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Human-Aware Physical Human—Robot Collaborative
Transportation and Manipulation With Multiple
Aerial Robots

Guanrui Li

Abstract—Human-robot interaction will play an essential role
in various industries and daily tasks, enabling robots to effectively
collaborate with humans and reduce physical workload. Most
existing approaches for physical human-robot interaction focus
on collaboration between a human and a single ground or aerial
robot. In recent years, very little progress has been made in this
research area when considering multiple aerial robots, which offer
increased versatility and mobility. This article presents a novel
approach for physical human-robot collaborative transportation
and manipulation of a cable-suspended payload with multiple
aerial robots. The proposed method enables smooth and intuitive
interaction between the transported objects and a human worker.
We address the inter-robots and inter-robot-human separation
during the operations by exploiting the internal redundancy of
the multirobot transportation system. The key elements of our ap-
proach are, first, a collaborative payload external wrench estimator
that does not rely on any force sensor; second, a 6-D admittance
controller for human-aerial-robot collaborative transportation
and manipulation; third, a human-aware force distribution that
exploits the internal system redundancy to guarantee the execution
of additional tasks such as inter-human-robot separation without
compromising the payload trajectory tracking or interaction qual-
ity. We validate our approach through extensive simulation and
real-world experiments. These include scenarios where the robot
team assists the human in transporting and manipulating a load, or
where the human helps the robot team navigate the environment.
We experimentally demonstrate for the first time, to the best of
authors’ knowledge that our approach enables a quadrotor team
to physically collaborate with a human in manipulating a payload
in all 6 degrees of freedom in collaborative human-robot trans-
portation and manipulation tasks.

Index Terms—Aerial robotics, physical human-robot interac-
tion (pHRI).

NOMENCLATURE
World frame, payload frame, kth robot
frame.
Mass of payload, kth robot.
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X1, X, € R3 Position of payload, kth robot in Z.

Xy, %, € R3 Linear velocity, acceleration of payload in
T.

X, %, € R3 Linear velocity, acceleration of kth robot in
T.

R;, €5S0(3) Orientation of payload with respect to Z.

R;, € SO(3) Orientation of kth robot with respect to Z.

O, cR? Vector of kth robot’s yaw, pitch, roll in Z.

Q.9 €R? Payload’s angular velocity, acceleration in
L.

Q. Q € R3 kth robot’s angular velocity, acceleration in
Bs..

J;,J. € R?*3  Moment of inertia of payload, kth robot.

& € 52 Unit vector from kth robot to attach point in

7

wyi, € R3, [, € R Angular velocity, length of kth cable.

e €R Tension magnitude within the kth cable.

Fy,F, e R? External human force, net force on payload
inZ.

My € R? External human moment on payload in L.

M, € R3 Net moment on payload in L.

freR Total thrust ofkth quadrotor.

F,cR3 Control force on kth robot in Z.

M, € R? Control moment on kth robot in Bj,.

pr € R3 kth attach point position in L.

Human position, kth attach point position in
7.

PH, Pattx € R?

I. INTRODUCTION

S ENVISIONED in the Industry 4.0 revolution, human—
A robot interaction will play an increasingly significant role
in future industries and daily life [1]. While most research
in human-robot interaction has concentrated on collaborations
between humans and ground robots, only a limited number
of approaches have been developed for aerial robots, with
the majority being confined to teleoperation. Unlike ground
robots, collaborative microaerial vehicles (MAVs) show addi-
tional flexibility and maneuverability due to their 3-D mobility
and compact size. Moreover, a team of collaborative MAVs can
provide increased adaptivity, resilience, and robustness during
a task or multiple simultaneous tasks compared to a single
aerial robot. For example, MAV teams can assist humans in
executing complex or dangerous tasks, including but not limited
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Fig. 1.

Human operator collaborates with three quadrotors, transporting and manipulating a payload. On the left: The quadrotors are moving to keep a distance

from the human operator without affecting payload tracking. On the right: The aerial robot team is transporting the payload using the human operator’s interactive

force and moment as commands.

to inspection [2], [3], mapping [4], [5], environment interac-
tion [6], [7], surveillance [8], and autonomous transportation
and manipulation [9], [10]. Specifically, in autonomous aerial
transportation and manipulation, there are many possible usage
scenarios. For instance, in a postdisaster response task, a team
of aerial robots can cooperatively deliver emergency supplies
to designated rescue locations based on the first respondent’s
guidance. Alternatively, on construction sites, an aerial robot
team can cooperatively manipulate oversized construction ma-
terials with human workers to expedite the installation process
and reduce physical workload.

This article proposes a novel approach that enables a team
of aerial robots to transport and manipulate a cable-suspended
payload in physical collaboration with a human operator, as
depicted in Fig. 1. As discussed in [11], cable mechanisms
stand out compared to other existing solutions, such as simple
spherical joints, or robot arms [12], [13], because of their lighter
weight, lower costs, simpler design requirements, and zero-
actuation-energy consumption. Therefore, they are particularly
suited for size, weight, and power (SWaP) aerial platforms.

Cables also present a good balance among maneuverability,
manipulability, and safety for physical human-aerial-robots
collaboration compared to other solutions. For instance, sev-
eral solutions attach the robots directly to the payloads via
passive mechanisms like spherical joints [14], magnets [15] or
active mechanisms like grippers [16]. However, these mecha-
nisms offer reduced maneuverability and manipulability during
a manipulation or physical interaction task compared to cables.
Conversely, other complex actuated solutions based on robot
arms [17], [18], [19] can enhance maneuverability and flexi-
bility. However, this generally comes at the price of increased
system inertia and power, potentially compromising the opera-
tor’s safety. Therefore, compared to other existing solutions, we
believe that lightweight cable mechanisms can provide a good

tradeoff in terms of maneuverability, manipulability, and safety
while concurrently offering good flexibility to execute multiple
tasks.

We present an innovative control, planning, and estimation
framework that enables a human operator to physically collabo-
rate with a team of quadrotors for the transportation and manipu-
lation of a rigid-body payload in all 6 degrees of freedom (DoF).
A key contribution of this work is the exploitation of system
redundancy, allowing for secondary tasks, such as human-aware
human-robot interaction. Specifically, our approach ensures dis-
tancing between agents and the human operator during physical
collaboration, enabling effective human-aware interaction, as
depicted in Fig. 1 (left).

Existing approaches to human and aerial robot collaboration
have largely focused on single aerial robot interactions [18],
[20], [21]. When considering multiple aerial robots, teleop-
eration becomes a common solution [6], [22]. However, few
solutions exist for human physical interaction and collaboration
with several MAVs [23], [24]. However, the human operator’s
physical collaboration is limited to a 2-D horizontal plane.
Moreover, these approaches overlook the potential of exploiting
the additional DoF to enhance both the system’s awareness of
the human’s presence.

In summary, the contributions of this article are the following.

1) We propose a novel control method that enables a team

of quadrotors to manipulate a payload while exploiting
the system’s redundancy to achieve secondary tasks (e.g.,
maintaining distances from the human operator or ensur-
ing inter-robot separation). This solution facilitates the
physical interaction between the quadrotor team and a
human operator.

2) We introduce a collaborative external wrench estimator

that allows the robot team to collaboratively measure
an external human force input without relying on any
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external force sensors. In addition, we demonstrate that
this approach outperforms existing state-of-the-art solu-
tions.

3) We complement our control solution with a 6-DoF ad-
mittance controller, which utilizes the estimated human
wrench. It enables physical interaction between a human
operator and a team of aerial robots for collaborative
manipulation and transportation tasks.

4) We experimentally demonstrate for the first time, to the
best of authors’ knowledge that our approach enables a
quadrotor team to physically collaborate with a human
in manipulating a payload in all 6 DoF in collaborative
human-robot transportation and manipulation tasks.

The rest of this article is organized as follows. In Section II,
we review relevant literature on cooperative aerial manipulation
and physical human-robot interaction. In Section IV, we review
the nonlinear system dynamics, considering the external wrench
from a human operator. In Section V, we discuss the proposed
human-aware control framework that considers the nonlinear
system dynamics. Section VI details the state estimation strategy
and admittance control framework for intended human—aerial—
robot collaborative manipulation. Section VII presents real-
world experiment results validating the proposed framework.
Finally, Section IX concludes this article.

