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Abstract19

Molecular programmers and nanostructure engineers use domain-level design to abstract away20

messy DNA/RNA sequence, chemical and geometric details. Such domain-level abstractions are21

enforced by sequence design principles and provide a key principle that allows scaling up of complex22

multistranded DNA/RNA programs and structures. Determining the most favoured secondary23

structure, or Minimum Free Energy (MFE), of a set of strands, is typically studied at the sequence24

level but has seen limited domain-level work. We analyse the computational complexity of MFE for25

multistranded systems in a simple setting were we allow only 1 or 2 domains per strand. On the one26

hand, with 2-domain strands, we find that the MFE decision problem is NP-complete, even without27

pseudoknots, and requires exponential time algorithms assuming SAT does. On the other hand, in28

the simplest case of 1-domain strands there are efficient MFE algorithms for various binding modes.29

However, even in this single-domain case, MFE is P-hard for promiscuous binding, where one domain30

may bind to multiple as experimentally used by Nikitin [Nat Chem., 2023], which in turn implies31

that strands consisting of a single domain efficiently implement arbitrary Boolean circuits.32
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1 Introduction45

Computational prediction of nucleic acid systems plays a crucial role in their design, analysis,46

and engineering. For a system of DNA or RNA strands, we typically desire prediction of47

likely secondary structures—strand bindings formed by base pairing—at thermodynamic48

equilibrium, but ignoring 3D geometry, strain, kinetics, and many other details, as shown49

in Figure 1. The most favored secondary structure(s) at chemical equilibrium are those50

with minimum free energy (MFE). To assign a probability to any secondary structure at51

equilibrium, the partition function, the sum of the Boltzmann-weighted energy of each52

secondary structure, is used as a normalization factor. Typically, the space of secondary53

structures is exponential in system size, hence, efficient algorithms to compute them may54

or may not exist. Decades of work have produced beautiful connections between secondary55

structure features and algorithmic efficiency (see Section 1.2), as well as predictive software56

packages [13, 28] for system analysis and design. For molecular programming, showing that57

a class of systems is algorithmically hard to predict often implies they embed algorithms58

and, hence, might make good candidates for molecular computers.59

1.1 Background and justification for domain-level analysis60

Algorithms for thermodynamic secondary structure prediction research traditionally focus61

on the base-level of abstraction: strings over the alphabet A, C, G, and T for DNA, or U62

instead of T for RNA. However, DNA/RNA nanostructures and molecular programs are63

typically designed at a higher domain-level of abstraction, better suited to large systems with64

complicated interactions, which led Shalaby, Thachuk, and Woods [44] to propose seeking65

domain-level thermodynamic algorithms for predictive analysis. A domain d is a substrand of66

DNA/RNA that is assumed to bind perfectly to its complement domain d∗, and to no other67

(Figure 1), although variations of this definition are also used. The main motivations are68

twofold: (i) good DNA/RNA sequence design, and good system design principles, can be69

used to enforce a domain-based abstraction, and (ii) even with that simplified abstraction,70

the energy landscape is typically of exponential size; hence, the task of finding clever and71

efficient algorithms is still required for domain-level prediction. In general, multistranded and72

pseudoknotted systems either have no known efficient algorithms or are NP-hard to predict73

at the base (nucleotide) [1, 29, 30, 12] and/or domain [12] level. However, despite the lack74

of algorithmic thermodynamic prediction, multistranded and pseudoknotted domain-based75

nanostructure designs are some of the most successful to date, including DNA origami [40],76

RNA origami [22], and single/double-stranded tile systems [52, 54, 53, 18]. Clearly, the design77

process for these systems does not rely solely on full algorithmic prediction of secondary78

structure thermodynamics, but rather alternative methods, such as decomposing the system79

into smaller unpseudoknotted pieces [54, 18, 22] or by intuition-driven whiteboard sketches—80

all at the domain level. These successful experimental implementations give evidence for81

the benefits of domain-based design. Still, nevertheless, the lack of theoretical underpinning82

suggests a need for exclusively domain-based thermodynamic prediction algorithms [44] to83

continue along the journey of scale-up and complexification.84

Since domains are merely a coarse-grained abstraction of DNA bases, the accuracy85

of domain-level models typically depends on good-quality DNA sequence design [54, 19,86

48, 37, 55, 51], or on choosing biologically-sourced/random sequences with good enough87

properties [40]. Interestingly, domain-level design creates new challenges for thermodynamic88

prediction algorithms. Domain-level systems, like base-level systems, as noted above, tend89

to have exponentially large secondary structure spaces, meaning the existence of efficient90
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Multistranded systems. For systems with a constant number of strands (♣S♣ = O(1)116

strands, independent of total number of bases L), also unpseudoknotted, Dirks et al. [13], gave117

a polynomial time, O(L4(♣S♣−1)!), partition function algorithm, leaving MFE open. Recently,118

Shalaby and Woods [45] gave an O(L4(♣S♣− 1)!) time algorithm for MFE in the same setting.119

In terms of computational complexity both of these problems are Fixed Parameter Tractable120

(FPT) with respect to strand count. For multi-stranded systems with a non-constant number121

of strands ♣S♣ and domain length L, Condon, Hajiaghayi, and Thachuk [12] showed a negative122

result: it is NP-complete [33] to predict MFE unpseudoknotted secondary structure(s), and123

even hard to approximate. They reduce from a variant of 3-dimensional matching (3DM) [20],124

with their result holding whether or not rotational symmetries are accounted for.125

Pseudoknots. If we allow pseudoknots, there are as-of-yet unsolved modeling considerations:126

energy models are challenging to formulate due to the increased significance of geometric127

issues and tertiary interactions [13]. For simple energy models that allow pseudoknots, it128

is known that MFE prediction is NP-complete even for a single strand [1, 29, 30]. But,129

efficient dynamic programming algorithms exist for restricted classes of pseudoknots, for130

both MFE [39, 49, 11, 27, 38] and partition function [14, 15].131

Domain-level. Two papers with domain-level algorithmic results are: Condon, Hajiaghayi,132

and Thachuk [12] showing multistranded MFE is NP-complete, and Shalaby, Thachuk,133

and Woods [44] giving a polynomial-time MFE algorithm for a subclass of multistranded134

systems—both papers utilize a long scaffold strand in different ways to give essentially135

opposite results.136

1.3 Our Contributions137

Our results, summarized in Table 1, mainly focus on MFE for multi-stranded systems with138

