
Low-Cost Privilege Separation with Compile Time

Compartmentalization for Embedded Systems

Arslan Khan, Dongyan Xu, Dave (Jing) Tian

{khan253, dxu, daveti}@purdue.edu

Purdue University

AbstractÐEmbedded systems are pervasive and find various
applications all around us. These systems run on low-power
microcontrollers with real-time constraints. Developers often
sacrifice security to meet these constraints by running the
entire software stack with the same privilege. Existing work
has utilized compartmentalization to mitigate the situation but
suffers from a high overhead due to extensive runtime checking
to achieve isolation between different compartments in the
system, resulting in a rare adoption. In this paper, we present
Compartmentalized Real-Time C (CRT-C), a low-cost compile-
time compartmentalization mechanism for embedded systems
to achieve privilege separation in a linear address space using
specialized programming language dialects. Each programming
dialect restricts the programming capabilities of a part of a
program, formalizing different compartments within the program.
CRT-C uses static analysis to identify various compartments
in firmware and realizes the least privilege in the system by
enforcing compartment-specific policies. We design and implement
a new compiler to compile CRT-C to generate compartmentalized
firmware that is ready to run on commodity embedded systems.
We evaluate CRT-C with two Real-Time Operating Systems
(RTOSs): FreeRTOS and Zephyr. Our evaluation shows that
CRT-C can provide compartmentalization to embedded systems
to thwart various attacks while incurring an average runtime
overhead of 2.63% and memory overhead of 1.75%. CRT-C
provides a practical solution to both retrofit legacy and secure
new applications for embedded systems.

I. INTRODUCTION

Embedded systems find applications in nearly every aspect of

computing. Unlike general-purpose personal computers, embed-

ded systems are resource-constrained and are generally used for

a specific task. Often, multiple embedded systems are interfaced

with each other to achieve some useful task, e.g., different

sensors within a drone or hundreds of ECUs within a vehicle.

Even though embedded systems are ubiquitous, the state of

embedded systems security paints a rather worrisome picture.

Developers often sacrifice security in favor of performance due

to the low resource constraint. For instance, embedded systems

are often programmed in a flat address space with no privilege

separation to avoid the cost of context switching. As a result,

any component in the system can freely access any resource

in the system, e.g., a user-space task can access any kernel

data structure or any device in the system. These poor security

practices leave a large attack surface in embedded systems,

as demonstrated by several attacks [5]±[8]. For instance, a

compromised WiFi System-on-Chip (SoC) can be used to

achieve a full device takeover of a mobile phone remotely [19],

[20].

Compartmentalization [47], [50], [65] is one of the coun-

termeasures for reducing the attack surface of a computing

system. It divides a monolithic system into multiple small

compartments, each of which is assigned a particular set of

resources. Existing work has tried to achieve compartmental-

ization in embedded systems using various techniques. Minion

[51] creates coarse-grained compartment views using program

analysis and clustering algorithms with the help of a memory

protection unit (MPU). M2MON [49] implements a Memory

Mapped I/O (MMIO) reference monitor for embedded systems

using a similar design as Minion. ACES [34] implements

developer-guided compartments using compiler instrumentation

and MPU.

Unfortunately, these systems suffer from the inevitable

runtime overhead caused by instrumentation and monitoring, as

shown in Table I. Furthermore, the memory protection hardware

employed by embedded systems, such as the MPU, provides a

limited number of protected regions and imposes restrictions

on the size and alignments of protected memory regions

[77], resulting in limited configurations and high memory

overhead [34]. Due to the stringent resource constraint in

embedded systems, these overheads are not acceptable for

most applications, and thus these solutions were never able to

catch wide adoption. Moreover, some of the solutions require

an extensive amount of effort to port existing systems to their

frameworks. For instance, these solutions mandate to move

the system software stack from the privileged mode to the

unprivileged mode manually, requiring a non-trivial effort.

Similarly, memory-safe programming languages [46], [55],

[60], [67], such as embedded Rust, can help reduce the

attack surface of embedded systems by proactively enforcing

developers to write code in a type-safe fashion. While these so-

lutions could result in lower overhead, adopting these solutions

require rewriting the application in a completely new language,

breaking compatibility with existing projects. More importantly,

these languages do not provide any compartmentalization

guarantees, as an unprivileged component can still access

privileged resources, making them susceptible to privilege

escalation attacks, etc.

In this paper, we present Compartmentalized Real-Time

C (CRT-C), a program analysis and programming language-

based compartmentalization technique for embedded systems.

CRT-C combines the features of compartmentalization and

language-based systems to achieve compartmentalization by

identifying different compartments in the system at compile-

3008

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Arslan Khan. Under license to IEEE.
DOI 10.1109/SP46215.2023.00164

2
0
2
3
 I

E
E

E
 S

y
m

p
o
si

u
m

 o
n
 S

ec
u
ri

ty
 a

n
d
 P

ri
v
ac

y
 (

S
P

)
| 9

7
8
-1

-6
6
5
4
-9

3
3
6
-9

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

P
4
6
2
1
5
.2

0
2
3
.1

0
1
7
9
3
8
8

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

time and enforcing a specialized programming dialect based on

the compartment type. Specifically, CRT-C utilizes program

analysis to ensure that different compartments are isolated at

the variable-level granularity. Each compartment in the system

follows different policies to achieve the least privilege in the

system. Instead of re-writing the whole application in a new

programming language, we provide tools to convert legacy C

code to CRT-C code in a semi-automatic fashion.

We design and implement the CRT-C compiler using

LLVM and apply CRT-C to two RTOSs, FreeRTOS [14]

and Zephyr [25], demonstrating how CRT-C can help retrofit

existing systems. Our evaluation shows that CRT-C can

effectively avoid memory corruption and privilege escalation

issues in commodity systems. Furthermore, our evaluation

shows that CRT-C can eliminate known CVEs in these RTOSs

while incurring an average of 2.63% runtime overhead and

1.75% memory overhead. In summary, this paper makes the

following contributions:

• We propose CRT-C, a novel compile-time compartmental-

ization technique for embedded systems using specialized

programming dialects for separate compartments in the

system. CRT-C uses static program analysis and an

extended C type system to achieve this goal.

• We design and implement the CRT-C compiler that can

identify different compartments in the system and restrict

developers to the dedicated dialect of the corresponding

compartment for memory safety and privilege separation.

We provide tools to convert legacy C code to CRT-C

code in a semi-automatic fashion.

• Using CRT-C, we compartmentalize two RTOSs to evalu-

ate the efficacy and efficiency of CRT-C. Our evaluation

shows that CRT-C can defend against several vulnerabili-

ties and thwart known CVEs with compartmentalization

while incurring an average of 2.63% runtime overhead,

varying from 0.4% to 11.2%, and 1.75% memory overhead,

varying from 0.9% to 5.8%.

To further research on this topic, we have released the source

code for CRT-C.

II. BACKGROUND

A. Real-Time Operating Systems (RTOS)

Real-Time Operating Systems are operating systems that

schedule tasks in a deterministic manner. In an RTOS, given

the set of runnable tasks in the system a user can pre-determine

the schedule of tasks in the system. While RTOS schedules

tasks deterministically, there can be some variability in the

system called jitters, caused by various factors such as network

congestion, interrupt handling, etc. To minimize jitters, RTOSs

usually run in flat address space in embedded systems. In such

a configuration, the tasks or threads in the system are functions

that are directly linked with the RTOS code, both running

inside the same privileged mode. Popular examples include

FreeRTOS [14], Zephyr [25], NuttX [17], etc.

B. Compartmentalization

Compartmentalization is a design principle to divide a

monolithic software stack into various compartments. Each

compartment has its own set of resources, which can only be

accessed via the compartment. Modern processors provide

features such as memory management units and different

execution modes to achieve compartmentalization in a system.

We call compartmentalization using these hardware extensions,

Hardware-Based Compartmentalization. Existing systems have

employed various techniques to achieve compartmentalization

in embedded systems as shown in Table I. However, these

systems have not seen the same level of adoption because of

the low-resource constraints and high overhead incurred due

to hardware-based compartmentalization.

C. CheckedC

CheckedC [38] is a spatially safe dialect of C. Compared

to existing safe dialects, CheckedC provides memory safety

by adding extensions to C. Because of this design, every C

program is also a CheckedC program. CheckedC extends C

pointer types to provide three new safe pointer types that can be

used to access memory safely. This includes ptr, array_-

ptr and array_ptr_nt. ptr type is used for pointers

that do not allow any pointer arithmetic operations, whereas

array_ptr and array_ptr_nt allow pointer arithmetic.

Each pointer type contains sufficient checks to ensure that

there are no buffer overruns or null dereferences at runtime.

Additionally, CheckedC introduces the concept of checked and

unchecked scopes. CheckedC restricts programmers to utilize

only safe pointer types inside the checked scopes, whereas

inside unchecked scopes the weak C type system can be utilized.

By enforcing these restrictions on checked scopes, CheckedC

guarantees that "Code in checked scopes cannot be blamed

for spatial safety violations" [38]. For interoperability between

checked scopes and unchecked scopes, CheckedC introduces

the concept of bound-safe interfaces, with which programmers

can do sufficient checking at the boundary of checked and

unchecked scopes.

III. SECURITY MODEL

Threat Model. We consider the classical threat model for

operating systems, i.e., code running in user space, such as

user threads, and code from 3rd-party vendors, such as device

drivers, are untrusted and exposed to attacks directly. Attackers

aim to compromise the whole system by exploiting vulnera-

bilities in the untrusted code, e.g., via memory corruption to

achieve arbitrary code execution or privilege escalation within

the system. As a result, attackers could gain access to systems

resources that are not supposed to be accessed by default, such

as interrupt handlers, schedulers, MPU configurations, secret

keys, etc., due to the flat memory address space and running all

the code within the same privileged mode. For instance, a sensor

spoofing attack might exploit an integer overflow within the

device driver, which further triggers a buffer overflow and leads

to arbitrary code execution within the privilege mode. Ideally,

even if the device driver was compromised, the exploitation

23009

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

Project Runtime Overhead Memory Overhead Mechanism Granularity TCB Porting Effort

Minion [51] 6.13% N/A (Fragmentation) MPU Thread Level Small Mode Switch
M2MON [49] 8.85% 5.02% MPU Device Level Small Mode Switch

ACES [34] 13% 61% (Fragmentation) MPU +SFI Programmable+ Small Mode Switch
CRT-C 2.63% 1.75% Language Based Variable Level Medium Minimal∗

TABLE I: Existing compartmentalization solutions: Mechanism describes the isolation technique used by the framework and Granularity
shows the smallest compartment achieved by the framework. Each project is evaluated on a different variant of the STM32F4 microcontroller.
(+Granularity is limited by the MPU functionality) (∗ Firmware needs a compatibility layer (See Section V) to work with an RTOS.).

