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Human-Aware Physical Human–Robot Collaborative

Transportation and Manipulation With Multiple

Aerial Robots
Guanrui Li , Graduate Student Member, IEEE, Xinyang Liu , and Giuseppe Loianno , Member, IEEE

Abstract—Human–robot interaction will play an essential role
in various industries and daily tasks, enabling robots to effectively
collaborate with humans and reduce physical workload. Most
existing approaches for physical human–robot interaction focus
on collaboration between a human and a single ground or aerial
robot. In recent years, very little progress has been made in this
research area when considering multiple aerial robots, which offer
increased versatility and mobility. This article presents a novel
approach for physical human–robot collaborative transportation
and manipulation of a cable-suspended payload with multiple
aerial robots. The proposed method enables smooth and intuitive
interaction between the transported objects and a human worker.
We address the inter-robots and inter-robot–human separation
during the operations by exploiting the internal redundancy of
the multirobot transportation system. The key elements of our ap-
proach are, first, a collaborative payload external wrench estimator
that does not rely on any force sensor; second, a 6-D admittance
controller for human–aerial–robot collaborative transportation
and manipulation; third, a human-aware force distribution that
exploits the internal system redundancy to guarantee the execution
of additional tasks such as inter-human–robot separation without
compromising the payload trajectory tracking or interaction qual-
ity. We validate our approach through extensive simulation and
real-world experiments. These include scenarios where the robot
team assists the human in transporting and manipulating a load, or
where the human helps the robot team navigate the environment.
We experimentally demonstrate for the first time, to the best of
authors’ knowledge that our approach enables a quadrotor team
to physically collaborate with a human in manipulating a payload
in all 6 degrees of freedom in collaborative human–robot trans-
portation and manipulation tasks.

Index Terms—Aerial robotics, physical human–robot interac-
tion (pHRI).

NOMENCLATURE

I, L, Bk World frame, payload frame, kth robot

frame.

mL,mk ∈ R Mass of payload, kth robot.
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xL,xk ∈ R
3 Position of payload, kth robot in I.

ẋL, ẍL ∈ R
3 Linear velocity, acceleration of payload in

I.

ẋk, ẍk ∈ R
3 Linear velocity, acceleration of kth robot in

I.

RL ∈ SO(3) Orientation of payload with respect to I.

Rk ∈ SO(3) Orientation of kth robot with respect to I.

Θk ∈ R
3 Vector of kth robot’s yaw, pitch, roll in I.

ΩL, Ω̇L ∈ R
3 Payload’s angular velocity, acceleration in

L.

Ωk, Ω̇k ∈ R
3 kth robot’s angular velocity, acceleration in

Bk.

JL,Jk ∈ R
3×3 Moment of inertia of payload, kth robot.

ξk ∈ S2 Unit vector from kth robot to attach point in

I.

ωk ∈ R
3, lk ∈ R Angular velocity, length of kth cable.

µk ∈ R Tension magnitude within the kth cable.

FH ,FL ∈ R
3 External human force, net force on payload

in I.

MH ∈ R
3 External human moment on payload in L.

ML ∈ R
3 Net moment on payload in L.

fk ∈ R Total thrust ofkth quadrotor.

Fk ∈ R
3 Control force on kth robot in I.

Mk ∈ R
3 Control moment on kth robot in Bk.

ρk ∈ R
3 kth attach point position in L.

pH ,patt,k ∈ R
3 Human position, kth attach point position in

I.

I. INTRODUCTION

A
S ENVISIONED in the Industry 4.0 revolution, human–

robot interaction will play an increasingly significant role

in future industries and daily life [1]. While most research

in human–robot interaction has concentrated on collaborations

between humans and ground robots, only a limited number

of approaches have been developed for aerial robots, with

the majority being confined to teleoperation. Unlike ground

robots, collaborative microaerial vehicles (MAVs) show addi-

tional flexibility and maneuverability due to their 3-D mobility

and compact size. Moreover, a team of collaborative MAVs can

provide increased adaptivity, resilience, and robustness during

a task or multiple simultaneous tasks compared to a single

aerial robot. For example, MAV teams can assist humans in

executing complex or dangerous tasks, including but not limited
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Fig. 1. Human operator collaborates with three quadrotors, transporting and manipulating a payload. On the left: The quadrotors are moving to keep a distance
from the human operator without affecting payload tracking. On the right: The aerial robot team is transporting the payload using the human operator’s interactive
force and moment as commands.

to inspection [2], [3], mapping [4], [5], environment interac-

tion [6], [7], surveillance [8], and autonomous transportation

and manipulation [9], [10]. Specifically, in autonomous aerial

transportation and manipulation, there are many possible usage

scenarios. For instance, in a postdisaster response task, a team

of aerial robots can cooperatively deliver emergency supplies

to designated rescue locations based on the first respondent’s

guidance. Alternatively, on construction sites, an aerial robot

team can cooperatively manipulate oversized construction ma-

terials with human workers to expedite the installation process

and reduce physical workload.

This article proposes a novel approach that enables a team

of aerial robots to transport and manipulate a cable-suspended

payload in physical collaboration with a human operator, as

depicted in Fig. 1. As discussed in [11], cable mechanisms

stand out compared to other existing solutions, such as simple

spherical joints, or robot arms [12], [13], because of their lighter

weight, lower costs, simpler design requirements, and zero-

actuation-energy consumption. Therefore, they are particularly

suited for size, weight, and power (SWaP) aerial platforms.

Cables also present a good balance among maneuverability,

manipulability, and safety for physical human–aerial–robots

collaboration compared to other solutions. For instance, sev-

eral solutions attach the robots directly to the payloads via

passive mechanisms like spherical joints [14], magnets [15] or

active mechanisms like grippers [16]. However, these mecha-

nisms offer reduced maneuverability and manipulability during

a manipulation or physical interaction task compared to cables.

Conversely, other complex actuated solutions based on robot

arms [17], [18], [19] can enhance maneuverability and flexi-

bility. However, this generally comes at the price of increased

system inertia and power, potentially compromising the opera-

tor’s safety. Therefore, compared to other existing solutions, we

believe that lightweight cable mechanisms can provide a good

tradeoff in terms of maneuverability, manipulability, and safety

while concurrently offering good flexibility to execute multiple

tasks.

We present an innovative control, planning, and estimation

framework that enables a human operator to physically collabo-

rate with a team of quadrotors for the transportation and manipu-

lation of a rigid-body payload in all 6 degrees of freedom (DoF).

A key contribution of this work is the exploitation of system

redundancy, allowing for secondary tasks, such as human-aware

human–robot interaction. Specifically, our approach ensures dis-

tancing between agents and the human operator during physical

collaboration, enabling effective human-aware interaction, as

depicted in Fig. 1 (left).

Existing approaches to human and aerial robot collaboration

have largely focused on single aerial robot interactions [18],

[20], [21]. When considering multiple aerial robots, teleop-

eration becomes a common solution [6], [22]. However, few

solutions exist for human physical interaction and collaboration

with several MAVs [23], [24]. However, the human operator’s

physical collaboration is limited to a 2-D horizontal plane.

Moreover, these approaches overlook the potential of exploiting

the additional DoF to enhance both the system’s awareness of

the human’s presence.

In summary, the contributions of this article are the following.

1) We propose a novel control method that enables a team

of quadrotors to manipulate a payload while exploiting

the system’s redundancy to achieve secondary tasks (e.g.,

maintaining distances from the human operator or ensur-

ing inter-robot separation). This solution facilitates the

physical interaction between the quadrotor team and a

human operator.

2) We introduce a collaborative external wrench estimator

that allows the robot team to collaboratively measure

an external human force input without relying on any
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external force sensors. In addition, we demonstrate that

this approach outperforms existing state-of-the-art solu-

tions.

3) We complement our control solution with a 6-DoF ad-

mittance controller, which utilizes the estimated human

wrench. It enables physical interaction between a human

operator and a team of aerial robots for collaborative

manipulation and transportation tasks.

4) We experimentally demonstrate for the first time, to the

best of authors’ knowledge that our approach enables a

quadrotor team to physically collaborate with a human

in manipulating a payload in all 6 DoF in collaborative

human–robot transportation and manipulation tasks.

The rest of this article is organized as follows. In Section II,

we review relevant literature on cooperative aerial manipulation

and physical human–robot interaction. In Section IV, we review

the nonlinear system dynamics, considering the external wrench

from a human operator. In Section V, we discuss the proposed

human-aware control framework that considers the nonlinear

system dynamics. Section VI details the state estimation strategy

and admittance control framework for intended human–aerial–

robot collaborative manipulation. Section VII presents real-

world experiment results validating the proposed framework.

Finally, Section IX concludes this article.