1 or 2 domains per strand. Such few-domain systems are experimentally well-motivated:139

for example, SST systems [52] have only four domains per strand yet are capable of reas-140

onably complicated computation [54], as are other tile systems [18, 43, 53, 4]. Nikitin [35]141

uses 1-domain promiscuous-binding to run depth-2 Boolean circuits, and there are strand142

displacement systems that compute using two [10] to a few [46, 55, 47] domains per strand.143

We begin, in Section 2, with formal domain-based definitions of DNA secondary structures.144

In Section 3 we show there are small, 1 or 2 strand, systems with only 2 domains per strand145

that have pseudoknotted MFE structures (useful for later results). In our first main result,146

we show the simple-sounding case of 2-domain strands has NP-hard MFE (Theorem 14,147

Section 4). This uses the straightforward setting of perfectly complementary domains with148

all-equal binding strengths and improves the NP-hardness result of Condon, Hajiaghayi,149

and Thachuk [12], which required a long O(m)-domain strand (for a 3DM instance with150

m triples). Both of these hardness results are then leveraged to give parameterized lower151

bounds on ♣S♣ and L, assuming the exponential time hypothesis (ETH) that there is no152

subexponential time algorithm for SAT.153

We then investigate systems of strands with one domain (Section 5). Our second main154

result, Theorem 18, states that 1-domain systems, with promiscuous but bipartite binding155

and multiple strengths, are P-hard to predict (and hence likely unparallizable [33]). Moreover,156

this problem can be viewed as a natural generalization of the classic Edge Weighted Matching157

problem in which the vertex set is given as a multi-set with binary encoded counts. Showing158

that the Edge Weighted Matching problem is P-hard is a long-standing open problem [24].159

Thus, the P-hardness of MFE for single-domain strands could provide important insights160

into this classic problem.161

Theorem 19 gives an MFE algorithm running in time polynomial in the number of162
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strands ♣S♣. Theorem 20 shows bipartite (domains and codomains) unit-strength binding163

is even easier, giving an O(♣Λ♣3) time algorithm, i.e., an algorithm that is polynomial-time164

even when strand counts are provided in binary. Finally, for complementary binding, MFE165

is easier again as we have a sequential O(♣Λ♣) time one (Theorem 21), and a O(log ♣S♣)-time166

parallel algorithm (Theorem 22). The parallel algorithm puts this problem in the class167

NC [33], which taken together with Theorem 18 implies that promiscuous binding, multiset168

encoding, or both are needed for efficient simulation of sequential computation.169

Our final result, Theorem 23, shows that the counting version of the free energy problem170

(that we call #FE) is #P-complete even for 1-domain strands and bipartite binding. While171

this doesn’t show hardness for computing the partition function (PF), these problems are172

related since an efficient algorithm for #FE can be used to compute PF in P#P = PPP when173

the range of energy levels is polynomial. This relates PF to the counting hierarchy (CH) [50].174

We also note that many of our results on 1-domain strands are reductions to or from the175

matching problem, the partition function of which, on regular graphs, has been investigated176

before [9, 6].177

1.4 Future Work178

For 1-domain strands, the main open question is to give an upper bound on the power of179

promiscuous binding with counts encoded in binary—shown here to be P-hard (Theorem 18).180

We believe this can be solved using b-matchings and thus P-complete2. Another interesting181

problem is whether the P-hardness result holds under further restrictions. If so, this must182

still take advantage of promiscuous binding or exponential strand count due to the NC result,183

Theorem 22.184

What is the best run time for a FPT algorithm for MFE for strands with L domains185

which runs in time 2O(♣S♣) · LO(1) that accounts for rotational symmetry? We note that two186

recent papers give (a) an algorithm that handles rotational symmetry in the Turner/nearest187

neighbour model [45] (which could be ported to the domain model we use here, but with188

likely increase in run time due to the increase from 4 bases to ♣Λ♣ domains), and (b) a singly-189

exponential algorithm that does not handle rotational symmetry [7] running in O(3♣S♣ · L3)190

time, making our lower bound tight up to ETH. The next interesting parameters to study191

are the number of domains ♣Λ♣ or the number of strand types ♣Σ♣.192

2 Domain Based DNA Model193

In this section, we discuss our DNA model and problems of interest.194

▶ Definition 1 (Domains, Codomain, and Strands). A domain is a pair (label, dir) where195

label is a unique id usually represented by a letter and dir ∈ ¶→,←♢ is a direction. The196

codomain of domain a is the domain with the same label and opposite direction, denoted by197

a∗. Let Λ be a set of domains, a strand σ ∈ Σ is a sequence of domains all with the same198

direction (the strand is said to have that direction) denoted
−→
ab (for a 2-domain strand) and199

sometimes called 5′ to 3′ order. However, when it is clear that all domains have the same200

direction, we denote these as tuples (a, b). S denotes a multiset of strands, and Σ = Supp(S)201

denotes the support, or unique strand types, of S.202

2 This was pointed out after submission by Marco Rodriguez.

CVIT 2016
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#Domains Binding Type Run Time Bounds Complexity

L Complementary & UB: O(|Λ|L3|S|4 · (|S| − 1)!) (Thm. 15), NP-C [12]

unit strength LBs: 2Ω(min(|S|,L)) (Thm. 17)

2 Complementary & UB: O(|Λ||S|4 · (|S| − 1)!) (Thm. 15), NP-C (Thm. 14)

unit strength LB: 2Ω(|S|) (Thm. 16)

1 Promiscuous UB: O(|S|4) (Thm. 19) P† (Thm. 19),

P-hard (Thm.18)

1 Bipartite unit strength UB: O(|Λ|3 log |S|) (Thm. 20) P (Thm. 20)

1 Complementary UB: O(|Λ| log |S|) (Thm. 21) NC† (Thm. 22)

Table 1 Results for unpseudoknotted domain-level MFE. Upper bounds (UBs) are for a determ-
inistic sequential algorithm with worst-case running time shown. All lower bounds (LBs) assume
ETH. †Result holds for input encoded in unary and does not hold for input encoded in binary.

