 𝑚̇1
∗ ≤ 1, 𝜆 ≤ 𝜆𝑚𝑎𝑥 , 𝑌 ≤ 10−4 (24) 

Here 𝑚̇1
∗ and 𝑚̇2

∗  are the flow fractions in the two channels-1 and 2, respectively. 𝜆 is a linear 

stability criterion, which has been used in prior studies [9][28]. 𝜆 is the maximum real part of the 

eigenvalues of the Jacobian matrix of 
𝑑

𝑑𝑡
[
𝑚̇1

∗

𝑚̇2
∗] [28], and 𝜆𝑚𝑎𝑥 is the upper bound for 𝜆. It is 

generally understood that if 𝜆 < 0, the static solution is stable, and if 𝜆 > 0 the solution is unstable. 

Therefore, to obtain only stable solutions 𝜆𝑚𝑎𝑥 = 0.  

2.2.2 Transient Model 

The unsteady momentum balance equation (Eq. (2)) applied to a two-parallel-channel system 

allows for predicting the evolution of  flow fractions, 𝑚̇1
∗ and 𝑚̇2

∗  in a two-channel system.  



9 

 

 
𝑑

𝑑𝑡
[
𝑚̇1

∗

𝑚̇2
∗] =

𝐿

𝑚̇
[

1

𝐴𝑐𝑠,1
(𝑃𝑖 − 𝑃𝑒 − ∆𝑃1)

1

𝐴𝑐𝑠,2
(𝑃𝑖 − 𝑃𝑒 − ∆𝑃2)

] (25) 

Here 𝐴𝑐𝑠,1 and 𝐴𝑐𝑠,2 are the cross-sectional areas of channels-1 and 2, respectively. 𝑃𝑖 is obtained 

from the unsteady momentum balance equation for the whole channel assembly, as shown below.  

 
𝑚̇𝑡+∆𝑡−𝑚̇𝑡

∆𝑡
= ∑

𝐿

𝐴𝑐𝑠,𝑗
(𝑃𝑖 − 𝑃𝑒 − ∆𝑃𝑗)2

𝑗=1  (26) 

Here ∆𝑡 is the time step applied for numerically estimating 𝑑𝑚̇ 𝑑𝑡⁄ . Relative to the unsteady mass 

and energy conservation equations, the unsteady momentum balance equation has the most 

significant influence on the transient evolution of flow distribution in a two-channel system. 

Hence, in this study, the transient model solves the main Eqs. (10), (12), (13) and (25). 

2.3 Flow Distribution and Entropy Generation 

The static solution for different flow rates in a heated channel produces the characteristic ‘N’ 

curves (red and black lines), as shown in Figure 2.  

  

Figure 2. Steady flow distribution solutions in a two-parallel-channel assembly. Lines represent single-channel 

characteristic pressure curves for channel-1 (C-1) of diameter 1.4 mm and heat load of 60 W, and channel-2 (C-2) of 
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diameter 1.5 mm and heat load of 60 W. The markers represent different mathematical solutions for flow 

distributions (FD-1 to 3) corresponding to a total flow rate of 𝑚̇ = 0.55 g/s. 

For a given 𝑚̇ in two parallel channels, the steady flow distributions 𝑚̇1 and 𝑚̇2 each lie on the 

characteristic curve corresponding to channels-1 and 2 (C-1 and C-2), respectively. From Figure 

2, a fixed 𝑚̇ may yield multiple flow distributions (FD-1, 2, and 3). Linear stability analysis of 

these solutions [6][8] would indicate that FD-1 and FD-3 are stable and feasible, while FD-2 is 

unstable, leaving us with two stable, severely maldistributed flow solutions. In this study, we 

conduct an entropy analysis of each solution to identify the most feasible solution from these 

“stable” flow distributions.  

Entropy analysis is an effective tool for determining the direction of physical processes. For a 

process to be feasible, the rate of entropy generated (𝑆̇𝑔𝑒𝑛) during that process must exceed 0. In a 

system of 𝑁 parallel channels, the rate of entropy generation 𝑆̇𝑔𝑒𝑛 at steady state is given by the 

following equation.  

 𝑆̇𝑔𝑒𝑛 = 𝑚̇(𝑠𝑒( 𝑃𝑒 , ℎ𝑒) − 𝑠𝑖( 𝑃𝑖, 𝑇𝑖)) − ∑
𝑄̇𝑖,𝑗

𝑇𝑤,𝑗

𝑁
𝑗=1  (27) 

The specific entropies at the inlet (𝑠𝑖) and outlet (𝑠𝑒) of the channel assembly are functions of inlet 

pressure 𝑃𝑖 and temperature 𝑇𝑖, and exit pressure 𝑃𝑒 and specific enthalpy ℎ𝑒, respectively. Entropy 

generated within a heated parallel channel assembly consists of entropy generated within each 

channel flow stream, entropy generated from splitting the flow at the shared inlet, and entropy 

generated from mixing the flow at the shared exit of the network. Entropy generated at the inlet is 

typically negligible relative to other contributions [18]. Hence, in this simple arrangement, 𝑆̇𝑔𝑒𝑛 

can be expressed using the following equation.  