II. RELATED WORKS

A. Cooperative Aerial Manipulation

In the subsequent discussion, we focus on the existing related

works on control, planning, and estimation techniques for aerial

transportation and manipulation using suspended cables. This

focus arises from the distinct advantages that cable mechanisms

offer over other methods, as previously mentioned.

Past literature includes several control and estimation meth-

ods [11], [22], [25], [26] for autonomous aerial transportation

and manipulation using multiple aerial robots equipped with

cables. For example, several works [25], [26], [27], [28], [29]

proposed formation controllers for a team of MAVs to fly in

a desired formation when carrying the suspended-payload. The

carried payload is not modeled as an integrated part of the system

but as an external disturbance that each MAV controller tries to

compensate for. Therefore, it is expected that these solutions can

struggle to transport the payload to a given position. In [30], by

assuming the payload is a point-mass, the authors analyze the

full nonlinear dynamics of the system. Based on the dynamic

model, the authors design a geometric controller to transport the

payload to the desired position moving the quadrotor team to ac-

commodate the desired load motions. Moreover, the previously

mentioned methods [26], [27], [28], [30], treat the payload as

a point-mass, hence restricting the manipulation capabilities to

payload’s positional movements only, with no control over its

orientation.

Other approaches for autonomous aerial transportation and

manipulation rely on a leader–follower paradigm [31], [32],

[33], [34], [35]. The leader robot follows the desired trajectory,

whereas the followers maintain either a constant distance from

the leader [33], or adapt to forces exerted on them when tracking

their trajectory [14], [31]. However, these methods are subject

to error compounding failure since they rely on the leader as

a fundamental control unit for navigation. Furthermore, they

cannot accurately guarantee the payload’s transportation to the

desired location or manipulate its orientation.

Several works analyze the system’s complex nonlinear dy-

namics and mechanics and propose corresponding controllers

to control the payload’s pose in 6 DoF [36], [37], [38], [39]. For

example, the authors in [38] and [39] assume the system is in

a quasi-static state and analyze the corresponding static system

mechanics. A payload pose controller assigns the quadrotors’

desired position to manipulate the payload to the desired pose.

In [36] and [37], the complex nonlinear dynamics in the system

are thoroughly analyzed using Lagrangian mechanics. Lever-

aging this model, nonlinear geometric controllers enable the

payload to follow the desired pose trajectory. More recently,

several solutions propose optimal control strategies [40], [41].

Although all these works consider the payload a rigid body,

the redundant control DoF available in the system [42] are

not exploited to accommodate additional tasks like obstacle

avoidance or to ensure safety distance among agents.

Some recent literature starts to investigate this aspect [7], [22],

[43]. However, they are specifically designed for a team of three

or four quadrotors. Masone et al. [44] attempt to leverage system

redundancy for a team with an arbitrary number of aerial robots,

implementing an optimization formulation for the parallel robot

that exclusively optimizes the tension magnitude in the cables,

without considering cable directions. However, the methodol-

ogy presented in [44] does not provide clear instructions for

determining cable direction. Consequently, its applicability for

secondary tasks such as obstacle avoidance or spatial separation

from the human operator remains ambiguous. In this work, we

formulate a human-aware controller for any n ≥ 3 quadrotors

that exploit the additional system redundancy at the control

level, allowing the system to achieve some secondary tasks, such

as avoiding obstacles, inter-robot separation or keeping a safe

distance among robots and human operators.

However, since the abovementioned methods are designed

to control the payload’s pose explicitly, it is essential to have

a reasonable estimation of the payload’s states (i.e., pose and

twists) to be fed back into the controller to have a good tracking

performance of the payload’s pose. Some estimation approaches

can recover the payload pose in [22] and [45], but they rely on

GPS and, therefore, cannot be employed in indoor environments

or areas where the GPS signal is shadowed. Conversely, in our

previous work [11], we tackle the payload pose inference prob-

lem using onboard vision sensors and IMU to obtain closed-loop

control of the payload pose.

However, the proposed vision-based estimation method might

be subject to onboard visual-inertial odometry drift, leading

to some constant offset errors. Although such errors will not

affect the stability of the system, they will influence the task

performance. For instance, consider a scenario where the system

is required to transport a payload to a specific location, but due

to state estimation drift, there is a 1-m offset from the desired

destination. In such cases, as shown in this article, our proposed

method enables a local human operator to guide the system

and correct the payload to the desired pose, ensuring that the

payload is transported to the correct final destination.
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B. Physical Human–Robot Interaction (pHRI)

pHRI is a rapidly growing field in robotics, facilitating the

collaboration between humans and robots in various scenarios

such as manufacturing, healthcare, and service industry. Most

of the research in this field focuses on the collaboration be-

tween a single robot and a human. For instance, this includes

cooperative manipulation with a robot arm attached to a ground

wheeled base [46], [47], a fixed-base robot arm [48], a humanoid

robot [49], or an aerial robot with a manipulator [18], [20].

Past researchers’ works also present approaches like admittance

control [20], [50], compliance control, impedance control for

single-human–single-robot physical collaboration.

To increase payload capacity, the common strategies are either

deploying a more powerful robot or utilizing a team of robots.

The latter approach not only increases redundancy and provides

the potential for fault tolerance, but also brings in specialized

capabilities that enhance the team’s resilience and performance

compared to a single robot. However, employing a team of

robots demands effective coordination and collaboration across

estimation, planning, and control levels.

While multiple robot–human interactions with teleoperation

via haptic devices [51] or mixed reality glasses [52], [53] is

a widely explored research topic, physical human–multi–robot

cooperative manipulation remains mostly underexplored [54].

Recently, a handful of works started to research on direct phys-

ical interaction between a human and multiple ground robots

to cooperatively manipulate or transport an object [54], [55],

[56]. Carey and Werfel [56] demonstrated that 4 omnidirectional

ground robots with robot arms can physically collaborate with a

human using their proposed force-mediated controller but only

simulation results were presented. Elwin et al. [54] designed

an omni-robot system that can lift payloads. Then, the multiple

proposed omni-robots can collaborate with humans to manipu-

late objects toward desired locations. Sirintuna et al. [55] used

two robot arms with omnidirectional wheeled base to physically

collaborate with a human to manipulate oversize objects. They

introduce an admittance control module on both ground robots

to adapt the human motion as the human leads the manipulation.

However, the system dynamics for aerial robots are inherently

different from ground robots as aerial robots move in 3-D.

Hence, the established dynamics models and corresponding

control methods for ground robots cannot be directly translated

to aerial robots. Moreover, for the SWAP-constrained aerial

robots, designing a lightweight, computationally efficient sens-

ing strategy is also essential.

Rastgoftar and Atkins [23] proposed a framework for physical

human–robot collaborative transportation of cable-suspended

payload with a team of quadrotors. The proposed approach

models the payload as a point mass and assumes external forces

applied on the payload to be constrained in 2-D. Leveraging

their previous work [33], the designed controller assigns three

quadrotors as leaders and the remaining robots as followers in

the team. When an external force is applied to the payload, a

fixed step is given to the leaders’ positions along the estimated

force direction. In [24], five quadrotors collaborate with a human

operator to transport a point mass payload. The force applied by a

Fig. 2. Frame convention: I, L, Bk denote the world frame, the payload body
frame, and the kth robot body frames, respectively, for a generic quadrotor team
that’s cooperatively transporting and manipulating a cable-suspended payload.

human on the payload is estimated by summing the cable tension

forces and subtracting the gravity. The human-applied force is

fed into an admittance controller, which updates the desired

quadrotor position and velocity in the formation. However,

compared to our work, the cable tension magnitude is measured

by a custom tension measurement module, and its direction by

a motion capture system. Moreover, the aforementioned works

present substantial limitations as they presume the payload to

be a point mass and constrain the human operator to manipulate

the payload in only 2-D. On the contrary, in our proposed work,

we widen the scope of physical interactions between the human

operator and the payload to all 6 DoF. This enhancement is

achieved by modeling the payload as a rigid body with 6 DoF

and developing an estimator to estimate the full 6 DoF wrench

acting on the payload. Furthermore, our system removes the

use of any force-measuring devices on the robots or payload

(except to obtain the ground truth during testing for validating

our estimation approach). These are unique characteristics that

increase the flexibility and applicability of our solution com-

pared to existing ones.

III. OVERVIEW

In this section, we present an overview of our proposed system

designed to enable a team of quadrotors to collaborate with a

human operator to manipulate a rigid-body payload. Depicted

in Fig. 2, the system comprisesn quadrotors, and each quadrotor

is tethered by a cable to its center of mass. The software architec-

ture of the system encompasses couple of primary components:

planning and control, and pHRI, as shown in Fig. 3. We provide

a more detailed description of each module as follows.

