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Abstract

Aquatic habitats provide a bridge for influenza transmission among wild and domestic species. However, water sources pose
highly variable physicochemical and ecological characteristics that affect avian influenza virus (AIV) stability. Therefore,
the risk of survival or transmissibility of AIV in the environment is quite variable and has been understudied. In this study,
we determine the risk of waterborne transmission and environmental persistence of AIV in a wild/domestic bird interface
in the Central Mexico plateau (North America) during the winter season using a multi-criteria decision analysis (MCDA).
A total of 13 eco-epidemiological factors were selected from public-access databases to develop the risk assessment. The
MCDA showed that the Atarasquillo wetland presents a higher persistence risk in January. Likewise, most of the backyard
poultry farms at this wild-domestic interface present a high persistence risk (50%). Our results suggest that drinking water
may represent a more enabling environment for AIV persistence in contrast with wastewater. Moreover, almost all backyard
poultry farms evidence a moderate or high risk of waterborne transmission especially farms close to water bodies. The wild-
life/domestic bird interface on the Atarasquillo wetland holds eco-epidemiological factors such as the presence of farms in
flood-prone areas, the poultry access to outdoor water, and the use of drinking-water troughs among multiple animal species
that may enhance waterborne transmission of AIV. These findings highlight the relevance of understanding the influence of
multiple factors on AIV ecology for early intervention and long-term control strategies.

Keywords Environmental exposure - Emerging infectious diseases - Epidemiologic factor - Multicriteria decision analysis -
Disease transmission - Tenacity of influenza A virus

Introduction

Environment plays a key role in viral transmission among
infected and susceptible hosts (Keeler et al., 2014). Infected
animals can introduce avian influenza viruses (AIVs) into
aquatic habitats through fecal contamination and tracheal
shedding (Nielsen et al., 2013). The AIVs contaminate open
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wild birds pose a high risk for influenza outbreaks (Hassan
et al., 2020).

Environmental surveillance and laboratory-based studies
have evidenced that IAVs may remain viable for extended
periods outside of a biotic reservoir mainly in cold environ-
mental conditions (Keeler et al., 2014; Ramey et al., 2022).
Viral survival and stability depend on wild bird habitats’
physicochemical and ecological characteristics (Dalziel
et al., 2016; Keeler et al., 2014; Tran et al., 2010). Like-
wise, viral transmission relies on farm epidemiological
factors (Huang et al., 2016). However, there is limited data
related to the influence of eco-epidemiological factors in
the transmission and persistence of AIVs in environments
shared between multiple species (Stallknecht et al., 2010).
This study aims to fill some of those knowledge gaps by
determining the risk of waterborne transmission and envi-
ronmental persistence of AIVs at the wild/domestic bird
interface using a multi-criteria decision analysis (MCDA).
We illustrate our approach using data collected in Mexico
during the winter season 2019-2020.

Materials and Methods
Study Area

The study area comprises one of the Lerma marshes,
the Atarasquillo wetland, located in the Municipality
of Lerma de Villada, State of Mexico, North America
(19°13'-19°26'N, 99°22'-99°34'W). This Flora and Fauna
Protection Area hosts great biological diversity, including
endemic and threatened species such as the Mexican duck
(Anas diazi) and twelve migratory wild bird species from
North America (SEMARNAT-CONANP, 2018). Therefore,
the Atarasquillo wetland is considered an ecosystem with
high local and regional relevance for wild bird conservation
in Mexico (Zepeda et al., 2014).

The Atarasquillo wetland represents a priority hydrologi-
cal region based on productive and sociocultural activities.
The region’s economy comprises artisanal fisheries, tradi-
tional hunting of waterfowl, farming, and grazing (Zepeda-
Gomez et al., 2012). This Important Bird and Biodiversity
Area (IBA) is surrounded by agricultural and livestock
production systems mainly backyard poultry and pig farms
with low bio-security measures that facilitate interspecies
transmission (Gaytan-Cruz et al., 2020; Mateus-Anzola
et al., 2020).

Identification of Factors

Factors that influence the transmission and environmen-
tal persistence of AIVs were identified by a review of

scientific literature. Three databases: Web of Science,
PubMed, and Science Direct were searched for articles
focused on the waterborne transmission of AIVs among
wild birds and poultry, as well as the viral persistence in
water. We used the search terms ((((influenza OR influen-
zavirus)) AND ((persistence OR survival OR stability OR
viability OR inactivation OR tenacity OR survivability OR
transmission OR infectivity OR infection OR infective OR
infect)) AND ((surface water OR natural water OR wetland
OR waterway OR watershed OR environmental water OR
drinking water OR sewage OR wastewater)) AND ((fac-
tor)))). Studies in distilled water, peptone water, as well as
human influenza viruses were excluded. Each factor was
further evaluated through literature focusing on research
articles with quantitative data and statistical significance
on previous studies. A total of 13 eco-epidemiological fac-
tors were selected as inputs to develop risk assessments
in a wild/domestic animal interface on the Atarasquillo
wetland during the winter season (Table 1).

