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Evaluation of an Inverse Method
for Quantifying Spatially Variable
Mechanics

Soft biological tissues often function as highly deformable membranes in vivo and exhibit
impressive mechanical behavior effectively characterized by planar biaxial testing. The
Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations
and boundary forces from mechanical testing to quantify material properties of soft,
anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to
GAIM to improve the quality and physical significance of its mechanical characterizations.
We evaluated the updated GAIM method using simulated and experimental biaxial testing
datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined
mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well
with previously published Young’s moduli of PDMS samples. It also matched the stiffness
moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for
tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that
the sample was mechanically anisotropic via a relative anisotropy metric produced by
GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing
between spatial variations in thickness and stiffness. Finally, we conducted an analysis to
verify that results were independent of partitioning scheme. The success of the newly
implemented constraints on GAIM suggests notable potential for applying this tool to soft
tissues, particularly following the onset of pathologies that induce mechanical and
structural heterogeneities. [DOI: 10.1115/1.4066434]
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Introduction

Soft biological tissues, like heart valves [1,2], myocardium [3-5],
skin [6-9], and the sclera [10-12], rely on complex, fibrous
extracellular matrices for structure and support during large in vivo
deformations. Many of these tissues are thin [13—15], making planar
biaxial testing an attractive and relevant loading modality for
characterizing their passive mechanical behavior [7,12,16-20].
Traditionally, planar biaxial testing, which was developed for
characterization of polymers in the mid-20th century, relies on
assumptions of negligible shear forces at the sample boundary and a
homogeneous deformation in the sample center [21-23]. These
assumptions are reasonable for mechanically isotropic and homo-
geneous soft materials, but are often inappropriate for soft tissues
exhibiting mechanical anisotropy and heterogeneity [24].

A variety of inverse approaches have been developed to
determine the spatially varying properties of soft tissues. Kroon
and Holzapfel [25] developed an inverse method to identify the
elastic properties of mechanically anisotropic and heterogeneous
samples, and applied it to saccular cerebral aneurysms subjected to
inflation testing. Their method successfully identified parameters
governing stiffness, nonlinearity, and collagen fiber orientation and
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produced wall stress estimates useful for assessing aneurysm rupture
risk [25]. Genovese et al. [26] applied another inverse approach
[27,28] to inflation testing data obtained from gallbladders. While
they determined different regions of the gallbladder exhibited
drastically different stiffnesses, the gallbladder was largely isotropic
across its surface [26]. Davis et al. [29] inflated ascending thoracic
aortic aneurysms and applied their inverse method to quantify the
heterogeneous distributions in elastic properties. Accounting for
heterogeneous mechanical properties resulted in more accurate
predictions of the sample’s stress—strain response.

Advances in digital image correlation (DIC) [30-32] and
boundary force acquisition [24] have helped overcome classic
limitations of planar biaxial testing, offering researchers access to
unprecedented information regarding the full-field mechanical
behavior of soft tissues. Our Generalized Anisotropic Inverse
Mechanics (GAIM) method leverages two-dimensional DIC and
state-of-the-art load cells to quantify the spatially variable properties
of mechanically anisotropic, heterogeneous soft tissues undergoing
planar biaxial extensions [4,33-35]. Our testing protocol was
intentionally designed to induce asymmetric, heterogeneous strain
states in each sample, enabling GAIM to identify and distinguish
regions of geometrical and mechanical heterogeneity [4,24,33].
Initially, GAIM was applied to simulated data from linearly elastic,
mechanically anisotropic, and heterogeneous materials and
assumed both linear strain and a linearly elastic relationship
between stress and strain [33]. Shortly after, GAIM was updated
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Fig. 1 The updated GAIM method relies on rich planar biaxial testing data, including normal and shear boundary forces during
fifteen unique biaxial extensions measured by a combination of 1DOF and 6DOF load cells, full-field displacements from DIC, and
full-field thickness contours from laser micrometry. This data is input into GAIM to iteratively solve for constants of the St. Venant
orthotropic stiffness tensor using an optimization routine implemented in MATLAB.

to account for large, nonlinear deformations and was applied to
rodent right ventricle. These results indicated that decellularization
had a negligible effect on the tissue’s passive mechanical properties
[4]. Recently, GAIM identified substantial mechanical heterogene-
ity in cerebral aneurysms, which corresponded to regions of highly
variable collagenous architecture depicted via second harmonic
generation imaging [35]. Despite these successful applications of
GAIM [4,34,35], a troubling limitation has been its tendency to
produce nonpositive definite stiffness tensors and strain energy
functions. In an ongoing effort to improve GAIM for soft tissue
mechanics and to maximize the utility of the rich datasets produced
during our biaxial testing protocol [24], we introduced a generally
orthotropic constraint to GAIM (Fig. 1). In this study, we evaluate
the orthotropic GAIM method on a variety of simulated and
experimental samples with well-documented mechanical properties
[36-38]. We also compare our generally orthotropic solutions to
simpler, more computationally affordable mechanically isotropic
solutions to further highlight the necessity of accounting for
mechanical anisotropy, heterogeneity, and sample geometry during
soft tissue characterizations. Finally, we pair GAIM with full-field
laser micrometry to distinguish between spatial differences in
thickness and stiffness.