A. Planning and Control

The planning module generates a desired trajectory for the

payload, encompassing both position and orientation. The tra-

jectory is represented by a polynomial trajectory of time. By

differentiating the polynomial with respect to time, we can

Authorized licensed use limited to: New York University. Downloaded on December 29,2024 at 18:58:48 UTC from IEEE Xplore.  Restrictions apply. 



766 IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Fig. 3. Block diagram of the system illustrating the overview of the system. It begins with a trajectory generator, which outputs the desired trajectory of the
payload in all 6 DoF. The payload admittance controller updates this trajectory based on the estimated human input, adapting to the interaction wrench exerted by
the human on the payload. The modified trajectory is then passed to the payload controller as the desired payload state to track. The payload controller calculates
the desired wrench to control the payload’s motion. Subsequently, the dynamic force distribution module allocates the desired cable forces based on the human’s
position and the system dynamics, and distributes the desired cable forces for each robot to track. Each robot controller will then track its corresponding desired
cable force and output the corresponding thrust and moment commands to the quadrotor platform.

obtain payload state’s respective first and second derivatives.

These derivatives represent the twist and acceleration of the

payload pose. We use the similar planning method as the one

we used in our previous work to generate the trajectory for

payload [57]. The desired values will be fed into the admittance

controller. If human interaction with the payload occurs, the

admittance controller will update the trajectory in response to

the human inputs.

The control proposed in this article, described in Section V,

adopts a hierarchical design that comprises the payload tracking

controller, dynamic force distribution, and robot controller. The

hierarchical controller design offers several advantages. First,

it simplifies the complex task of controlling the entire system

by breaking it down into several manageable subtasks. At the

base of our design is the robot controller, which computes

the control actions based on local information, such as cable

direction and robot orientation. This strategy allows us to first

test the individual robot controller with a single robot, thereby

ensuring we do not risk compromising the entire system. After

successfully building and testing the robot controller, we can

proceed to test the higher level modules, including the payload

controller and dynamic force distribution.

Moreover, the modularity enhances the system’s maintain-

ability and scalability, as changes or improvements to one part of

the control system can be implemented without affecting other

components. For example, in our case, we can introduce the

adaptation module at the payload level without changing the

robot controller.

In the following sections, we will provide a more detailed

overview of the controllers within the control design.

1) Payload Controller: The payload controller’s function is

to control the payload’s state, enabling it to track the adapted

desired payload states from the admittance controller. It gener-

ates the desired manipulation force and moment on the payload

to track the desired payload states.

2) Dynamic Force Distribution: The dynamic force distribu-

tion dynamically distributes the desired cable tension forces that

each quadrotor needs to exert to manipulate the payload. It con-

sists of two parts: nominal force distribution and human-aware

force modification.

Nominal force distribution: The nominal module processes

the desired forces and moments on the payload, as computed by

the payload controller. It maps the desired wrench on the payload

into nominal desired cable tension forces for each quadrotor.

Human-aware force distribution: This module leverages the

redundancy inherent in a multiquadrotor system to adjust the

nominal cable tension forces calculated by the nominal tension

distribution module. It modifies the nominal cable tension forces

without impacting the overall manipulation forces and moments

exerted on the payload computed by the payload controller.

3) Robot Controller: Each quadrotor runs an individual

robot controller to track the desired cable tension forces assigned

from the dynamic force distribution module. It commands thrust

and moment to the quadrotor such that the quadrotor can track

the desired cable direction as well as exert the desired tension

in the cable.

B. Physical Human–Robot Interaction

The human interaction module proposed in this article in

Section VI, comprises two main parts: the admittance controller

and human input estimation.

C. Robot State Estimation

Each robot runs an onboard unscented Kalman filter (UKF)

to estimate the robot’s position, velocity, orientation, angular

velocity, and the cable force applied to the robot. The cable force

estimated by each quadrotor will be shared among the team to

collaboratively estimate the human wrench.
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1) Human Wrench Estimation: This component estimates

the human’s input wrench on the payload by collecting all the

cable forces estimated by each quadrotor. Given the challenges

associated with adding additional force sensors to the payload

for real-world applications, we aim to minimize modifications to

maintain cost-effectiveness. Our innovative solution, which does

not require any additional force sensor, involves each quadrotor

estimating its cable force. And the estimated cable force is then

shared among the team to deduce the total forces and moments

from all cables, further derive the human input wrench.

2) Payload Admittance Controller: The admittance con-

troller modifies the desired payload trajectory based on human-

applied forces and moments. This would allow the system to

adapt to the human input, leading to collaborative transportation

and manipulation of the payload between the human and the

team of quadrotor robots.

IV. SYSTEM DYNAMICS

This section presents the modeling of the overall system

dynamics. We consider a scenario where a team of n quadrotors

cooperatively manipulates a rigid body payload, as illustrated

in Fig. 2. We establish the world frame I on the ground. The

payload frame L is located at the payload’s center of mass. The

payload’s position and orientation relative to I are denoted by

xL and RL, respectively.

The relevant variables in this article are summarized in the

Nomenclature. We denote the three elements of any 3-D vector

using subscripts ∗x,y,z .

The system dynamics models are developed based on the

following assumptions.

1) Aerodynamic interactions with the ground and other ef-

fects caused by high robot velocity are ignored due to its

insignificant effect at a low moving speed that’s achieved

by this system.

2) Each cable is assumed to be attached at the center of mass

of each robot, each robot’s center of gravity coincides with

its geometrical center, and all cables are assumed to be

massless with no dynamic effects on the system.

3) Wind disturbances are ignored, the human operator would

only interact with the payload, and all external forces on

the payload and each robot are considered to be exerted

by a human operator.

Assumption 1 is justified by the operational velocity, and

spatial separation among agents we propose in Section V-B-2,

which minimizes aerodynamic effects. Assumption 2 is based on

the symmetrical design of the MAV and the lightweight nature

of the cables. Finally, Assumption 3 is relevant due to our focus

on indoor operation.

A. Basic Geometry

As shown in Fig. 2, the kth quadrotor attached one massless

cable with length lk from its center of mass to the kth attach

point on the payload. The location of the attach point k with

respect to L and I is represented by constant vector ρk ∈ R
3

and vector patt,k ∈ R
3, respectively. Hence, from the geometry,

we can have

patt,k = xL +RLρk. (1)

As we can also observe from Fig. 2, when the cable is taut,

the robot’s position can be obtained by using the attach point

position and the cable as follows:

xk = patt,k − lkξk (2)

where xk is the kth quadrotor’s position in I, and ξk is the unit

vector that represents the cable direction from the robot to the

corresponding attach point in I.

B. Payload Dynamics

The net force FL in I and moment ML in L on the payload

is determined by all the cable tension forces µk, k = 1, . . . , n,

gravitational pull g, and external wrench FH ,MH applied by

the human operator

[

FL

ML

]

=

[

FH

MH

]

+Pµ −

[

mLg

0

]

, µ =

£

¤

¤

¥

µ1

...

µn

¦

§

§

¨

(3)

where mL is the payload mass, g = ge3, g = 9.81 m/s2, e3 =

[0 0 1]�. In (3), the matrix P ∈ R
6×3n maps tension vectors

of all n MAVs in I to the wrench on the payload with force in

I and moments in L

P =

[

I3×3 I3×3 · · · I3×3

ρ̂1R
�
L ρ̂2R

�
L · · · ρ̂nR

�
L

]

. (4)

where I3×3 ∈ R
3×3 is an identity matrix and the hat map ·̂ :

R
3 → so(3) is defined such that âb = a× b, ∀a,b ∈ R

3.

By inspecting the matrix P, we observe that P has 6 rows,

independent of the number of robots in the system. For n ≥ 3
robots, the number of columns of P surpasses the number of

rows, causing the dimension of the domain of P to exceed that

of its image. Hence, there is an additional nullity in matrix P,

which can be represented by the null space of the matrix P,

denoted as N (P) ⊂ R
3n−6. The system can utilize the nullity

to accomplish secondary tasks, such as obstacle avoidance,

inter-robot separation, or keeping a distance between human

and robot [58], which we will introduce in Section V.

Through standard rigid body dynamics, we can obtain the

translational and rotational dynamics of the payload as

mLẍL = FL, JLΩ̇L = ML −ΩL × JLΩL (5)

where ẍL, Ω̇L ∈ R
3 is the payload linear and angular accelera-

tion, respectively, ΩL ∈ R
3 is the payload angular velocity, and

JL ∈ R
3×3 is the payload’s inertia matrix.

C. Quadrotor Dynamics

Based on Assumptions 2 and 3, we consider the translational

and rotational dynamics of the kth quadrotor as follows:

mkẍk = uk − µk −mkg (6)

JkΩ̇k = Mk −Ωk × JkΩk (7)
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where uk and Mk are the control force and moment on the kth

quadrotor and µk = −µkξk is the tension force applied on the

kth quadrotor.