▶ Definition 2 (Binding Function/Strength). The binding function δ : Λ2 → ¶0,−1,−2, . . .♢203

gives the binding strength between any two domains (more negative is more favorable).204

The previous definition assumes negative integer binding strengths between domains. We205

note that in the literature, more general rationals or reals (typically negative) are used for206

‘stack’ energies [41], but our use of integers simplifies giving precise bounds on energy ranges.207

We use the following definitions to classify the different types of binding functions:208

Unit Strength: For all a, b ∈ Λ, δ(a, b) ∈ ¶0,−1♢, i.e. non-0 binding strengths are equal.209

Bipartite: The domains can be partitioned into disjoint sets Λ = ΛD

⋃

ΛC , referred to210

as domains and codomains, such that for any two a, b in the same set δ(a, b) = 0211

Complementary: We say a binding function is complementary if it is bipartite and212

there exists a perfect matching, meaning for all domains a ∈ ΛD, there exists a∗ ∈ ΛC ,213

such that δ(a, a∗) < 0, and for all other pairs the binding strength is zero.214

Promiscuous: Any non-complementary binding function is said to be promiscuous215

(which may be bipartite or not).216

▶ Definition 3 (Domain-level strand system). A domain-level strand system D, or simply217

system, is a multiset S of strands over support strand set Σ = Supp(S) and a binding func-218

tion δ.219

▶ Definition 4 (Domain-level secondary structure s). For any domain-level strand system, a220

domain-level secondary structure, or simply secondary structure, s, is a set of domain pairs221

(hydrogen bonds, or simply bonds) respecting the binding function where no domain belongs222

to two pairs. Each domain is specified by a strand identifier and a position on that strand.223

For example, (ip, jq) denotes domain i of strand p binds to domain j of strand q such that224

δ(ip, jq) ̸= 0.225

Each secondary structure consists of one or more complexes:226

▶ Definition 5 (Complex). A complex is a domain-pair connected domain-level secondary227

structure. Here, we also assume that each strand is connected: i.e. within each strand,228

consecutive domain pairs are connected (in their direction, i.e. 5′ to 3′ order).229

A polymer graph for a secondary structure s of a system D with multiset of strands Σ,230

and ordering of those strands π, is constructed by drawing them in π-order in the 5′ to 3′
231

direction around the circumference of a circle where: (i) the domains along each strand are232

assumed to be connected, in 5′ to 3′ order (by their covalent bonds), (ii) there is a nick (gap,233
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i.e. no edge) between two adjacent strands and (iii) there is a chord connecting each domain234

pair (hydrogen bond, or bond) of s. Examples are shown in Figures 1–3. Let ♣S♣ denote the235

total number of strands (cardinality) in the multiset S. The set of circular permutations, Π,236

of these ♣S♣ strands contains (♣S♣−1)! distinct circular permutations since cyclic permutations237

change the location of the strands on the circle without affecting their relative orderings238

(e.g., for three interacting strands ¶A, B, C♢, Π = ¶ABC, ACB♢ since the orderings ABC,239

BCA, and CAB are the same on a circle) [8]. Each circular permutation π ∈ Π there has a240

distinct polymer graph.241

▶ Definition 6 (Pseudoknot-free, or unpseudoknotted, secondary structure). For any secondary242

structure s, we call s pseudoknot-free, or unpseudoknotted, if s has at least one circular243

permutation π ∈ Π yielding a planar polymer graph (no crossing domain-pair edges), otherwise244

we call s pseudoknotted.245

In the following domain-based definition of free energy, we do not consider the entropic246

penalty due to rotational symmetry when there are repeated strands [13, 45].247

▶ Definition 7 (Free energy ∆G(s)). The free energy, or simply energy, of a ♣S♣-strand,248

k-complex domain-level secondary structure s is ∆G(s) =
∑

(a,b)∈s δ(a, b) + (♣S♣ − k)∆Gassoc.249

▶ Definition 8 (MFE secondary structure). For any domain-level strand system D, an250

MFE secondary structure is any unpseudoknotted secondary structure s such that ∆G(s) =251

mins′∈Ω ∆G(s′), where Ω is the set of all unpseudoknotted secondary structures of D.252

An example of two polymer graphs, one pseudoknotted and the other unpseudoknotted,253

with their associated strands, can be found in Figure 1.254

2.1 Problems and Parameterized Complexity255

In computational complexity theory, it is useful to formalize problems as yes/no decision256

problems. In this paper, we are mainly concerned with the MFE decision problem, which asks257

whether the MFE of a system is below some threshold. This decision problem is in the class258

NP since one can give a secondary structure as a certificate and quickly, in polynomial time,259

compute its free energy and output yes/no depending on whether it is below the threshold.260

▶ Definition 9 (Minimum Free Energy (MFE) decision problem). Given a domain-level strand261

system and a number k, does there exist a secondary structure s such that ∆G(s) ≤ k?262

We assume the input to the MFE decision problem includes a multiset of strands (plus the263

binding function) where each strand is given as (σi, ci) where σi ∈ Σ is the strand type and264

ci is an integer representing the number of copies of σi in the multiset S. Due to this, we265

say an algorithm that runs in time ♣S♣O(1) runs in pseudopolynomial time, since it runs266

in time polynomial in the cardinality of the multiset S, i.e. the number of strands in the267

system, but not in the total input length (in bits). In some theorem statements, we refer268

to counts being encoded in unary, meaning the strands are given as a set with repeated269

strands written multiple times. This allows us to make claims about membership for “small”270

values. The goal of these statements is to show that hardness must make use of the multiset271

encoding, which has in other contexts been stated as Strong vs Weak NP-hardness [21].3272

3 A famous example of this is the partition problem [20] where we’re given n integers and a value T

and we want to know if there exists a subset of the number which sums to exactly T . This problem is
solvable in time O(nT ) but is NP-hard.