II. RELATED WORKS
A. Cooperative Aerial Manipulation

In the subsequent discussion, we focus on the existing related
works on control, planning, and estimation techniques for aerial
transportation and manipulation using suspended cables. This
focus arises from the distinct advantages that cable mechanisms
offer over other methods, as previously mentioned.

Past literature includes several control and estimation meth-
ods [11], [22], [25], [26] for autonomous aerial transportation
and manipulation using multiple aerial robots equipped with
cables. For example, several works [25], [26], [27], [28], [29]
proposed formation controllers for a team of MAVs to fly in
a desired formation when carrying the suspended-payload. The
carried payload is not modeled as an integrated part of the system
but as an external disturbance that each MAV controller tries to
compensate for. Therefore, it is expected that these solutions can
struggle to transport the payload to a given position. In [30], by
assuming the payload is a point-mass, the authors analyze the
full nonlinear dynamics of the system. Based on the dynamic
model, the authors design a geometric controller to transport the
payload to the desired position moving the quadrotor team to ac-
commodate the desired load motions. Moreover, the previously
mentioned methods [26], [27], [28], [30], treat the payload as
a point-mass, hence restricting the manipulation capabilities to
payload’s positional movements only, with no control over its
orientation.

Other approaches for autonomous aerial transportation and
manipulation rely on a leader—follower paradigm [31], [32],
[33], [34], [35]. The leader robot follows the desired trajectory,
whereas the followers maintain either a constant distance from
the leader [33], or adapt to forces exerted on them when tracking
their trajectory [14], [31]. However, these methods are subject
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to error compounding failure since they rely on the leader as
a fundamental control unit for navigation. Furthermore, they
cannot accurately guarantee the payload’s transportation to the
desired location or manipulate its orientation.

Several works analyze the system’s complex nonlinear dy-
namics and mechanics and propose corresponding controllers
to control the payload’s pose in 6 DoF [36], [37], [38], [39]. For
example, the authors in [38] and [39] assume the system is in
a quasi-static state and analyze the corresponding static system
mechanics. A payload pose controller assigns the quadrotors’
desired position to manipulate the payload to the desired pose.
In [36] and [37], the complex nonlinear dynamics in the system
are thoroughly analyzed using Lagrangian mechanics. Lever-
aging this model, nonlinear geometric controllers enable the
payload to follow the desired pose trajectory. More recently,
several solutions propose optimal control strategies [40], [41].
Although all these works consider the payload a rigid body,
the redundant control DoF available in the system [42] are
not exploited to accommodate additional tasks like obstacle
avoidance or to ensure safety distance among agents.

Some recent literature starts to investigate this aspect [7], [22],
[43]. However, they are specifically designed for a team of three
or four quadrotors. Masone et al. [44] attempt to leverage system
redundancy for a team with an arbitrary number of aerial robots,
implementing an optimization formulation for the parallel robot
that exclusively optimizes the tension magnitude in the cables,
without considering cable directions. However, the methodol-
ogy presented in [44] does not provide clear instructions for
determining cable direction. Consequently, its applicability for
secondary tasks such as obstacle avoidance or spatial separation
from the human operator remains ambiguous. In this work, we
formulate a human-aware controller for any n > 3 quadrotors
that exploit the additional system redundancy at the control
level, allowing the system to achieve some secondary tasks, such
as avoiding obstacles, inter-robot separation or keeping a safe
distance among robots and human operators.

However, since the abovementioned methods are designed
to control the payload’s pose explicitly, it is essential to have
a reasonable estimation of the payload’s states (i.e., pose and
twists) to be fed back into the controller to have a good tracking
performance of the payload’s pose. Some estimation approaches
can recover the payload pose in [22] and [45], but they rely on
GPS and, therefore, cannot be employed in indoor environments
or areas where the GPS signal is shadowed. Conversely, in our
previous work [11], we tackle the payload pose inference prob-
lem using onboard vision sensors and IMU to obtain closed-loop
control of the payload pose.

However, the proposed vision-based estimation method might
be subject to onboard visual-inertial odometry drift, leading
to some constant offset errors. Although such errors will not
affect the stability of the system, they will influence the task
performance. For instance, consider a scenario where the system
is required to transport a payload to a specific location, but due
to state estimation drift, there is a 1-m offset from the desired
destination. In such cases, as shown in this article, our proposed
method enables a local human operator to guide the system
and correct the payload to the desired pose, ensuring that the
payload is transported to the correct final destination.
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B. Physical Human—Robot Interaction (pHRI)

pHRI is a rapidly growing field in robotics, facilitating the
collaboration between humans and robots in various scenarios
such as manufacturing, healthcare, and service industry. Most
of the research in this field focuses on the collaboration be-
tween a single robot and a human. For instance, this includes
cooperative manipulation with a robot arm attached to a ground
wheeled base [46], [47], a fixed-base robot arm [48], a humanoid
robot [49], or an aerial robot with a manipulator [18], [20].
Past researchers’ works also present approaches like admittance
control [20], [50], compliance control, impedance control for
single-human—single-robot physical collaboration.

To increase payload capacity, the common strategies are either
deploying a more powerful robot or utilizing a team of robots.
The latter approach not only increases redundancy and provides
the potential for fault tolerance, but also brings in specialized
capabilities that enhance the team’s resilience and performance
compared to a single robot. However, employing a team of
robots demands effective coordination and collaboration across
estimation, planning, and control levels.

While multiple robot-human interactions with teleoperation
via haptic devices [51] or mixed reality glasses [52], [53] is
a widely explored research topic, physical human—multi—robot
cooperative manipulation remains mostly underexplored [54].
Recently, a handful of works started to research on direct phys-
ical interaction between a human and multiple ground robots
to cooperatively manipulate or transport an object [54], [55],
[56]. Carey and Werfel [56] demonstrated that 4 omnidirectional
ground robots with robot arms can physically collaborate with a
human using their proposed force-mediated controller but only
simulation results were presented. Elwin et al. [54] designed
an omni-robot system that can lift payloads. Then, the multiple
proposed omni-robots can collaborate with humans to manipu-
late objects toward desired locations. Sirintuna et al. [S5] used
two robot arms with omnidirectional wheeled base to physically
collaborate with a human to manipulate oversize objects. They
introduce an admittance control module on both ground robots
to adapt the human motion as the human leads the manipulation.
However, the system dynamics for aerial robots are inherently
different from ground robots as aerial robots move in 3-D.
Hence, the established dynamics models and corresponding
control methods for ground robots cannot be directly translated
to aerial robots. Moreover, for the SWAP-constrained aerial
robots, designing a lightweight, computationally efficient sens-
ing strategy is also essential.

Rastgoftar and Atkins [23] proposed a framework for physical
human-robot collaborative transportation of cable-suspended
payload with a team of quadrotors. The proposed approach
models the payload as a point mass and assumes external forces
applied on the payload to be constrained in 2-D. Leveraging
their previous work [33], the designed controller assigns three
quadrotors as leaders and the remaining robots as followers in
the team. When an external force is applied to the payload, a
fixed step is given to the leaders’ positions along the estimated
force direction. In [24], five quadrotors collaborate with a human
operator to transport a point mass payload. The force applied by a

Fig.2. Frame convention: Z, L, BB, denote the world frame, the payload body
frame, and the kth robot body frames, respectively, for a generic quadrotor team
that’s cooperatively transporting and manipulating a cable-suspended payload.

human on the payload is estimated by summing the cable tension
forces and subtracting the gravity. The human-applied force is
fed into an admittance controller, which updates the desired
quadrotor position and velocity in the formation. However,
compared to our work, the cable tension magnitude is measured
by a custom tension measurement module, and its direction by
a motion capture system. Moreover, the aforementioned works
present substantial limitations as they presume the payload to
be a point mass and constrain the human operator to manipulate
the payload in only 2-D. On the contrary, in our proposed work,
we widen the scope of physical interactions between the human
operator and the payload to all 6 DoF. This enhancement is
achieved by modeling the payload as a rigid body with 6 DoF
and developing an estimator to estimate the full 6 DoF wrench
acting on the payload. Furthermore, our system removes the
use of any force-measuring devices on the robots or payload
(except to obtain the ground truth during testing for validating
our estimation approach). These are unique characteristics that
increase the flexibility and applicability of our solution com-
pared to existing ones.