CRT-C

Compiler

Compatibility Layer

C/C++

Code
CRT-C Code

C1Code

Converter P1

C2
C3

P2
P3

Fig. 1: CRT-C workflow. Existing code can be converted to CRT-C
code using the compatibility layer to generate code in different
compartments (C), which are subjected to specific policies (P).

should be confined within itself, e.g., its own compartment,

without influencing other components within the system.

Trust Model. The system software or the RTOS, including

the scheduler, interrupt handlers, etc., and the bootstrap code

to start up the whole embedded system are considered part

of our Trusted Computing Base (TCB). We anticipate the

firmware (system software plus user-defined applications) to

be statically linked, i.e., it does not contain any dynamically

linked or shared libraries, which is a common practice for

embedded systems. We assume the availability of firmware

source code and a proper boot-up mechanism to ensure the boot-

time integrity of the firmware. We do not assume the availability

of hardware privilege separation (e.g., multiple MCU execution

modes) or memory protection hardware (e.g., MPU), which

further lowers the deployment requirements in the real world.

In a nutshell, CRT-C creates isolated compartments in the

firmware to confine the potential vulnerabilities and attacks

within a compartment without influencing other compartments

via isolating the code, data, and peripherals of all compartments.

Out-of-Scope. We do not aim to defend against local attacks,

e.g., attacks within a compartment during the runtime, which

have a number of different solutions, such as control flow

integrity (CFI) and data flow integrity (DFI). Instead, our goal is

to confine the attack within the compartment, preventing whole-

system compromise. We do not consider undefined behaviors

introduced by the embedded firmware, nor do we cover race

conditions bugs within the firmware. A clear and even formally-

verified specification might be needed to eliminate undefined

behaviors. Recent work on detecting race conditions [53] could

be integrated if needed. Finally, both side-channel [56], [61],

[69] and physical [26], [64], [76] attacks are orthogonal to our

threat model, and thus outside the scope of this paper.

IV. OVERVIEW

CRT-C is a language-based compartmentalization solution

that uses program analysis to identify different compartments in

the system. Each compartment is subjected to different policies

which ensure strong isolation between different compartments.

In case CRT-C is not able to guarantee isolation, it either

instruments the program with runtime checks or points the user

to the offending instruction during compilation.

To facilitate deployment, CRT-C provides tools to convert

legacy programs to CRT-C programs. CRT-C includes an

RTOS-specific compatibility layer that transparently redirects

kernel APIs to safe interfaces. These interfaces ensure backward

compatibility with existing applications, provide sanitization

of input to the kernel, and maintain proper ownership transfer

of memory resources. The compatibility layer can be used

by the converted legacy code to safely use the legacy RTOS

system API. These tools enable developers to convert legacy

code to CRT-C code in a semi-automatic fashion. The CRT-C

compiler parses through the code to enforce compartment-based

policies in the system and generates the compartmentalized

firmware which can be run on a micro-controller, as shown in

Figure 1.

V. DESIGN

We follow the classic system design principle of separating

the mechanism from the policy. We first present the different

compartments defined by CRT-C, followed by the policies

that achieve isolation and privilege separation among different

compartments. Lastly, we describe the mechanisms to achieve

these policies.

A. Compartments

A typical RTOS consists of various compartments, such

as the kernel, middleware, driver, etc., as shown in Figure 2.

However, due to the weak isolation implemented in these

systems, the compartment boundaries are usually blurred

between those compartments. Developers frequently access

objects across different compartments as the whole firmware

has the same privilege level. As a result, a user task can

access any device in the system. Instead, CRT-C uses program

language constraints to create different compartments in the

system. We first define the different compartments in the system

created by CRT-C. CRT-C categorizes the compartments into

three categories:

33010

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

T1

T2 D1

T3

K1

K3

Fig. 2: A view of traditional RTOS: RTOS is divided into various
compartments, such as kernel (K), driver (D), threads (T), etc. However,
these compartments are weakly isolated from each other.

Kernel: We define the system software managing the system re-

sources as the kernel compartment. This includes the scheduler,

middleware, and low-level architecture-specific code.

Threads: Tasks or threads are the unit of execution in an

RTOS. For our purposes, we use the term threads for both

tasks and threads. The threads compartment consists of all the

threads in the firmware. Within the thread compartment, each

thread is contained within its compartment.

Device Drivers: The software stack responsible for managing

devices constitutes the device driver compartment, within which

every driver is kept within its compartment.

With well-defined compartments in the system, we assign

different capabilities to each type of compartment by defining

a different dialect for each compartment.

Kernel Dialect: As the kernel compartment consists of the

RTOS code, we include this compartment inside our TCB.

This is the highest privilege compartment in the system. Kernel

dialect is the closest to the normal C code, except that kernel

code cannot access IO directly. In other words, kernel code is

not allowed to create or use hard-coded pointers for MMIO

access.

Thread Dialect: In CRT-C, threads in the system have the

least privilege in the system. Code in the thread compartment

can only access objects explicitly assigned to the particular

thread. Furthermore, the thread compartment is also not allowed

to create or use hard-coded pointers.

Device Drivers Dialect: CRT-C gives the same privilege level

to device drivers as threads. The only difference is that in

this compartment, code can manipulate IO directly. Moreover,

each device driver is associated with a physical device and

can manipulate only that particular device directly. CRT-C

provides mechanisms to associate a device with a driver at

compile time. Based on this association, the driver code can

create and access pointers to the IO regions that belong to the

device associated with the driver.

B. Policies

With well-defined compartments, we design different policies

that are enforced on each compartment. Using these policies

we can instantiate the specialized dialects mentioned above. We

derive our policies from classic compartmentalization models

[57], [68] used by operating systems. These policies ensure

attributing the least privilege to each compartment in the system

and essentially provide a unique programming environment for

each compartment in the system.

Kernel Policies: As we consider the kernel a part of our TCB,

we do not enforce any restrictions on the kernel, which is free

to manage resources in any manner it wants. However, we

restrict the programming environment inside the kernel for IO

accesses. More specifically, we enforce the following policy

on the kernel compartment.

Policy 1: The kernel should not directly manipulate any

devices manually.

This ensures that only device drivers can manipulate their

respective devices and helps us establish a clear boundary

between the kernel and the device driver compartments. As the

kernel is still free to invoke any device driver API, this policy

does not affect the privilege of the kernel compartment. Code

manipulating devices directly is identified as a device driver.

Thread Policies: RTOS provides APIs to create threads, which

are specific to each application and do not go through the

same scrutiny as the kernel code. As a result, thread code is

more susceptible to introducing vulnerabilities. We enforce the

following policies on threads to ensure that they are the least

privileged compartment in the system:

Policy 2: Thread compartments should be memory-safe.

This policy is vital to achieving isolation and privilege

separation from other compartments in the system. This policy

guarantees that buffer overruns [63], [66] are not able to escape

any policies enforced at compile-time.

Policy 3: Thread compartments should only access objects

assigned to the respective compartment.

This policy guarantees that no thread can access any objects

that belong to other compartments, e.g., kernel. Furthermore,

it ensures that no thread can access any objects that belong to

any other thread in the system. Policy 2 and Policy 3 work

together to ensure that no thread can access anything in the

system that is not assigned to it explicitly.

Policy 4: The thread compartments should not directly

manipulate any devices manually.

Similar to Policy 1, this policy ensures that any thread in

the system is not allowed to access any device in the system

directly. This policy, combined with Policy 3, ensures that only

the device drivers have fine-grained control of all the devices

in the system.

Device Driver Policies: Device drivers have the same level of

privilege as threads, except that we allow them to manipulate

I/O directly. We enforce the following rules on the device

drivers.

43011

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

Kernel

Thread

1

Thread

2

Thread

3

Thread

n

Driver

1

Driver

2

Driver

3

Driver

nDevice

Drivers

Policy

Kernel

Policy

Threads

Policy

Compatibility

Layer

Fig. 3: CRT-C enforces different policies based on the compartment.
Using these policies we can compartmentalize a firmware into different
privilege levels.

Policy 5: Each device driver should be only allowed to

manipulate devices assigned to them.

This policy is a relaxed version of Policy 1 and Policy 4.

Device drivers are free to manipulate MMIO regions directly.

However, in the absence of Policy 5, any device driver can

manipulate any device in the system, thus breaking isolation.

Instead, every device should be assigned to a single device

driver owner to maintain the least privilege for the driver.

Policy 6: Device drivers should be memory-safe.

Similar to the Policy 2, this policy ensures that device drivers

are not able to break the policies at runtime because of memory

safety violations.

Figure 3 shows the overview of an embedded system with our

policies enforced. CRT-C can create three different software

privilege levels in the system, with each privilege level confined

by its specific policies. Threads are only able to access the

objects allocated to them while maintaining isolation among

different threads. The kernel compartment is the only trusted

compartment in the system without direct access to devices.

The device driver compartments are in charge of all peripheral

devices. Each device driver can only access the device it owns.

C. Mechanisms

With the six policies confining and isolating different

compartments, we describe how CRT-C fulfills these policies

leveraging static analyses and CheckedC.

Policy 1: The kernel should not directly manipulate any devices

manually. To ensure policy 1, we need to discover all of the

IO accesses done within the firmware. Embedded systems

use MMIO to access peripherals. MMIO directly maps IO

devices into the same linear address space as memory. As

embedded systems usually do not employ virtual memory,

MMIO accesses use hard-coded pointers to a specific memory

address as shown in Listing 1. We call the pointers pointing

to MMIO addresses MMIO pointers. To discover all of the

IO accesses in the firmware, we need to find all the MMIO

pointers in the system.

Listing 1: A hard-coded pointer to access MMIO.

1 *(volatile unsigned int *) 0xFE100000 = 0x0;

To distinguish MMIO pointers from normal pointers, we can

refer back to Listing 1 to find the unique features of MMIO

pointers. Firstly, we note that the MMIO pointers have the

volatile qualifier and secondly, the pointer is created from a

hard-coded literal. The volatile qualifier tells the compiler that

the pointed memory may update between accesses and ensures

that the compiler does not optimize away any operations with

this pointer. The qualifier is necessary for the correct usage of

MMIO pointers, as IO memory can be updated asynchronously

from the device. We can use this qualifier as a heuristic to

find all MMIO pointers in the firmware. However, in C/C++,

it is valid to use the volatile qualifier on any variable. Such a

pass would wrongly classify normal pointers with volatile

qualifier as MMIO pointers.