Methods

Soft Tissue Analogs. To test our updated GAIM method for
mechanically characterizing soft tissues, we opted to use poly-
dimethylsiloxane (PDMS) gels and TissueMend (TEI Biosciences
and Stryker Corporation), a Class II FDA-approved patch for soft
tissue repair. Both materials have been well-studied and mechan-
ically characterized in literature and offer reliable baseline proper-
ties for comparison [36-38]. PDMS generally exhibits linear
elasticity following preconditioning, mechanical isotropy, and
homogeneity in both its mechanical behavior and structure.
TissueMend, a surgical patch designed to emulate the in vivo
mechanical function of tendons, exhibits nonlinear force—
displacement relationships, pseudoelasticity upon preconditioning,
mechanical homogeneity, and mechanical anisotropy, effectively
mimicking tendons and making it a useful soft tissue analog for
evaluating our updated method [24,37,38]. Additionally, Tissue-
Mend is a commercially available product, that, until now, has only
been characterized uniaxially [38].

To assess GAIM’s ability to characterize materials exhibiting
mechanical isotropy and homogeneity, we cast thin PDMS (thin
PDMS; 10:1 base-to-curing agent ratio) gels of nominally uniform
thickness (1 mm). To assess its ability to capture mechanical
isotropy and heterogeneity, we cast PDMS gels of varying thickness
(1-5 mm, left to right; thick PDMS; 10:1 base-to-curing agent ratio).
To demonstrate its ability to quantify both stiffness and mechanical
anisotropy in a fibrous soft material, we selected TissueMend
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(standard TissueMend). Our workflow for these protocols, which
were applied computationally and experimentally, is depicted in
Fig. 1 and detailed in Pearce et al. [24]. To examine GAIM’s ability
to quantify mechanical anisotropy and heterogeneity within the
same sample, we also regionally exposed a TissueMend sample to
collagenase (collagenase-treated TissueMend). The left side of this
sample was exposed to collagenase (1 mg/mL; Advanced Biomatrix
5030-50MG) for 1.5h to degrade and weaken its collagenous
matrix, then removed and rinsed in chilled PBS (0.01 M) to limit
continued degradation.

Generalized Anisotropic Inverse Mechanics Analysis. The
GAIM method assumes a linear anisotropic relationship between
Green strain and the second Piola-Kirchoff stress tensor at static
equilibrium (St. Venant’s model), taking the form:

Sy = KykLExL (D

where S, is the second Piola-Kirchoff stress tensor, K;k; is a fourth-
order generalization of the linear elasticity tensor, referred to as the
St. Venant stiffness tensor, and Eyy is the Green strain tensor [4].
The associated stress balance is:

(FmiKukLEkL) ; =0 )

where F is the deformation gradient tensor. Using the Galerkin finite
element method [33], this relationship can be discretized and
simplified to:

M = AK 3)

where M is a vector of measured nodal forces, K is a vector of Kyjkp.
terms for all elements, and A is a matrix consisting of displacements
and the remaining terms leftover after discretization [33]. As seenin
Egs. (1)=(3), GAIM is nonlinear in terms of kinematics, but linear in
kinetics. This simplification reduces computational cost and
promotes a well-posed inverse problem, but neglects the strain-
stiffening behavior of many soft tissues.

It is necessary to partition each sample into groups of elements to
create an overdetermined system of linear equations [33,39]. Using
the original form of GAIM, the overdetermined system can then be
solved directly via the least squares method [4,33]. For a biaxial
sample under plane stress conditions, this produces six unique
stiffness constants for each partition, which describe spatial
variations in mechanics across the sample’s surface. Allowing the
stiffness tensor for a single partition to take on any form enables
mechanical characterization without a priori assumptions regarding
mechanical anisotropy; however, this method regularly produces
nonpositive definite stiffness tensors lacking physical relevance.
Constraining GAIM to assume general orthotropy maintains the
flexibility necessary to capture the mechanical anisotropy of soft
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tissues while ensuring positive-definite stiffness tensors and
monotonically increasing strain-energy functions.

Generally Orthotropic Constraint. For a generally orthotropic
material, components of Kk , the fourth-order St. Venant stiffness
tensor (Eq. (1)), are calculated from four unique elastic constants
(E;, E3, u;5, and v;5) and an angle of rotation (¢) between the
material’s orthogonal axes and the orthogonal axes of the coordinate
system [40—42], as seen in Eq. (4) (when ¢ =0 deg)

E, vk 0
I—wvprva 1= vy
Kuykr = Iz E; 0 4
L—vpra 1—wpuy
0 0 Hiz

E; and E, are stiffness moduli (corresponding to two orthogonal
directional vectors) and must be positive to ensure a positive-definite
stiffness tensor; p;, is the shear modulus, which must also be
positive; and v;, is a Poisson’s ratio [43] Please note that these
elastic constants were assigned the same symbols as they would
have in the general Hookean fourth-order stiffness tensor, but are not
the same constants since they map finite Green—Lagrange strains to
the second Piola-Kirchoff stress tensor here (Eq. (1)). Unlike
isotropic linearly elastic materials that conveniently have a
Poisson’s ratio between —1 <v < 0.5, v, can exist outside of
these bounds and can be difficult to estimate for generally
orthotropic materials. This motivated Li and Barbi¢ [42] to adopt
the following approach for estimating v, given as:

E
v = WEf (5)

where v, the Poisson’s ratio-like parameter used to guide the
calculation of v, was set to 0.5. When E; =F,, this results in
v;2=0.5 and mechanical isotropy. When E; #E,, v;, will vary
based on the ratio between the two directional stiffness moduli. We
implemented these constraints [42] on the current GAIM method
using an iterative fminsearch optimization routine in MATLAB
(Mathworks; Natick, MA). In this routine, we initially assumed a
single partition, initialized /C such that the material was mechan-
ically isotropic with a stiffness consistent with PDMS, and solved
Eq. (3) iteratively. For all experimental and simulated samples
presented, this produced a single positive definite fourth-order St.
Venant stiffness tensor for each partition. Next, we separated each
sample into many smaller partitions and initialized each partition
parameter set at the single-partition solution. We then iteratively
optimized Eq. (3) for the much longer multipartition form of /.
While the iterative modification to GAIM substantially increases
computational cost and does not guarantee a unique solution, it
enforces production of physiologically relevant positive-definite St.
Venant stiffness tensors capable of adopting forms indicative of total
mechanical isotropy up to and including general orthotropy.