III. OVERVIEW

In this section, we present an overview of our proposed system
designed to enable a team of quadrotors to collaborate with a
human operator to manipulate a rigid-body payload. Depicted
in Fig. 2, the system comprises n quadrotors, and each quadrotor
is tethered by a cable to its center of mass. The software architec-
ture of the system encompasses couple of primary components:
planning and control, and pHRI, as shown in Fig. 3. We provide
a more detailed description of each module as follows.

A. Planning and Control

The planning module generates a desired trajectory for the
payload, encompassing both position and orientation. The tra-
jectory is represented by a polynomial trajectory of time. By
differentiating the polynomial with respect to time, we can
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Fig. 3.

Block diagram of the system illustrating the overview of the system. It begins with a trajectory generator, which outputs the desired trajectory of the

payload in all 6 DoF. The payload admittance controller updates this trajectory based on the estimated human input, adapting to the interaction wrench exerted by
the human on the payload. The modified trajectory is then passed to the payload controller as the desired payload state to track. The payload controller calculates
the desired wrench to control the payload’s motion. Subsequently, the dynamic force distribution module allocates the desired cable forces based on the human’s
position and the system dynamics, and distributes the desired cable forces for each robot to track. Each robot controller will then track its corresponding desired
cable force and output the corresponding thrust and moment commands to the quadrotor platform.

obtain payload state’s respective first and second derivatives.
These derivatives represent the twist and acceleration of the
payload pose. We use the similar planning method as the one
we used in our previous work to generate the trajectory for
payload [57]. The desired values will be fed into the admittance
controller. If human interaction with the payload occurs, the
admittance controller will update the trajectory in response to
the human inputs.

The control proposed in this article, described in Section V,
adopts a hierarchical design that comprises the payload tracking
controller, dynamic force distribution, and robot controller. The
hierarchical controller design offers several advantages. First,
it simplifies the complex task of controlling the entire system
by breaking it down into several manageable subtasks. At the
base of our design is the robot controller, which computes
the control actions based on local information, such as cable
direction and robot orientation. This strategy allows us to first
test the individual robot controller with a single robot, thereby
ensuring we do not risk compromising the entire system. After
successfully building and testing the robot controller, we can
proceed to test the higher level modules, including the payload
controller and dynamic force distribution.

Moreover, the modularity enhances the system’s maintain-
ability and scalability, as changes or improvements to one part of
the control system can be implemented without affecting other
components. For example, in our case, we can introduce the
adaptation module at the payload level without changing the
robot controller.

In the following sections, we will provide a more detailed
overview of the controllers within the control design.

1) Payload Controller: The payload controller’s function is
to control the payload’s state, enabling it to track the adapted
desired payload states from the admittance controller. It gener-
ates the desired manipulation force and moment on the payload
to track the desired payload states.

2) Dynamic Force Distribution: The dynamic force distribu-
tion dynamically distributes the desired cable tension forces that
each quadrotor needs to exert to manipulate the payload. It con-
sists of two parts: nominal force distribution and human-aware
force modification.

Nominal force distribution: The nominal module processes
the desired forces and moments on the payload, as computed by
the payload controller. It maps the desired wrench on the payload
into nominal desired cable tension forces for each quadrotor.

Human-aware force distribution: This module leverages the
redundancy inherent in a multiquadrotor system to adjust the
nominal cable tension forces calculated by the nominal tension
distribution module. It modifies the nominal cable tension forces
without impacting the overall manipulation forces and moments
exerted on the payload computed by the payload controller.

3) Robot Controller: Each quadrotor runs an individual
robot controller to track the desired cable tension forces assigned
from the dynamic force distribution module. It commands thrust
and moment to the quadrotor such that the quadrotor can track
the desired cable direction as well as exert the desired tension
in the cable.

B. Physical Human—Robot Interaction

The human interaction module proposed in this article in
Section VI, comprises two main parts: the admittance controller
and human input estimation.

C. Robot State Estimation

Each robot runs an onboard unscented Kalman filter (UKF)
to estimate the robot’s position, velocity, orientation, angular
velocity, and the cable force applied to the robot. The cable force
estimated by each quadrotor will be shared among the team to
collaboratively estimate the human wrench.
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1) Human Wrench Estimation: This component estimates
the human’s input wrench on the payload by collecting all the
cable forces estimated by each quadrotor. Given the challenges
associated with adding additional force sensors to the payload
for real-world applications, we aim to minimize modifications to
maintain cost-effectiveness. Our innovative solution, which does
not require any additional force sensor, involves each quadrotor
estimating its cable force. And the estimated cable force is then
shared among the team to deduce the total forces and moments
from all cables, further derive the human input wrench.

2) Payload Admittance Controller: The admittance con-
troller modifies the desired payload trajectory based on human-
applied forces and moments. This would allow the system to
adapt to the human input, leading to collaborative transportation
and manipulation of the payload between the human and the
team of quadrotor robots.

IV. SYSTEM DYNAMICS

This section presents the modeling of the overall system
dynamics. We consider a scenario where a team of n quadrotors
cooperatively manipulates a rigid body payload, as illustrated
in Fig. 2. We establish the world frame Z on the ground. The
payload frame L is located at the payload’s center of mass. The
payload’s position and orientation relative to Z are denoted by
x7, and Ry, respectively.

The relevant variables in this article are summarized in the
Nomenclature. We denote the three elements of any 3-D vector
using subscripts *; y ..

The system dynamics models are developed based on the
following assumptions.

1) Aerodynamic interactions with the ground and other ef-
fects caused by high robot velocity are ignored due to its
insignificant effect at a low moving speed that’s achieved
by this system.

2) Each cable is assumed to be attached at the center of mass
of each robot, each robot’s center of gravity coincides with
its geometrical center, and all cables are assumed to be
massless with no dynamic effects on the system.

3) Wind disturbances are ignored, the human operator would
only interact with the payload, and all external forces on
the payload and each robot are considered to be exerted
by a human operator.

Assumption 1 is justified by the operational velocity, and
spatial separation among agents we propose in Section V-B-2,
which minimizes aerodynamic effects. Assumption 2 is based on
the symmetrical design of the MAV and the lightweight nature
of the cables. Finally, Assumption 3 is relevant due to our focus
on indoor operation.

A. Basic Geometry

As shown in Fig. 2, the kth quadrotor attached one massless
cable with length [}, from its center of mass to the kth attach
point on the payload. The location of the attach point k£ with
respect to £ and T is represented by constant vector p; € R3
and vector pat k. € R?, respectively. Hence, from the geometry,

we can have

Patt,k = X1 + Rrpy. (D
As we can also observe from Fig. 2, when the cable is taut,

the robot’s position can be obtained by using the attach point
position and the cable as follows:

Xk = Patt,k — k&k ()
where xy, is the kth quadrotor’s position in Z, and &y, is the unit

vector that represents the cable direction from the robot to the
corresponding attach point in Z.

B. Payload Dynamics

The net force F 1, in Z and moment M, in £ on the payload
is determined by all the cable tension forces py, k =1,...,n,
gravitational pull g, and external wrench Fz, My applied by
the human operator

Fr|
M|

where my, is the payload mass, g = ges, g = 9.81 m/SQ, e; =
[0 o 1]".In(3), the matrix P € R6*3" maps tension vectors
of all n MAVs in 7 to the wrench on the payload with force in
7 and moments in £

I3x3 1 ' @)

2

Fu

L Pu—
My, H

0 M= : 3)

n

K1
ng] .

I33  Izx3

P=| )
Ple P2R£

where I3,3 € R**3 is an identity matrix and the hat map - :
R3 — s0(3) is defined such that ab = a x b,Va,b € R3.

By inspecting the matrix P, we observe that P has 6 rows,
independent of the number of robots in the system. For n > 3
robots, the number of columns of P surpasses the number of
rows, causing the dimension of the domain of P to exceed that
of its image. Hence, there is an additional nullity in matrix P,
which can be represented by the null space of the matrix P,
denoted as N'(P) C R3"~5. The system can utilize the nullity
to accomplish secondary tasks, such as obstacle avoidance,
inter-robot separation, or keeping a distance between human
and robot [58], which we will introduce in Section V.

Through standard rigid body dynamics, we can obtain the

translational and rotational dynamics of the payload as
mpkp =Fp, JQr =M, -Q,xJ.Q 5

where %7, Q2 € R? is the payload linear and angular accelera-
tion, respectively, Q7 € R? is the payload angular velocity, and
Jr € R®*3 is the payload’s inertia matrix.