Data Collection

The eco-epidemiological variables were collected from
the Atarasquillo wetland and 14 backyard poultry farms
during the winter season 2019-2020 using a convenience
sampling method. Four sampling sites were considered
within the Atarasquillo wetland: three sites where hunting
duck activities were practiced, and one site where wild
duck plucking was carried out on the shore of the wetland
close to human settlements, crops, and poultry backyard
farms (Fig. 1). The drinking water, wastewater, drainage
ditch, and artificial pond were considered as sampling
locations in the backyard poultry production systems.

Water temperature (°C) (HANNA, HI-98127 pocket
meter) and water pH (HANNA, HI-98127 pH meter) were
measured on-site twice in each sampling site. Water elec-
trical conductivity (uS/cm), water ammonia concentration-
NH3 (mg/L), and water salinity (psu) were measured in
500 ml water samples using a YSI 6600 Multi Parameter
V2 Sonde. Farms were geo-located using a global posi-
tioning system (GPS) device and distances to the Ataras-
quillo wetland centroid (m) were computed using ArcGis
10.8 (CONANP, 2022; INEGI, 2022). Flood/waterlogged
areas were identified according to soil susceptibility to
flooding (i.e., vertisol and phaeozem were considered
flooded soils) (Barragan & Figueroa, 2014). The soil types
were explored with ArcGis 10.8 (INEGI, 2015; INIFAP-
CONABIO, 2008). Data related to aquaculture farming,
poultry outdoor access, drinking water source and qual-
ity, as well as disposal of dead animals and wastage were
obtained by cross-sectional surveys.
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Table 1 (continued)

Reference values References

Trend with AIV

Factor

(Dutta et al., 2022; Islam et al., 2022)

Optimal: throw away nearby water bodies

Suboptimal: buried on ground

Dumping dead birds or wastage near water

Disposal of dead animals and wastage

bodies have a higher risk of outbreaks
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Fig. 1 Geographical distribution of sampling sites in Lerma, State of
Mexico. Map scale 1:70 000. ArcGis 10.8 (Color figure online)

Weights Attribution for MCDA

Risk of environmental transmission and persistence of AIVs
was determined by an MCDA approach similar to the one
described by Zhao et al. (2022). The eco-epidemiological
factors were considered as criteria and were weighted by the
Mean Weight Method (Ezell et al., 2021; Odu, 2019), using
the following equation:

W=
n

where Wj is the criteria weight and n is the number of
criteria.

The persistence MCDA model included five criteria
(Wj=0.2), while the transmission MCDA model accounted
eight criteria (Wj=0.125). The criteria were categorized in
classes based on reference values. A weight from 0 to 3 was
assigned to each class according to their suitability for AIV
transmission or persistence in water (3 =high, 2=mid, 1 =low,
and O=none), where a higher value meant a higher likelihood
of waterborne transmission or environmental persistence. The
class weights (Wi) were normalized following the formula:

Wi — Wiminimum
Wimaximum — Wiminimum

NormalizedWi =

The final weight was calculated by multiplying the normal-
ized class weight with the criteria weight. The final score was
the sum of the final weights obtained (Tables 2 and 3).

Waterborne Transmission and Environmental
Persistence Risk

The final scores from the MCDA were classified into five
risk categories: very low, low, moderate, high, and very