As in our previous studies [4,34], once we have obtained Kk, for
each partition within a sample, we calculate the eigentensors of the
partition’s St. Venant stiffness tensor (Eq. (1)), which indicate
principal states of stress and strain. The largest eigenvalue, referred
to as the first Kelvin modulus (K7), represents the sample’s stiffness
in its stiffest direction for that partition [44]. Its corresponding
eigenvector can be used to calculate a strain eigentensor, which
defines the partition’s preferred stiffness direction. Finally, the two
eigenvalues of the strain eigentensor (4; and 4, ) estimate the level of
relative mechanical anisotropy (R) in the partition:

A= 2l

R =
‘/Ll + ;2|

(6)

where R =0 for an isotropic sample and R — 1 for an increasingly
mechanically anisotropic sample. Our updated approach produces
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full-field results, enabling us to quantify the spatial heterogeneity of
these variables and to effectively describe a sample’s full-field
mechanical behavior. In the case of mechanical orthotropy,
homogeneity, and linear strains, K/ = 16.5 MPa and R = 0.63 for an
orthotropic sample (like TissueMend) with the following elastic
constants: E; = 12 MPa, E; =2 MPa, ;= 1.64 MPa, and v;, = 1.2.

Isotropic Constraint. For completeness, a mechanically isotropic
constraint was also imposed on GAIM. As with the orthotropic
constraint, the constants of Kk, were determined iteratively using
the fminsearch routine in MATLAB. For this constraint, we
assigned the Poisson’s ratio, v =0.49, and optimized for only the
sample’s St. Venant in-plane Young’s modulus (£5p), which greatly
reduced the computational cost of this approach. This method also
produced St. Venant stiffness tensors (K., Eq. (1)) for each
partition in the sample, from which full-field distributions of K/
were determined. R was 0 by default when mechanical isotropy was
imposed. In the case of mechanical isotropy, homogeneity, and
linear strain, K/ can be related to the Young’s modulus by:

—E
(v —1)
For an ideal PDMS sample with a Young’s modulus of 1.32 MPa and

a Poisson’s ratio of 0.49, Eq. (7) returns a first Kelvin modulus of
2.59 MPa.

K1 =

@)

Finite Element Simulations. To test our updated GAIM method
with simulated data, we constructed two-dimensional plane stress
finite element models in ANSYs WORKBENCH R2021 (ANSYS Inc.;
Canonsburg, PA) for simulations of the thin PDMS and standard
TissueMend samples, as well as a three-dimensional model for
simulations of the thick PDMS sample. Ideal cruciform geometries
(Fig. 2, top row) were imported into ANsYs Workbench and meshed
using linear Q4 (2D) or linear Hex8 (3D) elements. Both the thin and
thick PDMS simulated samples were assumed to exhibit linear
elasticity, mechanical homogeneity, and mechanical isotropy
(E=1.32MPa, v =0.49) [36]. The standard TissueMend simulated
sample was assumed to exhibit linear elasticity, mechanical
homogeneity, and orthotropy with its material axes aligned with
coordinate axes in ANsys. The manufacturer does not report any
information about TissueMend’s stiffness or anisotropy, just that it
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Fig.2 Simulated and experimental thickness profiles for the thin
PDMS, thick PDMS, and standard TissueMend samples. The
experimental thin sample (nominally cast to be 1 mm thick) was
thinner and exhibited more spatial variability in its thickness than
expected. Values are presented as mean + standard deviation.
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is derived from fetal bovine dermis. Therefore, using Li and Barbi¢’s
approach [42], we set the elastic constants of the standard
TissueMend sample to E; =12 MPa, E, =2 MPa, p;, =1.64 MPa,
and v;, = 1.2 based on previously published uniaxial testing results
[38] and our preliminary biaxial testing of a single sample [24].
These properties correspond to an orthotropic material approx-
imately six times stiffer along its x-axis compared to its y-axis. H-
method refinement was then conducted until average strain values
stabilized between successive meshes (<3%).

In order to replicate the biaxial testing protocols utilized in our
experiments [24], we simulated all fifteen unique biaxial extensions
(Fig. 1) in ANsYs [24] by applying either fixed constraints (clamps) or
displacements to each arm of the sample. Direct solves were used to
produce nodal displacements. For the thick PDMS simulation,
several of the extensions were not solvable directly and were instead
resolved using an iterative Newton—Raphson method. The thin
PDMS and standard TissueMend simulations were both subjected
to a maximum stretch of 20% (~4.5 mm displacements on each arm)
based on their original dimensions, whereas the thick PDMS was
subjected to a maximum stretch of 10% (~2.25 mm displacements
on each arm). Following completion of each simulation, nodal
displacements, normal and shear boundary forces, and the
undeformed mesh were exported and used as inputs for the updated
GAIM method. All simulations were run serially on a Dell OptiPlex
5090 desktop with an Intel i7-10700 processor, eight cores, 16
logical processors, and 16 GB RAM.