 𝑆̇𝑔𝑒𝑛 = 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 + ∑ 𝑆̇𝑔𝑒𝑛,𝑗
𝑁
𝑗=1  (28) 
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Here 𝑆̇𝑔𝑒𝑛,𝑗 is the entropy generation rate within each channel of the parallel network. 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 is 

the rate of entropy generated by heat transfer and expansion corresponding to fluid emerging from 

each channel and mixing. For an adiabatic mixing process involving multiple streams with no heat 

loss to the environment, 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 is a function of the flow distribution 𝑚̇𝑗
∗ =

𝑚̇𝑗

𝑚̇ 
 and the heat load 

distribution 𝑄̇ℎ,𝑗
∗ =

𝑄̇ℎ,𝑗

𝑄̇ℎ 
. 

𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 = 𝑚̇ (𝑠𝑚𝑖𝑥 − ∑ 𝑚̇𝑗
∗𝑠𝑒,𝑗(𝑃𝑒 , ℎ𝑒,𝑗)

𝑁

𝑗=1

)                                     (29) 

ℎ𝑒,𝑗 = ℎ𝑖 +
𝑄̇ℎ,𝑗

∗ 𝑄̇ℎ

𝑚̇𝑗
∗𝑚̇

                                                           (30) 

3 MODEL VALIDATION 

3.1 Testbed Description 

An experimental testbed consisting of a heated tank, gear pump, electronic valve, and evaporator 

assembly was constructed (Figure 3) to validate the static and dynamic models. The evaporator 

assembly consists of two capillary steel tubes with an internal diameter of 1.4 mm, outer diameter 

of 3.18 mm, and length of 30.5 cm, wrapped with  125 W-rated rope heaters and an outer layer of 

fiberglass insulation. Coupled to the ends of each steel tube are stop valves and flow meters 

(Omega FLR-1008ST, ±0.03 g s⁄ ). Four thermocouples (Omega T-type, ±1℃) are attached to the 

wall of each tube at equidistant locations to monitor the wall temperature. Pressure sensors (Omega 

PX309-030A5V, ±0.52kPa) and additional thermocouples are positioned at the inlet and exit of 

the assembly to monitor flow properties at these locations.  
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Figure 3. The experimental testbed to study static and dynamic characteristics of flow maldistribution. 

Heat loss characterization for different mass flow rates is shown in Figure 4. For these experiments 

conducted in a controlled lab environment, heat loss takes place to the ambient air at the 

temperature 𝑇∞ (= 24 ℃). The heat loss from the channel to the environment, expressed in non-

dimensional form in terms of Nusselt number, is 𝑁𝑢𝑙𝑜𝑠𝑠 = 9.7 ± 0.5. The range of flow rates tested 

in the experiment corresponds to 270 ± 23 ≤ 𝑅𝑒𝐷 ≤ 855 ± 30.    

 

Figure 4. Heat loss characterization. 
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3.2 Model Validation 

In Figure 5(a), a heat load of 70 W is supplied to each channel while fluid is supplied through the 

inlet header to the parallel channel assembly. Initially, at a high flow rate, the flow is uniformly 

distributed among each channel (Figure 5(a-i)) while 𝑆̇𝑔𝑒𝑛 decreases with 𝑚̇ (Figure 5(a-ii)). 

However, as 𝑚̇ is gradually decreased, the flow becomes severely maldistributed and 𝑆̇𝑔𝑒𝑛 

increases. After the flow distribution becomes nonuniform, 𝑆̇𝑔𝑒𝑛 decreases with a subsequent 

decrease in 𝑚̇. The maximum uncertainties in flow fraction (𝑚̇∗) and entropy generation rate (𝑆̇𝑔𝑒𝑛) 

are ±0.15 and 0.0025 W/K, respectively [29].    

 

Figure 5. Model validation for both static and dynamic conditions.  

For the transient experiment, channel-1 and channel-2 are supplied with a steady heat load of 40 

W and 60 W, respectively, while the assembly is initially supplied with a flow rate 𝑚̇ of 1 g s⁄ , as 

shown in Figure 5(b-i). Like the static experiment, initially, the flow is equally distributed in the 

two channels. However, when the 𝑚̇ is abruptly decreased to 0.46 g s⁄ , the flow becomes severely 

maldistributed, with channel-1, in this case, receiving the bulk of the flow and channel-2 

experiencing almost no flow, as shown in Figure 5(b-ii). For the transient experiment, the 
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maximum uncertainty in the flow fraction (𝑚̇∗) is ±0.11 [29]. The static and transient model 

predictions agree with experimental data.  

In the subsequent application of the model for predicting flow distribution at different conditions, 

the channels are assumed to be perfectly insulated (𝑄̇𝑙𝑜𝑠𝑠 = 0). For most cases, the model considers 

a mass flow rate, 𝑚̇ in the range 0 < 𝑚̇ < 1.2 g/s and channel diameters, 𝐷 such that 1.1 < 𝐷 <

1.7 mm. The flow conditions analyzed in this study correspond to 0 < 𝑅𝑒𝐷 < 1125.    

4 RESULTS 

4.1 Entropy Generation in a Single-Channel 

Flow boiling in a single channel is characterized by thermal and hydraulic resistances. These 

resistances are sources of irreversibility and contribute significantly to entropy production within 

the channel. Hydraulic resistance, primarily due to frictional forces, causes a pressure drop ∆𝑃 =

𝑃𝑖 − 𝑃𝑒 as flow occurs through the channel. Likewise, heat transfer across a finite thermal 

resistance requires a temperature difference, ∆𝑇𝑤 = 𝑇𝑤 − 𝑇𝑓 between the wall and the fluid. Hence, 

∆𝑃 and ∆𝑇𝑤 represent the departure from ideal flow and heat transfer with no entropy generation. 