@ Springer
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Z?lzlreitzrig]iists}?: ia;lgu‘:g;ihts Criteria (j) Class (i) Class Normalized  Criteria Final weight
persistence MCDA r/;i)gjl ' class weight zv‘:/]l-‘;;ht
Water temperature <15°C 3 1.00 0.20 0.20
15-20 °C 2 0.50 0.10
>20°C 1 0.00 0.00
Water salinity <0.5 ppt 3 1.00 0.20 0.20
0.5-30 ppt 2 0.50 0.10
>30 ppt 1 0.00 0.00
Water pH <7.0 1 0.00 0.20 0.00
7.0-8.5 3 1.00 0.20
>8.5 1 0.00 0.00
Water electrical conductivity <200 uS/cm 3 1.00 0.20 0.20
200-1000 uS/cm 2 0.50 0.10
>1000 pS/cm 1 0.00 0.00
Water ammonia <0.5 mg/L 3 1.00 0.20 0.20
>0.5 mg/L 1 0.00 0.00
Wi minimum =1, Wi maximum=3
Table 3 Classes and weights of criteria in the influenza transmission MCDA
Criteria (j) Class (i) Class weight Normalized Criteria Final weight
(Wi)* class weight weight (W)
Distance from water bodies <2000 m 3 1.00 0.13 0.13
2000-5000 m 2 0.67 0.09
5000-10000 m 1 0.33 0.04
Farm location Flooded/waterlogged area 3 1.00 0.13 0.13
Non-flooded land 0 0.00 0.00
Poultry outdoor access Access to outdoor water 3 1.00 0.13 0.13
Access to outdoor land 1 0.33 0.04
No outdoor access 0 0.00 0.00
Drinking-water source Surface water 3 1.00 0.13 0.13
Tube-well water 1 0.33 0.04
Drinking water-troughs Troughs for multiples species 3 1.00 0.13 0.13
Troughs for the same species 2 0.67 0.09
Individual water-troughs 1 0.33 0.04
Drinking water quality Water with feces 3 1.00 0.13 0.13
Water without feces 1 0.33 0.04
Disposal of dead animals and wastage Throw away on water bodies 3 1.00 0.13 0.13
Throw away/bury near water 1 0.33 0.04
Bury, incinerate or compost 0 0.00 0.00
Aquaculture farming Fish culture within the farm 3 1.00 0.13 0.13
Pond available without fishes 1 0.33 0.04
No pond within the farm 0 0.00 0.00
Wi minimum =0, Wi maximum=3
high risk (Stenkamp-Strahm et al., 2020). The threshold was For example, if we have a sample with the following val-
determined by dividing the maximum final score (1.00) into  ues: C1: 21.0 °C (temperature), C2: 0.6 ppt (salinity), C3:
five levels (Table 4). 7.6 (pH), C4: 867.5 puS/cm (electrical conductivity), and C5:

@ Springer
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Table 4 Final score and reclassification into risk categories (Color
table online)

Final score Risk category
0.00 —0.20 - Very low
0.21-0.40 Low
0.41-0.60 Moderate
0.61-0.80 High
0.81-1.00

. Very high

0.4 mg/L (ammonia), the sample would be a moderate risk
according to the MCDA model (Table 5).

Model Validation

A sensitivity analysis was performed to evaluate the sta-
bility of the outcomes under the uncertainty of the input
variables. Although low pathogenic avian influenza
viruses (LPAI) have been previously detected in resident
and migratory wild bird species in the study area, no AIV
has been reported in environmental samples of this wild-
life/domestic bird interface (Gaytan-Cruz et al., 2020;
Mateus-Anzola et al., 2020). Therefore, a one-at-a-time
(OAT) method was conducted by varying one criterion
at a time (Delgado & Sendra, 2004; Pianosi et al., 2016).
The weight of one factor varied from 0 to 100% while the
weights of the other criteria were adjusted to maintain
the same percentage (e.g., an input weight of 60% on the
variable factor represents weights of 10% to each of the

other four criteria to sum 100%). Heat maps were used
to represent the sensitivity analysis of the environmental
persistence MCDASs (Online Resource 1 and 2) and the
transmission persistence MCDA (Online Resource 3).

Results
Environmental Persistence Risk

The average water temperature, salinity, pH, electrical
conductivity, and ammonia on the Atarasquillo wetland
and the water of backyard poultry farms during the winter
season 2019-2020 is shown in Table 6. Physicochemical
characteristics could not be obtained on farms F13 and
F14.

A high risk of environmental persistence was evidenced
in December, February, and March, while a very high risk
was evidenced in January, mainly between mid-January
and early February on the Atarasquillo wetland (Fig. 2).

In relation to backyard poultry farms, a moderate
(27.27%), high (45.46%), and very high (27.27%) persis-
tence risk was evidenced in drinking water. A moderate
(33.33%) and high (66.67%) risk was presented in the
drainage ditch. A low (50%), moderate (25%), and high
(25%) risk was evidenced in wastewater, meanwhile, a
high risk (100%) was observed in all the artificial ponds
within the farms. Most of the farms presented a high per-
sistence risk (50%) followed by a moderate risk (25%).
Only two farms evidenced a low persistence risk (10%).
None of the farms had a very low persistence risk (Fig. 3).