When the cable is taut, the motion of kth quadrotor is con-

strained to the surface of a sphere centered at the kth attach

point, with a radius equal to the cable length [42]. The dynamics

of the cable direction can then be derived using the Lagrange

d’Alembert principle as follows [9]:

ξ̈k =
1

mklk
ξ̂
2

k (uk −mkak )−
∥

∥

∥
ξ̇k

∥

∥

∥

2

2
ξk (8)

where ak is the acceleration of the kth attachment point

ak = ẍL + g −RLρ̂kΩ̇L +RLΩ̂
2

Lρk. (9)

V. CONTROL

In this section, we introduce a hierarchical nonlinear con-

troller that enables a team of n quadrotors to manipulate a rigid-

body load suspended by cables. The formulation of the controller

is based on the system dynamics presented in Section IV. Fig. 3

illustrates the hierarchical structure of the controller.

The hierarchy begins with a payload controller, detailed

in Section V-A, which generates the desired wrenches

FL,des,ML,des to control the position and orientation of the

payload. Subsequently, the dynamic force distribution module,

described in Section V-B, assigns desired cable force vectors

µk, k = 1, . . . , n for each robot, based on the desired payload

wrench FL,des,ML,des. The control hierarchy finishes with the

robot controller at its lowest level, where the individual robot

controller on each robot tracks its corresponding desired cable

force vector µk. Each robot controller, associated with the kth

robot, computes the appropriate thrust and moment commands

for the robot, as further shown in Section V-C.

A. Payload Controller

We present a payload controller that enables the load to follow

the desired trajectory in a closed loop. The subscript ∗des denotes

the desired value given by the trajectory planner. The desired

forces and moments acting on the payload are designed as

FL,des = mLaL,c (10)

aL,c = KpexL
+KdeẋL

+Ki

∫ t

0

exL
dτ + ẍL,des + g

ML,des = KRL
eRL

+KΩL
eΩL

+ JLR
�
LRL,desΩ̇L,des

+
(

R
�
LRL,desΩL,des

)'
JLR

�
LRL,desΩL,des (11)

where Kp,Kd,Ki, KRL
,KΩL

∈ R
3×3 are constant diagonal

positive definite matrices, and

exL
= xL,des − xL, eẋL

= ẋL,des − ẋL

eRL
=

1

2

(

R
�
LRL,des −R

�
L,desRL

)(

eΩL
= R

�
LRL,desΩL,des −ΩL. (12)

In the abovementioned equation, the vee map ( : so(3) → R
3 is

the reverse of the hat map ·̂.

B. Dynamic Force Distribution

In this section, we present our dynamic force distribution

method that allocates the desired payload force FL,des and

moment ML,des to the desired cable tension forces µk. The

force distribution comprises two segments: the nominal force

distribution and the human-aware force distribution.

The nominal force distribution, originated from nonlinear ge-

ometric control method [9], [11], distributes the desired payload

wrench to the desired cable tension forces using minimum norm

solution.

On the other hand, the human-aware force distribution lever-

ages the system redundancy, given that the robot number n ≥ 3,

to obtain the cable forces that yield a zero effective wrench on

the payload. This adjustment enables the system to modify the

desired cable forces from the nominal distribution for secondary

objectives, such as maintaining a distance from the robots to

the human operator and between the robots themselves, without

impacting the original manipulation tasks.

In the following, we will first present the nominal force distri-

bution method in Section V-B-1, followed by the human-aware

force distribution method in Section V-B-2.

1) Nominal Force Distribution: Once the desired payload

wrench FL,des, ML,des is obtained, it can be distributed to the

desired tension force µ̄k,des along each cable as

µ̄des =

£

¤

¤

¥

µ̄1,des

...

µ̄n,des

¦

§

§

¨

= P†

[

FL,des

ML,des

]

(13)

where P† = P�(PP�)−1 is the Moore–Penrose inverse of P.

The abovementioned solution can be directly used as the desired

cable tension vector for the robot, like in our previous works [9],

[11]. However, the abovementioned solution does not exploit

the possibility of the quadrotor team’s needs to accomplish

secondary tasks. For example, the second task can be avoiding

obstacles or, as shown in this article, spatially separating the

human and the robots during physical collaboration.

2) Human-Aware Force Distribution: As we have mentioned

before, the human-aware force distribution exploits the system

redundancy to modify the desired cable forces from the nominal

distribution for secondary tasks. The secondary tasks can be

maintaining a distance from the robots to the human operator and

between the robots themselves, without impacting the original

manipulation tasks.

To accomplish these, we propose and discuss two distinct

approaches in this section. The system aims to allocate the

wrench to the desired cable tension forces with the following

two principal goals in mind.

1) Minimize the total cable tension forces to conserve the

robot’s energy.

2) Utilize the null space of the cable distribution matrix P

to facilitate secondary tasks, such as ensuring a safety

distance between the robots and potential human operators

within the team.

In the following, we introduce two methods enabling each

MAV to maintain distance from an object. Concurrently, these
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methods allow the team to maintain the original desired load

forces,FL,des, and moments,ML,des, as outlined in Section V-A.

This approach ensures that the original objectives in load ma-

nipulation are not compromised.

The methods leverage the redundancy in system configura-

tions involving more than three MAVs, as explained in Sec-

tion IV. We intend to find a desired tension force modifier,

µ̃des ∈ N (P) that modifies µ̄des in (13), and satisfies

Pµ̃des = 0, µ̃des =

£

¤

¤

¥

µ̃1,des

...

µ̃n,des

¦

§

§

¨

. (14)

Equation (14) means the tension modifiers result in zero

wrench on the payload, which does not affect the original desired

manipulation wrench from (10) and (11). With the tension force

modifier, we can update kth robot’s desired cable tension force

as

µk,des = µ̄k,des + µ̃k,des. (15)

Intuitively, N (P) provides all the possible combinations of

n cable tension vectors that can generate internal motions of the

structure (i.e., variations of the cables’ directions) that do not

affect the load configuration controlled by the method presented

in Section V-A. This is confirmed by (3) and (15), as µ̄k,des

would create a nonzero net wrench on the payload while µ̃k,des

creates zero net wrench. Moreover, µ̃k,des can be related to the

position of each robot

patt,k + lkξ̃k,des = xk (16)

and

ξ̃k,des = −ξk,des =
µ̄k,des + µ̃k,des

‖µ̄k,des + µ̃k,des‖
. (17)

The advantage is that we can exploit µ̃k,des to enforce the kth

robot to maintain a certain distance with respect to the other

agents in the system and other objects in the environments, like

a potential human operator.

Therefore, the human-aware force distribution needs to find

the aforementioned tension force modifier, µ̃des ∈ N (P), and

use (15) to move MAVs based on (16) without affecting the

payload. We propose the following two approaches for finding

µ̃des

1) Gradient-Based Method: Find a µ̃des such that each MAV

maximizes the distance between itself and the object using

a gradient ascent method.

2) Optimization-Based Method: Find a µ̃des such that each

MAV guarantees a predetermined minimal safe distance

between all its neighboring drones and the object by using

nonlinear optimization.

In the following, we can describe the obstacle or human

operator as a particular object of interest in the environment.

The corresponding point position with respect to I is denoted

as pO in the following controller formulation.

Gradient-based method: Inspired by strategies used for redun-

dant rigid link robot arms in [59], we introduce a gradient-based

method to compute µ̃des. Specifically, a pseudotension force

modifier, µ0
des, is found by maximizing the distance between

objects in the environment and each drone.µ0
des is then projected

into N (P) to become the tension force modifier µ̃des. To update

µ0
des, we propose

µ0
des = Q

∂w(µ̃des)

∂µ̃des

(18)

where Q ∈ R
3n×3n is a diagonal positive-definite matrix with

variable and tunable coefficients on its diagonal, and w(µ̃des)
is the cost function. w(µ̃des) is defined as the squared distance

between each drone and the object from which the system is

required to keep a safe distance as follows:

w(µ̃des) =

k
∑

i=1

∥

∥

∥
pO −

(

patt,k + lkξ̃k,des

)∥

∥

∥

2

(19)

where lk = lkI3×3. Note that ξ̃k,des points from the kth attach

point to the kth robot. We can now compute the partial derivative

of the cost function corresponding to the kth robot by using (19)

and obtain the following:

∂w(µ̃k,des)

∂µ̃k,des

= −2lk [pO − patt,k]
� ∂ξ̃des

∂µ̃k,des

= −2lk [pO − patt,k]
� (I3×3 − ξ̃k,desξ̃

�

k,des)

‖µ̄k,des + µ̃k,des‖
. (20)

For each control step, we update µ0
des based on (18), performing

gradient ascent to maximize the distance between each robot and

the objects in the environment. To regulate the effect of gradient

on each robot when the object is far away, we propose each

element of Q as an exponential decay function of the robot-to-

object distance

Q = diag (Q1, . . . ,Qn) , Qk = ae−b‖pO−xk‖I3×3 (21)

where a, b ∈ R are tunable coefficients. With these varying

coefficients, we can implicitly impose distance limits as the

gradients will only have impact on the tension modification when

kth robot is close enough to the object. However, till now, µ0
des

from (18) is not yet in N (P). Hence, we consider the following

optimization to project µ0
des into the null space of the matrix P

min
µ̄des

‖µ0
des − µ̃des‖

2

s.t. Pµ̃des = 0. (22)

Since the abovementioned optimization problem is a

quadratic programming problem with linear equality constraints,

there is a closed-form solution shown as follows [60]:

µ̃des = Bµ0
des =

(

I −P†P
)

µ0
des (23)

where P† is the pseudoinverse as in (13), and B is an orthogonal

projector that projects any µ0
des orthogonally into the null space

of P.