C. Quadrotor Dynamics

Based on Assumptions 2 and 3, we consider the translational
and rotational dynamics of the kth quadrotor as follows:

MEpXp = U — B — Mg (6)

JkaZMk—Qk XJka (7)
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where u;, and M, are the control force and moment on the kth
quadrotor and py, = —pi€x is the tension force applied on the
kth quadrotor.

When the cable is taut, the motion of kth quadrotor is con-
strained to the surface of a sphere centered at the kth attach
point, with a radius equal to the cable length [42]. The dynamics
of the cable direction can then be derived using the Lagrange
d’ Alembert principle as follows [9]:

o= —

mkl k
where ay, is the acceleration of the kth attachment point

éi (up —mpay) — HE/CHE &k (3)

. L A2
ap, =X, +8— Rrpp,Qr + R.Q; py. 9)

V. CONTROL

In this section, we introduce a hierarchical nonlinear con-
troller that enables a team of n quadrotors to manipulate a rigid-
body load suspended by cables. The formulation of the controller
is based on the system dynamics presented in Section I'V. Fig. 3
illustrates the hierarchical structure of the controller.

The hierarchy begins with a payload controller, detailed
in Section V-A, which generates the desired wrenches
F1 des, Mp des to control the position and orientation of the
payload. Subsequently, the dynamic force distribution module,
described in Section V-B, assigns desired cable force vectors
pi, k=1,... n for each robot, based on the desired payload
wrench Fr, ges, M1 des. The control hierarchy finishes with the
robot controller at its lowest level, where the individual robot
controller on each robot tracks its corresponding desired cable
force vector py. Each robot controller, associated with the kth
robot, computes the appropriate thrust and moment commands
for the robot, as further shown in Section V-C.

A. Payload Controller

We present a payload controller that enables the load to follow
the desired trajectory in a closed loop. The subscript #4.s denotes
the desired value given by the trajectory planner. The desired
forces and moments acting on the payload are designed as

Frges =mpar,. (10)

t
aj, . erxL + Kde)'cL + K, /edeT + j.(L,des +g
0

. )
Mrpaes = Kr,er, + Kq,eq, +JL R R[ qesS2L des

+ (RERL,desQL,des)A JLRIRL 4esQp aes (11)

where K, K4, K;, Kg, ,Kq, € R**? are constant diagonal
positive definite matrices, and

€x, = XL des — XL, €x;, = XL des — XL
1 T T \%
€Rr;, = 5 (RLRL,des - RL,desRL)

eq, = BRI R aesQL des — Q1. (12)

In the abovementioned equation, the vee map ¥ : 50(3) — R? is
the reverse of the hat map °.
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B. Dynamic Force Distribution

In this section, we present our dynamic force distribution
method that allocates the desired payload force Fj, qes and
moment M, qes to the desired cable tension forces pty. The
force distribution comprises two segments: the nominal force
distribution and the human-aware force distribution.

The nominal force distribution, originated from nonlinear ge-
ometric control method [9], [11], distributes the desired payload
wrench to the desired cable tension forces using minimum norm
solution.

On the other hand, the human-aware force distribution lever-
ages the system redundancy, given that the robot number n > 3,
to obtain the cable forces that yield a zero effective wrench on
the payload. This adjustment enables the system to modify the
desired cable forces from the nominal distribution for secondary
objectives, such as maintaining a distance from the robots to
the human operator and between the robots themselves, without
impacting the original manipulation tasks.

In the following, we will first present the nominal force distri-
bution method in Section V-B-1, followed by the human-aware
force distribution method in Section V-B-2.

1) Nominal Force Distribution: Once the desired payload
wrench Fr, ges, M ges 1s Obtained, it can be distributed to the
desired tension force fiy, 4., along each cable as

ﬂl,des

p’des = (13)

/:‘n,des

where PT = P"(PPT)~! is the Moore—Penrose inverse of P.
The abovementioned solution can be directly used as the desired
cable tension vector for the robot, like in our previous works [9],
[11]. However, the abovementioned solution does not exploit
the possibility of the quadrotor team’s needs to accomplish
secondary tasks. For example, the second task can be avoiding
obstacles or, as shown in this article, spatially separating the
human and the robots during physical collaboration.

2) Human-Aware Force Distribution: As we have mentioned
before, the human-aware force distribution exploits the system
redundancy to modify the desired cable forces from the nominal
distribution for secondary tasks. The secondary tasks can be
maintaining a distance from the robots to the human operator and
between the robots themselves, without impacting the original
manipulation tasks.

To accomplish these, we propose and discuss two distinct
approaches in this section. The system aims to allocate the
wrench to the desired cable tension forces with the following
two principal goals in mind.

1) Minimize the total cable tension forces to conserve the

robot’s energy.

2) Utilize the null space of the cable distribution matrix P
to facilitate secondary tasks, such as ensuring a safety
distance between the robots and potential human operators
within the team.

In the following, we introduce two methods enabling each

MAV to maintain distance from an object. Concurrently, these
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methods allow the team to maintain the original desired load
forces, F'1, ges, and moments, My, 45, as outlined in Section V-A.
This approach ensures that the original objectives in load ma-
nipulation are not compromised.

The methods leverage the redundancy in system configura-
tions involving more than three MAVs, as explained in Sec-
tion IV. We intend to find a desired tension force modifier,
Daes € N (P) that modifies fige in (13), and satisfies

Nl,des

P[l’des =0, /]’des = (14)

/J‘n,des

Equation (14) means the tension modifiers result in zero
wrench on the payload, which does not affect the original desired
manipulation wrench from (10) and (11). With the tension force
modifier, we can update kth robot’s desired cable tension force
as

Pk des = p’k,des + p’k',des' (15)

Intuitively, A/ (P) provides all the possible combinations of
n cable tension vectors that can generate internal motions of the
structure (i.e., variations of the cables’ directions) that do not
affect the load configuration controlled by the method presented
in Section V-A. This is confirmed by (3) and (15), as iy, ges
would create a nonzero net wrench on the payload while £y, 4,
creates zero net wrench. Moreover, fiy, 4., can be related to the
position of each robot

Pattk + €k ges = Xk (16)

and
ﬂk,des =+ ﬁk,des
”ﬂk,des + p‘k,des”

The advantage is that we can exploit iy, 4 to enforce the kth
robot to maintain a certain distance with respect to the other
agents in the system and other objects in the environments, like
a potential human operator.

Therefore, the human-aware force distribution needs to find
the aforementioned tension force modifier, fi4. € N(P), and
use (15) to move MAVs based on (16) without affecting the
payload. We propose the following two approaches for finding
p’des

1) Gradient-Based Method: Find a fu4., such that each MAV
maximizes the distance between itself and the object using
a gradient ascent method.

2) Optimization-Based Method: Find a 14, such that each
MAV guarantees a predetermined minimal safe distance
between all its neighboring drones and the object by using
nonlinear optimization.

In the following, we can describe the obstacle or human
operator as a particular object of interest in the environment.
The corresponding point position with respect to Z is denoted
as po in the following controller formulation.

Gradient-based method: Inspired by strategies used for redun-
dant rigid link robot arms in [59], we introduce a gradient-based
method to compute fi,4.. Specifically, a pseudotension force

Erdes = —Ehdes = (17)

modifier, p.,, is found by maximizing the distance between
objects in the environment and each drone. u8. is then projected
into AV (P) to become the tension force modifier fi4.,. To update
1Y, we propose

0 QM

= = (18)
alj’des

des —
where Q € R*"3" is a diagonal positive-definite matrix with
variable and tunable coefficients on its diagonal, and W (i)
is the cost function. w( 14 ) is defined as the squared distance
between each drone and the object from which the system is
required to keep a safe distance as follows:

k ~ 2
W(ﬁdes) = Z HpO - (patt,k + lkgk,des) H (19)
i=1

where 1, = I;,I5,5. Note that £ k,des Points from the kth attach
point to the kth robot. We can now compute the partial derivative
of the cost function corresponding to the kth robot by using (19)
and obtain the following:

OW ([ des)
¢ =2l [pO - patt,k] —
8uk,des 8I~Lk,des

< &T
]T (I3X3 - £k7des£k,des)

”p’k,des + [I’k,des” .