Instead, we use the second heuristic, i.e., find all pointers

that use a hard-coded base address. However, this heuristic also

faces a problem as shown in Listing 2. The pointer p is created

using a hard-coded address so it will be classified as an MMIO

pointer based on the heuristic. However, the pointer alias

is created using the pointer p and therefore will escape our

analysis. Due to this Pointer Propagation problem, an MMIO

pointer can alias with other pointers in the system.

Listing 2: An MMIO pointer without using a hard-coded address.

1 volatile unsigned int * p = 0xFE100000;

2 volatile unsigned int * alias = p;

Solution: To overcome these challenges, we design an MMIO

Discovery static analysis pass to find all MMIO pointers in

the system by walking the use-def chains for each pointer.

If a pointer is defined using a constant literal, the analysis

registers that pointer as an MMIO pointer. Observing that

MMIO pointers are rarely copied in embedded system firmware,

we restrict any copying of such pointers and reject any firmware

that copies MMIO pointers to avoid the pointer propagation

problem. With this restriction, we only go through the definition

sites of all permitted MMIO pointers to find all pointers in the

system, instead of parsing through all the pointers uses in the

code, to avoid the pointer aliasing problem.

The MMIO Discovery analysis takes in firmware code and

returns a set of MMIO addresses used by the firmware. For

Policy 1, we invoke this analysis with the kernel compartment,

resulting in the set KD, i.e., the set of all devices accessed by

the kernel compartment. To enforce Policy 1, we ensure that

the following condition holds:

KD = ∅

i.e. the kernel compartment can neither create nor access

any MMIO pointers. In other words, if some code accesses

MMIO, it is treated as a device driver.

Policy 2: Thread compartments should be memory-safe. To

enforce Policy 2, we need to identify all the threads in the

53012

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

T1

T2
K2

T3

K1

K3

Legal Edge

T1

T2
K2

T3

K1

K3

Compatibility
Layer

Illegal Edge

Safe Code

Trusted Code

Unsafe Code

Legacy CFG

CRT-C CFG

Fig. 4: Code conversion for thread compartment. T nodes are basic
blocks in the thread compartment, while K nodes are kernel code.
The code is incrementally converted to checked code.

system and ensure they are restricted to a memory-safe

programming environment. However, each RTOS has its

specific way of creating new threads. For instance, some

RTOSs provide a thread creation API that takes in the entry

point of the thread as an input argument, whereas some

RTOSs allow creation of threads statically by placing the

initialization information, including the thread entry point, in

a linker section. The RTOS parses this information at boot

time to create threads.

Solution: We design an RTOS-specific static analysis pass

that identifies different threads in a firmware based on the

thread creation APIs implemented by the RTOS. The Thread

Discovery analysis walks the use-def chain on the thread

creation API and the thread entry argument to extract all

threads present in the firmware. Some RTOSs, like Zephyr,

can create threads statically by placing thread definitions in

a separate linker section. In this case, the Thread Discovery

analysis parses the definition of these static threads to extract all

of the threads in the firmware. The Thread Discovery analysis

works on firmware level and returns TA, the set of all threads

in the system, i.e., TA =

nThreads⋃
i=1

ti where ti is an individual

thread in the system, and nThreads is the total number of

threads in the system.

Once we have identified all the threads in the system, we

enforce the compiler to compile thread code in a memory-safe

environment. More specifically, we enforce the code in TA to

be written in CheckedC’s checked dialect. To achieve this we

enforce the safety restriction on the thread entry function,

as extracted by Thread Discovery and developers have to

convert all of the called functions from the top-level function

to CheckedC code as well, since in CheckedC checked code

cannot call unchecked code.

To allow thread code to call into kernel code we provide a

Compatibility layer, which is a bridge between thread code and

kernel code providing a bounds-safe interface and checking any

parameters passed between the two compartments. These safety

restrictions propagate until the code calls into the Compatibility

layer of the RTOS. Consequently, all functions in TA are

checked. This restriction ensures that all code belonging to TA

is memory-safe as CheckedC guarantees that code written in

checked regions is free of any spatial memory-safety issues

while maintaining maximum backward compatibility. Figure 4

shows the conversion of legacy C/C++ firmware to CRT-C. The

CRT-C compiler catches all the illegal calls and restricts the

programmer to use the correct compartmentalization required

by the enforced policies.

Policy 3: Thread compartments should only access objects

assigned to the respective compartment. As mentioned before,

the implication of Policy 3 is two-fold. Firstly, no thread should

be able to access kernel objects, a.k.a, Kernel-Thread Isolation.

Secondly, no thread should be able to access objects belonging

to other threads, a.k.a, Inter-Thread Isolation.

Solution: To achieve Kernel-Thread Isolation, we find all of the

threads in the system using Thread Discovery. For each thread

ti, we use forward slicing [73] based on inter-procedural value

flow analysis [70] to find the set of objects directly accessed

by the thread. Furthermore, we use an off-the-shelf context and

field sensitive Points-to Analysis [36], [37], [39] to find the

set of objects accessed indirectly by each thread. We combine

the objects obtained from these analyses to obtain the set of

objects associated with the thread tOi
. We perform a union of

objects accessed by all the threads to find TO, i.e., the set of

all objects in the thread compartment.

TO =

nTotalThreads⋃

i=1

tOi

Using a similar analysis, we find KO, the set of objects accessed

by the kernel. For Kernel-Thread isolation, we ensure the

following condition holds:

TO ∩KO = ∅

i.e., we take an intersection to ensure that threads do not access

any kernel objects. To achieve Inter-Thread Isolation, we have

to guarantee that all of the threads exclusively access their

own resources. Hence, we ensure that the following condition

holds:

∀i, j ∈ n|i ̸= j, tOi
∩ tOj

= ∅

i.e., no thread in the system can access objects assigned to

other threads.

Policy 4: Thread compartment should not directly manipulate

any devices manually. We achieve Policy 4 using the same

analysis as Policy 3. Using the MMIO Discovery analysis on

the thread compartment obtained by the Thread Discovery

analysis, we can get TD, the set of all devices accessed by all

the thread compartments. To guarantee Policy 4, we ensure

that the following condition holds:

TD = ∅

i.e., the thread compartment is not able to create or access

MMIO pointers.

63013

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

Policy 5: Each device driver should be only allowed to manip-

ulate devices assigned to them. To ensure policy 5, we need to

identify all device drivers in the system and ensure that these

device drivers are only able to access a certain device. In other

words, we need to 1) find all the MMIO regions are accessed by

a device driver, and 2) associate MMIO regions with the device

configuration of the platform. For 1), MMIO Discovery can be

used to find the MMIO pointers in the system. However, it does

not tell anything about the MMIO address the MMIO pointer

is pointing to. For 2), there is no easy way to associate an

MMIO region with a device during compilation, as embedded

system development platforms have different memory and

device configuration. This configuration is decided by the SoC

vendor during design and the vendor supplies this information

in the datasheet or the user manual for the particular platform.

Solution: To find MMIO regions accessed by the firmware we

design an MMIO Points-To Analysis. As shown in Listing 1, the

address pointed by the pointer is hard-coded. Hence, we can

find the address pointed by the MMIO pointer. This analysis

goes through the MMIO pointer definitions. Using constant

propagation [72], we can find the base addresses of all MMIO

pointers except where the base address is offset by a variable.

Listing 3: An expanded macro to access MMIO with a variable offset
in an embedded firmware.

1 *(volatile uint *) (0xFE10 + offset) = 0x0;

Listing 3 shows an example of such code. Here we can

statically determine the base address 0xFE100000, however,

it is generally an intractable problem to determine the value

of offset at compile time. Furthermore, the offset variable

could be local or could be passed in as a function argument.

Listing 4: Constraining the offset variable to contain MMIO access
within a fixed range.

1 if (offset < 0x10) {

2 *(volatile uint *) (0xFE10 + offset) = 0x0;

3 }

While determining the offset at compile time is generally

intractable, in some cases, it is possible to find the value of the

offset variable. Listing 4 shows one such pattern. The value

of the variable offset is restricted by the check at line 1.

Hence, offset’s value can range from 0 to 0x10 at line 3.

Although we cannot tell the exact value of the MMIO access at

line 3, we can conservatively determine that the MMIO access

is in the range of [0xFE10,0xFE20]. Hence, we enforce

the following restriction on firmwares:

"Policy 5a:All MMIO Pointer base addresses should be

restricted within a fixed range at compile-time".

To find the range of MMIO accesses, we design a conser-

vative inter-procedural Value-Range Analysis (VRA) [1], [43],

that gives the range of a particular variable at compile-time as

shown in Algorithm 1. First, we backtrack from the MMIO

access instruction to the function entry point to find all the

paths that result in the MMIO access. While walking the edge

between basic blocks of a path, we collect the constraints

required for reaching the successor. Using this information, we

Algorithm 1 Value Range Analysis

Result: range
Function getValueRange(value, known, instruction, ic): range

ic← ic+ 1
if value ∈ known then

range = known[value]
else if ic > ICMAX then

range = known[value]
end

else if type(op) == Argument then

foreach callsite ∈ Callsites(func) do
known← getV alueRange(value, callsite, known, ic)

end

end

else

foreach path ∈ func do

if instruction ∈ path then
/*Collect constraints that must

satisfy to reach the instruction*/

path.constraints← collect(path, instruction)
/*Get range of values based on the

extracted constraints*/

known← solve(instruction, path.constraints)
/*Propagate the newly found range

information to known ranges*/

foreach range ∈ Ranges do

foreach path.constraints do
propagate(range, known)

end

end

end

foreach operand ∈ Instruction do
known← getV alueRange(op, known, instruction, ic)

end

range← solve(instruction, op, known)
end

return

can find possible ranges for the target value and instruction.

This process is done iteratively until either we have ranges for

all the operands for the target instruction, or the iteration depth

exceeds its budget. If we run into a function argument, we go

through all call sites and construct a range to see if all call

sites are invoked using a concrete range. Based on the target

instruction, we calculate the final range. If the VRA can give

a fixed range of the offset variable, we register all the possible

MMIO regions that can be accessed with the returned range,

with the compartment. Otherwise, CRT-C stops the compilation

and points out the offending instruction to developers.

MMIO Region-Device Association: In order to associate the

MMIO regions to actual devices CRT-C utilizes the ARM

CMSIS System View Description (SVD) [21], which describes

information about the platform, such as the base address,

interrupt line assignments, and configuration for each device

on a platform. We parse the SVD of the target platform to

associate memory regions with different devices.