Planar Biaxial Testing. Samples were cast (PDMS) or trimmed
(TissueMend) to a standard cruciform shape (Fig. 2, middle row)
commonly used in biaxial testing [24,33,45-49]. Each sample was
then scanned using a LJ-V7080 class 2 laser micrometer (Keyence;
Itasca, IL) to obtain a full-field thickness profile [24]. Both thin and
thick PDMS samples were speckled for DIC using black spray paint,
amethod we have found to produce fast, affordable, and fine speckle
patterns [24,50]. Both standard and collagenase-treated Tissue-
Mend samples were speckled by applying charcoal powder with a
fine brush. Following speckling, each sample was secured in our
biaxial testing system using a custom gripping system [24].
TissueMend samples were immersed in a saline bath (PBS,
0.01 M) throughout testing. We implemented a combination of
one (1DOF; WF12S Miniature Fatigue Resistant Submersible IP65
Load Cells; TestResources Inc., Shakopee, MN) and six degree-of-
freedom (6DOF; Nano 17 IP68 F/T Transducers; ATI Industrial
Automation, Apex, NC) load cells to capture normal and shear
forces at sample boundaries, enabling us to accurately resolve the
quasi-static, two-dimensional force balance during mechanical
loading. For these experiments, two 1DOF load cells were placed on
adjacent actuators and two 6DOF load cells were placed on the
remaining two adjacent arms [24]. An overhead camera (Imperx
POE-C2400, 2464 x 2056 pixels, 5 Megapixels) and lens (Compu-
tar M3Z1228C-MP) were focused on the speckle pattern applied to
the sample’s surface to enable DIC using robust software developed
specifically for soft tissues [30]. Images were obtained at 7 Hz. All
images obtained were 2464 x 2056 pixels in size. The following
px/mm ratios were calculated: 19.37 px/mm for the thin PDMS
sample, 25.64 px/mm for the thick PDMS sample, 21.18 px/mm for
the standard TissueMend sample, and 73.29 px/mm for the
collagenase-treated TissueMend sample.

Prior to testing, each sample was preloaded to a magnitude
of < 10% of the maximum load reached during testing [51]. Preloads
of ~40kPa, ~20kPa, and ~0.25 MPa were applied to the thin
PDMS and standard TissueMend samples, the thick PDMS sample,
and the collagenase-treated TissueMend sample, respectively. To
achieve a state of pseudo-elasticity, samples were preconditioned
with 10 consecutive equibiaxial extensions at a nominal strain level
prescribed based on the preloaded grip-to-grip dimensions of each
sample (20% for the thin and thick PDMS and standard TissueMend
samples and 10% for the collagenase-treated TissueMend sample)
[4,24,33,51]. Each sample was then subjected to fifteen biaxial
extensions (Fig. 1), which were explicitly designed to create
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asymmetric loading conditions, notable shearing forces, and
multiple heterogeneous strain states that better condition GAIM
[4,33]. At the end of testing, samples were subjected to one final
equibiaxial extension at the desired strain level to ensure pseudo-
elasticity was maintained and that minimal damage was inflicted
during testing. Raw force signals and images of the sample’s surface
were exported, processed, and input into GAIM. All mechanical
testing was conducted at a strain rate of 1%/s [16,20,24].

Results

Overview of Results. To improve the quality of our soft tissue
mechanical characterizations, we introduced an orthotropic con-
straint to GAIM. We first present laser micrometry results and full-
field thickness scans for the thin PDMS, thick PDMS, and standard
TissueMend samples and then share each sample’s isotropic and
orthotropic characterizations from the updated form of GAIM. We
then present the orthotropic collagenase-treated TissueMend results
to further showcase GAIM’s ability to detect and quantify
mechanical heterogeneity.

Sample Thickness. Figure 2 shows the idealized thickness
contours generated for the simulated thin PDMS, thick PDMS,
and standard TissueMend samples, as well as the experimental
thickness contours obtained using laser micrometry. In general,
there was good agreement between simulations and experiments.
The thin PDMS sample was thinner than anticipated and exhibited
higher variability in its thickness. These differences did not preclude
mechanical testing and inadvertently show the benefit of including
laser micrometry in our protocols, rather than assuming a
homogeneous thickness based on traditional methods of thickness
measurement [24,26,52]. Simulated and experimental thickness
profiles for the thick PDMS exhibited similar mean thicknesses (7%
difference) and standard deviations (7% difference). Likewise, the
mean thickness of the experimental standard TissueMend sample
showed excellent agreement (4% difference) with its simulated
counterpart, both of which displayed small spatial standard
deviations.