Table 5 Example of persistence

Criteria () Class (i) Class Normalized Criteria weight (W)) Final weight
MCDA model weight class weight
(Wi)*
Cl >20 °C 1 0.00 0.20 0.00
C2 0.5-30 ppt 2 0.50 0.20 0.10
C3 7.0-8.5 3 1.00 0.20 0.20
C4 200-1000 uS/cm 2 0.50 0.20 0.10
C5 <0.5 mg/L 3 1.00 0.20 0.20
Final score 0.60
Table 6 Physicochemical Factor Wetland Drinking water Wastewater/drainage Pond
average values of water samples
on a wildlife/domestic interface Temperature (°C) 159+1.5 16.3+3.9 16.7+5.4 17.3+0.6
Salinity (ppt) 0.3+0.1 0.3+0.3 0.9+0.8 0.3+0.1
pH 8.2+0.02 8.2+0.2 8.0+0.6 72+0.1
Conductivity (uS/cm) 501.1+42.6 396.2+355.0 1407.0+1215.5 463.8+182.8
Ammonia (mg/L) 0.04+0.02 0.08+0.12 2.7+4.0 0.00
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Fig.2 Persistence risk of AIVs December

January

February March

in the Atarasquillo wetland dur-
ing the winter season 2019-
2020 using an MCDA model
(Color figure online)
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Environmental Transmission Risk

Most of the backyard poultry farms were in flood-prone
areas (71.42%) and almost 43% were located less than
2000 m from the Atarasquillo wetland’s centroid. Half of
the poultry animals had access to outdoor water mainly to
drainage ditches and artificial ponds. None of the animals
have access to the Atarasquillo wetland. More than half of
poultry (64.29%) share water troughs with another species
and half of drinking water-throughs were dirty and contami-
nated with feces and feathers. Only three farms (21.42%)
reported the disposal of poultry feces or eggs in/near water

@ Springer

sources. None of the farmers mentioned the use of surface
water as poultry drinking water.

Almost all the backyard poultry farms had a moderate or
high risk of waterborne transmission (85.72%), meanwhile,
low risk was evidenced only in 14.28% of them. The back-
yard poultry systems with lower risk were located away from
the Atarasquillo wetland (>4.3 km) (Fig. 4).

Model Validation

The persistence risk on the Atarasquillo wetland was the
same in the OAT analysis, in which a higher risk score was
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Fig.4 Waterborne transmission
risk of AIVs in poultry farms N F13
of a wildlife/domestic inter- e
face during the winter season Tlaimimilolpan
2019-2020 using an MCDA
model (Color figure online)
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observed during January on the heat map. Likewise, the per-
sistence risk and the transmission risk on backyard poul-
try farms were mostly comparable in the OAT analysis. A
higher persistence risk score was evidenced in the drinking
water, meanwhile, a lower risk score was evidenced in the
wastewater on the heat map. Concerning the transmission
risk, a higher risk was observed in six of the backyard poul-
try farms closest to the Atarasquillo wetland (F1 to F6) on
the heat map (Online Resource 1, 2, and 3).

Discussion

This study describes an MCDA approach to determine the
risk of environmental persistence and waterborne trans-
mission of AIV in a wild/domestic bird interface in central
Mexico. The AIVs spread within wild waterbird populations
may lead to viral contamination of natural habitats (Ahrens
et al., 2022). During the winter season, a high density of
migrating Anseriformes cohabit with resident species in the
Atarasquillo wetland (Gaytan-Cruz et al., 2020; SEMAR-
NAT-CONANP, 2018). One of the most remarkable results
is that the coldest month evidences a higher persistence risk
of AIV. Previous research has found a strong effect of tem-
perature on environmental viability (Dalziel et al., 2016;
Martin et al., 2018). Virus may remain infective for a few
days at >20 °C, a few weeks at 10 °C, and for months at
<0 °C in surface water (Nazir et al., 2010). Therefore, fresh-
water habitats could be a year-to-year reservoir of viruses to
infect bird populations mainly in winter (Lang et al., 2008;
Ramey et al., 2022).

Water sources represent a crucial environment in which
infectious AIVs may reside outside of a biotic reservoir
(Ramey et al., 2022). Recently, some mass mortality events
in free-living mammal species such as the harbor seal are
likely associated to environmental transmission of HPAI
HS5NI1. Likewise, global HPAI outbreaks in poultry are pos-
sibly linked to indirect contact with wild birds (European
Food Safety Authority et al., 2023). In our study, we did not
attempt to record contact between household animals and
wild birds. However, almost all the backyard poultry farms
close to the Atarasquillo wetland evidenced a higher trans-
mission risk. This outcome is in line with Si et al. (2013),
who reported the occurrence of outbreaks mostly in areas
where the location of farms or animal trade areas overlap
with habitats for wild birds. Therefore, animal populations
close to wetlands pose a high risk of influenza outbreaks
(Hassan et al., 2020).