CVIT 2016
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For our algorithms, we define our computational model to be deterministic sequential273

RAM machines with constant time memory access unless stated otherwise. We allow for274

constant time arithmetic of log2 n-bit numbers for input size n. This assumption does not275

speed up the run time of our algorithms by more than a factor of O(log n).276

We also consider the problem of counting the number of structures of free energy k.277

▶ Definition 10 (Counting Structures with Free Energy (#FE)). Given a domain-level strand278

system and a value k, how many secondary structures s exist with ∆G(s) = k?279

Fixed-Parameter Tractable (FPT) Algorithms run "fast" for instances with small280

parameters. For example, an algorithm that has a runtime of f(k) · nO(1) is said to be FPT281

in k. The Exponential Time Hypothesis (ETH) claims that there does not exist a 2o(n)
282

algorithm for SAT on n variables. This hypothesis establishes a technique for hardness and283

lower bounds by assuming ETH is true. By designing reductions that preserve parameters,284

we can achieve lower bounds for other problems such as MFE. These lower bounds are in the285

form of “There does not exist an algorithm that runs in time 2o(k) · nO(1)”.286

3 Pseudoknots287

Pseudoknots are surprisingly simple to form or avoid with short (few-domain) strands.288

We begin by establishing a condition for 2-domain strands that prevents the formation of289

pseudoknots. Then, we present short strands that have pseudoknotted minimum free energy290

(MFE) structures.291

3.1 Pseudoknotted and Unpseudoknotted Systems292

We define sided strands and show these cannot form pseudoknots. We use sided strands293

in the next section to avoid forming pseudoknots in our reductions. We show that this294

limit is somewhat tight in the sense relaxing this requirement allows for extremely simple295

pseudoknots to form in the domain-level model.296

▶ Definition 11 (Sided 2-domain strands). A set of bipartite 2-domain strands is sided if297

every strand has the form (a, b∗) with a ∈ ΛD and b∗ ∈ ΛC298

▶ Theorem 12. Any secondary structure s containing only (≤ 2)-domain "sided" strands is299

unpseudoknotted, i.e. there is a strand order for s without crossings in the polymer graph.300

Proof. Recall that a secondary structure s includes a set of strands and their bonds. For301

any s, create an ordering on strands as follows. Select some sided strand (a, b∗) and add it302

to the drawing. If b∗ is bound to another strand (b, c∗) in s then add that strand next in the303

ordering. Repeat this process until either (1) you reach a strand (d, a∗) where a∗ is bound304

to a on the initial strand or (2) you reach a strand (d, z) where z is not bound to anything.305

Each adjacent strand added to the drawing has a bond drawn to its neighbor strand without306

crossing anything. If we end in case (1) we have built a cycle and can draw the new bond307

above all the others without crossing. If there still exist strands that are not yet added to308

the ordering, select one to add to the cycle then continue. ◀309

Pseudoknots appear in MFE secondary structures, even for one or two strands:310

▶ Theorem 13. There exists a domain-level strand system with pseudoknotted MFE secondary311

structure s, with as few as 1 or 2 strands in the strand multiset S. There are several scenarios:312

S = ¶((a, b, a∗, b∗), 1)♢ and s is the unique MFE secondary structure313
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bonds. Therefore, Lemma 28 implies that this structure must have fewer than (m − 2n
3 )361

complexes, which implies it has energy strictly greater than k, i.e. this MFE instance is a no362

instance. ◀363

4.1 Parameterized Complexity364

Beyond just hardness, we look at the MFE problem from a more fine-grained (parameterized)365

perspective. Precisely, we parameterize on the strand length L and number ♣S♣ of strands.366

We start by generalizing a known FPT algorithm [36] with respect to ♣S♣ to the domain-level367

model. Unfortunately, in general we can not avoid an exponential-time algorithm (unless368

the exponential time hypothesis fails) even for short strands L ≥ 2. For fixed length 2 case369

we then give the conditional lower bound in Theorem 16 proven by our reduction. For the370

general case, we then give a combined lower bound in Theorem 17 based on the minimum of371

♣S♣ and L. This shows the limits of FPT algorithms with respect to ♣S♣.372

4.2 FPT Upper Bound373

We prove this for bipartite unit-strength binding to compare against Theorem 14 and [12].374

However these techniques should generalize incurring only a polynomial run time increase.375

▶ Theorem 15. MFE of domain-level strand systems with bipartite unit strength and376

pseudoknot free secondary structures is computed in time O(♣Λ♣L3♣S♣4 · (♣S♣ − 1)!) for ♣S♣377

strands of max length L over ♣Λ♣ domain types.378

Proof. Consider a circular permutation π (out of (♣S♣ − 1)! circular permutations) of the379

system strands. We use an extension algorithm of the single stranded maximum matching380

model algorithm [36]. The main extension is to include the multi-stranded case and the381

entropic penalties associated with it. The resulting recursion equation for the minimum382

free energy, Mi,j , of a subsequence Y of the ordering π, where Y runs the ith domain to j383

domain, is as follows:384

M(i, j) = min



M(i, k − 1) + M(k + 1, j − 1)− 1 + I(j, k)∆Gassoc

M(i, j − 1)
385

Where I(j, k) is an indicator variable such that I(j, k) = 1 iff both domains j and k386

belong to two different complexes. As we have two cases, (1) domain j does not form any387

domain-pair, or (2) domain j forms a domain-pair with some domain k ∈ ¶i, i + 1, . . . , j − 1♢.388

If domain j and k were belonging to two different complexes, then entropic penalty ∆Gassoc
389

must be added, as they forming a domain-pair and hence reducing the number of complexes390

by one.391

The algorithm will require a square matrix M(i, j) as [36], but we augment each entry392

with a list of complexes that are formed in the minimum free energy structure within the393

the subsequence (i, j), such that each complex is a set of strands. Note that the size of all394

complexes at each entry can not exceed the number of strands. The value I(j, k) equals zero395

iff the two strands of domains j and k belong to the same complex (no entropic reduction)396

of the minimum free energy structure of the subsequence (k + 1, j − 1) (found in the entry397

of M(k + 1, j − 1)), otherwise I(j, k) equals one (applying entropic penalty). We ensure398

choosing the appropriate k that guarantees that that domains (j + 1) and (i− 1) will be in399

the same complex if possible with augmenting this boolean value also (to ensure the least400

entropic penalty in future iterations), otherwise any k that minimize M(i, j) works, which401