= —2l; [PO — Patt.k (20)

For each control step, we update pJ., based on (18), performing
gradient ascent to maximize the distance between each robot and
the objects in the environment. To regulate the effect of gradient
on each robot when the object is far away, we propose each
element of Q as an exponential decay function of the robot-to-
object distance

Q:diag(Qla"'aQn)a

where a,b € R are tunable coefficients. With these varying
coefficients, we can implicitly impose distance limits as the
gradients will only have impact on the tension modification when
kth robot is close enough to the object. However, till now, p9.
from (18) is not yet in A/(P). Hence, we consider the following
optimization to project pd., into the null space of the matrix P

Qi = ae !PoL;5 - @21)

In,in ||p’ges - ﬁdes”Q
Hedes

st. Pl =0. (22)

Since the abovementioned optimization problem is a
quadratic programming problem with linear equality constraints,
there is a closed-form solution shown as follows [60]:

ﬂ’des = B/l’ges = (I - PTP) ”’ges

where PT is the pseudoinverse as in (13), and B is an orthogonal
projector that projects any p., orthogonally into the null space
of P.

Using this result, we project p1° into A/(P) with (23), ensuring
zero additional wrenches being applied on the payload when
each robot is maximizing distance from the object. Finally, we

(23)
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update the desired tension vector as

Hdes = Hges + ﬁdes = [ges + Bl'l’ges' (24

Optimization-based method: In this section, we directly for-
mulate an optimization problem to solve for a tension force
modifier 4., in A/ (P) that guarantees safety distance among the
objects and the robots. The nonlinear optimization problem is
to minimize the total square norm of the resulting cable tension
vector. Furthermore, we formulate n robot-to-object distance

constraints, as well as another (g) = % constraints are
added to prevent each pair of robots from collision. Consider

the following nonlinear optimization problem:

. _ 2
mc}n ””’des +NAH
s.t. ||po — xk||2 >Mh2 0<k<n
Ix; — x> >%% 0<i<j<n (25)

where the columns of N spans N(P) and ¢ € R3" 6 is the
vector to be optimized. ' and "r are two scalar values denoting
the predetermined safe minimum distance allowed between
robots and between the object and each robot, respectively. The
kth robot’s position is expressed in terms of N A and fiy, 4,

ﬂk,des + NiA

T HETIE X e (26)
Hu’k,des + NkAH

Xk = Patt,k + Ik
where N, represents the three rows from the kth row to the
k + 2th row of the null space basis matrix N, which corre-
sponds to the kth MAV. Since (25) is a nonlinear optimization
problem with quadratic cost function and quadratic constraints,
we use sequential quadratic programming solver for nonlinearly
constrained gradient-based optimization [61] in NLOPT [62] to
solve (25) and obtain c. After obtaining c, the desired cable
tension forces can be obtained as follows:

Hdes = Paes T Paes = Baes + NA. 27

Discussion: The proposed methods are both effective for
the quadrotor team to keep a safe distance away from a given
object, as we also experimentally verify in Section VIL. However,
considering computational aspects, the gradient-based method
requires fewer resources compared to the optimization-based
method. This is primarily due to the closed-form solution offered
by the gradient-based approach, as demonstrated by (20). On
the other hand, the optimization-based method needs to solve a
nonlinear optimization problem. In Section VIII, we provide
a quantitative analysis of the computational complexity and
resource usage for both methods based on our implementation.

C. Robot Controller

In this section, we present the controller on each robot that
enables the quadrotor to execute the desired cable tension
force. The same robot controller has been used in our previous
works [9], [11].

Once we obtain the desired tension forces ftges from (24) or
(27), we can obtain the desired direction &}, 45 and the desired
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angular velocity wy, ges Of the kth cable link as

Mk des

— Wk des = Ehdes X € dos
[tr,aes]” o7 Bhides

gk,dcs =
where & k.des 18 the derivative of the desired cable direction
& des- After we obtain the desired cable direction &, ges and
cable angular velocity wy, qes, Wwe can determine the desired force
vector for the robot uy, as

[ 1
up = u; + uy

.2
ufc‘ = myplp€r X [7K£k65k — Kwkewk - Ekwk,dcs
. 2
— (&k - Wi des) £k,des:| — mp&Lak,c
| T l 2 T
u, = £p€p Mk,des + Mily ||will5 & + miiéy ar,c

. ¢ 2
are= ar.— Rpp,Qr + R pp (28)

where K¢, and K, € R3*3 are constant diagonal positive
definite matrices, e¢, and e,,, € R are the cable direction and
cable angular velocity errors, respectively

e, = Ek.des X &k, €w, = Wi + &k X &k X Wi des-

As we obtain the desired force vector of the quadrotor from (28),
we can follow [63] to derive the desired rotation Ry e, and
angular velocity €2 ges With desired yaw angle and desired
yaw angular velocity from the robot’s own planner. The thrust
command fj, and moment command My, to the kth quadrotor
are therefore selected as

fre =
M, =

ug - Rke3 (29)

Kreg, +Kaeq, + Q2 x JpQ
- Jk (QkRZRk,dest,des - R;Rk,desgk,des> (30)

where Kr, Ko € R**? are constant diagonal positive definite
matrices, er, € R? and eq, € R? are the orientation and an-
gular velocity errors similarly defined using (12). The readers
can refer to [42] for stability analysis of the controller.

VI. PHYSICAL HUMAN—ROBOT INTERACTION

This section introduces the pHRI module that enables a human
operator to physically cooperate with a team of n quadrotors
in manipulating a suspended rigid-body payload. The module
comprises two main sub-blocks: the estimation module and the
admittance controller.

The estimation module is designed to facilitate the quadrotor
team in estimating the human operator’s input wrench exerted on
the payload. The admittance controller takes the estimated hu-
man wrench and the desired payload state as input and generates
a desired payload state to adapt the human’s action.

A. Estimation

We present the estimator design that allows the quadrotor
team to estimate the external wrench applied to the payload by
the human operator. First, in Section VI-A-1, we introduce a
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quadrotor state estimator based on UKF that runs onboard each
quadrotor in a distributed fashion. Each quadrotor can leverage
the estimator to estimate the cable force applied to it, without
the need for a force sensor. Subsequently, in Section VI-A-2, we
show how we can estimate the external wrench applied on the
payload by the human operator via sharing the cable force on
each quadrotor among the team.

1) Robot State Estimation: We consider the kth MAV to have
the following state Sg:

. T T
of o & & m| 6D
where ®;, € R? is a vector of the 3 Euler angles expressed
according to the ZYX convention representing the robot’s ori-
entation. And the input is defined as

— T T
Sk—[xk %)

-
U= [fe M| (32)
where fj, and M, are obtained based on motor speed measured
by the electronic speed controllers on the robot. The relationship
between motor speed and the resultant thrust and moment is
expressed as follows:

)

where k; and k,, represent the motor constants corresponding
to rotor force and moment, respectively. d, and d, denote the
distances from the rotor to the body’s = and y axes. In addition,
wyp; signifies the motor speed of the jth motor. We denote
the current time step as *' and the previous time step as *'~ 1.
Subsequently, we present the nonlinear process model and the
linear measurement model of the UKF.

Process Model: Based on MAV equations of motion presented
in (7), discretizations of quadrotor states are performed by
assuming each control step moves forward in time by dt. The
discrete-time nonlinear process model is

kg kg ky
doky  doky —dgky
_dy kf dy kf dy kf
km —km km

kg Wiy
—dk 2
—dy ]ff w

m3

2
—km Wia

t [ t—1 | t-1 ot 0t2 ]
X, X, o+ X0t + X %5

ot Y
X], X, -+ X0t

CH | R 'exp [R} Q2 "6t]]

i=9(S; UL = QL |= QL 4 Q) 5t (34)
_ .t t
3 C1 g ot + £ 92
Lt St—1 et
&, & + &0t
L] L py ! |

For updating the Euler angles, a few nonlinear mappings are
used as in [64].
1) [*] that maps x € SO(3) to © € R3.
2) explx] that maps * € R3 to SO(3); or maps axis-angle
50(3), to rotation matrix SO(3).