Therefore, ∆𝑃 and ∆𝑇𝑤 are indirect measures of irreversibility in flow and heat transfer processes, 

respectively. Figure 6 shows the variation of  ∆𝑃, ∆𝑇𝑤, and 𝑆̇𝑔𝑒𝑛 with 𝑚̇ for different combinations 

of heat loads (𝑄̇ℎ) and channel internal diameter (𝐷) for a single channel.  
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Figure 6. Variation of single-channel steady-state flow properties with (a) varying 𝑚̇ and 𝑄̇ℎ at 𝐷 = 1.4 mm, and (b) 

varying 𝑚̇ and 𝐷 at 𝑄̇ℎ = 60 W.  

A large 𝑚̇ generally corresponds to single-phase liquid at the channel exit, indicated by a positive 

slope of curves on the far right of each plot. As 𝑚̇ decreases, the fluid at the channel exit becomes 

a two-phase vapor-liquid mixture, resulting in a change in slope from positive to negative in the 

∆𝑃 versus 𝑚̇ curves. The slope of the curves for other parameters remains positive but becomes 

steeper, indicating rapid variation with changes in 𝑚̇. A very small 𝑚̇ on the far left of each plot 

corresponds to superheated vapor flow at the channel exit. In this region, the slope of the ∆𝑃 versus 

𝑚̇ curves becomes positive again, while the other curves change from positive to a steep negative 

slope due to the occurrence of critical heat flux (CHF) – a region corresponding to significantly 

inefficient heat transfer or high Δ𝑇𝑤, and consequently, large irreversibility (𝑆̇𝑔𝑒𝑛).  

The variation in 𝑄̇ℎ has no significant impact on ∆𝑃 for single-phase liquid at the channel exit, as 

shown in Figure 6(a-ii). However, ∆𝑃  increases with an increase in 𝑄̇ℎ when two-phase mixtures 

and superheated vapor exit the channels. A change in 𝐷 results in a significant variation in ∆𝑃, 
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with ∆𝑃 increasing for smaller 𝐷 in Figure 6(b-ii) due to a larger hydraulic resistance to flow. A 

larger 𝑄̇ℎ increases ∆𝑇𝑤 and 𝑆̇𝑔𝑒𝑛 (Figure 6(a-i) and Figure 6(a-iii)), while variations in 𝐷 have no 

significant impact on ∆𝑇𝑤 and 𝑆̇𝑔𝑒𝑛 (Figure 6(b-i) and Figure 6(b-iii)). Generally, both flow and 

heat transfer irreversibilities contribute to entropy production to different extents. For the system 

analyzed in this study, thermal irreversibilities are more significant than flow irreversibilities. 

Consequently, for a fixed flow rate, 𝑚̇ and heat load, 𝑄̇ℎ although a smaller diameter, 𝐷 

corresponds to larger viscous losses, the corresponding increase in 𝑆̇𝑔𝑒𝑛 is not significant, as 

evident in Figure 6(b-ii). On the other hand, an increase in 𝑄̇ℎ, keeping 𝑚̇ and 𝐷 fixed corresponds 

to higher Δ𝑇𝑤 and thermal irreversibilities with a noticeable rise in 𝑆̇𝑔𝑒𝑛. The variation in ∆𝑇𝑤 and 

𝑆̇𝑔𝑒𝑛 versus 𝑚̇ are similar. These curves differ from the trends in ∆𝑃 versus 𝑚̇, which also indicate 

that the dominant contribution towards irreversibility (in this case) is associated with heat transfer 

rather than flow characteristics.  

4.2 Entropy Generation due to Adiabatic Mixing of Fluid 

The fraction of flow and heat load in each channel influences 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥. Figure 7 describes the 

variation of 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 with the variation in the fraction 𝑚̇𝑗
∗ =

𝑚̇𝑗

𝑚̇
 of the total flow rate 𝑚̇, and fraction 

𝑄̇ℎ,𝑗
∗ =

𝑄̇ℎ,𝑗

𝑄̇ℎ
 of the total heat load 𝑄̇ℎ on channel 𝑗 of a parallel assembly with two channels. 

Therefore, for uniformly distributed flow and heating power, 𝑚̇𝑗
∗ = 𝑄̇ℎ,𝑗

∗ = 0.5. 
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Figure 7. Variation of 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥  with 𝑚̇𝑗
∗ and 𝑄̇ℎ,𝑗

∗   for 𝑚̇ = 1 g/s  and 𝑄̇ℎ = 100 W. 

The 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 versus 𝑚𝑗
∗ corresponding to a 𝑄̇ℎ,𝑗

∗  is typically a nonlinear curve with a minimum at 

𝑚̇𝑗
∗ = 𝑄̇ℎ,𝑗

∗ . At this point, the thermal energy content of both fluid streams is the same, and hence, 

there is no entropy generation due to the irreversible fluid-to-fluid heat transfer during the mixing 

process. At points where 𝑚̇𝑗
∗ < 𝑄̇ℎ,𝑗

∗ , 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 increases with an increase in 𝑄̇ℎ,𝑗
∗ , and at points 

where 𝑚̇𝑗
∗ > 𝑄̇ℎ,𝑗

∗ , 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 increases with a decrease in 𝑄̇ℎ,𝑗
∗ . This variation shows that the 

maximum 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 occurs when the flow is highly maldistributed (far right or far left regions of 

the plot), corresponding to large heat loads with low flow rates and low heat loads with high flow 

rates. 