CVIT 2016
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requires extra O(♣S♣) time. Computing the augmented list of complexes at each entry follows402

directly based on k, and determining the value of I(j, k) takes then a constant time.403

The time complexity of [36] is O(N3) where N is the number of bases, in our case404

N = O(L♣S♣) domains. So, the time complexity of our algorithm will beO(♣Λ♣L3♣S♣4·(♣S♣−1)!)405

considering the overhead of choosing the appropriate k that directly helps in determining406

the value of I(j, k), and the look up for the binding interaction of domains, and considering407

the whole possible circular permutations. ◀408

Fixed Domain Length409

For our reduction, we derive a lower bound of 2Ω(♣S♣), even for L = 2, assuming ETH. This410

implies there does not exist a FPT algorithm with respect to strand length. In this case411

Theorem 15 gives a run time of O(♣Λ♣♣S♣4 · (♣S♣ − 1)!) = O(♣Λ♣) · 2O(♣S♣ log ♣S♣).412

▶ Theorem 16. MFE for domain-level strand systems with 2-domain strands requires time413

2Ω(♣S♣), unless ETH fails. This holds even when restricted to sided strands, complementary414

binding, and unit strength bonds.415

Proof. The result follows from Lemma 25 and Theorem 14. Observe that thereby ♣S♣416

corresponds to n + m, where n is the number of variables and m is the number of edges.417

However, by using the so-called sparsification result [26] in advance, we can ensure both418

these terms are linear, giving the desired bound. Sparsification allows us to take advantage419

of the “trade-off" between the two parameters to achieve lower bounds on both n and m. ◀420

Strand Count421

For FPT algorithms we fix ♣S♣ to be some constant and consider f(♣S♣) · poly(L, ♣Λ♣) to be422

efficient. We are interested in getting a more precise estimate of f(♣S♣). Theorem 15 has a423

exponential factor of O((♣S♣ − 1)!). Without fixing strand length we show a lower bound424

of 2Ω(♣S♣) (Theorem 17) using the 3DM reduction given by [12].425

▶ Theorem 17. MFE for domain-level strand systems with L-domain strands requires time426

2Ω(min(♣S♣,L)), unless ETH fails.427

Proof. In the reduction by Condon, Hajiaghayi, and Thachuk [12], from 3DM, the long428

strand length m was equal to the number of sets in the 3DM proof. The number of strands429

in the system in O(n). If we apply sparsification [26] first, we may assume that m + n is430

linear in n. Consequently, the result directly follows from a 2Ω(m) ETH lower bound for431

3DM [3]. ◀432

5 Strands with 1 domain433

In this section we first prove that MFE is P-hard for strands with only a single domain, and434

promiscuous binding (Theorem 18), by giving a simulation of Boolean circuits. The proof435

crucially uses multiple copies of each strand type. Then, we give three algorithms, the first436

of which (Theorem 19) shows that if the MFE problem is encoded in unary it is solvable in437

time O(♣S♣4), even with promiscuous binding. We then provide an algorithm for bipartite438

unit strength binding which runs in time O(♣Λ♣3), Theorem 20. Our last algorithm shows439

easiness for complementary binding (Theorems 21 and 22).440
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5.1 P-hardness of single-domain promiscuous binding: Simulating441

Boolean circuits442

In this section, we show P-hardness for MFE with single-domain strands by showing that443

computing MFE requires simulating/evaluating Boolean circuits. As shown later in the proof444

of Theorem 19, MFE with single-strand domains can be thought of as a weighted matching445

problem. Since weighted matching is not known to be P-hard [24], our P-hardness MFE446

result might be of independent interest as it shows P-hardness for a natural generalization of447

weighted matching in which the vertex set is given as a multi-set with binary encoded counts.448

Some background on Boolean circuits and P-completeness. The circuit value problem449

(CVP) asks: given a Boolean circuit and its input, is the output 1? The problem is in P,450

as any circuit can be evaluated in time polynomial in circuit size and input length, and is451

P-hard since circuits efficiently simulate Turing machines, and that simulation (or reduction)452

can be encoded in one of the classes conjectured to be strictly in P (e.g. L, or NC1; or with453

a little more work using a class known to be strictly contained in P, e.g. FAC0). In 1977,454

Goldschlager [23] showed that monotone circuits, i.e. those that use only AND, OR, and455

input gates, are P-complete to predict. The trick is to use dual-rail logic: run one monotone456

circuit c on the input x ∈ ¶0, 1♢∗ and on its bitwise complement x, run a ‘complementary’457

monotone circuit denoted c′ such that c′(x) = c(x). Since the dual-rail circuit is entirely458

monotone, a non-monotone reduction is used to convert x to x. Even stronger, Theorem 6.2.5459

of Greenlaw and Ruzzo [24], states that the following problem is P-complete: Synchronous,460

Alternating, Monotone Circuit-Value Problem with fanout exactly 2. Here, synchronous461

means that the circuit gates are organized into layers, where gates in layer i only take inputs462

from layer i − 1. Every non-input gate has fanout exactly 2. Together with the property463

of being synchronous, this implies each non-input layer has the same number of gates (for464

decision problems, we only care about a single output bit of the circuit. Hence, there will be465

some redundant gates in the circuit). Alternating means that odd layers contain only OR466

gates and even layers only AND gates, except layer 0, which has input gates.467

In a recent experimental paper, Nikitin [35] shows how to simulate 2 layer Boolean circuits468

by cleverly using what he terms “strand commutation” which is a form of promiscuous DNA469

strand binding using a mixture of mismatching and matching base pairs. Taking inspiration,470

we generalize his technique in several ways: (a) giving a proof that works for circuits of471

arbitrary depth, (b) having a fanin-2, fanout-2 gate design that has almost the same ∆G,472

except for multiples of some ϵ, for each of the 4 possible input bit pairs, (c) an overall circuit473

design for which the MFE is guaranteed to sit in an easily defined energy interval that is a474

simple function of circuit size and depth. Together, these properties are leveraged to establish475

the P-hardness of the MFE problem for single-domain systems. We note that this theorem476

holds in a generalization of the TBN model [16], where we allow promiscuous binding.477