Isotropic Characterizations. Figure 3 depicts mechanically
isotropic characterizations of the two-dimensional behavior of the
simulated and experimental samples. Note these characterizations
do not include thickness profiles (Fig. 2), resulting in units of N/mm
for the in-plane Young’s modulus (£5p). The simulated thin PDMS
sample exhibited an in-plane Young’s modulus of 1.17 N/mm from
GAIM. When linear strain was input rather than Green strain, GAIM
produced an in-plane Young’s modulus of E,p =1.32 N/mm, the
exact value input into ansys (Fig. S1 of the Supplemental Materials
on the ASME Digital Collection). GAIM produced a lower in-plane
Young’s modulus of 0.97 N/mm for the experimental thin PDMS
sample. The roughly 17% difference between the simulated and
experimental in-plane moduli for the thin PDMS samples was
consistent with the lower mean thickness (0.79 versus 1.0 mm,
Fig. 2), likely explaining this discrepancy. GAIM also produced
similar mean in-plane Young’s moduli for the simulated (3.37 N/
mm) and experimental (3.12 N/mm) thick PDMS samples, as well as
similar variability in the in-plane moduli from left to right. GAIM
produced a larger in-plane Young’s modulus for the experimental
standard TissueMend sample (5.83 N/mm) than the simulated
sample (2.79 N/mm). We expected this large discrepancy since the
simulated sample was modeled as an orthotropic, linearly elastic
material in ANsys and the experimental sample exhibited notable
mechanical anisotropy; both samples, however, were treated as
mechanically isotropic by GAIM.

Orthotropic Characterizations. Results from the updated
orthotropic form of GAIM are shown in Fig. 4. Again, no thickness
profiles were included in these results to visualize how the method
detects spatial variations in stiffness without full-field thickness
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information. For a mechanically isotropic sample with uniform
thickness, an in-plane Young’s modulus of 1.32 N/mm equates to a
first Kelvin modulus of 2.59 N/mm (Eq. (7)). GAIM produced
values close to the ideal (K/ =2.30 N/mm; K/ = 2.50 N/mm) for the
thin simulated and experimental PDMS samples, respectively, with
negligible relative anisotropy (R=0) in the sample center,
indicative of mechanical isotropy. Comparing directional stiffness
moduli offers another way of estimating the level of mechanical
anisotropy in samples. GAIM produced orthotropic constants
E,=E, = 1.2MPa (E,;/E;=1) for the simulated thin PDMS
sample, again suggesting total mechanical isotropy. For the
experimental thin PDMS, GAIM produced E;=1.1MPa and
E;=14MPa (E,/E;=0.8). When linear strain was input rather
than Green strain, GAIM produced results perfectly matching ANSYS,
KI1=2.59 N/mm, from the simulated data (Fig. S2 of the
Supplemental Materials on the ASME Digital Collection). In
general, the GAIM results for the experimental thick PDMS sample
were poor, showing a weak visual trend in stiffness from left to right
compared to the steady increase observed in the simulated thick
PDMS sample. The relative anisotropy metrics produced by GAIM
were muddled for both thick PDMS samples. As this was the case for
both the simulated and experimental thick PDMS samples, this
result may indicate the limits of GAIM’s ability to detect mechanical
isotropy in samples with notable three-dimensional structures
approaching the limits of standard plane stress analyses [13,15].
GAIM produced a first Kelvin modulus of 14.7 N/mm for the
simulated standard TissueMend sample (£;=10.7 MPa,
E,=1.6 MPa), which was similar to the first Kelvin modulus of
12.4N/mm (E£; =8.1 MPa, E, = 3.7 MPa) produced for the exper-
imental sample. Mechanical anisotropy results suggested a
preference for the long-axis (x-axis) in both the simulated and
experimental standard TissueMend samples. Note the x-axis of our
biaxial testing machine corresponded to ¢ ~ Odeg for both the
experiment and simulation. GAIM estimated less mechanical
anisotropy (R =0.350, E,;/E;=2.2) in the experimental standard
TissueMend sample as compared to the simulated sample (R = 0.646,
E;/E;=6.7). When linear strain was input rather than Green strain,
GAIM produced a near perfect result from the simulated TissueMend
data, K1 = 16.5 N/mm,R = 0.630,and ¢ = —0.07 deg (Fig. S3 of the
Supplemental Materials).

Sample Heterogeneity. Figure 5 shows the isotropic character-
izations of the simulated and experimental thick PDMS samples.
GAIM captured an increase in the in-plane Young’s modulus of both
the samples from their left to right sides (top panel). Once thickness
profiles were incorporated into GAIM, we computed the 3D
Young’s modulus. There were approximately uniform distributions
in the Young’s modulus from the left to right sides of each sample
(ansys target: 1.32 MPa) and a trend toward mechanical homoge-
neity (bottom panel).

Figure 6 includes laser micrometry results, a mechanically
orthotropic characterization, and a comparison of 2D and 3D
stiffnesses (K1) for the collagenase-treated TissueMend sample.
Laser micrometry indicated thickness varied from ~0.8 to 1 mm
from the left (exposed) to right (unexposed) sides of the sample. The
2D mechanically orthotropic characterization captured the
collagenase-induced thickness reduction with K/ increasing
steadily from left to right and qualitatively matching the thickness
profile. Relative anisotropy was consistent across the sample and
appeared unaffected by matrix degradation. Once thickness profiles
were incorporated into GAIM, we computed the 3D St. Venant
stiffness tensor. The 3D K/ exhibited a reduced stiffness on the
exposed side. This suggests a change in material properties in addition
to the reduction in thickness, as spatial differences in K/ were not fully
accounted for by inclusion of the sample’s full-field thickness.