In (34), 9?1 is rotated into Z. After time step dt, the robot’s
angular displacement in Z, expressed in s0(3) is mapped into
SO(3). This new robot orientation in SO(3) is then added to the
previous orientation and the resultant orientation is converted to

Euler angle using |*]. The equations of motion for unit cable
direction are provided in [11], with the results presented here

(ézl)Q (ux — mray)

mklk

.. L1012
&= —|jg], e

In our system, we employ a 16 x 16 time-invariant process
noise diagonal covariance matrix, operating under the assump-
tion that the system has zero-mean, additive Gaussian process
noise. For the prediction phase, the UKF algorithm utilizes (34).
It is important to note that in instances where measurements are
not available at every control time step, the UKF implements a
nonlinear prediction method that assumes zero process noise.

Measurement Model: Using an indoor MOCAP system, we
can measure everything in the state except tension magnitude.
The measured states for kth robot, therefore, are

(35)

-
Zi=|x] x| o] o & & . 66
We also want to note that using onboard visual inertial odometry
and vision-based methods from our previous work [11] can
provide the same measurements as the motion capture does and
can potentially make the entire measurement update process run
fully onboard. However, this is out of the scope of this article
and we refer to it as future works.

Denoting the time step when the UKF measurement update
is triggered as m, the UKF finds the state prior to m, S;”’l. A
nonlinear propagation through (34) is performed by propagating
sigma points around S}C”’l through the system model in (34) as
shown in [65].

The linear measurement model is

I 0
= |fexs Usal
O1x18  O1x1
The system state prediction is compared to the actual measure-
ment using the abovementioned model

St = Ki(HS}" — Zy) (37)

where ST is the averaged state after sigma point propagation
and K, is the Kalman gain. Kalman gain is computed based on
the standard UKF update step as in [65].

2) Human Wrench Estimation: Rearranging (3), we obtain

. K1
mrXr| L mE
[JLQLl = +P | [ 1 . (38)

03x1
Considering quasi-static operating conditions, we can assume
the payload linear and angular acceleration terms can be ne-
glected. Therefore, leveraging this assumption and rearranging
based on (38) we obtain
mg
Os.1 |

Extracting tension values from each robot’s state allows us to
compute the external wrenches on the payload.

Fg
My

n

M1

F
Tl—_pP|: |+

My, (39)

o
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B. Payload Admittance Controller

The admittance controller is a high-level controller that up-
dates X7, ges and Ry qes in  (12) for the payload controller
(see Section V-A) based on the external force applied on the
payload. When interacting with the payload, it allows the human
operator to experience a virtual mass-spring-damper system
rather than the actual mass. By setting the admittance controller’s
tunable parameters to the desired values, the payload can be
either sensitive or insensitive to external forces regardless of the
payload’s actual property.

The admittance controller conceptualizes the payload as a vir-
tual mass-spring-damper system, responding to external forces
and moments from the human operator. It takes the external

i
wrench, represented as [FE MH € R6*1 as the input.

The output from this controller includes the desired payload
twist, denoted as Xy, € R6*!, along with the desired linear and
angular positions of the payload, Xy € R6*!, where the angular
position is expressed in Euler angles. In addition, the admittance
controller calculates the desired linear and angular accelerations,
/'E'des € R*!, However, it is noteworthy that these acceleration
outputs are not utilized by the lower level payload controller.

The admittance controller assumes the following dynamics
for the payload:

. ) Fu
Méygm + Déyam + Keygm =
My

€adm = Xddes — )(lraja €adm = Xdes — /‘Etraj

€adm = Xdes — /Ytraj (40)

where M, D, and K € R®*¢ are tunable diagonal positive
semidefinite matrices denoting the desired mass, damping, and
spring property of the payload. Based on the initial starting con-
dition of the payload, éﬁraj, eraj , and X,j can be set accordingly.
We choose to set them to be the planned trajectory. Closed-form
solutions exist for (40) with the assumption that the input wrench
is a predetermined function (e.g., a linear function). However,
such an assumption is not ideal for our use case. Therefore, we
choose to solve Xyes, Xdes, )Edes with Runge—Kutta fourth-order
approximation.

VII. EXPERIMENTAL RESULTS

The experiments are conducted in an indoor testbed with a
flying space of 10 x 6 x 4m? of the ARPL lab at New York
University. We use three quadrotors to carry a triangular payload
via suspended cables. The quadrotor platform used in the ex-
periments is equipped with a QualcommSnapdragon 801 board
for on-board computing [66]. A laptop equipped with an Intel
i9-9900K CPU obtains the Vicon' motion capture system data
via ethernet cable.

The framework has been developed in robot operating system
(ROS)? and the robots’ clocks are synchronized by Chrony.® The

'[Online]. Available: www.vicon.com
2[Online]. Available: WWW.T0S.0rg
3[Online]. Available: https:/chrony.tuxfamily.org/
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Force Measurement Device

Load Cell

Fig. 4. Wrench estimation evaluation. The human operator uses a force
measurement device to measure the applied wrench on the payload, which is
used to validate our wrench estimation algorithm results. On the left, we show
the human operator applies force via the force measurement device, and, on the
right, we show the force measurement device in detail.

mass of the payload is 310 g, which exceeds the payload capacity
of every single vehicle. The pose and twist of the payload and
quadrotors, the position and velocity of attachment points, and
the human operator’s position are estimated using the Vicon data
at a frequency of 100 Hz. The unit vector of each cable direction
&, and the corresponding velocity 5 i, are estimated by

Paw,k — Xk y patt,k — Xj

£, =

— Patk 7 Xk (41)

& = -

 IPae — x|
where DPay i, Paw,k are position and velocity of the kth attach
point in 7 and xj, Xy, are position and velocity of the kth robot
in Z, all of which are estimated by the motion capture system.

A. Cable Force and External Wrench Estimation

In this section, we validate our cable force and external wrench
estimation algorithm by comparing the estimation results ob-
tained using the approach presented in Section VI-A-2 with the
ground truth from the wrench measurement device, as shown in
Fig. 4.

We can identify the ground truth force by measuring the
force direction and force magnitude separately via the wrench
measurement device. As the ground truth force direction is along
the cable between the measurement device and the other end
where the device is attached to the system, it is measured by
computing the difference between the load cell’s position and the
attach point position using the Vicon motion capture system. The
ground truth force magnitude is measured via a Phidget micro
load cell,* as shown in Fig. 4. The measured cable direction and
tension magnitude are postprocessed to obtain the ground truth
force.

In the cable force estimation experiment, we hover a quadrotor
in midair and run the proposed UKF onboard. The measurement
device is connected to the center of mass of the quadrotor and
a human operator pulls the measurement device into various
directions to evaluate the algorithms. The results are shown in
Fig. 5. In the plots, we compare the measured forces to the
estimated forces in all 3 DoF and the estimated cable forces
track measured ground truth accurately.

During the wrench estimation experiment, we hover the sys-
tem with the regular payload controller without activating the

4[Online]. Available: www.phidgets.com

Authorized licensed use limited to: New York University. Downloaded on December 29,2024 at 18:58:48 UTC from IEEE Xplore. Restrictions apply.



LI et al.: HUMAN-AWARE PHYSICAL HUMAN-ROBOT COLLABORATIVE TRANSPORTATION AND MANIPULATION 773
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Fig. 5. Cable force estimation experiment results. Comparison between the

cable force estimation and the force measurements from the force measurement
device in all 3 DoF.

TABLE I
RMSE OF WRENCH ESTIMATION AND MEASUREMENT

Force (N) Moment (N - m)
T Y z roll pitch yaw
Ours 0.0185 0.0117 0.0564 0.0088  0.0066  0.0045
[7] 0.0282  0.0164 0.0419 0.0148  0.0040 0.0120

admittance controller. Subsequently, the human operator pulls
the payload with the force measurement device, and we record
both the ground truth wrench and the estimation results. In addi-
tion to the ground truth force, the ground truth external torque is
obtained by crossing the attached point position vector in £ and
the measured ground truth force vector from the measurement
device. The payload is pulled so that the external wrench is
nonzero in all 6 DoF, as shown in Fig. 4.

The results are shown in Fig. 6. In the plots, we compare
the measured wrenches to the estimated wrenches using our
proposed method in Section VI-A-2 and the momentum observer
method presented in [7] in all 6 DoF. As we can observe in Fig. 6,
the estimated wrenches from our method track the measured
ground truth quite accurately. However, on the other hand,
the momentum observer method tends to smooth the estimates
excessively, leading to underestimating the external wrench. The
root mean square errors in all six directions are also reported in
Table I, confirming a good accuracy.