▶ Theorem 18. MFE of domain-level strand systems with 1-domain strands, promiscuous478

(but bipartite) binding, and exponential strand counts, is P-hard to predict, under logspace479

reductions.480

Proof. Let C be any synchronous, alternating, monotone Boolean circuit where every gate481

has fanout exactly 2, and in particular, C uses only AND (fanin 2), OR (fanin 2), and input482

(fanin 0) gates. As discussed above, the problem of predicting families of such circuits is483

P-hard (Theorem 6.2.5 of [24]).484

Let c be a copy of C and let c′ be the dual circuit of c constructed as follows: For every485

non-input gate g in c, there is g′ in c′ where g′ is OR iff g is AND, and vice-versa, and the486

input of c′ is the bit-flipped input of c, with the wiring diagram being the same for both487
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circuits (this is the standard dual-rail technique). Thus, for all gates g: g(x1, x2) = g′(x1, x2)488

where x1, x2 ∈ ¶0, 1♢, and for the entire circuit c(x) = c′(x) where x denotes the bitwise489

complement of x ∈ ¶0, 1♢∗.490

Simulating a single gate G. Intuitively, we wish to simulate each gate G in C using a491

strand gadget such that each gate in a layer has almost the same strand-gadget-MFE no492

matter which of the four input bit pairs G receives. Suppose C consists of a single gate G.493

Suppose further that G is an AND gate. We claim that G is simulated by the 1-domain494

strand gadget in Figure 8 that operates by simultaneously simulating the corresponding AND495

(g) in c and OR (g′) in c′. By simulate, we mean that (i) strands out1 and out2 are present496

in the MFE structure iff g(x1, x2) = 1, and (ii) that the gadget MFE lies in a real-valued497

interval to be defined later. Property (i) follows by a careful analysis of the binding energies498

δ1 < · · · < δ5 (Figure 8), which are designed such that: input strands bind with strength δ1499

breaking up δ2 bonds, freeing black strands to bind to the intermediate gadget green strands500

with δ3 (or grey-green with δ3 + ϵ, for some ϵ > 0 to be defined later), with excess black501

strands binding to brown/orange with δ4 to release pink outputs that were bound with δ5.502

If G is an OR gate, the same scheme is used except (a) all input bits and strands are503

flipped, and (b) the output comes from the OR component of Figure 8. Else, G is an input504

gate that is simulated by a single input strand type if G = 1 and zero strands if G = 0.505

Gate at an arbitrary layer of an arbitrary C. Now let C be of arbitrary size. Let d506

be the depth of C and hence also of c and c′ (we define the depth d to be the number of507

non-input layers), s be the size (including input gates), and h = (s− ♣x♣)/d be the height of508

C (or number of gates per non-input layer—since every gate has equal fanin and fanout of 2509

(except for input gates), all non-input layers have the same number of gates h, and the input510

layer has 2h gates). The input layer is ℓ = 0.511

Let g, in layer ℓ > 0, be any non-input gate in c, and let in1 be any one of its 2 input512

wires and let out1 be any one of its 2 output wires. The wire in1 has an associated, unique513

strand type σin1
. The number of input strands (the count) of type σin1

is ♣σin1
♣ = 2(2d−ℓ) if514

the input bit is 1 and 0 if the input bit is 0. The number of output strands (the count) of515

type σout1
is ♣σout1

♣ = 2d−ℓ, if the output bit is 1 and 0 if the output is bit 0.516

As shown in Figure 9, each gate has 11 strand types. We define gate g to have a total517

count of 26×2d−ℓ strands, which can be seen as a multi-set of 11 strand types with repetition518

numbers shown in Figure 9.519

We claim that the MFE, denoted by k
(a,b)
g , of any gate gadget g with any input bits520

(a, b), a, b ∈ ¶0, 1♢, has value in the negative integer range [kℓ, kℓ + 2d−ℓ+1ϵ] where kℓ =521

2d−ℓ(4δ1 + 4δ2 + 2δ3 + 2δ4 + 2δ5). We will prove that claim by induction on (d− ℓ). For the522

base step, (ℓ = d), our construction in Figure 8 represents any final-layer gate gℓ,i = gd,i:523

specifically, the bottom of each of four Figure 8 panels shows that k
(a,b)
gd,i lies in the claimed524

interval, for each of the four cases of (a, b) ∈ ¶0, 1♢2. Suppose that the claim is valid for525

any gate gℓ,i in layer ℓ such that (d − ℓ) > 0 giving the following induction hypothesis:526

k
(a,b)
gℓ,i ∈ [kℓ, kℓ + 2d−ℓ+1ϵ]. Now, for any gate at the non-input layer (ℓ − 1), and from the527

recursive nature of our construction (Figure 10), leading to an exponential blow-up from right-528

to-left (towards the input), gives kℓ−1 = 2kℓ, which implies that k
(a,b)
gℓ−1

∈ [kℓ−1, kℓ−1 +2d−ℓ+2ϵ].529

Let E =
∑

ℓ∈¶1,2,...,d♢ h2d−ℓ+1ϵ the sum of all ϵ’s. Let ϵ = +1. We will add an extra530

gadget, called the output gadget, which consists of a single strand that binds to the strand531

type out1 of the single circuit output (final) gate, with binding strength δF = −E − 1. Also,532

let δF
5 be the δ5 value for the circuit’s final output gate: we set δF

5 = δF − 1, and for each533

gate set δ5 = δ4 + 1 = δ3 + 3 = δ2 + 4 = δ1 + 5 to satisfy the inequality shown in Figure 8534

and have integer-only strengths (a definition that propagates binding strengths back through535
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circuit gadgets, from output back to inputs).536

Formula for MFE. We next claim that c (and thus C) accepts iff MFE <
∑

ℓ∈¶1,2,...,d♢ kℓh.537

To see this note that without the output gadget (i.e. ignoring δF ) the MFE is in the negative538

integer interval:539





∑

ℓ∈¶1,2,...,d♢

kℓh , E +
∑

ℓ∈¶1,2,...,d♢

hkℓ



 (1)540

but since δF < −E, we know that the MFE including the output gadget (i.e. including δF )541

lies below the interval in (1) and this will happen iff circuit C accepts its input x.542