Discussion

Planar biaxial testing, popularized in the mid-20th century by
polymer scientists, offers a useful testing modality for thin, soft
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Fig. 5 (Top) The in-plane Young’s modulus (2D; N/mm) produced by GAIM for the simulated thick PDMS
sample (left), the experimental thick PDMS sample (center), and from left to right along each sample’s
vertical centerline (right). (Bottom) The Young’s modulus (3D; MPa) produced by GAIM for the simulated
thick PDMS (left), experimental thick PDMS (center), and from left to right along each sample’s vertical
centerline (right). Target indicates the Young’s modulus input into ANSYS.

materials [21-23]. Traditional assumptions of planar biaxial testing
—specifically, a homogeneous deformation and the absence of shear
forces at the sample’s boundary — limit the application of this
method to soft biological tissues [24]. Thankfully, advances in DIC
and boundary force acquisition have helped overcome these
limitations, enabling full-field characterizations of a sample’s
heterogeneous and anisotropic mechanical properties through
various inverse approaches, including our GAIM approach
[25,26,29,53,54]. In this study, we introduced a generally ortho-
tropic constraint to GAIM requiring positive-definite stiffness
tensors and strain energy functions, thereby improving the
physiological relevance of our solutions. We evaluated the updated
method using common, well-characterized soft tissue analogs both
computationally and experimentally. The constrained GAIM
method (Fig. 1), which relies on a series of unique biaxial extensions
generating multiple heterogeneous strain states, was used to
characterize a PDMS gel of uniform thickness, a PDMS gel of
varying thickness, and TissueMend, an FDA-approved surgical
patch (Fig. 4). We then paired GAIM with full-field laser
micrometry thickness measurements to distinguish between
regional differences in stiffness and thickness (Fig. 5). Finally, we
characterized a TissueMend sample regionally exposed to collage-
nase, which we found induced changes in both geometry and
material properties (Fig. 6).

Mechanically isotropic characterizations (Figs. 3 and 5) revealed
good agreement between simulated and experimental results for
PDMS samples. The in-plane Young’s modulus for the central
partition in the simulated thin PDMS sample was 1.17 N/mm, just
below the 1.32 N/mm value input into ansys. The experimental in-
plane Young’s modulus was 0.97 N/mm, corresponding to a 17%
difference relative to the simulated result. We attribute this
discrepancy to the 21% reduction in thickness obtained for the
experimental thin PDMS sample (Fig. 2), as well as variations in
mixing and curing times [36,55]. The excellent agreement between
the in-plane Young’s modulus (2D) and Young’s modulus (3D) for
the simulated and experimental thick PDMS samples (Fig. 5, right)
further implicate thickness as the primary driver of this discrepancy
in the thin PDMS samples. The thick PDMS samples, both simulated
and experimental, exhibited an increase in stiffness from left to right
(Fig. 5) when analyzed without thickness information. Once the
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sample’s thickness profiles were incorporated, Young’s moduli
distributions became much more uniform. While all PDMS samples,
both simulated and experimental, exhibited linear
force—displacement curves during loading, the large deformations
imposed during testing caused Green strain to differ substantially
from linear strain. This is best demonstrated by the K/ produced by
GAIM for the thin PDMS, which differed by ~11% depending on
the use of linear (Figs. S1 and S2 of the Supplemental Materials on
the ASME Digital Collection) or Green (Fig. 3) strain. Note when
linear strain was input into GAIM, simulated results aligned exactly
with ANsys, which relied on linear kinematics. As noted by others
[56,57], accounting for higher order strain terms when considering
PDMS and other similar soft polymers may be crucial for accurately
estimating traction forces exerted on substrates by cells [58-60],
which are known to undergo large deformations during traction
force generation [57,61].

Imposing isotropy decreases computational cost (>50% reduc-
tion in runtime, 51 min versus ~2 h for the thick PDMS sample with
36 partitions; ~90% reduction in runtime for a 68-partition solution,
3.5h versus 29h), but totally restricts GAIM’s ability to estimate
mechanical anisotropy [4,7,16]. For both the simulated and
experimental thin PDMS samples, GAIM produced a relative
anisotropy, R, of zero when general orthotropy was permitted. This
was further supported by a comparison of directional stiffness
moduli, E; and E,, which were identical (E;/E,=1) for the
simulation and comparable for the experiment (E£;/E> =0.8). This
demonstrated that the constrained GAIM method could correctly
identify the sample’s level of mechanical alignment (or the lack
thereof) without any additional impositions. There was a ~9%
difference between the simulated (K/ =2.30 N/mm) and experi-
mental (K/ =2.50 N/mm) stiffness metrics. As shown in Fig. S2 of
the Supplemental Materials, when linear strain was input into
GAIM, simulated results aligned exactly with Ansys. In contrast,
relative anisotropy results were poor for the simulated and
experimental thick PDMS samples. This finding may highlight a
limit of GAIM for identifying mechanical anisotropy in samples
with geometries approaching the bounds of standard plane stress
analyses [13,15]. For the simulated thick PDMS sample, the length-
to-maximum thickness ratio was 10 (the limit for assuming plane
stress [15]), and for the experimental thick PDMS sample it was only
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along the sample’s vertical centerline (bottom) suggests a
change in material properties not fully explained by inclusion of
the full-field thickness data. Values presented as mean = stan-
dard deviation of the entire sample.

6.2, suggesting out-of-plane deformations of this sample type likely
violate plane stress assumptions. While we were unable to measure
out-of-plane deformation, the 6DOF load cells we utilized in the
biaxial testing protocol measure out-of-plane forces in addition to
normal and shear forces at the sample boundary. For the
experimental thin PDMS sample, the out-of-plane forces were
miniscule (< 1% of the maximum normal force for any extension),
but were more considerable for the experimental thick PDMS
sample (reaching 5% of the maximum normal force in some
extensions).