4.3 Entropy Generation in a Two-channel Assembly 

Figure 8 describes the variation in ∆𝑃, ∆𝑇𝑤,1, ∆𝑇𝑤,2, 𝑚̇1
∗, 𝑚̇2

∗ , and 𝑆̇𝑔𝑒𝑛 with 𝑚̇, the combined flow 

rate in the two-channel assembly. For large values of 𝑚̇, the flow is almost uniformly distributed 

among the channels, ∆𝑇𝑤,1and ∆𝑇𝑤,2 are similar and constant. As 𝑚̇ decreases, ∆𝑃 and 𝑆̇𝑔𝑒𝑛 

decrease as well.  
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Figure 8. Effect of flow maldistribution on flow properties of a two parallel channel assembly with channel-1 (C-1) 

characteristics corresponding to 𝐷1 = 1.4 mm, 𝑄̇ℎ,1 = 60 W, and 𝐴𝑣1 = 100 % and channel-2 (C-2) characteristics 

corresponding to 𝐷2 = 1.4 mm, 𝑄̇ℎ,2 = 60 W, and 𝐴𝑣2 = 50 %.  

With a further decrease in 𝑚̇, phase change in the working fluid triggers severe flow 

maldistribution, characterized by increased flow in channel-2 (C-2) and decreased flow in channel-

1 (C-1). This results in a sharp increase in ∆𝑇𝑤,1 and ∆𝑃 across the assembly but no significant 

change in ∆𝑇𝑤,2. The onset of CHF in channel-1 and increased hydraulic resistance in channel-2 

causes 𝑆̇𝑔𝑒𝑛 to increase suddenly with the onset of flow maldistribution. After the onset of flow 

maldistribution, the rising ∆𝑇𝑤,1 due to lower 𝑚̇ causes a further increase in 𝑆̇𝑔𝑒𝑛. The influence 

of environmental heat loss, 𝑄̇𝑙𝑜𝑠𝑠  on 𝑆̇𝑔𝑒𝑛 can be seen in the significant difference in the slopes of  

𝑆̇𝑔𝑒𝑛 versus 𝑚̇ in Figure 8  (𝑄̇𝑙𝑜𝑠𝑠 = 0) and Figure 5 (𝑄̇𝑙𝑜𝑠𝑠 > 0) in the maldistributed flow region.  

4.4 Entropy Generation and Stability of a Flow Distribution 

Typically, the predicted solutions for multiphase flow distribution in parallel channels are not 

unique (e.g., Figure 2). Modeling could predict both stable and unstable flow distributions for the 

same operating conditions. To address this aspect, as mentioned earlier, a stability criterion 𝜆 

derived  from the linear perturbation theory is often used to distinguish between stable (𝜆 < 0) 
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and unstable (𝜆 > 0) flow distributions, as shown in Figures 9(a-i) and 9(b-i). To provide a 

thermodynamic perspective on the stability of flow distributions, Figure 9 compares the 𝑆̇𝑔𝑒𝑛 for 

stable flow distribution (black) with an unstable flow distribution profile (red).  

  

Figure 9. Comparison between stable (𝜆 < 0) and unstable (𝜆 > 0) flow distribution profiles for (a) 𝐷1 = 𝐷2 =

1.4 mm, 𝐴𝑣1 = 𝐴𝑣2 = 100%, and 𝑄̇ℎ,1 = 50 W  and 𝑄̇ℎ,2 = 70 W, and (b) 𝐷1 = 𝐷2 = 1.4 mm, 𝑄̇ℎ,1 = 𝑄̇ℎ,2 =

60 𝑊, 𝐴𝑣1 = 100% and 𝐴𝑣2 = 50%.  

For the results in Figure 9(a), the channels have identical tube geometries and upstream valve 

openings, with different heat loads of 𝑄̇ℎ,1 = 50 W, and 𝑄̇ℎ,2 = 70 W. For a large 𝑚̇, flow is 

uniformly distributed and stable, while for small 𝑚̇, the predicted flow distributions can be either 

severely maldistributed and stable or moderately nonuniform and unstable, as shown in Figures 

9(a-i) and 9(a-ii). For the results in Figure 9(b), the channels have identical geometries and heat 

loads, with different valve openings at 𝐴𝑣1 = 100% and 𝐴𝑣2 = 50%. Here, for large 𝑚̇, the flow 

solutions are stable but expectedly unequally distributed due to the different valve settings. 

However, for a small 𝑚̇, the model-predicted flow distribution can be either severely 
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maldistributed and stable or uniform and unstable, as shown in Figures 9(b-i) and 9(b-ii). In both 

cases involving slightly different operating conditions for the two parallel channels, Figures 9(a-

iii) and 9(b-iii) show that the 𝑆̇𝑔𝑒𝑛 associated with the stable maldistributed flow solutions is 

greater than the 𝑆̇𝑔𝑒𝑛 associated with the unstable flow predictions. This observation indicates that 

the maldistributed flow is thermodynamically preferred over other model-predicted flow 

distributions that satisfy the conservation laws and system constraints. Such severe 

maldistributions have been observed to occur in experiments, as shown in Figure 5. 