Driver Association: After MMIO Region-Device Association,

we know the set of devices accessed by each compartment. In

the case of two translation units accessing the same device,

we need to associate a device with one of them. To this end,

we design heuristic-based associations, including a frequency-

based association or pattern matching. For frequency-based

association, we regard the translation unit with the highest

73014

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

Listing 5: Global variable sharing using attribute based tagging.

1 OWNER(taskA, taskB) QueueHandle_t x;

number of accesses as the owner and emit errors regarding the

rest of the accesses, while pattern matching matches the device

name with the directory hierarchy of the translation unit to

establish an association.

Using Driver Association, we can get di, the set of devices

accessed by the device driver ddi and nDrivers, the total

number of drivers in the firmware. We ensure the following

condition holds to enforce Policy 5 and 5a:

∀i, j ∈ nDrivers|i ̸= j, di
⋂

dj = ∅

i.e. for all drivers ddi in the system, no more than one driver

can manipulate the same device.

Policy 6: Device drivers should be memory-safe. To enforce

this policy, we need to identify all drivers in the system. Fortu-

nately, with MMIO Points-To Analysis and Device Association

Analysis we have already identified all the drivers in the system,

the compartment D:

D =

nDrivers⋃

i=1

ddi

Similarly to Policy 2, we enforce that all device drivers must

be written in a checked region.

D. Legacy systems adaption:

CRT-C enforces a strict set of rules on firmwares. However,

in some cases, legacy firmwares may not be able to adhere

to these rules. Furthermore, there exist some edge cases that

cannot be captured by the mechanisms discussed. Therefore,

to secure legacy systems, we provide the following extensions

to CRT-C.

Object Sharing. Policy 3 strictly prohibits any sharing of

objects. However, in real-world systems threads might need

to share objects among themselves. Furthermore, the kernel

might need to share objects with userspace threads. To this end,

CRT-C provides support for both explicitly sharing objects

among threads and between kernel and thread.

Kernel-Thread Sharing: CRT-C provides a new type qualifier

"userval". Kernel developers can annotate objects that are

shared with user threads and device drivers to explicitly allow

object sharing.

Inter-Thread Sharing: CRT-C enables Inter-Thread object

sharing using two mechanisms: 1) Attribute-based sharing

and 2) Q-Accessors. For 1), CRT-C provides "OWNER"

attribute to annotate different owners. The attribute takes a

comma-separated string of threads that can access the object.

Developers can use the "OWNER" attribute to explicitly assign

objects to threads. Listing 5 shows the usage of the attribute.

The variable x is shared between TaskA and TaskB. Q-

Accessors are compile-time generated artifacts that allow access

to a shared object and are made the owner of the object,

allowing CRT-C to prove the condition required for Policy

3. Q-Accessors can implement different sharing policies and

by-default grant access to all threads in the system.

These sharing mechanisms ensure that all of the object

sharing among compartments is explicit and any compartment

cannot access any resource in the system that is not explicitly

assigned to them.

Dynamic Object Tracking. CRT-C uses a conservative points-

to analysis to track indirect accesses to objects at compile time.

However, this analysis is not sound in general. For instance,

dynamically allocated objects may escape this analysis as they

are not created at compile time. To cater to this limitation,

CRT-C adds runtime checks in the compatibility layer for

ownership tracking. More specifically, CRT-C places all the

objects in a separate section for each identified compartment,

such as kernel, threads, etc. The compatibility layer checks all

references passed to a compartment. If a resource is passed

across a compartment, the compatibility layer throws a runtime

error. Furthermore, as restricted compartments cannot create

new objects within a checked scope, they use the compatibility

layer to create new objects. The compatibility layer keeps track

of each dynamically allocated object using an ownership map

to ensure isolation among different compartments. As Policy

3 requires that any sharing between two threads should be

explicit, the compatibility layer checks the resources passed

and throws a runtime error if a resource is shared implicitly.

We evaluate the soundness of these checks in Section VII.

External Devices. The MMIO discovery enables us to find

all the devices interfaced using MMIO. However, embedded

systems also use different external buses, such as SPI, I2C, etc.

Code accessing a device behind an external bus can escape

the MMIO discovery analysis, as the devices behind a bus

can be accessed without any MMIO access using the bus

controller driver. To this end, we design a key-based ownership

model to associate devices behind the bus with a device driver.

External device drivers have to ask for a device key from the

bus controller driver before accessing a device during runtime,

using allocate_dev_bus API. If the queried device is not

owned by any device driver, the bus controller generates a

fresh key for the device and returns the key to the external

device driver. For future interactions with the external device,

the external device drivers must provide the bus controller

with the device key to gain access to the device. CRT-C

uses allocate_dev_bus API to statically obtain users for

devices behind an external bus, differentiating such device

drivers from the rest of the RTOS.

Explicit Driver Association. CRT-C uses some heuristics to

associate devices with different drivers in the system. If the

association does not result in the desired association, we also

enable users to explicitly associate devices with drivers. We

extend SVD nodes to add a new custom attribute "driver"

to the node which can explicitly associate a device with a

device driver as shown in Listing 1. While parsing the SVD,

if we find explicit device ownership using the "driver"

attribute, we assign the ownership of the device without any

83015

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

Listing 1 SVD peripheral node for a peripheral.

<peripheral>

<name> UART0 </name>

<driver> uart.c </driver> ...

clang

(ThinLTO)
ld.lld LTO Pass

*.o

Code

bin.o

Error

Report

Fig. 5: Compilation and Analysis pipeline for CRT-C.

heuristics.

VI. IMPLEMENTATION

We implement CRT-C by extending the LLVM/clang [58]

infrastructure. Figure 5 shows the implementation pipeline. We

configure clang to emit code with ThinLTO [23] metadata,

which ensures that the input sections are placed properly in the

output binary. With the ThinLTO metadata, we link the files into

the final firmware bitcode. We ensure that the firmware follows

all the policies by implementing a link-time optimization pass.

If the firmware passes the analyses, CRT-C emits the final

binary object for the target, which can be run on the physical

hardware. Otherwise, the compiler generates error messages

regarding the offending instruction in the firmware.

clang. We use CheckedC clang [16] as the initial point for

our implementation. We extend clang to understand the type

information added by CRT-C, which is written to the bitcode

file and can be processed using the LLVM LTO pass later.

We extend CheckedC to transmit information about checked

regions to the LLVM IR bitcode helping us to enforce the

policies in the LTO pass.

LTO Pass. We modify the entire compilation pipeline to convey

the type and metadata information from source code to bitcode

and implement the major analyses in an LTO pass. This pass is

responsible for Inter-Thread isolation, Kernel-Thread isolation,

and device driver-related isolation. We utilize Static Value Flow

(SVF) [70] for the points-to analysis.

Compatibility Layer. The compatibility layer consists of

two parts: 1) implementation of bounds-safe interfaces for

kernel APIs, and 2) a wrapper header [24] that redirects the

legacy functions to call the bounds-safe interface using macro

redirection. Using the compatibility layer and the 3C tool

[3] we can port existing applications to CRT-C code in a

semi-automatic manner. Listing 6 shows the "diff" between

CRT-C and the normal C version of a FreeRTOS task. The

only difference is in line 1, where the pointer type is modified.

All the kernel APIs are called with the same prototype and

transparently redirected to the bounds-safe version of the API

using macro redirection. Table II shows the SLOC for CRT-C.

Component SLOC

LTO Pass 2.3 K
Compatibility Layer (FreeRTOS) 382
Compatibility Layer (Zephyr) 182

TABLE II: SLOC for different components of CRT-C. The compati-
bility layer is specific to the RTOS.

Listing 6: Diff between safe and unsafe version of QueueSendTask.

1 >> static void QueueSendTask(ptr<void> pv)

1 << static void QueueSendTask(void * pv)

VII. EVALUATION

We evaluate CRT-C on two RTOSs: FreeRTOS [30] and

Zephyr [25] using the STM32F407G-DISCOVERY evaluation

board. We first evaluate the security guarantees of CRT-C,

followed by case studies of FreeRTOS and Zephyr. We also

demonstrate the memory and performance overhead incurred

by CRT-C. Lastly, we provide implementation overhead to

gauge the effort to adapt CRT-C with legacy code.

A. Security Evaluation

We evaluate the security guarantees provided by CRT-C

by examining various common vulnerabilities in embedded

systems with the help of CRT-C.

Buffer Overflow: Memory-unsafe programming languages,

like C/C++, allow direct manipulation of memory buffers

using pointers. If a buffer is indexed without proper checking,

an attacker can control the unchecked index to manipulate

arbitrary program memory resulting in attacks such as malicious

code execution. CRT-C uses CheckedC’s bounds checking for

avoiding buffer overflows as CRT-C enforces that all restricted

compartment (i.e., thread and driver) code should be written

in a checked scope. If a buffer overflow can be detected at

compile time, the compiler throws a compilation error. For

instance, consider the following code:

1 char buf checked[17]; buf[17] =0;

As the size of the buffer is 17 bytes, the access to buf byte

18 is outside the bounds of the buffer. When compiled, the

compiler throws the following compile-time error:

1 error: out-of-bounds memory access

2 buf[17] =0;

If the index cannot be determined at compile-time, e.g.,

1 buf[i] =0;

CRT-C compiles the code and instruments the access with

runtime checks. A runtime error is thrown if the buffer is

accessed outside the bounds.

Privilege Escalation: An attacker can exploit vulnerabilities in

the system to manipulate privileged resources used by the

kernel to conduct privilege escalation attacks. As CRT-C

considers the kernel compartment part of its TCB, we define

privilege escalation as accessing privileged resources from

the thread and the driver compartment. More specifically,

93016

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

attackers try to access different resources across restricted

compartments (thread and drivers). For instance, we pass

a kernel resource, pxCurrentTCB, to a user thread. The

FreeRTOS kernel uses this variable to keep track of the running

thread. A malicious thread can modify the pxCurrentTCB

and call vTaskDelay to suspend the rest of the threads in

the system and unfairly monopolize CPU time. Fortunately,

CRT-C disallows access to this variable using type safety and

static analyses. More specifically, the compiler would reject

unsafe type accessing the pxCurrentTCB variable, resulting

in the following error:

1 error: global variable used in a checked

2 scope must be safe.

Even if the compatibility layer exposes the privileged

resource as a safe variable or the kernel chooses to use a

safe type for privileged resources, CRT-C compiler detects

that different compartments are sharing resources implicitly

and terminates the compilation by throwing the following error:

1 error:main accesses kernel var:x/tasks.c:343

The error points to the definition of the pxCurrentTCB

variable. Lastly, if the kernel tries to pass its privileged resource

as a thread argument, the compatibility layer checks throw a

runtime error and halt execution. The compatibility layer and

compile-time checks ensure that a compartment is not able to

access any resource it does not own.