B. Admittance Control With Wrench Estimation

After validating the wrench estimation, we jointly test it with
the admittance controller.

1) Virtual Impedance Realization: In this section, we present
results in simulation to quantitatively analyze the performance
of our proposed methods, particularly regarding the rendering
of the desired virtual impedance of our proposed system. We
deploy robot teams that consist of 3 “Dragonfly” quadrotors or
3 “Hummingbird” quadrotors with 1 m cable in our open-source
simulator [57] to validate the realization of desired impedance

values. In the following experiments, we introduce a step wrench
input and observe the system’s response.

In the first experiment, we apply a step force input on the
payload in the positive = direction and set different impedance
values (1, 2, 5, 10) in the admittance controller. The second ex-
periment involves the application of a step moment input on the
payload in the positive yaw direction, with different impedance
values (0.05, 0.25, 1.25, 2.5) set in the admittance controller.
The results are shown in Figs. 7-9. We evaluate the actual
impedance in the system using the ground truth force and
moment, divided by the actual velocity of the payload along
the corresponding direction. Hence, the actual impedance we
obtain in Figs. 7-9 are FH = and M= respectively. In the plots,
we compare the actual unpedance "With the desired impedance
set in the admittance controller. As illustrated by the plots, upon
application of step force and moment inputs to the system,
the payload promptly accelerates in the  and yaw directions,
respectively. As the wrench estimation updates, the admittance
controller starts to adjust the desired payload state to adapt the
human input, shown by the dashed lines in the bottom plots
in both Figs. 7-9. Through the comparison, we can see that
with larger values of D, D, the desired velocity derived from
the admittance controller evolves slower and smaller in mag-
nitude. As the experiment proceeds, the desired velocity from
the admittance controller ultimately converges to final values,
respectively, equivalent to % and l\ﬁﬁ*‘f. Moreover, a larger
desired impedance value results in noticeable spikes in the actual
impedance before the convergence. This can be attributed to the
fact that a higher impedance value leads to a smaller correspond-
ing desired velocity, which in turn causes larger velocity errors
at the initial stage. This subsequently results in an overshooting
response of the actual payload velocity, causing it to cross the
zero line and trigger spikes in the actual impedance realization.

Lastly, as the experiments progress and the transient effects
resulting from the step input reduce, the payload’s linear and
angular velocities converge toward the desired payload veloc-
ity determined by the admittance controller. Consequently, the
actual virtual impedance also aligns with the value set by the
admittance controller. We observe similar results for the other
Cartesian and angular axes that are not reported for simplicity.

2) Real-World Experiments: We conduct six tests involv-
ing all 6 DoF of the admittance controller in real-world ex-
periments. The human operator manipulates the payload by
translating the payload in z, y, and z and rotating the pay-
load in roll, pitch, and yaw, respectively, to show that the
load can be fully manipulated. At the end of each experi-
ment, the human operator releases the payload. The square
gain matrices in the admittance controller have a block-
diagonal structure as M = diag(0.25I5.3,0.1I5.3), D =
diag(1.2513X3, 5.013X3), K= diag(03><3,03><3) .

The experimental results are presented in Fig. 10. As shown
in the plots, the human operator translates the payload approx-
imately 1m in 2 and y direction, 0.4 m in the 2 direction. In
the rotation part of the experiment, the human operator rotates
the payload approximately 30° in the roll and pitch direction
and 60° in the yaw direction. The tests show that the admittance
controller, coupled with the wrench estimator, can successfully

Authorized licensed use limited to: New York University. Downloaded on December 29,2024 at 18:58:48 UTC from IEEE Xplore. Restrictions apply.



774

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

|—Our Method - - - Momentum Observer —-—-- Measurementl
0.2
z z Z 01s
8 = 2|01
k= & 4 |
- o S 0.05
= 5 5 o0
= = = -
-0.05
-0.1
0 2 4 6 8 0 2 4 6 8
time (s) time (s)
0.06
: ;
= & &
8 = N
8 4 A 8
g g g
g = g
z- 8 5
= I3 5
0.02
0 2 4 6 8 0 2 4 6 8 [ 2 4 6 8
time (s) time (s) time (s)

Fig. 6.

Results of the wrench estimation experiment. This figure compares the wrench estimation results from our proposed wrench estimation algorithm (blue)

with those obtained using the momentum observer method (red) [7], as well as with the actual measurements recorded by the wrench measurement device (green)

across all 6 DoF.
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Virtual impedance realization in the z direction of the translational motion. A step force input of Fzr = [0.5 0 0] "N is given into the system at the

start of the plots. We choose the parameters of the admittance controller in the = direction as M, = 0.25, K, = 0.0, and D, = 1, 2, 5, 10 for comparison.

update the payload’s desired position or orientation according
to the human operator’s interactive force as input. As the human
operator releases the payload, the wrench estimation outputs

{Oﬁxl} as wrench estimation. Since K in the admittance con-

troller is [Oﬁx6] in this set of experiments, the payload remains
at the position or orientation released by the human operator
without returning to its original reference position or orientation.
It further confirms the effectiveness of the wrench estimation and
admittance controller pipeline in assisting object transportation
and manipulation.

C. Human-Aware Human—Robot Collaborative
Transportation

In this section, we show that our system enables a human oper-
ator to physically collaborate with the robot team to accomplish
the following two tasks.

1) The robot team and the human collaboratively ma-
nipulate the payload to a goal location, as shown in
Fig. 11.

2) Human operator corrects the payload trajectory to avoid
an obstacle in an existing trajectory, as shown in Fig. 12

The gradient-based and optimization-based methods for
human-aware force distribution are tested for each of the two
tasks. For the optimization-based method, the drone-to-drone
distance limit is set to be > 0.75m, and the human-to-drone
distance limit is set to be > 0.75 m. The gradient-based method
does not require a predetermined distance.

In addition, as we show in Fig. 3 and discuss in Section V-B,
we feed the human operator’s position py from the Vicon in
T as po to (20) and (25) for application to pHRI. We would
also like to note that by using deep-learning-based human pose
estimation techniques [67], the robots can also use onboard
camera to estimate p g, but this is out of the scope of this article
and we refer to it as future work.
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for comparison.

1) Human—Robot Collaborative Transportation: In this ex-
periment, the robot team and the human operator collaborate
together to move a payload from the starting location to the
final location via direct force interaction. Payload translates in
all three axes, as shown in Fig. 11. The square gain matrices are
selected block-diagonal as M = diag(0.25I3.3,0.1I3.3), D =
diag(5.013X3, 5'OIS><3); K= diag(ngg” ngg). Note that the
spring constant coefficient for the admittance controller is set
to zero so that the payload stays at the position/orientation once
the human operator releases the payload.

The experimental results are shown in Fig. 13, where we
compare the actual payload position with the desired pay-
load position from the admittance controller. The results show
that the proposed methods can confidently update the de-
sired payload position to satisfy the human operator’s inten-
tion of moving the payload under both gradient-based and
optimization-based methods. Furthermore, the movement intro-
duced by the human-aware force distribution does not affect the
performance of the payload wrench estimation or admittance
controller.
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TABLE II
DISTANCE BETWEEN ROBOT-ROBOT AND ROBOT-HEAD PAIRS

Method Pair Type  Mean (m)  Std (m)
%) 0.580 0.0964

1-3 0.796 0.0845

. 23 0.547 0.0764
Gradient-based Head-1 0.875 0.0977
Head-2 1.043 0.0411

Head-3 0.791 0.0718

2 0814 0.0532

1-3 1.251 0.108

onimmin i | 23, 078 201
Head-2 0.961 0.0804

Head-3 0.805 0.0387

Fig. 11. Human-robot collaborative transportation task. The human operator
collaborates with a team of quadrotors to transport a payload from the start
position (e) to the final position (% ). The human operator and the quadrotor
team translate the payload along the z, y, and z axes.

tart Location
S Final Location

Desired Trajectory

i\
Human/Céirécted
Trajectory

Fig. 12. Human-assisted obstacle avoidance task. The human operator moves
the payload from the desired trajectory (yellow path) to guide the payload away
from an unknown obstacle and then releases the payload, allowing it to rejoin
the desired trajectory and reach the final position (¥).