4.5 Entropy Generation and Severely Maldistributed Flow Solutions 

Based on linear stability criteria shown in Figure 9, severely maldistributed flow solutions are 

inherently stable but could be non-unique (Figure 2), which limits the application of the linear 

stability analysis since it only distinguishes between stable and unstable flow distributions. For a 

given operating condition in a parallel channel system consisting of two perfectly identical tubes, 

the severely maldistributed flow solutions are mirror images of each other with the flow 

magnitudes reversed. These solutions are also indistinguishable when considering extensive 

thermodynamic properties (like 𝑆̇𝑔𝑒𝑛) associated with each solution. However, with the 

introduction of non-uniformities in the individual channels, as expected in practical applications, 

the entropy balance analysis can evaluate the feasibility of each solution to determine the expected 

final state during flow maldistribution. 

Let us now consider a flow condition with severe maldistribution in a perfectly insulated 

(𝑄̇𝑙𝑜𝑠𝑠 = 0 → 𝑄̇𝑖 = 𝑄̇ℎ) two-channel system with the following steady flow settings: flow rate 𝑚̇, 

identical heat loads (𝑄̇ℎ,1 = 𝑄̇ℎ,2 = 𝑄̇ℎ 2⁄ ), and identical internal diameters (𝐷1 = 𝐷2). For these 
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settings, the predicted flow maldistributions, 𝑚̇1 ≪ 𝑚̇2 and 𝑚̇1 ≫ 𝑚̇2, are equivalent with respect 

to the entropy generation, 𝑆̇𝑔𝑒𝑛,0. From Eq. (28),  

  𝑆̇𝑔𝑒𝑛,0 = 𝑆̇𝑔𝑒𝑛,1 + 𝑆̇𝑔𝑒𝑛,2 + 𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥  (31)  

where 𝑆̇𝑔𝑒𝑛,1 and 𝑆̇𝑔𝑒𝑛,2 are the rate of entropy generation in channels-1 and 2, respectively, and 

𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥 corresponds to entropy generation due to the mixing of the two fluid streams.  

Introducing non-uniformities in the channel heat loads and dimensions while maintaining the same 

total flow rate and total heat load will result in a change in the entropy generation rate by 𝑑𝑆̇𝑔𝑒𝑛,0. 

The rate of entropy generation 𝑆̇𝑔𝑒𝑛 is then given by 

  𝑆̇𝑔𝑒𝑛 = 𝑆̇𝑔𝑒𝑛,0 + 𝑑𝑆̇𝑔𝑒𝑛,0  (32) 

where 𝑑𝑆̇𝑔𝑒𝑛,0 can be expressed using the chain rule as follows.  

𝑑𝑆̇𝑔𝑒𝑛,0 = ∑ (
𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑚̇𝑗
𝑑𝑚̇𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑄̇ℎ,𝑗
𝑑𝑄̇ℎ,𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝐷𝑗
𝑑𝐷𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑄̇ℎ,𝑗
∗ 𝑑𝑄̇ℎ,𝑗

∗ +
𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑚̇𝑗
∗ 𝑑𝑚̇𝑗

∗)2
𝑗=1   (33) 

The constant total mass flow and heat loads in the two channels would require the following.  

 𝑑𝑚̇1 = −𝑑𝑚̇2 (34) 

 𝑑𝑄̇ℎ,1 = −𝑑𝑄̇ℎ,2 (35) 

From the momentum balance equation, 𝑚̇𝑗 is a function of 𝑄̇ℎ,𝑗, 𝐷𝑗 , and the pressure drop ∆𝑃, as 

shown in Figures 6(a-ii) and 6(b-ii). Hence, 𝑑𝑚̇𝑗 can be expressed using the chain rule as: 

 𝑑𝑚̇𝑗 =
𝜕𝑚̇𝑗

𝜕∆𝑃
𝑑∆𝑃 +

𝜕𝑚̇𝑗

𝜕𝑄̇ℎ,𝑗
𝑑𝑄̇ℎ,𝑗 +

𝜕𝑚̇𝑗

𝜕𝐷𝑗
𝑑𝐷𝑗  (36) 

Based on the trends shown in Figures 6 and 7, the characteristics of the partial derivative terms in 

Eqs. (33)  and (36)  for a severely maldistributed flow in the two parallel channels are summarized 
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in Table 1. The magnitudes of the partial derivatives are later used to predict the entropy generation 

rate and the expected flow distribution in the parallel channels.  

 

4.5.1 Variation in Diameter 

By introducing a minor non-uniformity in the channel geometry by varying one of the diameters, 

Eq. (33) reduces to the following.  

 𝑑𝑆̇𝑔𝑒𝑛,0 = ∑ (
𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑚̇𝑗
𝑑𝑚̇𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝐷𝑗
𝑑𝐷𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑚̇𝑗
∗ 𝑑𝑚̇𝑗

∗)2
𝑗=1  (37) 

Eqs. (34) and (36) give the following equation for the two channels.  