Race Condition: If the firmware accesses a global resource

without synchronization primitives, an attacker can achieve

malicious effects by exploiting race conditions vulnerabilities,

such as Time-Of-Check-To-Time-Of-Use (TOCTTOU). CRT-C

currently does not enforce any protection against race condition

attacks. However, the Q-Accessor mechanism can implicitly

be used to synchronize access to shared objects.

Format String: Format string attack uses a malicious format

specifier string to access arbitrary memory locations during

the interpretation of the format string specifiers to access

and even write to arbitrary memory locations. To this end,

CRT-C does not allow the usage of format specifier functions.

More specifically, CRT-C does not allow the usage of variadic

function, i.e. function that takes in a variable number of

arguments. For instance:

1 printf("Test");

results in:

1 error: cannot use a variable arguments

2 function.

To overcome this limitation, we provide substitute functions

in the compatibility layer to variadic functions. For instance,

we provide printChar, printInt, etc. to provide similar

functionality as printf.

Malformed Pointer Access: As mentioned earlier, memory-

unsafe languages allow direct manipulation of memory using

pointers. As the correct usage of the pointers is left to the

programmer, a pointer could be uninitialized, null, or dangling.

A malformed pointer could point to memory belonging to some

other compartment and can result in arbitrary memory access.

To this end, CRT-C mandates an initializer for the constrained

compartment pointers. For instance, compiling the listed code:

1 ptr<int> tmp;

results in the following error:

1 error: variable 'tmp' must have initializer.

If we initialize the variable with a NULL initializer, the

firmware passes the compile-time check and CRT-C instru-

ments the code with a null check for runtime protection.

B. Case Studies:

FreeRTOS. FreeRTOS implements various data structures

to help application development, such as queues [28] and

stream buffers [29]. To allocate such a buffer, a user

can request the size of the particular data structure. Listing 7

shows the API used for creating a stream buffer. The

parameter size1 is used to specify the size of the buffer.

However, as disclosed in CVE-2021-31571 [10] and CVE-

2021-31572 [11], if the size requested is large, it can wrap

around before the allocation request as the API increases the

allocation request to maintain the buffer metadata, as shown in

Listing 8. Hence, an integer overflow will result in allocated

memory less than the destination type. The usage of such a

buffer can result in unexpected behavior such as a crash or

arbitrary code execution.

Listing 7: Stream Buffer Creation API implemented in FreeRTOS.

1 StreamBufferHandle_t

2 xStreamBufferCreate(size_t size,

3 size_t triggerlvl);

Listing 8: Allocation of buffer metadata is allocated with the buffer.

1 allocated = (uint8_t *) pvPortMalloc

2 (size + sizeof(StreamBuffer_t));

Using CRT-C, we move the stream buffer utility into

the thread compartment forcing it to use the compatibility

layer, which treats the arguments and return values as unsafe

values and does the appropriate checking including NULL and

buffer overrun checking. Once the buffer is allocated, it carries

the bounds information with it, eliminating the two CVEs. A

runtime assertion will be triggered if during a memory copy

the destination and source sizes do not match.

Zephyr. Zephyr has a shell subsystem that implements a

command-line interface to take inputs from the user. However,

as disclosed in CVE-2017-14202 [9], the shell implementation

does not protect against buffer overruns. It uses a history buffer

to save past commands. SHELL_HISTORY_DEFINE is used

to define the history buffer as shown in Listing 9. It takes in the

name of the shell, the size of the commands (block_size)

and the number of past commands saved (block_count)

1Variable renamed from xBufferSizeBytes for brevity.

103017

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

as shown in Listing 9. In the Zephyr shell, the configuration

parameter, CONFIG_SHELL_CMD_BUFF_SIZE is used to

configure block_size and is used in the code for check-

ing input size sanitization as well. However, in the buggy

version, instead of CONFIG_SHELL_CMD_BUFF_SIZE, a

hard-coded value of 128 is used to allocate the buffer as shown

in Listing 10. As the CONFIG_SHELL_CMD_BUFF_SIZE

is configurable, in case CONFIG_SHELL_CMD_BUFF_SIZE

is set greater than 128, saving the current command to the

history buffer causes a buffer overflow, allowing a serial or

telnet-connected user to cause a crash, possibly with arbitrary

code execution.

Listing 9: Macro used to define the shell history buffer in the Zephyr
Shell.

1 #define SHELL_HISTORY_DEFINE(_name,

2 block_size, block_count)

Listing 10: Invocation of SHELL_HISTORY_DEFINE in the buggy
version of the Zephyr shell.

1 SHELL_HISTORY_DEFINE(_name, 128, 8)

Using CRT-C, we move the shell from the kernel to the thread

component. Since this compartmentalized shell is subjected

to the thread policies, all index-able buffers have bounds

information. Furthermore, we explicitly check the results in

the compatibility layer for any allocations. Lastly, the memcpy

used in checked regions is bounds-aware and triggers a runtime

exception if the copy operation results in a buffer overflow

which avoids the root cause of CVE-2017-14202 by default.

C. Overhead Evaluation

We evaluate different types of overhead incurred by CRT-C

in this section. Our evaluation dataset is categorized into math,

device, and Inter-Process Communication (IPC) applications.

We prefix the application name with the host RTOS, i.e., F

for FreeRTOS and Z for Zephyr. Math applications include

Compression (Z-COMP) and Integer (F-INT). Device appli-

cations include Console (Z-CNSL), Echo (Z-ECHO), Thread

Flash (Z-THFL), FatFS-uSD (F-FAT), and Co-routine Flash

(F-COFL). Lastly, IPC applications include Stream Buffer

(F-SBUF), Queue Set (F-QSET), and Recursive Mutex (F-

RECM). Further details about our dataset are given in Section B.

We show the memory and performance overhead incurred by

CRT-C on the evaluation dataset, followed by implementation

overhead to evaluate the porting effort for existing applications.

Memory Overhead. We evaluate the memory overhead

incurred by analyzing different sections in a binary and the

number of dynamic objects utilized by the firmware. We

establish the original C/C++ code as the baseline against

CRT-C code. We present the overhead seen in code memory

(Text), initialized data memory (Data), and uninitialized data

memory (BSS).

Figure 6 shows the memory overhead for different appli-

cations. CRT-C outperforms existing systems (as shown in

Table I) in terms of memory overhead by incurring only an

average overhead of 1.75% for all applications. CRT-C imposes

0
1
2
3
4
5
6
7

Z-C
O
M

P

F-IN
T

Z-C
N
SL

Z-E
C
H
O

Z-T
H
FL

F-F
A
T

F-C
O

FL

F-S
B
U
F

F-Q
SET

F-R
EC

M

BSS Data Text

Math Device IPC

Fig. 6: Memory overhead incurred by using CRT-C. Y-axis shows
the percentage increase, while X-axis shows the application.

0

2

4

6

8

10

12

Z-C
O
M

P

F-IN
T

Z-C
N
SL

Z-E
C
H
O

Z-T
H
FL

F-F
A
T

F-C
O

FL

F-S
B
U
F

F-Q
SET

F-R
EC

M

Math Device IPC

Fig. 7: Number of dynamic objects used by each application. Y-axis
shows the number of objects, while X-axis shows the application.

minimum overhead by avoiding the usage of hardware memory

protection, such as MPU, resulting in zero fragmentation

overhead. The main overhead is seen in the text section and

BSS section caused by the runtime instrumentation (bounds

checking) and the ownership tracking data structures in the

compatibility layer. The modified external bus controller drivers

also incur overhead in the BSS section to keep track of

external device ownership. For math applications, compression

demo incurs the highest overhead of 5.81%. For device

applications, console incurs the highest overhead of 4.5%.

For IPC applications, both Recursive Mutex and Stream Buffer

incur an overhead of 1.1%.

Figure 7 shows the number of dynamic objects used by each

application. For each dynamic object, we create a wrapper

object that is passed to the calling function. Therefore, the

wrapper object is the overhead incurred for dynamic objects.

On ARMv7-M, the size of the wrapper object is 12 bytes.

Math applications do not use any dynamic objects. For Device

applications, the FatFS-uSD and Coroutine Flash applications

utilize dynamic objects. IPC applications make heavy use

of dynamic objects with the Queue Set application using 11

dynamic objects, resulting in 132 bytes overhead. Note that,

Zephyr allows the static creation of objects, such as threads,

and most applications default to using this mechanism. Due

to this reason, zephyr applications show zero dynamic objects

overhead.

113018

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

0
10
20
30
40
50
60
70
80

Z
-
C
O
M
P

F
-I
N
T

Z
-
C
N
S
L

Z
-
E
C
H
O

Z
-
T
H
F
L

F
-F
A
T

F
-C
O
F
L

F
-S
B
U
F

F
-Q

S
E
T

F
-R
E
C
M

Math Device IPC

(a) Number of Compatibility Layer
calls.

0
50

100
150
200
250
300
350
400

Z
-
C
O
M
P

F
-I
N
T

Z
-
C
N
S
L

Z
-
E
C
H
O

Z
-
T
H
F
L

F
-F
A
T

F
-C
O
F
L

F
-S
B
U
F

F
-Q

S
E
T

F
-R
E
C
M

Math Device IPC

(b) Number of runtime checks.

Fig. 8: Performance overhead sources for evaluated application.

0

2

4

6

8

10

12

Z-C
O
M

P

F-IN
T

Z-C
N
SL

Z-E
C
H
O

Z-T
H
FL

F-F
A
T

F-C
O

FL

F-S
B
U
F

F-Q
SET

F-R
EC

M

Object Tracking

Instrumentation

Math Device IPC

Fig. 9: Execution overhead incurred by using CRT-C. Y-axis shows
the percentage increase, while X-axis shows the application.

Performance Overhead. We evaluate the performance over-

head incurred by CRT-C by comparing the time taken to

establish the C/C++ native code as the baseline against CRT-C

code for different applications. For both Zephyr and FreeRTOS,

we used ARM Systick [22] timer to benchmark the execution

times. For Zephyr, existing timing functions [18] were used,

whereas, for FreeRTOS, we implemented our benchmarking

framework that works similarly to Zephyr timing functions.

CRT-C’s performance overhead is mainly incurred by the

runtime checks instrumented by CRT-C, the checking in the

compatibility layer for input sanitization and object tracking.

To this end, we statically count the number of calls to the

compatibility layer and the number of runtime checks added

by CRT-C, as shown in Figure 8. FatFS-uSD had the largest

amount of instrumentation, i.e., 134 checks, as it extensively

uses pointers. IPC applications issue the highest number of

compatibility layer calls, with Queue Set making compatibility

layer calls.