Using this result, we projectµ0 intoN (P)with (23), ensuring

zero additional wrenches being applied on the payload when

each robot is maximizing distance from the object. Finally, we

Authorized licensed use limited to: New York University. Downloaded on December 29,2024 at 18:58:48 UTC from IEEE Xplore.  Restrictions apply. 



770 IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

update the desired tension vector as

µdes = µ̄des + µ̃des = µ̄des +Bµ0
des. (24)

Optimization-based method: In this section, we directly for-

mulate an optimization problem to solve for a tension force

modifier µ̃des inN (P) that guarantees safety distance among the

objects and the robots. The nonlinear optimization problem is

to minimize the total square norm of the resulting cable tension

vector. Furthermore, we formulate n robot-to-object distance

constraints, as well as another
(

n
2

)

= n(n−1)
2 constraints are

added to prevent each pair of robots from collision. Consider

the following nonlinear optimization problem:

min
c

‖µ̄des +NΛ‖2

s.t. ‖pO − xk‖
2 ≥ hr2, 0 < k ≤ n

‖xi − xj‖
2 ≥ rr2, 0 < i < j ≤ n (25)

where the columns of N spans N (P) and c ∈ R
3n−6 is the

vector to be optimized. rr and hr are two scalar values denoting

the predetermined safe minimum distance allowed between

robots and between the object and each robot, respectively. The

kth robot’s position is expressed in terms of NkΛ and µ̄k,des

xk = patt,k + lk
µ̄k,des +NkΛ

‖µ̄k,des +NkΛ‖
(26)

where Nk represents the three rows from the kth row to the

k + 2th row of the null space basis matrix N, which corre-

sponds to the kth MAV. Since (25) is a nonlinear optimization

problem with quadratic cost function and quadratic constraints,

we use sequential quadratic programming solver for nonlinearly

constrained gradient-based optimization [61] in NLOPT [62] to

solve (25) and obtain c. After obtaining c, the desired cable

tension forces can be obtained as follows:

µdes = µ̄des + µ̃des = µ̄des +NΛ. (27)

Discussion: The proposed methods are both effective for

the quadrotor team to keep a safe distance away from a given

object, as we also experimentally verify in Section VII. However,

considering computational aspects, the gradient-based method

requires fewer resources compared to the optimization-based

method. This is primarily due to the closed-form solution offered

by the gradient-based approach, as demonstrated by (20). On

the other hand, the optimization-based method needs to solve a

nonlinear optimization problem. In Section VIII, we provide

a quantitative analysis of the computational complexity and

resource usage for both methods based on our implementation.

C. Robot Controller

In this section, we present the controller on each robot that

enables the quadrotor to execute the desired cable tension

force. The same robot controller has been used in our previous

works [9], [11].

Once we obtain the desired tension forces µdes from (24) or

(27), we can obtain the desired direction ξk,des and the desired

angular velocity ωk,des of the kth cable link as

ξk,des = −
µk,des

‖µk,des‖
, ωk,des = ξk,des × ξ̇k,des

where ξ̇k,des is the derivative of the desired cable direction

ξk,des. After we obtain the desired cable direction ξk,des and

cable angular velocityωk,des, we can determine the desired force

vector for the robot uk as

uk = u
‖
k
+ u⊥

k

u⊥
k = mklkξk ×

[

−Kξk
eξk

−Kωk
eωk

− ξ̂
2

kωk,des

− (ξk · ωk,des) ξ̇k,des

]

−mkξ̂
2

kak,c

u
‖
k
= ξkξ

�
kµk,des +mklk ‖ωk‖

2
2 ξk +mkξkξ

�
kak,c

ak ,c = aL,c −RLρ̂kΩ̇L +RLΩ̂
2

Lρk (28)

where Kξk
and Kωk

∈ R
3×3 are constant diagonal positive

definite matrices, eξk
and eωk

∈ R
3 are the cable direction and

cable angular velocity errors, respectively

eξk
= ξk,des × ξk, eωk

= ωk + ξk × ξk × ωk,des.

As we obtain the desired force vector of the quadrotor from (28),

we can follow [63] to derive the desired rotation Rk,des and

angular velocity Ωk,des with desired yaw angle and desired

yaw angular velocity from the robot’s own planner. The thrust

command fk and moment command Mk to the kth quadrotor

are therefore selected as

fk = uk ·Rke3 (29)

Mk = KReRk
+KΩeΩk

+Ωk × JkΩk

− Jk

(

Ω̂kR
�
kRk,desΩk,des −R

�
kRk,desΩ̇k,des

)

(30)

where KR, KΩ ∈ R
3×3 are constant diagonal positive definite

matrices, eRk
∈ R

3 and eΩk
∈ R

3 are the orientation and an-

gular velocity errors similarly defined using (12). The readers

can refer to [42] for stability analysis of the controller.

VI. PHYSICAL HUMAN–ROBOT INTERACTION

This section introduces the pHRI module that enables a human

operator to physically cooperate with a team of n quadrotors

in manipulating a suspended rigid-body payload. The module

comprises two main sub-blocks: the estimation module and the

admittance controller.

The estimation module is designed to facilitate the quadrotor

team in estimating the human operator’s input wrench exerted on

the payload. The admittance controller takes the estimated hu-

man wrench and the desired payload state as input and generates

a desired payload state to adapt the human’s action.

A. Estimation

We present the estimator design that allows the quadrotor

team to estimate the external wrench applied to the payload by

the human operator. First, in Section VI-A-1, we introduce a
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quadrotor state estimator based on UKF that runs onboard each

quadrotor in a distributed fashion. Each quadrotor can leverage

the estimator to estimate the cable force applied to it, without

the need for a force sensor. Subsequently, in Section VI-A-2, we

show how we can estimate the external wrench applied on the

payload by the human operator via sharing the cable force on

each quadrotor among the team.

1) Robot State Estimation: We consider the kth MAV to have

the following state Sk:

Sk =
[

x�
k ẋ�

k Θ�
k Ω�

k ξk ξ̇
�

k µk

]�
(31)

where Θk ∈ R
3 is a vector of the 3 Euler angles expressed

according to the ZYX convention representing the robot’s ori-

entation. And the input is defined as

Uk =
[

fk M�
k

]�
(32)

where fk and Mk are obtained based on motor speed measured

by the electronic speed controllers on the robot. The relationship

between motor speed and the resultant thrust and moment is

expressed as follows:

[

fk

Mk

]

=

£

¤

¤

¤

¥

kf kf kf kf

dxkf dxkf −dxkf −dxkf

−dykf dykf dykf −dykf

km −km km −km

¦

§

§

§

¨

£

¤

¤

¤

¥

ω2
m1

ω2
m2

ω2
m3

ω2
m4

¦

§

§

§

¨

(33)

where kf and km represent the motor constants corresponding

to rotor force and moment, respectively. dx and dy denote the

distances from the rotor to the body’s x and y axes. In addition,

ωmj signifies the motor speed of the jth motor. We denote

the current time step as ∗t and the previous time step as ∗t−1.

Subsequently, we present the nonlinear process model and the

linear measurement model of the UKF.

Process Model: Based on MAV equations of motion presented

in (7), discretizations of quadrotor states are performed by

assuming each control step moves forward in time by δt. The

discrete-time nonlinear process model is

St
k=g(St−1

k ,Ut
k)=

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

xt
k

ẋt
k

Θt
k

Ωt
k

ξt
k

ξ̇
t

k

µt
k

¦

§

§

§

§

§

§

§

§

§

§

§

§

¨

=

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

xt−1

k + ẋt−1

k δt+ ẍt
k
δt2

2

ẋt−1

k + ẍt
kδt

�Rt−1

k exp
[

R
t−1

k Ωt−1

k δt
]

�

Ωt−1

k + Ω̇
t

kδt

ξt−1

k + ξ̇
t

kδt+ ξ̈
t

k
δt2

2

ξ̇
t−1

k + ξ̈
t

kδt

µt−1

k

¦

§

§

§

§

§

§

§

§

§

§

§

§

¨

.(34)

For updating the Euler angles, a few nonlinear mappings are

used as in [64].