 
𝜕𝑚̇1

𝜕∆𝑃
𝑑∆𝑃 +

𝜕𝑚̇1

𝜕𝐷1
𝑑𝐷1 = − (

𝜕𝑚̇2

𝜕∆𝑃
𝑑∆𝑃 +

𝜕𝑚̇2

𝜕𝐷2
𝑑𝐷2) (38) 

Table 1. Effect of system parameters on 𝑆̇𝑔𝑒𝑛,𝑗 and  𝑚̇𝑗 

 Reference Figures 𝑚̇𝑗 ≈ 𝑚̇ 𝑚̇𝑗 ≈ 0 

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑚̇𝑗

 6(a-iii) or 6(b-iii) > 0 ≪ 0 

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑄̇ℎ,𝑗

 6(a-iii) > 0 > 0 

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝐷𝑗

 6(b-iii) ≈ 0 ≈ 0 

𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑄̇ℎ,𝑗
∗

 7 < 0 > 0 

𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑚̇𝑗
∗  7 > 0 < 0 

𝜕𝑚̇𝑗

𝜕Δ𝑃
 6(a-ii) or 6(b-ii) > 0 > 0 

𝜕𝑚̇𝑗

𝜕𝑄̇ℎ,𝑗

 6(a-i) ≈ 0 < 0 

𝜕𝑚̇𝑗

𝜕𝐷𝑗

 6(b-i) > 0 > 0 
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If 𝐷1 is increased by an infinitesimal amount 𝑑𝐷 (𝑑𝐷1 > 0) without changing 𝐷2 (𝑑𝐷2 = 0), and 

the maldistributed flow is such that 𝑚̇1 ≈ 𝑚̇ and 𝑚̇2 ≈ 0, then from Table 1, Eq. (38) is satisfied 

only if 𝑑∆𝑃 < 0, which implies 𝑑𝑚̇2 < 0 and 𝑑𝑚̇2
∗ < 0 (from Eq. (36)), and consequently, 𝑑𝑚̇1 >

0 and 𝑑𝑚̇1
∗ > 0 (Eq. (34)). Based on the magnitude of the partial derivatives in Table 1 for 

channels-1 and 2, we deduce that all the terms in Eq. (37) are ≥  0 for this case, implying  

𝑑𝑆̇𝑔𝑒𝑛,0 > 0. Hence, with 𝐷1 only slightly larger than 𝐷2 and all other conditions being uniform 

across channels-1 and 2, a maldistributed flow with 𝑚̇1 ≈ 𝑚̇ and 𝑚̇2 ≈ 0 is favored since it 

increases the irreversibility of the system (𝑑𝑆̇𝑔𝑒𝑛,0 > 0). 

Alternately, if 𝐷2 is decreased by 𝑑𝐷 (𝑑𝐷2 < 0) without changing 𝐷1 (𝑑𝐷1 = 0), and the 

maldistributed flow is such that 𝑚̇1 ≈ 0 and 𝑚̇2 ≈ 𝑚̇, then from Table 1, Eq. (38) is satisfied if  

𝑑∆𝑃 > 0, which implies 𝑑𝑚̇1 > 0 and 𝑑𝑚̇1
∗ > 0 (from Eq. (36)), and consequently 𝑑𝑚̇2 < 0 and 

𝑑𝑚̇2
∗ < 0 (Eq. (34)). Again, based on the magnitude of the partial derivatives in Table 1, we expect 

all the terms in Eq. (37) to be ≤  0, implying  𝑑𝑆̇𝑔𝑒𝑛,0 < 0. Hence, for these conditions wherein 𝐷1 

is only slightly larger than 𝐷2 with all other operational parameters being uniform across the 

channels, a maldistributed flow such that 𝑚̇1 ≈ 0 and 𝑚̇2 ≈ 𝑚̇ is unlikely.  

Also, in this case, if 𝐷1 and 𝐷2 differ only by an infinitesimal amount 𝑑𝐷, an equally distributed 

two-phase flow (𝑚̇1 ≈ 𝑚̇2 ≈ 𝑚̇/2) is unlikely. We know this from the previous section (4.5) since 

the corresponding 𝑆̇𝑔𝑒𝑛 is much less than the 𝑆̇𝑔𝑒𝑛 for a severely maldistributed flow, which is 

thermodynamically preferred. Even the stability criterion (𝜆) derived from the linear perturbation 

theory would indicate a maldistributed flow. Therefore, for the boiling-induced two-phase flow in 

the parallel channels, where 𝑄̇ℎ,1 = 𝑄̇ℎ,2 and 𝐷1 is only slightly larger than 𝐷2, 𝑆̇𝑔𝑒𝑛 corresponding 

to 𝑚̇1 ≫ 𝑚̇2 is greater than 𝑆̇𝑔𝑒𝑛 corresponding to 𝑚̇1 ≪ 𝑚̇2. Based on the magnitude of 𝑆̇𝑔𝑒𝑛, 



24 

 

𝑚̇1 ≫ 𝑚̇2 is thermodynamically more favorable and is likely the final maldistributed state. This 

result implies that when flow maldistribution occurs during boiling-induced two-phase flow in a 

two-parallel-channel assembly with slightly differing internal diameters and equal heat loads, the 

flow is highly concentrated in the channel with the larger diameter while that with the smaller 

diameter is starved of fluid. This outcome is corroborated in previous experimental studies [5],[30]. 

4.5.2 Variations in Heat Load 

If non-uniformity is introduced by adding 𝑑𝑄̇ℎ to channel-1 and decreasing 𝑑𝑄̇ℎ from channel-2, 

we have 𝑑𝑄̇ℎ,1 > 0 and 𝑑𝑄̇ℎ,1
∗ > 0, while 𝑑𝑄̇ℎ,2 < 0 and 𝑑𝑄̇ℎ,2

∗ < 0. Eq. (33) reduces to the 

following.  

 𝑑𝑆̇𝑔𝑒𝑛,0 = ∑ (
𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑚̇𝑗
𝑑𝑚̇𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑗

𝜕𝑄̇ℎ,𝑗
𝑑𝑄̇ℎ,𝑗 +

𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑄̇ℎ,𝑗
∗ 𝑑𝑄̇ℎ,𝑗

∗ +
𝜕𝑆̇𝑔𝑒𝑛,𝑚𝑖𝑥

𝜕𝑚̇𝑗
∗ 𝑑𝑚̇𝑗

∗)2
𝑗=1  (39) 

In this case, Eqs. (34) and (36) yield the following.  