We break down the performance overhead into object

tracking and instrumentation overhead. The object tracking

overhead is the time spent by CRT-C for tracking ownership of

dynamically created objects, whereas instrumentation overhead

stems from CRT-C bounds checking and calls to the compati-

bility layer. Figure 9 shows the runtime overhead obtained

using the benchmarking framework. The IPC applications

incur the largest runtime overhead, as they extensively use

0

50

100

Z-C
O
M

P

F-IN
T

Z-C
N
SL

Z-E
C
H
O

Z-T
H
FL

F-F
A
T

F-C
O

FL

F-S
B
U
F

F-Q
SET

F-R
EC

M

Runtime Ownership Errors
RTOS Porting Errors
Compatiblity Errors
Pointer Errors

Math Device IPC

Fig. 10: Compilation resolutions. Y-axis shows the number of
compilation resolutions, while X-axis shows the application.

the compatibility layer and dynamic objects. Among the IPC

applications, the Queue Set application incurs the highest

overhead, where 51% of the overhead is contributed from

object tracking, as the Queue Set application uses the highest

number of dynamic objects as shown in Figure 7. Device

applications show a moderate overhead. FatFS-uSD incurs

the highest overhead in this set. While the FatFS-uSD does

not extensively use dynamic objects, Figure 8 shows that this

application has the highest number of runtime checks. For math

applications, we see a low overhead. Based on our performance

overhead evaluation, to achieve a low overhead, applications

should use static objects and minimize the usage of pointers

and the compatibility layer.

Implementation Overhead. CRT-C provides a semi-automatic

mechanism to compartmentalize legacy embedded systems.

Most of the work is automated using static analyses. If user

intervention is required, CRT-C throws an error and points to

the violating instructions to help users adapt existing firmware

to CRT-C. These errors can be categorized into three main

categories: RTOS Porting Errors, Compatibility Errors, and

Pointer Errors. RTOS porting errors are raised during an initial

port of an RTOS, such as unsafe drivers, illegal usage of MMIO

pointers, etc. Compatibility errors arise when applications try

to directly call kernel APIs. Lastly, pointer errors raise when

safe code tries to use raw/unsafe pointers. Compatibility and

pointer errors are dependent on applications, whereas RTOS

porting errors depend on the RTOS only.

Figure 10 quantitively estimates the implementation overhead

for each application. Queue Set application raised the highest

number of errors, as it made several calls to the kernel.

Furthermore, porting Zephyr raised more errors compared to

FreeRTOS. Lastly, we did not see any runtime ownership errors

for the evaluated applications. Based on our experience, we

conjecture that CRT-C users can port an existing RTOS and

application to CRT-C in 1-3 man-days. Furthermore, with each

application, this time should go down, as newer applications

may use services from already ported applications. We describe

case studies about the detailed porting process in Section C.

123019

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

VIII. DISCUSSION

Implications of CRT-C Assumptions: As mentioned in

Section III, CRT-C makes some assumptions about the input

firmware. Without those assumptions, an attacker might be

able to bypass CRT-C guarantees. For instance, an undefined

behavior such as integer overflow can result in unsoundness of

the CRT-C analyses. On the other hand, the hardware-enforced

compartmentalization systems, listed in Table I, will most likely

result in a runtime protection error 2. Fortunately, each attack

vector can be mitigated using existing defenses. The defenses

to each of our assumptions are orthogonal to this work. For

instance, undefined behavior sanitizer (UBSAN) can be used to

find integer/floating point overflows in the firmware. Similarly,

existing tools [53] can be used to find data races in firmwares.

CRT-C adaption: We design CRT-C with adaption to legacy

code in mind. As shown in Section VII, CRT-C adaption is

categorized into RTOS-specific and application-specific porting.

The RTOS-specific porting includes porting the device drivers.

Depending on the application, CRT-C users can incrementally

port the device drivers for an RTOS. Similarly, application-

specific porting requires, 1) converting the code to the safe

dialect, and 2) providing safe interfaces for the RTOS. For 1)

the 3C tool [3] can assist in the conversion of unsafe code to

safe code. For 2), users can port RTOS interfaces incrementally,

depending on the application. During our evaluation, we noticed

a significant amount of boilerplate code for input arguments

sanitization in the safe interface, which can be generated

automatically.

Minimizing the System TCB: As CRT-C considers the kernel

inside the TCB, the monolithic nature of existing RTOSs can

bloat the code inside the TCB. The situation can be mitigated

using a microkernel design for RTOSs. However, commodity

RTOS are often monolithic in design due to the high cost of

privilege separation incurred by using compartmentalization

at the micro-kernel level. For CRT-C, we move drivers and

threads out of the TCB, essentially reflecting the microkernel

design for RTOS.

Temporal Memory Safety: CRT-C ensures spatial memory

safety in the system but does not protect again temporal memory

safety. To this end, we recommend using no-free dynamic

allocators, i.e., once a memory region is allocated it cannot

be released or freed. Especially for safety certification and

automotive coding standards, this is the norm, as dynamic

memory allocation is the antithesis of determinism.

Direct Memory Access (DMA): DMA directly accesses

memory without CPU intervention. While DMA is programmed

using MMIO registers, the memory transfer carried out by

the DMA controller is external to the CPU core and escapes

the CPU’s memory protection mechanisms. While CRT-C

can explicitly control the ownership of the DMA controller,

the DMA driver can access any memory belonging to any

compartment in the system using DMA. To this end, the DMA

driver can take advantage of the ownership tracking from the

2Attackers might be able to carry out race conditions vulnerabilities, such
as Time-Of-Check-To-Time-Of-Use (TOCTTOU), without a memory fault.

compatibility layer to ensure that the DMA controller does

not transfer memory across compartments. Furthermore, DMA

controllers can be exploited by malicious peripherals to initiate

memory access across different compartments. To mitigate

attacks from malicious peripherals, an IOMMU is needed.

Extending Compartments: Currently CRT-C only allows pre-

defined compartments in the system. We have modeled the

existing RTOS compartments with the least privilege as the

security goal for CRT-C. While these compartments should be

enough to model all required compartments in the system, we

can bring more flexibility to our design by dynamically adding

a new type of compartment and programming the allowed

capabilities for it. We plan to explore this direction in future

work.

IX. RELATED WORK

Embdded Security Frameworks: General purposes systems

employ various techniques, such as architecture-based counter-

measures [48], safe languages [46], [62], static [44], [74] and

dynamic code checkers [27], [32], [45], [52], [75], sandboxing

[40], [41], etc., to reduce the attack surface of the system. How-

ever, embedded systems present a different set of challenges,

such as a lack of a memory management unit (MMU), fewer

execution modes, and a low-power microcontroller. To mitigate

this situation, ACES [34] compartmentalizes an embedded

system using an LLVM pass based on user specification.

EPOXY [35] identifies privilege operations in firmware and

only runs those operations in the privilege mode. M2MON [49]

creates a reference monitor for embedded systems to control

access to IO memory at runtime. Wang et. al, [71] uses Minix

to provide privilege separation with the help of TPM [54] to

verify external agents. Compared to CRT-C, these solutions

are runtime solutions and incur a large overhead, as shown in

Table I.

Language-based Systems: Language-based isolation has been

used in past to secure different systems. Singularity OS [42]

uses language-based protection instead of traditional hardware

security features to create processes in a flat address space.

Every process goes through static analysis before it can be run

with Singularity OS. Tock OS [59] implements an RTOS using

rust [55]. In userspace, only safe rust is allowed. SafeTCL [60]

creates a language-based restriction on TCL scripts. They use

multiple interpreters based on the capabilities attributed to a

script.

Memory Safety: There has been existing work to mitigate

the memory safety issues in C. Cyclone [46] is a safe

dialect for C that adds fat pointers and never-null pointers

in the system. CCured [62] provides a whole type system

for pointers, including safe pointers, sequence pointers, and

dynamic pointers. Each pointer can have different kinds of

operations based on the pointer type. CCured uses garbage

collection for temporal memory safety. RefinedC [67] uses

type refinements that can impose restrictions on the type.

While existing work solves the problem of memory safety

in C/C++, they do not guarantee privilege separation in the

system. CRT-C builds upon existing memory-safe language

133020

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

techniques while providing whole-system compartmentalization

by adding awareness about privilege in the language.

X. CONCLUSION

In this paper, we present CRT-C, a low-cost compile-

time compartmentalization mechanism for embedded systems

to achieve privilege separation without hardware memory

protection using specialized programming language dialects.

We evaluate CRT-C on two real-world RTOSs, FreeRTOS

and Zephyr, and show that CRT-C incurs an average of

2.63% runtime overhead and 1.75% average memory overhead

which makes CRT-C a practical solution to secure real-world

embedded systems firmware.

Acknowledgments

We thank the anonymous reviewers for their valuable

comments. This work was supported in part by ONR under

Grant N00014-1-21-2328. This work is also based on research

sponsored by NSF under Grant 1801601. Any opinions,

findings, and conclusions in this paper are those of the authors

and do not necessarily reflect the views of the ONR or

NSF. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the U.S.

Government.

REFERENCES

[1] Andrewmacleod/ranger - gcc wiki. https://gcc.gnu.org/wiki/
AndrewMacLeod/Ranger. (Accessed on 10/14/2022).

[2] Balanced red/black tree Ð zephyr project documentation. https://docs.
zephyrproject.org/3.0.0/reference/data_structures/rbtree.html. (Accessed
on 09/28/2022).

[3] . checkedc-clang/readme.md at master · microsoft/checkedc-
clang. https://github.com/microsoft/checkedc-clang/blob/master/clang/
tools/3c/README.md. (Accessed on 03/21/2022).

[4] Cmsis ± arm developer. https://developer.arm.com/tools-and-software/
embedded/cmsis. (Accessed on 09/28/2022).

[5] . Cve - cve-2002-2041. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2002-2041. (Accessed on 10/09/2021).

[6] . Cve - cve-2002-2120. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2002-2120. (Accessed on 10/09/2021).

[7] . Cve - cve-2006-0621. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2006-0621. (Accessed on 10/09/2021).

[8] . Cve - cve-2013-2688. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-2688. (Accessed on 10/09/2021).

[9] . Cve - cve-2017-14202. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-14202. (Accessed on 10/08/2021).

[10] . Cve - cve-2021-31571. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-31571. (Accessed on 10/12/2021).

[11] . Cve - cve-2021-31572. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-31572. (Accessed on 10/12/2021).