We claim the reduction is computable by deterministic logarithmic space Turing ma-543

chine [34, 2] that takes input C, x: We assume the circuit is described in a standard way as544

a string [5]. The circuit height h and depth d are easily computed in logspace (e.g. count the545

number of gates that take input from the first layer to give h, and divide that into circuit546

size to get d). Each gate description includes 11 strand types, unique to the gate (Figures 8547

and 9), which are straightforward functions of the gate name. For each strand type, its548

count is a function of circuit depth and gate layer (Figure 9) that uses multiplication and549

exponentiation, on binary numbers of O(♣x♣O(1)) bits (these numbers are powers of 2 so could550

be written using O(log ♣x♣) bits, although that is not required here since logspace machines551

can output polynomial-sized words). Likewise for the MFE threshold value:
∑

ℓ∈¶1,2,...,d♢ kℓh.552

The binding function (Figure 8), for any pair of strands, is a simple formula of the depth.553

All gates at layer l have the same binding function as they do not interact with each other.554

Hence, at layer l, the binding strength δ1 = −(E + 1 + 6d), and δ2, . . . , δ5 values follow555

directly as described above. This value of δ1 guarantees that δF = −E − 1 (E is a power556

of 2, so all δ’s could be written using O(log ♣x♣) bits). ◀557

5.2 Polynomial-time algorithms for simulating 1-domain systems558

▶ Theorem 19. MFE of domain-level strand systems with 1-domain strands is solvable in559

O(♣S♣4), even for promiscuous binding functions. With unary encoded counts, this problem560

is in P.561

Proof. Create a graph G where each node is a strand. Multiple strands of the same type562

have multiple nodes. For every pair of nodes representing strands with domains a and b, add563

an edge with weight (−1)δ(a, b)−∆Gassoc (to make weights positive).564

Each weight is then the contribution of a complex to the energy. Since we are computing565

a matching, each strand will be used once. The graph size will be ♣S♣ and the upper bound566

on the number of edges is ♣S♣2. Since MAX weight matching has a O(V 2E) time algorithm,567

this gives a O(♣S♣4) algorithm for MFE. ◀568

Bipartite Unit Strength569

▶ Theorem 20. MFE of domain-level strand systems with 1-domain strands, bipartite binding,570

and unit-strength bonds, is in P and solvable in O(♣Λ♣3 log ♣S♣), even for promiscuous binding571

functions.572

Proof. We solve this by reducing it to the max-flow problem. Let A = a1, a2, . . . , an and573

B = b1, b2, . . . , bm denote the bipartite partition for the domains of a given MFE instance,574

and let c(x) denote the strand count for a given domain x (i.e. the number of strands with575

domain x). Create a network flow instance as follows: create a network with a source s,576
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sink t, and a vertex for each domain type a1, . . . , an, b1, . . . , bm. Connect the source s of the577

network to each ai with a capacity c(ai) edge, and connect each bj to t with a capacity c(bj)578

edge. Add an edge of capacity ∞ from ai to bj if δ(ai, bj) is non-zero (i.e. if ai bonds to bj).579

The max-flow of this network is equal to the maximum possible bonds achievable by any580

configuration for the given MFE input and, therefore, can be used to determine the solution581

to MFE in polynomial time O(♣Λ♣3). We add an additional log ♣S♣ factor to this run time to582

account for arithmetic based on strand counts. ◀583

Complementary Binding. Lastly, we show that Theorem 18 requires promiscuous binding584

single-domain strands. First, we describe how this problem can be solved sequentially in585

time O(♣Λ♣), then describe how to parallelize it:586

▶ Theorem 21. MFE of domain-level strand systems with 1-domain strands and comple-587

mentary binding is solvable in time O(♣Λ♣ log ♣S♣).588

Proof. Each strand with domain a can only bond with its codomain a∗. This means the589

number of complexes for that domain type pair is the smaller of the two numbers, which590

we write as min(♣a♣, ♣a∗♣). We can then compute the binding strength times number of591

complexes δ(a, a∗) min(♣a♣, ♣a∗♣) to get the first term of the function ∆G(s) for an MFE592

secondary structure s. The number of removed complexes is also min(♣a♣, ♣a∗♣), which we593

can multiply by ∆Gassoc to get the contribution of the second term. In total, we are making594

♣Λ♣ comparisons, each of two numbers ≤ ♣S♣. Then we are summing up ♣Λ♣ minima, and595

returning it. We add a log ♣S♣ factor to the run time to account for the cost of arithmetic596

operations. ◀597

The next result shows that the algorithm from Theorem 21 can be parallelized to get an598

NC algorithm. Hence, MFE of single-domain, complementary binding systems cannot be599

P-hard unless NC=P, in turn implying that non-complementary binding, i.e. promiscuous, is600

likely required for efficient (polynomial time) simulation of arbitrary sequential computations601

(Theorem 18).602

▶ Theorem 22. MFE of domain-level strand systems with 1-domain strands and comple-603

mentary binding is in NC when encoded in unary.604

Proof. For NC membership, we require, at most, polylogarithmic time on a polynomial605

number of processors. The algorithm from Theorem 21 can be parallelized by computing606

the smaller value between domains and codomains on ♣Λ♣ different processors. This can be607

done in O(log ♣S♣) time. Then, we add the free energy contributions of each domain pair in608

parallel, taking O(log ♣Λ♣ log ♣S♣) parallel time in total. ◀609

5.3 Counting Free Energy610

The counting problem #FE is still hard, which we establish below. We show that there611

exists a parsimonious reduction from counting matchings to #FE.612

▶ Theorem 23. Counting the number of structures with energy E is #P-Complete even with613

bipartite unit strength binding and encoded in unary.614

Proof. We reduce from Bipartite Matching. For each vertex, we create a domain v. For each615

edge, we make the binding strength of both domains equal to −1. The set of configurations616

of bonds is equivalent to the sets of edges. The energy of each configuration is a function617

of the number of edges represented. Thus, if we can compute the number of configurations618

with energy level E in polynomial time, we then determine the number of matchings. ◀619
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Figure 5 (Left): Interleaving of three different (solid, dotted, dashed) directed 3-cycles could cause
a new 3-cycle that is not among the given ones. (Right): Such a 3-cycle required a non-subdivided,
triangular face formed from all three colors of the 3-cycles, not occurring in the reduction (Figure 7).
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Figure 6 All positive and negative connectors of the reduction in Figure 7.