Characterizations of TissueMend samples revealed good agree-
ment between simulated and experimental stiffness magnitudes and
directions of mechanical alignment, as well as with stiffnesses
reported by others [38]. There was a modest difference between the
first Kelvin moduli of the simulated (K/=14.7 N/mm) and
experimental (K/ =12.4 N/mm) standard TissueMend samples.
In both cases, the large first Kelvin moduli corresponded to the x-
axis of our testing system (¢ ~ 0° for both the simulated and
experimental samples) and relative anisotropy indicated moderate
(experimental, R = 0.35) to strong (simulated, R = 0.65) mechanical
alignment. To our knowledge, this is the first reported biaxial
mechanical characterization of TissueMend. Lacking prior charac-
terizations, we assigned idealized properties in ANsYS based on our
preliminary work with TissueMend [24] and linear moduli reported

Journal of Biomechanical Engineering

from uniaxial testing [38]. Discrepancies between simulated and
experimental results could indicate TissueMend is less anisotropic
than our preliminary experiment indicated. They could also be a
result of the linear orthotropic model implemented in ANsYs, or the
linear kinetic relationship imposed by the GAIM method, as
opposed to the nonlinear anisotropic behavior exhibited by the
sample during testing. Lastly, Derwin et al. [38] reported high
intersample variability in linear moduli (~15 = 3.5MPa) and a
natural product like bovine dermis likely causes high intersample
variability in anisotropy as well. If off-axis loading is important to its
use, we recommend additional mechanical investigations into
TissueMend’s anisotropic behavior. There were also differences
in TissueMend sample shape between the simulations and experi-
ments. Specifically, the experimental TissueMend sample was
smaller and had rounded corners with larger radii (relative to its full
dimensions) than the simulated sample since it was trimmed to a
cruciform shape using a biopsy punch and razor blade [24]. One
benefit of our GAIM method in combination with full-field DIC [30]
and laser micrometry is that it accounts for small, nonideal sample
geometries. This is a particularly valuable feature for application to
soft tissues and tissue analogs, for which forming an ideal shape is
challenging since samples must be cut rather than cast. Furthermore,
our use of full-field DIC [30] and 6DOF load cells allow us to capture
any shear strains or shear forces that may arise from sample shape
asymmetry.

The orthotropic mechanical characterization of the collagenase-
treated TissueMend sample produced a mean K/ of 29.0 = 5.6 N/
mm, with the unexposed side around 35 N/mm and the exposed side
around 25 N/mm prior to inclusion of full-field thickness profiles
(Fig. 6). Following incorporation of the thickness profile, the
unexposed side remained unperturbed with K/ of ~35MPa. The
exposed side increased slightly to a K/ of ~32 MPa but did not reach
35 MPa, suggesting a subtle reduction in the sample’s stiffness in
addition to the change in thickness. Local caliper measurements are
commonly used to measure a soft tissue’s thickness prior to
mechanical testing, but only provide one (or a few, if taken in
multiple locations) thickness value for the sample [24,26,52]. While
convenient, this technique makes it challenging to distinguish
between geometrical and mechanical heterogeneity and may result
in poor estimations of a sample’s true material properties. Full-field
thickness measurements enable accurate and reliable descriptions
of a soft tissue’s mechanical properties and the stresses it is
subjected to during loading. Although GAIM may be used to
mechanically characterize homogeneous samples, this experiment
demonstrates that the method truly excels at describing heteroge-
nous variations across the surface of a sample (Fig. 6). This ability
makes GAIM an attractive method for studying pathologies that
disrupt and alter the mechanical and structural properties of soft
biological tissues.

Limitations and Future Directions. Other investigators have
also sought to quantify mechanical anisotropy and heterogeneity in
soft tissues. Similar to GAIM, Kroon and Holzapfel [25] employed
an iterative error-minimizing routine to produce orthotropic
descriptions of a soft tissue’s mechanical behavior. They relied on
the classic constitutive model presented by Holzapfel, Gasser, and
Ogden (HGO) [62] to characterize idealized saccular cerebral
aneurysms geometries during inflation. Genovese et al. [26]
implemented a pointwise inverse method to study the anisotropic
and nonlinear mechanical behavior of the gallbladder and found it
exhibited isotropic mechanical behavior across the majority of its
surface when subjected to bulge inflation testing. Using another
pointwise approach, Davis et al. [29] applied bulge inflation testing
and their inverse method to ascending thoracic aortic aneurysms.
They fitted mechanical testing data to a modified HGO model [63]
and determined the mechanical properties of their aneurysmal
samples to be notably heterogeneous. More recently, Gasparotti
et al. [64] relied on their past bulge testing data [65] and a two fiber-
family modified HGO [62] to numerically determine that elliptical
sample shapes produced higher quality descriptions of anisotropic
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soft tissues, like those taken from aortic aneurysms. An advantage of
our inverse method [24] from previous studies in that it relies on
variations of classic planar biaxial testing rather than inflation.
Inflation testing produces deformations similar to equibiaxial
testing and both modalities are physiologically relevant for many
soft tissues [4,25,26,29,33,35]. However, our protocol [24] supple-
ments traditional equibiaxial testing to induce a number of
asymmetric, heterogeneous strain states. Figure 7 shows the
maximum Green strain for all fifteen biaxial extensions for each
element in each sample for this study. While the spatial maximum
normal strain is comparable to a single equibiaxial extension, the
shear strain is generally higher, particularly in the sample center
(Fig. S6 of the Supplemental Materials on the ASME Digital
Collection). This protocol broadens the strain space used to

condition GAIM and identify mechanical heterogeneity in samples.
Technical advancements this method employs include 6DOF load
cells to measure normal and shear boundary forces, fast and
affordable DIC to quantify full-field deformations, and laser
scanning micrometry to obtain full-field sample thickness
[24,26,52]. The combination of laser micrometry and DIC also
enable prescription of experimental sample shape, which is of
particular importance for soft tissues and tissue analogs, for which
forming an ideal shape is challenging since samples must be cut
rather than cast. The experimental results included here reiterate the
importance of full-field deformation and normal and shear boundary
force measurements when mechanically characterizing fibrous
samples with variable geometrical and structural (Fig. 6) compo-
sitions [24].