 
𝜕𝑚̇1

𝜕∆𝑃
𝑑∆𝑃 +

𝜕𝑚̇1

𝜕𝑄̇ℎ,1
𝑑𝑄̇ℎ,1 = − (

𝜕𝑚̇2

𝜕∆𝑃
𝑑∆𝑃 +

𝜕𝑚̇2

𝜕𝑄̇ℎ,2
𝑑𝑄̇ℎ,2) (40) 

If the maldistributed flow is such that 𝑚̇1 ≈ 0 and 𝑚̇2 ≈ 𝑚̇, then from Table 1, Eq. (40) is satisfied 

if 𝑑∆𝑃 > 0, which implies 𝑑𝑚̇2 > 0 and 𝑑𝑚̇2
∗ > 0 (using Eq. (36)), and consequently, 𝑑𝑚̇1 < 0 

and 𝑑𝑚̇1
∗ < 0. Based on Table 1, for 𝑗 = 1 and 2, we can deduce that all the terms in Eq. (39) are 

> 0, except 
𝜕𝑆̇𝑔𝑒𝑛,2

𝜕𝑄̇ℎ,2
𝑑𝑄̇ℎ,2, which is < 0. However, from Table 1, |

𝜕𝑆̇𝑔𝑒𝑛,1

𝜕𝑚̇1
| ≫ |

𝜕𝑆̇𝑔𝑒𝑛,2

𝜕𝑄̇ℎ,2
|, implying 

𝑑𝑆̇𝑔𝑒𝑛,0 > 0. In essence, for two channels that are geometrically identical and differ only slightly 

in the wall heat loads such that 𝑄̇ℎ,1 is marginally larger than 𝑄̇ℎ,2, the maldistributed flow with 

𝑚̇1 ≈ 0 and 𝑚̇2 ≈ 𝑚̇ is favored since it tends to increase the system’s irreversibility.  
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Alternately, if the maldistributed flow is such that 𝑚̇1 ≈ 𝑚̇ and 𝑚̇2 ≈ 0, we can go through a 

similar reasoning to conclude that 𝑑𝑚̇1 > 0 and 𝑑𝑚̇1
∗ > 0, and consequently, 𝑑𝑚̇2 < 0 and 

𝑑𝑚̇2
∗ < 0. More importantly, for these conditions, 𝑑𝑆̇𝑔𝑒𝑛,0 < 0. 

Therefore, for a case of a severely maldistributed flow in a two parallel channel system with 𝐷1 =

𝐷2 and 𝑄̇ℎ,1 only slightly larger than 𝑄̇ℎ,2, the 𝑆̇𝑔𝑒𝑛 corresponding to 𝑚̇1 ≪ 𝑚̇2 is greater than the 

𝑆̇𝑔𝑒𝑛 corresponding to 𝑚̇1 ≫ 𝑚̇2. Even in this case, equally distributed flow (𝑚̇1 ≈ 𝑚̇2 ≈ 𝑚̇/2) 

corresponds to 𝑆̇𝑔𝑒𝑛 much less than that of a maldistributed flow. Therefore, based on the 

magnitude of 𝑆̇𝑔𝑒𝑛 for these operating conditions, 𝑚̇1 ≪ 𝑚̇2 is thermodynamically favored and is 

likely the final maldistributed state. Hence, when flow maldistribution occurs in a two parallel 

channel assembly with slightly varying heat loads and identical geometry, flow is concentrated in 

the channel with a smaller heat load while the other channel with a larger heat load is starved of 

the fluid. This outcome is also corroborated in previous studies [5],[30]. 

Based on the conclusions from both scenarios, Figure 10 compares the 𝑆̇𝑔𝑒𝑛 for maldistributed 

flow states (black) that are likely to occur with the 𝑆̇𝑔𝑒𝑛 for unlikely maldistributed flow states 

(red). All operational conditions are identical except for the channel internal diameters in Figure 

10(a) and channel heat loads in Figure 10(b). At higher total flow rates, the flow distribution is 

uniform in the two channels (Figures 10(a-i) and 10(b-i)). The model predictions do not indicate 

any deviations in 𝑆̇𝑔𝑒𝑛 (Figures 10(a-ii) and 10(b-ii)). However, at lower flow rates, flow 

maldistribution is expected. The expected flow distribution is a small flow rate in channel-1 and a 

large flow rate in channel-2 since 𝐷1 < 𝐷2 and 𝑄̇ℎ,1 > 𝑄̇ℎ,2. The unlikely flow distribution is a 

large flow fraction in channel-1 and a smaller flow fraction in channel-2. A comparison of 𝑆̇𝑔𝑒𝑛 

associated with both flow solutions (𝑚̇1 ≫ 𝑚̇2 and 𝑚̇1 ≪ 𝑚̇2) shows that the expected stable flow 
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distribution is 𝑚̇1 ≪ 𝑚̇2 since it corresponds to a larger 𝑆̇𝑔𝑒𝑛 than that associated with the unlikely 

flow distribution 𝑚̇1 ≫ 𝑚̇2. Note that the stability criteria based on linear perturbation theory 

would not differentiate between the two cases and indicate that both cases (𝑚̇1 ≫ 𝑚̇2 and 𝑚̇1 ≪

𝑚̇2) are stable (with 𝜆 < 0).  