In Fig. 14, we show the effects of the two methods for
human-aware force distribution with a top view of the entire
collaboration task. From the plots, we can observe that, as
the human operator, denoted by the purple star, approaches
the 3 robots with a suspended payload, the human-aware force
distribution starts to be effective. The controller expands the
2 robots (blue and green circles) that are close to the human
operator to keep the distance.

To quantitatively support our analysis, we conducted mul-
tiple iterations of the same experiments and recorded the dis-
tances between the robots and the human operator. The distri-
bution of these distance measurements is illustrated in Figs. 15
and 16, with corresponding mean and standard deviation values
summarized in Table II .

As shown in Figs. 15 and 16, both the optimization-based
and gradient-based methods effectively maintain a consistent
distance between the robots and the human operator through-
out multiple repeated experiments. This observation is further
validated by the statistical data presented in Table II. Notably,
the optimization-based method distinguishes itself from the
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Correcting payload trajectory experiment result. Comparison between

used; The gradient-based method does not require a predetermined distance.
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external wrench on the payload. Optimization-based safety controller is used
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TABLE III
COMPUTATIONAL COMPLEXITY SUMMARY
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Scalability cor?lgileexity
pHRI

Robot state estimation High O(1)
Human wrench estimation Medium O(n)
Payload admittance controller High O(1)

Planning and control
Payload trajectory planner High O(1)
Payload trajectory tracking controller High O(1)
Nominal force distribution Medium O(n)
Force distribution: Gradient- based High O(n)
Force distribution: Optimization- based Low O(n?)
Robot controller High O(1

Fig. 18.

Human-robot collaborative transportation experiment results. Drone-

to-drone distance and human-to-drone distance when optimization-based
method is used; Minimum drone-to-drone distance is set to be 0.75 m, and
the minimum human-to-drone distance is set to be 0.75 m.

gradient-based method as it enforces inter-robot distance con-
straints. This is evident in the left plot of Fig. 16, where all three
drones maintain a minimum separation of 0.75 m, as specified
by the constraint.

To provide additional insights, Figs. 17 and 18 depict the dis-
tances between each robot and the human operator, as well as the
inter-robot distances, throughout the duration of a single sample
experiment. Initially, the human operator starts approximately
2 and 3 m away from the robot team. As the operator approaches,
the distances between the human and robots 1 and 3 (represented
by blue and green) decrease. At this point, the human-aware
force distribution becomes active, maintaining stable human—
robot distances.

2) Human-Assisted Obstacle Avoidance: In this experiment,
the payload follows a straight trajectory from the starting loca-
tion to the final location, as the robot team is unaware of the
obstacle. The human operator corrects the payload trajectory to
avoid the obstacle, as shown in Fig. 12. Both gradient-based
and optimization-based methods are also applied here. The

square gain matrices for the admittance controller have a block-
diagonal structure as M = diag(0.25I3435,0.1I5.3), D =
diag(5.013X3, 5.0]:3><3)7 K= diag(1.213X3, 03><3).

Note that the constant spring coefficient for the admittance
controller is no longer zero. The payload will now return to
the position/orientation commanded by the trajectory when the
human operator releases the payload.

As we can see from Fig. 19, the correction takes effects ac-
cording to the admittance controlled trajectory. Once the human
operator stops the correction, the nonzero K constant starts
to allow the corrected trajectory to converge with the original
trajectory. As expected, such behavior is present in both the
gradient-based and optimization-based methods.

VIII. COMPUTATIONAL COMPLEXITY DISCUSSION

In this section, we discuss the theoretical computational time
complexity of the methods proposed in this article, focusing
on how each algorithm’s computational complexity scales with
the number of robots. Through this discussion, we aim to offer
insights into the proposed methods and guide the corresponding
system design choices. We summarize the results regarding the
computational complexity of our algorithms in Table III.
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A. Physical Human—Robot Interaction

We begin our discussion with the pHRI module, comprising
the robot state estimator, the human wrench estimator, and the
payload admittance controller.

Each quadrotor runs a UKF state estimator with a fixed state
vector size of 19 and a fixed input vector size of 4. Similarly,
the payload admittance controller’s computation, detailed in
(40), is independent of the number of quadrotors, as it controls
only the 6 DoF of the payload. Consequently, both the UKF
and the payload admittance controller exhibit a computational
complexity of O(1), independent of the number of quadrotors
n in the system.

Next, the human wrench estimation requires quadrotors in the
team to share individual estimated cable tension forces, which
are then aggregated to derive the total external wrench on the
payload using (39). The computation, shown in (39), scales
linearly with the number of quadrotors due to the linear tension
mapping matrix P. Thus, the computation complexity in (39) is
bounded by O(n), with the dimension of matrix P, as depicted
in (4), scaling accordingly with n. This linear time complexity
is manageable with the available computational resources, as
n would need to reach the order of thousands to make this
linear-complexity matrix multiplication the system’s bottleneck.

B. Planning and Control

In planning and control, the system includes payload trajec-
tory planner, payload trajectory tracking controller, dynamic
force distribution, and robot controller. The payload trajectory
planner and tracking controller function similarly to the payload
admittance controller, meaning their computation also remains
independent of the number of quadrotors n. In addition, each
quadrotor independently runs its robot controller as specified
in (29) and (30), thus, these components also maintain a com-
putational complexity of O(1).

The dynamic force distribution involves two parts: nominal
force distribution and human-aware force distribution. It re-
quires linear mapping via matrix multiplication, as shown in
(13), with a complexity bound of O(n).

Regarding human-aware force distribution, we propose two
methods: an optimization-based method and a gradient-based
method. We discuss them separately as follows.

i) The optimization-based method employs the sequential
least-squares quadratic programming solver, requiring
O(a?) storage and O(a?) time, where a = 3 x (n — 6)
represents the problem dimension.

ii) The gradient-based method computes the cable tension
force modifier through null space projection of a scaled
gradient vector, optimizing (19). The sum of Lo-norm
distances between each quadrotor and the human operator,
combined with the closed-form solution for null space
projection, leads to a computational complexity of O(n).
This complexity is less than that of the optimization-
based method, attributed to the use of closed-form so-
lutions for both gradient computation and null space
projection.

IX. CONCLUSION

In this article, we presented a human-aware human-robot
collaborative transportation and manipulation approach consid-
ering ateam of aerial robots with a cable-suspended payload. Our
approach combines a novel control method that leverages system
redundancy with a collaborative wrench estimator, enabling a
human operator to interact in 6 DoF with a rigid structure being
transported by a team of aerial robots via cable. In addition,
the system can achieve secondary tasks like keeping a certain
distance between the human operator and robots, or inter-robot
separation by exploiting the additional system redundancy with-
out affecting the quality or accuracy of the interactive experi-
ence. We demonstrated, through real-world experiments, our
system’s capabilities. The system can assist the human operator
in manipulation tasks, as well as enable the human operator to
effectively assist the load navigation, as demonstrated in the
experiments.

In future research, we aim to expand our study into human-
centric considerations, prioritizing metrics related to comfort-
ness and acceptance of human operators. These elements are
crucial in the domain of human—robot interaction. In addition,
we plan to develop safety methods to counteract unexpected
human actions, such as sudden or forceful human physical
inputs to the load that could lead to cable slack or actuator
overload. This could ensure further robust operation under varied
conditions.

In addition, we want to extend our framework to explicitly
address collision avoidance between the cables and the human
operator as well. Our current approach relies on the human’s
ability to navigate around the cables. However, by modeling
the cables as convex polygons and incorporating them into
the optimization process, we can develop a more comprehen-
sive collision avoidance strategy that ensures human safety.
Further developments also include the design of an onboard
sensing mechanism. We plan to employ tension-measurement
tools, onboard cameras, inertia measurement units (IMUs), and
electronic speed control (ESC)s on each vehicle. Our goal is
to achieve comprehensive onboard state estimation, therefore
eliminating dependence on external motion capture systems.
We also intend to investigate the impacts of state estimation
and control delays, lags, and noise on system performance.
Understanding these factors will enable us to improve our the
robustness of our framework, enhancing interaction experience.

Finally, we would like to integrate a more advanced onboard
perception module. It can empower the robot team to identify
and navigate around complex hazardous spaces. This feature
will enable autonomous obstacle avoidance maneuvers while
leveraging the system’s redundancy to maintain the intended
payload trajectory without compromise. We also envision em-
ploying deep learning techniques with robots’ onboard cameras
to analyze the human operator’s posture, enhancing our human-
aware force distribution strategy.
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