[12] Devicetree. https://www.devicetree.org/. (Accessed on 09/28/2022).
[13] Freertos co-routines. https://www.freertos.org/croutine.html. (Accessed

on 10/17/2022).
[14] . Freertos real time kernel (rtos) / bugs / #174 freertos+io circular

buffer overflow. https://sourceforge.net/p/freertos/bugs/174/. (Accessed
on 10/08/2021).

[15] Github - stmicroelectronics/stm32cubef4: Stm32cube mcu full package
for the stm32f4 series - (hal + ll drivers, cmsis core, cmsis device, mw
libraries plus a set of projects running on all boards provided by st (nucleo,
evaluation and discovery kits)). https://github.com/STMicroelectronics/
STM32CubeF4. (Accessed on 10/14/2022).

[16] . github.com. https://github.com/microsoft/checkedc-clang. (Accessed
on 09/30/2021).

[17] . Home. https://nuttx.apache.org/. (Accessed on 03/19/2022).

[18] Kernel timing Ð zephyr project documentation. https://docs.
zephyrproject.org/3.1.0/kernel/services/timing/clocks.html#. (Accessed
on 10/17/2022).

[19] . Project zero: Over the air - vol. 2, pt. 1: Exploiting the wi-fi
stack on apple devices. https://googleprojectzero.blogspot.com/2017/
09/over-air-vol-2-pt-1-exploiting-wi-fi.html. (Accessed on 09/30/2021).

[20] . Project zero: Over the air: Exploiting broadcom’s wi-
fi stack (part 1). https://googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html. (Accessed on 09/30/2021).

[21] . System view description. https://www.keil.com/pack/doc/CMSIS/SVD/
html/index.html. (Accessed on 09/27/2021).

[22] . Systick timer (systick). https://www.keil.com/pack/doc/CMSIS/Core/
html/group__SysTick__gr.html. (Accessed on 10/08/2021).

[23] . Thinlto Ð clang 13 documentation. https://clang.llvm.org/docs/
ThinLTO.html. (Accessed on 09/30/2021).

[24] . Wrapper headers (the c preprocessor). https://gcc.gnu.org/onlinedocs/
cpp/Wrapper-Headers.html. (Accessed on 10/08/2021).

[25] . Zephyr project - zephyr project. https://www.zephyrproject.org/.
(Accessed on 09/29/2021).

[26] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P Mathur. Noise
matters: Using sensor and process noise fingerprint to detect stealthy
cyber attacks and authenticate sensors in cps. In Proceedings of the

34th Annual Computer Security Applications Conference, pages 566±581,
2018.

[27] Ali Almossawi, Kelvin Lim, and Tanmay Sinha. Analysis tool evaluation:
Coverity prevent. Pittsburgh, PA: Carnegie Mellon University, pages
7±11, 2006.

[28] Richard Barry. Freertos - freertos queue api functions, including source
code functions to create queues, send messages on queues, receive
messages on queues, peek queues, use queues in interrupts. https://www.
freertos.org/a00018.html. (Accessed on 10/13/2021).

[29] Richard Barry. Freertos stream buffers - circular buffers. https:
//www.freertos.org/RTOS-stream-buffer-example.html. (Accessed on
10/13/2021).

[30] Richard Barry et al. Freertos. Internet, Oct, 2008.

[31] Matěj Bartík, Sven Ubik, and Pavel Kubalik. Lz4 compression algorithm
on fpga. In 2015 IEEE International Conference on Electronics, Circuits,

and Systems (ICECS), pages 179±182. IEEE, 2015.

[32] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda.
Dynamic analysis of malicious code. Journal in Computer Virology,
2(1):67±77, 2006.

[33] Wasim Ahmad Bhat and SMK Quadri. Performance augmentation of
a fat filesystem by a hybrid storage system. In Advanced Computing,

Networking and Informatics-Volume 2, pages 489±498. Springer, 2014.

[34] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. {ACES}: Automatic compartments for embedded systems.
In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages
65±82, 2018.

[35] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. Protecting
bare-metal embedded systems with privilege overlays. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 289±303. IEEE, 2017.

[36] Saumya Debray, Robert Muth, and Matthew Weippert. Alias analysis of
executable code. In Proceedings of the 25th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 12±24, 1998.

[37] Amer Diwan, Kathryn S McKinley, and J Eliot B Moss. Type-based
alias analysis. ACM Sigplan Notices, 33(5):106±117, 1998.

[38] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi.
Checked c: Making c safe by extension. In 2018 IEEE Cybersecurity

Development (SecDev), pages 53±60. IEEE, 2018.

[39] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
ACM SIGPLAN Notices, 29(6):242±256, 1994.

[40] Ulfar Erlingsson and Fred B Schneider. Sasi enforcement of security
policies: A retrospective. In Proceedings DARPA Information Survivabil-

ity Conference and Exposition. DISCEX’00, volume 2, pages 287±295.
IEEE, 2000.

[41] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In Proceedings of the 1999 IEEE Symposium on Security and Privacy

(Cat. No. 99CB36344), pages 32±45. IEEE, 1999.

143021

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

[42] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen
Hunt, James R Larus, and Steven Levi. Language support for fast and
reliable message-based communication in singularity os. In Proceedings

of the 1st ACM SIGOPS/EuroSys European Conference on Computer

Systems 2006, pages 177±190, 2006.

[43] William H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Transactions on software engineering, (3):243±250, 1977.

[44] Muhammad Ibrahim, Andrea Continella, and Antonio Bianchi. Aot -
attack on things: A security analysis of iot firmware updates. In 2023

IEEE 8th European Symposium on Security and Privacy (EuroS&P),
2023.

[45] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. Safetynot: on
the usage of the safetynet attestation api in android. In Proceedings of the

19th Annual International Conference on Mobile Systems, Applications,

and Services, pages 150±162, 2021.

[46] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. Cyclone: a safe dialect of c. In
USENIX Annual Technical Conference, General Track, pages 275±288,
2002.

[47] Paul A Karger. Limiting the damage potential of discretionary trojan
horses. In 1987 IEEE Symposium on Security and Privacy, pages 32±32.
IEEE, 1987.

[48] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proceedings

of the 10th ACM conference on Computer and communications security,
pages 272±280, 2003.

[49] Arslan Khan, Hyungsub Kim, Byoungyoung Lee, Dongyan Xu, Antonio
Bianchi, and Dave Jing Tian. M2mon: Building an mmio-based security
reference monitor for unmanned vehicles. In 30th {USENIX} Security

Symposium ({USENIX} Security 21), 2021.

[50] Douglas Kilpatrick. Privman: A library for partitioning applications. In
USENIX Annual Technical Conference, FREENIX Track, pages 273±284,
2003.

[51] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing real-time
microcontroller systems through customized memory view switching. In
NDSS, 2018.

[52] Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Antonio Bianchi,
and Dongyan Xu. Pgpatch: Policy-guided logic bug patching for robotic
vehicles. In 2022 IEEE Symposium on Security and Privacy (SP), pages
1826±1844. IEEE, 2022.

[53] Taegyu Kim, Vireshwar Kumar, Junghwan Rhee, Jizhou Chen, Kyungtae
Kim, Chung Hwan Kim, Dongyan Xu, and Dave Jing Tian. {PASAN}:
Detecting peripheral access concurrency bugs within {Bare-Metal}
embedded applications. In 30th USENIX Security Symposium (USENIX

Security 21), pages 249±266, 2021.

[54] Steven L Kinney. Trusted platform module basics: using TPM in

embedded systems. Elsevier, 2006.

[55] Steve Klabnik and Carol Nichols. The Rust Programming Language

(Covers Rust 2018). No Starch Press, 2019.

[56] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1±19. IEEE,
2019.

[57] Maxwell N Krohn, Petros Efstathopoulos, Cliff Frey, M Frans Kaashoek,
Eddie Kohler, David Mazieres, Robert Tappan Morris, Michelle Osborne,
Steve VanDeBogart, and David Ziegler. Make least privilege a right (not
a privilege). In HotOS, 2005.

[58] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium

on Code Generation and Optimization, 2004. CGO 2004., pages 75±86.
IEEE, 2004.

[59] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Shane
Leonard, Pat Pannuto, Prabal Dutta, and Philip Levis. The tock embedded
operating system. In Proceedings of the 15th ACM Conference on

Embedded Network Sensor Systems, pages 1±2, 2017.

[60] Jacob Y Levy, Laurent Demailly, John K Ousterhout, and Brent B Welch.
The safe-tcl security model. In USENIX Annual Technical Conference,
1998.

[61] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In

27th {USENIX} Security Symposium ({USENIX} Security 18), pages
973±990, 2018.

[62] George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages
128±139, 2002.

[63] Aleph One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14±16, 1996.

[64] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. Cyber-physical
attacks in power networks: Models, fundamental limitations and monitor
design. In 2011 50th IEEE Conference on Decision and Control and

European Control Conference, pages 2195±2201. IEEE, 2011.

[65] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In 12th USENIX Security Symposium (USENIX Security 03),
2003.

[66] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TISSEC), 15(1):1±
34, 2012.

[67] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memar-
ian, Derek Dreyer, and Deepak Garg. Refinedc: automating the
foundational verification of c code with refined ownership types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, pages 158±174,
2021.

[68] Fred B Schneider. Least privilege and more [computer security]. IEEE

Security & Privacy, 1(5):55±59, 2003.

[69] François-Xavier Standaert. Introduction to side-channel attacks. In Secure

integrated circuits and systems, pages 27±42. Springer, 2010.

[70] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis
in llvm. In Proceedings of the 25th international conference on compiler

construction, pages 265±266, 2016.

[71] Xiaolong Wang, Masaaki Mizuno, Mitch Neilsen, Xinming Ou, S Raj
Rajagopalan, Will G Boldwin, and Bryan Phillips. Secure rtos architecture
for building automation. In Proceedings of the First ACM Workshop on

Cyber-Physical Systems-Security and/or PrivaCy, pages 79±90, 2015.

[72] Mark N Wegman and F Kenneth Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages

and Systems (TOPLAS), 13(2):181±210, 1991.

[73] Mark Weiser. Program slicing. IEEE Transactions on software

engineering, (4):352±357, 1984.

[74] Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias Payer, Nils Ole
Tippenhauer, Dongyan Xu, Dave Jing Tian, and Antonio Bianchi.
Lightblue: Automatic profile-aware debloating of bluetooth stacks. In
Proceedings of the USENIX Security Symposium (USENIX Security),
2021.

[75] Ruoyu Wu, Taegyu Kim, Dave Jing Tian, Antonio Bianchi, and Dongyan
Xu. {DnD}: A {Cross-Architecture} deep neural network decompiler.
In 31st USENIX Security Symposium (USENIX Security 22), pages 2135±
2152, 2022.