1) �∗� that maps ∗ ∈ SO(3) to Θ ∈ R
3.

2) exp[∗] that maps ∗ ∈ R
3 to SO(3); or maps axis-angle

so(3), to rotation matrix SO(3).
In (34), Ωt−1

k is rotated into I. After time step δt, the robot’s

angular displacement in I, expressed in so(3) is mapped into

SO(3). This new robot orientation in SO(3) is then added to the

previous orientation and the resultant orientation is converted to

Euler angle using �∗�. The equations of motion for unit cable

direction are provided in [11], with the results presented here

ξ̈
t

k =

(

ξ̂
t−1

k

)2

(uk −mkak )

mklk
−
∥

∥

∥
ξ̇
t−1

k

∥

∥

∥

2

2
ξt−1
k . (35)

In our system, we employ a 16× 16 time-invariant process

noise diagonal covariance matrix, operating under the assump-

tion that the system has zero-mean, additive Gaussian process

noise. For the prediction phase, the UKF algorithm utilizes (34).

It is important to note that in instances where measurements are

not available at every control time step, the UKF implements a

nonlinear prediction method that assumes zero process noise.

Measurement Model: Using an indoor MOCAP system, we

can measure everything in the state except tension magnitude.

The measured states for kth robot, therefore, are

Zk =
[

x�
k ẋ�

k Θ�
k Ω�

k ξ�k ξ̇
�

k

]�
. (36)

We also want to note that using onboard visual inertial odometry

and vision-based methods from our previous work [11] can

provide the same measurements as the motion capture does and

can potentially make the entire measurement update process run

fully onboard. However, this is out of the scope of this article

and we refer to it as future works.

Denoting the time step when the UKF measurement update

is triggered as m, the UKF finds the state prior to m, Sm−1
k . A

nonlinear propagation through (34) is performed by propagating

sigma points around Sm−1
k through the system model in (34) as

shown in [65].

The linear measurement model is

H =

[

I18×18 018×1

01×18 01×1

]

.

The system state prediction is compared to the actual measure-

ment using the abovementioned model

Sm
k = Kk(HS̄m

k − Zk) (37)

where S̄m
k is the averaged state after sigma point propagation

and Kk is the Kalman gain. Kalman gain is computed based on

the standard UKF update step as in [65].

2) Human Wrench Estimation: Rearranging (3), we obtain

[

mLẍL

JLΩ̇L

]

=

[

FH

MH

]

+P

£

¤

¤

¥

µ1

...

µn

¦

§

§

¨

−

[

mg

03×1

]

. (38)

Considering quasi-static operating conditions, we can assume

the payload linear and angular acceleration terms can be ne-

glected. Therefore, leveraging this assumption and rearranging

based on (38) we obtain

[

FH

MH

]

= −P

£

¤

¤

¥

µ1

...

µn

¦

§

§

¨

+

[

mg

03×1

]

. (39)

Extracting tension values from each robot’s state allows us to

compute the external wrenches on the payload.
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B. Payload Admittance Controller

The admittance controller is a high-level controller that up-

dates xL,des and RL,des in (12) for the payload controller

(see Section V-A) based on the external force applied on the

payload. When interacting with the payload, it allows the human

operator to experience a virtual mass-spring-damper system

rather than the actual mass. By setting the admittance controller’s

tunable parameters to the desired values, the payload can be

either sensitive or insensitive to external forces regardless of the

payload’s actual property.

The admittance controller conceptualizes the payload as a vir-

tual mass-spring-damper system, responding to external forces

and moments from the human operator. It takes the external

wrench, represented as
[

F�
H M�

H

]�
∈ R

6×1, as the input.

The output from this controller includes the desired payload

twist, denoted as Ẋdes ∈ R
6×1, along with the desired linear and

angular positions of the payload,Xdes ∈ R
6×1, where the angular

position is expressed in Euler angles. In addition, the admittance

controller calculates the desired linear and angular accelerations,

Ẍdes ∈ R
6×1. However, it is noteworthy that these acceleration

outputs are not utilized by the lower level payload controller.

The admittance controller assumes the following dynamics

for the payload:

Mëadm +Dėadm +Keadm =

[

FH

MH

]

ëadm = Ẍdes − Ẍtraj, ėadm = Ẋdes − Ẋtraj

eadm = Xdes −Xtraj (40)

where M, D, and K ∈ R
6×6 are tunable diagonal positive

semidefinite matrices denoting the desired mass, damping, and

spring property of the payload. Based on the initial starting con-

dition of the payload, Ẍtraj, Ẋtraj, andXtraj can be set accordingly.

We choose to set them to be the planned trajectory. Closed-form

solutions exist for (40) with the assumption that the input wrench

is a predetermined function (e.g., a linear function). However,

such an assumption is not ideal for our use case. Therefore, we

choose to solve Xdes, Ẋdes, Ẍdes with Runge–Kutta fourth-order

approximation.

VII. EXPERIMENTAL RESULTS

The experiments are conducted in an indoor testbed with a

flying space of 10× 6× 4m3 of the ARPL lab at New York

University. We use three quadrotors to carry a triangular payload

via suspended cables. The quadrotor platform used in the ex-

periments is equipped with a QualcommSnapdragon 801 board

for on-board computing [66]. A laptop equipped with an Intel

i9-9900K CPU obtains the Vicon1 motion capture system data

via ethernet cable.

The framework has been developed in robot operating system

(ROS) 2 and the robots’ clocks are synchronized by Chrony.3 The

1[Online]. Available: www.vicon.com
2[Online]. Available: www.ros.org
3[Online]. Available: https://chrony.tuxfamily.org/

Fig. 4. Wrench estimation evaluation. The human operator uses a force
measurement device to measure the applied wrench on the payload, which is
used to validate our wrench estimation algorithm results. On the left, we show
the human operator applies force via the force measurement device, and, on the
right, we show the force measurement device in detail.

mass of the payload is 310 g, which exceeds the payload capacity

of every single vehicle. The pose and twist of the payload and

quadrotors, the position and velocity of attachment points, and

the human operator’s position are estimated using the Vicon data

at a frequency of 100Hz. The unit vector of each cable direction

ξk and the corresponding velocity ξ̇k are estimated by

ξk =
patt,k − xk

‖patt,k − xk‖
, ξ̇k =

ṗatt,k − ẋk

lk
(41)

where patt,k, ṗatt,k are position and velocity of the kth attach

point in I and xk, ẋk are position and velocity of the kth robot

in I, all of which are estimated by the motion capture system.

A. Cable Force and External Wrench Estimation

In this section, we validate our cable force and external wrench

estimation algorithm by comparing the estimation results ob-

tained using the approach presented in Section VI-A-2 with the

ground truth from the wrench measurement device, as shown in

Fig. 4.

We can identify the ground truth force by measuring the

force direction and force magnitude separately via the wrench

measurement device. As the ground truth force direction is along

the cable between the measurement device and the other end

where the device is attached to the system, it is measured by

computing the difference between the load cell’s position and the

attach point position using the Vicon motion capture system. The

ground truth force magnitude is measured via a Phidget micro

load cell,4 as shown in Fig. 4. The measured cable direction and

tension magnitude are postprocessed to obtain the ground truth

force.

In the cable force estimation experiment, we hover a quadrotor

in midair and run the proposed UKF onboard. The measurement

device is connected to the center of mass of the quadrotor and

a human operator pulls the measurement device into various

directions to evaluate the algorithms. The results are shown in

Fig. 5. In the plots, we compare the measured forces to the

estimated forces in all 3 DoF and the estimated cable forces

track measured ground truth accurately.

During the wrench estimation experiment, we hover the sys-

tem with the regular payload controller without activating the

4[Online]. Available: www.phidgets.com
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Fig. 5. Cable force estimation experiment results. Comparison between the
cable force estimation and the force measurements from the force measurement
device in all 3 DoF.

TABLE I
RMSE OF WRENCH ESTIMATION AND MEASUREMENT

admittance controller. Subsequently, the human operator pulls

the payload with the force measurement device, and we record

both the ground truth wrench and the estimation results. In addi-

tion to the ground truth force, the ground truth external torque is

obtained by crossing the attached point position vector in L and

the measured ground truth force vector from the measurement

device. The payload is pulled so that the external wrench is

nonzero in all 6 DoF, as shown in Fig. 4.