Shallow water bodies represent an AIV transmission
medium for aquatic wild birds. Fecal matter, plumage, and
oropharyngeal excretions with viral particles potentiate viral
transmission efficacy in surface waters (Ahrens et al., 2022).
In our study, artificial ponds within backyard poultry farms
and channels of water evidenced a high risk of AIV persis-
tence. Previous research has reported that a low viral titer
suspended in the surface water is sufficient to start and set
off an infection in wild ducks within a few days, mainly in
a low volume of water. Small water bodies can hold moder-
ate to high viral RNA loads for a long period due to a lower
diluting effect on the virus available for infection compared
to large water bodies (Ahrens et al., 2022).

A limited volume of accessible water may provide high
viral titers and a long course of infection (Ahrens et al.,
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2022). According to Leung et al. (2007) poultry drinking
water can provide higher isolation rates of the influenza
virus than fecal droppings. Likewise, drinking water troughs
may contain a great AIV subtype diversity (Mateus-Anzola
et al., 2021). Interestingly, in our study, a very high-risk
persistence score was found in some poultry farms’ drinking
water. Experimental laboratory studies have reported AIV
survivability of 8—48 h in drinking water troughs, as well
as a viral concentrating effect. Nevertheless, survival time
depends on the level of chlorination and the organic content
of the water (Ahrens et al., 2022; Leung et al., 2007).

Effluents constitute an important factor in viral dissemi-
nation among poultry. Animal slurry (a liquid mixture of
feces and urine added to litter, feed residues, washing water,
and rainwater) contributes to AI'V dissemination on poultry
farms (Schmitz et al., 2020). Environmental samples col-
lected from sewage may have high nucleic acid positivity
rates of influenza (Bo et al., 2021; Guo et al., 2021). How-
ever, complex environments with high content of biological
material (manure or feces) may retain infectivity for shorter
periods than natural water (Schmitz et al., 2020). This is
consistent with our findings where a low persistence risk
was evidenced in wastewater.

The application of experimental results to field realities is
complicated by the complexity and scale of these ecosystems
(Stallknecht et al., 2010). Physicochemical properties such
as temperature, pH, conductivity, ammonia concentration,
and salinity can affect virus survival in different liquid envi-
ronments (Keeler et al., 2014; Ramey et al., 2022; Schmitz
et al., 2020). Nevertheless, other identified and unidentified
factors prevailing in natural surface water may contribute
to the effect of environmental persistence on AIV transmis-
sion dynamics among hosts (Martin et al., 2018; Nazir et al.,
2010). The AIV subtype and its pathogenicity, bird density,
UV light, and presence of biological compounds (freshwater
crabs and microbial flora) were not evaluated in the MCDA.
Likewise, further studies are required to assess the influ-
ence of viral, host, and biotic factors on AIV persistence and
transmission in the wildlife-livestock interface.

Subtypes HIN1, H3N2, and H5N2 have been previously
detected in wild birds in the study area (Gaytan-Cruz et al.,
2020; Mateus-Anzola et al., 2020). However, no AIV has
been detected in environmental samples at this wildlife/
domestic bird interface. Negative samples may not reflect
the true risk for AIV outbreaks (Belkhiria et al., 2018). Out-
breaks of AIV in most tropical countries, such as Mexico,
are mostly not detected due to limited surveillance infra-
structure as well as the lack of standardization in sampling
and reporting methods in both environmental and wild bird
surveillance (Hood et al., 2020; Machalaba et al., 2015;
Mateus-Anzola et al., 2021). Likewise, farmers from small-
scale poultry farms usually do not report sick birds or unu-
sual dead poultry to public health or agricultural authorities

@ Springer

(Hall & Le, 2018; Hinjoy et al., 2023). This lack of detection
and underreporting exacerbates the risk of unchecked AIV
outbreaks in environments that enable the viral exchange
between migratory waterfowl and domestic poultry.

In conclusion, the Atarasquillo wetland has eco-epi-
demiological factors that may enhance AIV survival and
waterborne dissemination mainly in small-scale poultry
farms close to the wetland. This MCDA provides valuable
baseline information to identify the optimal environmental
characteristics and high-risk epidemiological areas for AIV
spreading as well as to develop early intervention strategies.
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