A major limitation of our inverse method is that the constitutive
equation is nonlinear in terms of kinematics, but assumes linear
kinetics (Eq. (1)). The inclusion of nonlinear constitutive relation-
ships (such as the HGO model) by other researchers better capture
the nonlinear kinetics commonly exhibited by soft biological tissues
[25,26,29,66-68]. While the assumption of linear kinetics greatly
reduces the computational cost and complexity of our inverse
approach, the effects we observed in this study when nonlinear
kinematics were considered suggest it may be important to address.
To evaluate this further, we assumed homogeneity and used the St.
Venant stiffness tensor constants from the central partition of the
thin PDMS (Fig. 3) and standard TissueMend samples (Fig. 4) and
the measured Green—Lagrange strain in the same region to compute
a GAIM-derived first Piola-Kirchoff stress. Figure S5 of the
Supplemental Materials on the ASME Digital Collection shows
stress in the vertical and horizontal directions as a function of the
corresponding Green—Lagrange strain. There was a relatively linear
relationship between stress and strain for the thin PDMS sample,
however, there was prominent nonlinearity for the standard
TissueMend sample. In both cases, the St. Venant model captured
the peak stresses experienced by samples at the end of a prescribed
deformation well with an error of less than 15%. These results
suggest the St. Venant model may be a poor model for describing the
transient mechanical behavior of soft tissues, but that the secant
modulus is well-suited to estimating peak stress. One way we have
proposed to account for nonlinear kinetics in the past was to apply
GAIM in a piecewise manner throughout a sample’s nonlinear
mechanical response to loading [69]. This produces a collection of
strain energy or stress values across multiple strain states for each
sample element that can then be fitted to a nonlinear constitutive
model of the user’s choice. The flexibility in constitutive model is a
clear benefit of the piecewise approach, which worked well on
simulated data sets [69]. When combined with the new constrained
version of GAIM presented in this study, which ensures positive-
definite St. Venant stiffness tensors and monotonically increasing
strain-energy, it has great promise for incorporating nonlinear
kinetics into GAIM.
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The GAIM method relies on biaxial testing data and assumes
plane stress. In general, this assumption is reasonable for samples
with a thickness at least one order of magnitude less than their
overall length and width [13,15,24], as they do not experience large
out-of-plane deformations and forces. While regional stiffness
results were good for the simulated (length-thickness ratio: 10.0)
and experimental (length-thickness ratio: 6.2) thick PDMS samples,
relative anisotropy results were poor (Fig. 4). GAIM did not
correctly identify either the simulated or the experimental sample as
mechanically isotropic. This highlights an important limitation of
GAIM and the accompanying biaxial testing protocol for mechan-
ically characterizing samples with pronounced three-dimensional
geometries.

Lastly, GAIM is limited in its ability to quantify mechanical
heterogeneity by the number, size, shape, and location of partitions.
To better understand this limitation, we prescribed increasingly fine
partitioning schemes for the experimental and simulated thick
PDMS samples, such that the number of partitions increased from 20
(Fig. 8) to 36 and 68 (Fig. 5). When we included additional partitions
(similar to standard A-refinement procedures for finite element
analyses), the heterogeneity in stiffness produced for the thick
PDMS simulated and experimental samples was not altered (Fig. 8).
We repeated this process for the collagenase-treated TissueMend
sample (Fig. S4 of the Supplemental Materials on the ASME Digital
Collection). For all partitioning levels, GAIM identified the right
side of the sample as stiffer than the left and produced similar values
of K1 at the sample edges. However, as the number of partitions was
decreased, the stiffness distribution no longer monotonically
increased from left to right. While overall spatial trends were
independent of partitioning, finer spatial comparisons may benefit
from partitioning schemes that consider morphology or kinematics
[39].

Conclusion

Many soft biological tissues function as highly deformable
membranes in vivo, making planar biaxial testing an appealing and
physiologically relevant loading modality for characterizations of
their mechanical behavior. In this article, we introduced and
evaluated a generally orthotropic constraint to our previously
demonstrated GAIM method to improve the physical significance
and utility of its mechanical characterizations. The orthotropic
characterizations of PDMS and TissueMend produced stiffness and
mechanical anisotropy metrics consistent with expectations and past
studies [36,38,55]. We also demonstrated the benefits of including
full-field thickness measurements in GAIM to distinguish between
structural and geometrical heterogeneity. The success of the updated
orthotropic form of GAIM and our accompanying biaxial protocol in
quantifying the experimental mechanical behavior of these highly
deformable soft tissue analogs indicates great potential for applying
this approach to soft tissues. This is particularly valuable when
considering mechanically disruptive pathologies that create
unknown spatial variabilities in stiffness, mechanical alignment,
and thickness, as well as therapeutic interventions designed to
preserve or modulate these properties, tissue function, and patient
health.
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