  

Figure 10. Comparison between expected (likely) and unlikely maldistributed flow states in a two parallel channel 

assembly for (a) 𝐷1 = 1.3 mm,  𝐷2 = 1.4 mm, and 𝑄̇ℎ,1 = 𝑄̇ℎ,2 = 60 W, and (b) 𝑄̇ℎ,1 = 60 W, 𝑄̇ℎ,2 = 50 W and  

𝐷1 = 𝐷2 = 1.4 mm.  

4.5.3 Parametric Study of Diameter and Heat Load 

Figure 11 compares 𝑆̇𝑔𝑒𝑛 for severely maldistributed flow solutions with 𝑚̇1 ≫ 𝑚̇2 (blue) and 

𝑚̇1 ≪ 𝑚̇2 (red) as a function of  𝐷1
∗ =

𝐷1

𝐷1+𝐷2
 (left) and 𝑄̇ℎ,1

∗ =
𝑄̇ℎ,1

𝑄̇ℎ,1+𝑄̇ℎ,2
 (right). In Figure 11(left), 

when 𝐷1
∗ < 0.5, model predictions with 𝑚̇2 ≫ 𝑚̇1 have a larger 𝑆̇𝑔𝑒𝑛 compared to predictions with 

𝑚̇1 ≫ 𝑚̇2. Likewise, when 𝐷1
∗ > 0.5, 𝑆̇𝑔𝑒𝑛 is larger when 𝑚̇1 ≫ 𝑚̇2 than 𝑚̇1 ≪ 𝑚̇2. In Figure 

11(right), 𝑆̇𝑔𝑒𝑛 generally increases with an increase in 𝑄̇ℎ,1
∗  due to higher irreversibility associated 

with a larger heat load. With  𝑄̇ℎ,1
∗ < 0.5, model predictions with 𝑚̇1 ≫ 𝑚̇2 have a larger 𝑆̇𝑔𝑒𝑛 than 

𝑚̇1 ≪ 𝑚̇2. With 𝑄̇ℎ,1
∗ > 0.5, a larger 𝑆̇𝑔𝑒𝑛 is associated with 𝑚̇1 ≪ 𝑚̇2 than 𝑚̇1 ≫ 𝑚̇2. In 



27 

 

conclusion, the model-predicted flow distributions associated with a higher 𝑆̇𝑔𝑒𝑛 are 

thermodynamically favored over other flow distributions satisfying the conservation laws. 

  

Figure 11. Comparison between 𝑆̇𝑔𝑒𝑛  (at 𝑚̇ = 0.5 g/s) corresponding to 𝑚̇1 ≪ 𝑚̇2 and 𝑚̇1 ≫ 𝑚̇2 maldistributed 

flow solutions for different values of  𝐷1
∗ (at 𝑄̇ℎ,1 = 𝑄̇ℎ,2 = 60 W and 𝐷2 = 1.4 mm)  and 𝑄̇ℎ,1

∗  (at 𝐷1 = 𝐷2 =

1.4 mm and 𝑄̇ℎ,2 = 60 W).   

5 CONCLUSION 

This study analyzes the relationship between two-phase flow distribution and entropy generation 

rate in a parallel channel assembly to address the challenge of a multiplicity of flow distribution 

solutions associated with the same conditions. The nonlinearity of the characteristic curves 

associated with two-phase flow in single channels indicates that stable theoretical solutions to flow 

distribution in a multi-channel network are often non-unique. In order to solve this challenge, 

previous studies applied linear stability analysis to determine the feasibility of a solution. However, 

this approach provides no underlying reason why a flow distribution is preferred over others, and 

it is limited in its applicability to distinguishing between stable and unstable flow distributions.  

Therefore, we explore using an entropy analysis to predict the flow distribution in a two-parallel-

channel network. In this study, entropy generation in parallel channel networks is divided into 

entropy generation within individual channels and entropy generation during the mixing of fluids 

at the shared headers of the parallel channel network. The entropy analysis in a single channel with 
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a constant heat load shows that hydraulic sources of irreversibility mainly drive entropy generation 

before the occurrence of CHF, while thermal sources of irreversibility become dominant after the 

occurrence of CHF. Also, entropy generation from mixing fluid at the shared exit is a function of 

the disparity in the thermal content of each channel fluid stream. We show that entropy generation 

in a severely maldistributed flow is greater than any unstable flow distribution under the same 

conditions. Therefore, during phase change and within given system constraints, severely 

maldistributed flow is thermodynamically favored over equally distributed flow or marginally 

nonuniform flow. Although severely maldistributed flow solutions are stable, these solutions are 

also non-unique. To distinguish between non-unique severely maldistributed flow solutions, we 

apply the trends observed from flow analyses in a single channel and in the common header of the 

parallel channel network to the differential equations describing the change in entropy generation 

rate. Through this, we show that for flow maldistribution under certain conditions, the resulting 

stable flow distribution corresponds to the highest rate of entropy generation, which is 

thermodynamically favored and will occur spontaneously. This conclusion is fundamental in 

understanding flow distribution in parallel channels and is applicable in optimizing the design of 

robust thermal systems against flow maldistribution.  

6 SUPPLEMENTARY MATERIAL 

The supplementary material describes the iterative process for solving the flow equations in the 

single and two-channel systems.  
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