A Directed 3-Cycle Cover757

We reduce from directed 3-cycle cover, disallowing pairs of vertices with both edges between758

them, which we show is NP-hard in the following result. This result is inspired by problem [20,759

GT11: Partition Into Triangles], but generalized to directed graphs. We require an additional760

constraint as well, that there do not exist any two cycles in our graph.761

A 3-cycle cover has exactly n
3 cycles, so we must design our reduction to have exactly762

that number of complexes in the minimum free energy structure. To address this, we must763

make sure that complexes representing 3-cycles are the smallest cycles in our system. This is764

true if our graph does not contain any 2-cycles, which requires that the graph not contain765

any doubly covered edges. We now prove NP-hardness and some technical lemmas for our766

reduction, with variable n denoting the number of vertices in the graph and m denoting the767

number of edges.768

▶ Theorem 24. Directed 3-Cycle Cover is NP-hard even on graphs without any 2-cycles.769

Proof. Planar 3DM [17] is NP-hard even when there are no faces of size 3 without a set. It770

turns out that mimicking the reduction by Dyer and Frieze is enough. Indeed, this reduction771
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Figure 7 Reduction from 1-in-3SAT to Directed 3-Cycle Cover, which borrows from the reduction
to 3DM [17]. (Top): Notation of directed 3-cycles, as well as clause gadgets and variable gadgets.
(Bottom): Connectors from positive variable appearances to the clause gadgets. Negative connectors
are obtained by swapping the branches going into the clause gadget (see Figure 6 for details).
Correctness follows from [17] and the observation of two properties. See the proof of Theorem 24.

does not require planarity but rather preserves it, i.e., the gadgets still work in the non-planar772

setting. We summarize their gadgets in Figure 7. Their gadgets are taken as is and use773

colors to specify directed edges, which are fixed from blue to yellow, yellow to red, and red to774

blue. The main observations we obtain from these gadgets are that (1) there is no 2-cycle in775

the reduction and (2) there is no new 3-cycle that is not given but can be constructed from776

a combination of given 3-cycles. Indeed, (1) can’t occur as we only construct directed edges777

from vertices of color blue to yellow, yellow to red, and red to blue. So, the corresponding778

inverse edge can never exist. The only possibility for (2) is depicted in Figure 5 (left), which779

would be the case if we combined three different 3-cycles. However, to address this, we780

require each face uses three differently colored nodes (see Figure 5 (right)), which is not781

possible in [17] (see also Figure 7). ◀782

▶ Lemma 25. Every 3-cycle cover algorithm on directed graphs with n vertices, even on783

graphs which do not contain any 2-cycles, has a runtime 2Ω(n) unless ETH fails.784

Proof. We first note that the reduction from 3SAT to 1-in-3SAT [42] only increases the785

number of variables by a linear amount. We then track the chain of reductions from 1-in-786

3SAT, to 3DM [17], to 3-Cycle cover (Thm. 24) and show the number of vertices in the cycle787

cover graph is linear in the number of 1-in-3SAT variables, as we do require the reduction788

to preserve planarity. This preserves the 2Ω(n) lower bound under ETH [26] from SAT to789

3-cycle cover. We also note that a 2Ω(n) ETH lower bound for 3DM was shown in [3]. ◀790

▶ Lemma 26. All secondary structures achieve at most 2n bonds.791

Proof. Each bond in any secondary structure must include a domain from one of the vertex792

species, and each species has 2 such domains, so the total number of bonds is at most 2n. ◀793
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▶ Lemma 27. A 3-cycle secondary structure (if it exists) has 2n bonds and m− 2n
3 distinct794

complexes.795

Proof. Each domain of each vertex species is bonded to an edge species in a 3-cycle secondary796

structure, which implies the structure achieves 2n bonds. For the number of distinct complexes,797

we can count them by including the number of cycles ( n
3 ) plus the number of remaining edge798

species. Since each cycle complex absorbs exactly 3 edge species, the number of remaining799

edge species is m− n, yielding a total of m− 2n
3 total distinct complexes. ◀800

▶ Lemma 28. Any secondary structure with 2n bonds that is not a 3-cycle secondary structure801

has less than m− 2n
3 distinct complexes.802

Proof. Consider a secondary structure of 2n bonds that is not a 3-cycle secondary structure.803

Note that each vertex species must be bonded to exactly 2 edge species to achieve 2n bonds.804

Let d + r denote the number of connected complexes in the structure that contain at least805

one vertex species, with r specifically denoting the number of such complexes that form a806

connected cycle, and d denoting the number of those that do not.807

For each of the r complexes that form a closed cycle of bonds, the number of edge species808

included in the complex is the same as the number of vertices in the complex, whereas,809

for each of the d non-cycle complexes, the edge count is one more than the number of810

vertices in the cycle. Therefore, the total number of edge species that are bonded to one811

of these complexes is n + d. The total number of complexes in the secondary structure812

can be calculated by including the number of complexes that absorb the vertex species813

(d + r) plus the number of remaining (unbonded) edge species (m − n − d), for a total of814

(d + r) + (m−n− d) = m−n + r. If this secondary structure is not a 3-cycle structure, then815

r < n
3 , and so this total is less than m− 2n

3 . ◀816

▶ Lemma 29. If the associative free energy 0 < ∆Gassoc < 1, then the minimum free energy817

secondary structure has 2n bonds.818

Proof. Any secondary structure with fewer than 2n bonds would have two separate complexes819

with complementary, unbonded domains. A new configuration could, therefore, be constructed820

by combining these two complexes through this pair of domains and increasing both the821

bond count and complex count by 1. Since ∆Gassoc < 1, this new secondary structure would822

have less free energy than the original structure, implying only a maximal 2n bond secondary823

structure could be the minimum energy structure. ◀824
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