The results are shown in Fig. 6. In the plots, we compare

the measured wrenches to the estimated wrenches using our

proposed method in Section VI-A-2 and the momentum observer

method presented in [7] in all 6 DoF. As we can observe in Fig. 6,

the estimated wrenches from our method track the measured

ground truth quite accurately. However, on the other hand,

the momentum observer method tends to smooth the estimates

excessively, leading to underestimating the external wrench. The

root mean square errors in all six directions are also reported in

Table I, confirming a good accuracy.

B. Admittance Control With Wrench Estimation

After validating the wrench estimation, we jointly test it with

the admittance controller.

1) Virtual Impedance Realization: In this section, we present

results in simulation to quantitatively analyze the performance

of our proposed methods, particularly regarding the rendering

of the desired virtual impedance of our proposed system. We

deploy robot teams that consist of 3 “Dragonfly” quadrotors or

3 “Hummingbird” quadrotors with 1m cable in our open-source

simulator [57] to validate the realization of desired impedance

values. In the following experiments, we introduce a step wrench

input and observe the system’s response.

In the first experiment, we apply a step force input on the

payload in the positive x direction and set different impedance

values (1, 2, 5, 10) in the admittance controller. The second ex-

periment involves the application of a step moment input on the

payload in the positive yaw direction, with different impedance

values (0.05, 0.25, 1.25, 2.5) set in the admittance controller.

The results are shown in Figs. 7–9. We evaluate the actual

impedance in the system using the ground truth force and

moment, divided by the actual velocity of the payload along

the corresponding direction. Hence, the actual impedance we

obtain in Figs. 7–9 are FHx

ẋLx
and MHz

Ω̇Lz
, respectively. In the plots,

we compare the actual impedance with the desired impedance

set in the admittance controller. As illustrated by the plots, upon

application of step force and moment inputs to the system,

the payload promptly accelerates in the x and yaw directions,

respectively. As the wrench estimation updates, the admittance

controller starts to adjust the desired payload state to adapt the

human input, shown by the dashed lines in the bottom plots

in both Figs. 7–9. Through the comparison, we can see that

with larger values of Dx, Dψ , the desired velocity derived from

the admittance controller evolves slower and smaller in mag-

nitude. As the experiment proceeds, the desired velocity from

the admittance controller ultimately converges to final values,

respectively, equivalent to FHx

Dx
and MHz

Dψ
. Moreover, a larger

desired impedance value results in noticeable spikes in the actual

impedance before the convergence. This can be attributed to the

fact that a higher impedance value leads to a smaller correspond-

ing desired velocity, which in turn causes larger velocity errors

at the initial stage. This subsequently results in an overshooting

response of the actual payload velocity, causing it to cross the

zero line and trigger spikes in the actual impedance realization.

Lastly, as the experiments progress and the transient effects

resulting from the step input reduce, the payload’s linear and

angular velocities converge toward the desired payload veloc-

ity determined by the admittance controller. Consequently, the

actual virtual impedance also aligns with the value set by the

admittance controller. We observe similar results for the other

Cartesian and angular axes that are not reported for simplicity.

2) Real-World Experiments: We conduct six tests involv-

ing all 6 DoF of the admittance controller in real-world ex-

periments. The human operator manipulates the payload by

translating the payload in x, y, and z and rotating the pay-

load in roll, pitch, and yaw, respectively, to show that the

load can be fully manipulated. At the end of each experi-

ment, the human operator releases the payload. The square

gain matrices in the admittance controller have a block-

diagonal structure as M = diag(0.25I3×3, 0.1I3×3), D =
diag(1.25I3×3, 5.0I3×3), K = diag(03×3,03×3) .

The experimental results are presented in Fig. 10. As shown

in the plots, the human operator translates the payload approx-

imately 1m in x and y direction, 0.4 m in the z direction. In

the rotation part of the experiment, the human operator rotates

the payload approximately 30◦ in the roll and pitch direction

and 60◦ in the yaw direction. The tests show that the admittance

controller, coupled with the wrench estimator, can successfully
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Fig. 6. Results of the wrench estimation experiment. This figure compares the wrench estimation results from our proposed wrench estimation algorithm (blue)
with those obtained using the momentum observer method (red) [7], as well as with the actual measurements recorded by the wrench measurement device (green)
across all 6 DoF.

Fig. 7. Virtual impedance realization in the x direction of the translational motion. A step force input of FH = [0.5 0 0]�N is given into the system at the
start of the plots. We choose the parameters of the admittance controller in the x direction as Mx = 0.25,Kx = 0.0, and Dx = 1, 2, 5, 10 for comparison.

update the payload’s desired position or orientation according

to the human operator’s interactive force as input. As the human

operator releases the payload, the wrench estimation outputs
[

06×1

]

as wrench estimation. Since K in the admittance con-

troller is
[

06×6

]

in this set of experiments, the payload remains

at the position or orientation released by the human operator

without returning to its original reference position or orientation.

It further confirms the effectiveness of the wrench estimation and

admittance controller pipeline in assisting object transportation

and manipulation.

C. Human-Aware Human–Robot Collaborative

Transportation

In this section, we show that our system enables a human oper-

ator to physically collaborate with the robot team to accomplish

the following two tasks.

1) The robot team and the human collaboratively ma-

nipulate the payload to a goal location, as shown in

Fig. 11.

2) Human operator corrects the payload trajectory to avoid

an obstacle in an existing trajectory, as shown in Fig. 12

The gradient-based and optimization-based methods for

human-aware force distribution are tested for each of the two

tasks. For the optimization-based method, the drone-to-drone

distance limit is set to be ≥ 0.75m, and the human-to-drone

distance limit is set to be ≥ 0.75m. The gradient-based method

does not require a predetermined distance.

In addition, as we show in Fig. 3 and discuss in Section V-B,

we feed the human operator’s position pH from the Vicon in

I as pO to (20) and (25) for application to pHRI. We would

also like to note that by using deep-learning-based human pose

estimation techniques [67], the robots can also use onboard

camera to estimate pH , but this is out of the scope of this article

and we refer to it as future work.
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Fig. 8. Virtual impedance realization in the x direction of the translational motion. A step force input of FH = [1.0 0 0]�N is given into the system at the
start of the plots. We choose the parameters of the admittance controller in the x direction as Mx = 0.25,Kx = 0.0, and Dx = 1, 2, 5, 10 for comparison.

Fig. 9. Virtual impedance realization in the yaw direction of the rotational motion. A step moment input of MH = [0 0 0.05]�N ·m is given into the system
at the start of the plots. We choose the parameters of the admittance controller in the yaw direction as Mψ = 0.1, Kψ = 0.0, and Dψ = 0.05, 0.25, 1.25, 2.5
for comparison.

1) Human–Robot Collaborative Transportation: In this ex-

periment, the robot team and the human operator collaborate

together to move a payload from the starting location to the

final location via direct force interaction. Payload translates in

all three axes, as shown in Fig. 11. The square gain matrices are

selected block-diagonal asM = diag(0.25I3×3, 0.1I3×3), D =
diag(5.0I3×3, 5.0I3×3), K = diag(03×3,03×3). Note that the

spring constant coefficient for the admittance controller is set

to zero so that the payload stays at the position/orientation once

the human operator releases the payload.

The experimental results are shown in Fig. 13, where we

compare the actual payload position with the desired pay-

load position from the admittance controller. The results show

that the proposed methods can confidently update the de-

sired payload position to satisfy the human operator’s inten-

tion of moving the payload under both gradient-based and

optimization-based methods. Furthermore, the movement intro-

duced by the human-aware force distribution does not affect the

performance of the payload wrench estimation or admittance

controller.
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Fig. 10. We test the admittance controller together with wrench estimation in all 6 DoF. The Xtraj are where the plots start and the derivative Ẋtraj Ẍtraj are zero.
The actual payload pose, desired payload pose from the admittance controller, and estimated wrench are plotted. On the top: Translation tests in x, y, z in I. On

the bottom: Rotation tests in roll, pitch, yaw in L.

Fig. 11. Human–robot collaborative transportation task. The human operator
collaborates with a team of quadrotors to transport a payload from the start
position (•) to the final position (�). The human operator and the quadrotor
team translate the payload along the x, y, and z axes.

Fig. 12. Human-assisted obstacle avoidance task. The human operator moves
the payload from the desired trajectory (yellow path) to guide the payload away
from an unknown obstacle and then releases the payload, allowing it to rejoin
the desired trajectory and reach the final position (�).

TABLE II
DISTANCE BETWEEN ROBOT–ROBOT AND ROBOT-HEAD PAIRS

In Fig. 14, we show the effects of the two methods for

human-aware force distribution with a top view of the entire

collaboration task. From the plots, we can observe that, as

the human operator, denoted by the purple star, approaches

the 3 robots with a suspended payload, the human-aware force

distribution starts to be effective. The controller expands the

2 robots (blue and green circles) that are close to the human

operator to keep the distance.

To quantitatively support our analysis, we conducted mul-

tiple iterations of the same experiments and recorded the dis-

tances between the robots and the human operator. The distri-

bution of these distance measurements is illustrated in Figs. 15

and 16, with corresponding mean and standard deviation values

summarized in Table II .

As shown in Figs. 15 and 16, both the optimization-based

and gradient-based methods effectively maintain a consistent

distance between the robots and the human operator through-

out multiple repeated experiments. This observation is further

validated by the statistical data presented in Table II. Notably,

the optimization-based method distinguishes itself from the
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Fig. 13. Human–robot collaborative transportation experiment results. Payload position versus desired position from admittance controller. Transnational results
when optimization-based human-aware method is used (top row). Transnational results when gradient-based human-aware method is used (bottom row).

Fig. 14. Human–robot collaborative transportation experiment results. We show the top down view of the human operator (star) and the team of drones (circles).
On the top: Trajectory when optimization-based human-aware method is used. On the bottom: Trajectory when gradient-based human-aware method is used.

Fig. 15. Box plot with mean lines of the robot to robot distances and robot to
head distances during the human-aware collaborative transportation experiments
using the gradient-based method. The data are collected from multiple repeated
experiments.

Fig. 16. Box plot with mean lines of the robot to robot distances and robot to
head distances during the human-aware collaborative transportation experiments
using the optimization-based method. The data are collected from multiple
repeated experiments.
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Fig. 17. Human–robot collaborative transportation experiment results. Drone
to drone distance and human to drone distance when gradient-based method is
used; The gradient-based method does not require a predetermined distance.

Fig. 18. Human–robot collaborative transportation experiment results. Drone-
to-drone distance and human-to-drone distance when optimization-based
method is used; Minimum drone-to-drone distance is set to be 0.75 m, and
the minimum human-to-drone distance is set to be 0.75 m.

gradient-based method as it enforces inter-robot distance con-

straints. This is evident in the left plot of Fig. 16, where all three

drones maintain a minimum separation of 0.75 m, as specified

by the constraint.

To provide additional insights, Figs. 17 and 18 depict the dis-

tances between each robot and the human operator, as well as the

inter-robot distances, throughout the duration of a single sample

experiment. Initially, the human operator starts approximately

2 and 3m away from the robot team. As the operator approaches,

the distances between the human and robots 1 and 3 (represented

by blue and green) decrease. At this point, the human-aware

force distribution becomes active, maintaining stable human–

robot distances.

2) Human-Assisted Obstacle Avoidance: In this experiment,

the payload follows a straight trajectory from the starting loca-

tion to the final location, as the robot team is unaware of the

obstacle. The human operator corrects the payload trajectory to

avoid the obstacle, as shown in Fig. 12. Both gradient-based

and optimization-based methods are also applied here. The

Fig. 19. Correcting payload trajectory experiment result. Comparison between
actual trajectory, desired trajectory, admittance controller output, and estimated
external wrench on the payload. Optimization-based safety controller is used
(left). Gradient-based safety controller is used (right).

TABLE III
COMPUTATIONAL COMPLEXITY SUMMARY

square gain matrices for the admittance controller have a block-

diagonal structure as M = diag(0.25I3×3, 0.1I3×3), D =
diag(5.0I3×3, 5.0I3×3), K = diag(1.2I3×3,03×3).

Note that the constant spring coefficient for the admittance

controller is no longer zero. The payload will now return to

the position/orientation commanded by the trajectory when the

human operator releases the payload.

As we can see from Fig. 19, the correction takes effects ac-

cording to the admittance controlled trajectory. Once the human

operator stops the correction, the nonzero K constant starts

to allow the corrected trajectory to converge with the original

trajectory. As expected, such behavior is present in both the

gradient-based and optimization-based methods.

VIII. COMPUTATIONAL COMPLEXITY DISCUSSION

In this section, we discuss the theoretical computational time

complexity of the methods proposed in this article, focusing

on how each algorithm’s computational complexity scales with

the number of robots. Through this discussion, we aim to offer

insights into the proposed methods and guide the corresponding

system design choices. We summarize the results regarding the

computational complexity of our algorithms in Table III.
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A. Physical Human–Robot Interaction

We begin our discussion with the pHRI module, comprising

the robot state estimator, the human wrench estimator, and the

payload admittance controller.

Each quadrotor runs a UKF state estimator with a fixed state

vector size of 19 and a fixed input vector size of 4. Similarly,

the payload admittance controller’s computation, detailed in

(40), is independent of the number of quadrotors, as it controls

only the 6 DoF of the payload. Consequently, both the UKF

and the payload admittance controller exhibit a computational

complexity of O(1), independent of the number of quadrotors

n in the system.

Next, the human wrench estimation requires quadrotors in the

team to share individual estimated cable tension forces, which

are then aggregated to derive the total external wrench on the

payload using (39). The computation, shown in (39), scales

linearly with the number of quadrotors due to the linear tension

mapping matrix P. Thus, the computation complexity in (39) is

bounded by O(n), with the dimension of matrix P, as depicted

in (4), scaling accordingly with n. This linear time complexity

is manageable with the available computational resources, as

n would need to reach the order of thousands to make this

linear-complexity matrix multiplication the system’s bottleneck.

B. Planning and Control

In planning and control, the system includes payload trajec-

tory planner, payload trajectory tracking controller, dynamic

force distribution, and robot controller. The payload trajectory

planner and tracking controller function similarly to the payload

admittance controller, meaning their computation also remains

independent of the number of quadrotors n. In addition, each

quadrotor independently runs its robot controller as specified

in (29) and (30), thus, these components also maintain a com-

putational complexity of O(1).
The dynamic force distribution involves two parts: nominal

force distribution and human-aware force distribution. It re-

quires linear mapping via matrix multiplication, as shown in

(13), with a complexity bound of O(n).
Regarding human-aware force distribution, we propose two

methods: an optimization-based method and a gradient-based

method. We discuss them separately as follows.

i) The optimization-based method employs the sequential

least-squares quadratic programming solver, requiring

O(a2) storage and O(a3) time, where a = 3× (n− 6)
represents the problem dimension.

ii) The gradient-based method computes the cable tension

force modifier through null space projection of a scaled

gradient vector, optimizing (19). The sum of L2-norm

distances between each quadrotor and the human operator,

combined with the closed-form solution for null space

projection, leads to a computational complexity of O(n).
This complexity is less than that of the optimization-

based method, attributed to the use of closed-form so-

lutions for both gradient computation and null space

projection.

IX. CONCLUSION

In this article, we presented a human-aware human–robot

collaborative transportation and manipulation approach consid-

ering a team of aerial robots with a cable-suspended payload. Our

approach combines a novel control method that leverages system

redundancy with a collaborative wrench estimator, enabling a

human operator to interact in 6 DoF with a rigid structure being

transported by a team of aerial robots via cable. In addition,

the system can achieve secondary tasks like keeping a certain

distance between the human operator and robots, or inter-robot

separation by exploiting the additional system redundancy with-

out affecting the quality or accuracy of the interactive experi-

ence. We demonstrated, through real-world experiments, our

system’s capabilities. The system can assist the human operator

in manipulation tasks, as well as enable the human operator to

effectively assist the load navigation, as demonstrated in the

experiments.

In future research, we aim to expand our study into human-

centric considerations, prioritizing metrics related to comfort-

ness and acceptance of human operators. These elements are

crucial in the domain of human–robot interaction. In addition,

we plan to develop safety methods to counteract unexpected

human actions, such as sudden or forceful human physical

inputs to the load that could lead to cable slack or actuator

overload. This could ensure further robust operation under varied

conditions.

In addition, we want to extend our framework to explicitly

address collision avoidance between the cables and the human

operator as well. Our current approach relies on the human’s

ability to navigate around the cables. However, by modeling

the cables as convex polygons and incorporating them into

the optimization process, we can develop a more comprehen-

sive collision avoidance strategy that ensures human safety.

Further developments also include the design of an onboard

sensing mechanism. We plan to employ tension-measurement

tools, onboard cameras, inertia measurement units (IMUs), and

electronic speed control (ESC)s on each vehicle. Our goal is

to achieve comprehensive onboard state estimation, therefore

eliminating dependence on external motion capture systems.

We also intend to investigate the impacts of state estimation

and control delays, lags, and noise on system performance.

Understanding these factors will enable us to improve our the

robustness of our framework, enhancing interaction experience.

Finally, we would like to integrate a more advanced onboard

perception module. It can empower the robot team to identify

and navigate around complex hazardous spaces. This feature

will enable autonomous obstacle avoidance maneuvers while

leveraging the system’s redundancy to maintain the intended

payload trajectory without compromise. We also envision em-

ploying deep learning techniques with robots’ onboard cameras

to analyze the human operator’s posture, enhancing our human-

aware force distribution strategy.
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