[76] Mark Yampolskiy, Peter Horvath, Xenofon D Koutsoukos, Yuan Xue, and
Janos Sztipanovits. Taxonomy for description of cross-domain attacks
on cps. In Proceedings of the 2nd ACM international conference on

High confidence networked systems, pages 135±142, 2013.

[77] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Good motive but
bad design: Why arm mpu has become an outcast in embedded systems.
arXiv preprint arXiv:1908.03638, 2019.

APPENDIX A

CRT-C RESTRICTIONS ON CHECKEDC.

During our security evaluation, we also uncovered a bug

in CheckedC implementation that allowed dynamic casting to

incompatible types within the checked scope violating spatial

memory safety. The following listing shows a minimal code

to highlight the vulnerability.

1 typedef struct {

2 ptr<int> a;

3 } STRUCT;

4 void break(void) {

5 char temp checked[100];

153022

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

6 ptr<STRUCT> s = NULL;

7 s = dynamic_bounds_cast<ptr<STRUCT>>

8 (&temp[20]);

9 int a;

10 s->a = (ptr<int>)&a;

11 temp[20] = 0xAB;

12 temp[21] = 0xCD;

13 temp[22] = 0xEF;

14 }

On line 5, the code allocates a 100-byte large character buffer,

temp, on the stack. Next, at line 7, the code casts temp

to a structure s with a pointer field. However, the compiler

does not complain about the incompatible typecast. As a

result, the attacker has legitimate access to the temp buffer

and can legally dereference the pointer field a in structure

s. Therefore, attackers can perform arbitrary memory access

within a checked scope by modifying temp and accessing the

pointer field. Unlike CheckedC, we have restricted dynamic

casting within CRT-C. The issue has been reported and

confirmed by CheckedC developers.

APPENDIX B

EVALUATION DATASET.

Our evaluation dataset consists of standard applications

shipped with FreeRTOS and Zephyr RTOS. Furthermore, we

also port some applications from STM32CubeF4 [15] firmware

package to FreeRTOS. To ensure that our dataset is reflective

of real-world applications, we pick applications that cover

different facets of real-world applications. To this end, we

categorize our dataset into three categories:

Math: These applications implement different mathematical

operations and are generally CPU-intensive applications, in-

cluding Compression and Integer. Compression implements the

LZ4 [31] compression algorithm, whereas the Integer demo

conducts a series of arithmetic operations.

Device: These applications interface with different peripheral

devices, and in general, are IO-intensive applications. Echo

implements a loopback on the Universal Asynchronous Re-

ceiver/Transmitter(UART) device. Similarly, Console imple-

ments a simple console on the UART device. Thread Flash and

Coroutine Flash are General Purpose IO (GPIO) applications,

implementing an LED flashing application. Thread Flash uses

threads, whereas Coroutine Flash uses lightweight tasks called

Coroutines [13] to achieve the same goal. Lastly, FatFS-uSD

implements a File Allocation Table (FAT) [33] filesystem on

an external MicroSD (uSD) card, interfaced using a Serial

Peripheral Interface (SPI) bus.

IPC: These applications demonstrate different inter-process

communication primitives available on commodity RTOS.

StreamBuffer demonstrates a single-writer single-reader queue

to communicate between two tasks. Queue Set uses RTOS

queues to communicate between two tasks. Lastly, recursive

mutex utilizes mutex to synchronize among different threads.

We also present some insights about the firmware of

each application, as shown in Figure 11. Most applications

show similar statistics, whereas FatFS-uSD and Compression

applications show a much higher pointer usage. For presentation

Math Device IPC

0

500

1000

1500

2000

2500

3000

3500

4000

C
om

pre
ss

io
n

(Z
)

In
te

ger
 (F

)

C
on

so
le
 (Z

)

Ech
o

(Z
)

Th
re

ad
 F

la
sh

 (Z
)

Fa
tF

S-u
SD

 (F
)

Th
re

ad
 C

or
ou

tin
e

(F
)

Stre
am

 B
uf

fe
r (

F)

Q
ue

ue
 S

et
 (F

)

Rec
ur

si
ve

 M
ut

ex
 (F

)

Indirect calls Pointer Reads Pointer Writes

Pointer Arithmetics SLOC*

Fig. 11: Various statistics about the firmware of evaluated application.
Y-axis shows the metric value, while X-axis shows the application
(∗SLOC is only for the application/thread code.).

purposes, we suffix the application name with the underlying

RTOS. Applications with the suffix (Z) are Zephyr applications,

whereas the suffix (F) is used for FreeRTOS applications.

APPENDIX C

PORTING LEGACY FIRMWARE TO CRT-C:

CRT-C provides a semi-automatic mechanism to compart-

mentalize legacy embedded systems. Most of the work is

automated using static analyses. If user intervention is required,

CRT-C points to the violating instructions to help users adapt

existing firmware to CRT-C. In this section, we highlight a

few case studies to demonstrate the porting effort for adapting

CRT-C for an existing firmware. Once an existing RTOS is

ported to CRT-C, future applications can use the modified

RTOS. Therefore, we split the porting overhead into two

categories: 1) RTOS porting, and 2) Application porting.

RTOS Porting - FreeRTOS. In this case study, we demon-

strate the porting process for FreeRTOS. We start with

CORTEX_M4F_STM32F407ZG-SK port and modify the code

to make it compatible with clang. We consider this the

starting point for our porting process. CRT-C is just a drop-

in replacement for clang. CRT-C emits several errors listed

below:

Unbounded I/O Errors: The first set of errors is regarding

unbounded MMIO accesses. In FreeRTOS, we encountered four

unbounded MMIO access errors. These errors are thrown when

the VRA analysis does not converge. The first two errors are

thrown from the Nested Vectored Interrupt Controller (NVIC)

and External Interrupt Controller (EXTI). The NVIC driver

uses an IRQ number as an index to offset the MMIO region

to write the NVIC configuration register as shown below3

1 void NVIC_ClearPendingIRQ(IRQn_Type IRQn) {

2 NVIC->ICPR[IRQn] = PENDING_VALUE(IRQn);

3 }

We add a check on the IRQ number to keep it within a fixed

range, resolving the unbounded IO error. Similarly, the EXTI

driver uses the configuration parameter to offset into the IO

region based as shown below.

3Code snippets are modified for brevity

163023

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

1 tmp += EXTI_InitStruct->EXTI_Trigger;

2 *(__IO uint32_t *) tmp |= value;

We modify the driver to use a switch case on the configuration

and access I/O using fixed addresses, hence resolving the error.
4 For the last two errors, we notice that they are thrown from

the FreeRTOS kernel. To this end, we explicitly mark those

routines as kernel routines.

Illegal MMIO Pointers Usage Errors: Another set of errors,

similar to the unbounded MMIO errors, is illegal usage of

MMIO pointers. CRT-C emits an error if the firmware tries to

pass MMIO pointers as function arguments. In general, most

device drivers do not expose such an interface, however, some

do use this pattern. For instance, the GPIO driver uses the port

base address as the input argument. To this end, we modify

the interface to take an identifier for the port instead of an

MMIO address. Within the driver, we use a mapping table to

map the input identifier to the port address.

Driver Association Errors: After fixing the above errors,

CRT-C can establish an association between devices and

drivers. For FreeRTOS, all of the drivers, except NVIC, were

correctly identified by CRT-C. Upon further investigation, we

found that FreeRTOS uses macros to directly access the kernel

for interrupt control. To this end, we redirect the macro to use

the NVIC driver instead of directly accessing NVIC. In our

firmware, CRT-C was able to find five device drivers including

NVIC, GPIO, and EXTI drivers.

Checked Scope Errors: After proper association between de-

vices and drivers, CRT-C mandates the usage of safe code for

drivers and threads. CRT-C complains about the device drivers

written in unchecked dialects. To convert the existing codebase,

we utilize 3C [3] to semi-automatically convert unsafe code to

safe code in an iterative manner. A detailed discussion about

this process can be found in the 3C manual [16].

Kernel Resource Access Errors: During thread discovery,

CRT-C finds all of the threads in the system. Some privi-

leged threads are used by FreeRTOS for maintaining kernel

bookkeeping, including the idle thread and the timer thread.

Since these threads are considered part of the kernel, we mark

them as privileged threads allowing them to use kernel dialect

and freely call kernel functions.

1 KERNEL_THREAD

2 static portTASK_FUNCTION(prvIdleTask)

After these modifications, the firmware passes all of the

CRT-C checks. Overall, CRT-C threw 11 device isolation-

related errors and three kernel resource access-related issues

for FreeRTOS. For FreeRTOS we modified around 500 SLOC

for resolution of compile-time errors, which is negligible

considering the codebase consisted of 79K SLOC5

We see similar errors for Zephyr, since both RTOS adapt

their drivers from CMSIS [4] libraries. Therefore, we only

4Constraining the configuration input in the faulting function is also a viable
solution.

5Complete FreeRTOS consists of 4M SLOC, we only consider the FreeRTOS
kernel for source code comparison.

highlight the major differences for Zephyr. The major changes

were observed for MMIO pointer accesses in the kernel: In

addition to the process creation and memory management

library, Zephyr’s balanced Red/Black Tree [2] library also

utilized MMIO pointers, resulting in 15 violations in the

kernel (compared to two in FreeRTOS). Moreover, Zephyr

uses a device tree [12] based infrastructure instead of passing

MMIO pointers in the driver interface, thus resulting in fewer

illegal MMIO pointer usage errors. Lastly, we did not face

any kernel resource access errors, as Zephyr uses an internal

API (z_setup_new_thread) to create system-level threads,

whereas FreeRTOS uses the same API for user and kernel

threads. Overall, CRT-C threw 27 device isolation errors for

Zephyr.

Application Porting - recmutex. CRT-C automatically finds

all applications level code and enforces the thread policies

which may lead to various compile-time errors. We use the

recursive mutex application to demonstrate the application

porting process. We group the errors into different categories

and describe how we fix each error and get the application

compiled by CRT-C.

Checked Scope Errors: The recmutex app uses three threads.

For each thread, CRT-C reports that they are not written in

a safe dialect. Similarly to RTOS porting, we can use the 3C

tool to automatically convert the unsafe code to safe code.

Kernel Resource Access Errors: For new applications, CRT-C

throws a type error when a user thread directly calls kernel

API. For the recmutex app, CRT-C reports 18 calls to system

code, with four distinct APIs. Instead of modifying the source

code to replace the original call with the new safe interface,

we design the new safe interface to be compatible with the

original API, by redefining functions in the compatibility layer

header file, as shown below:

For example, xSemaphoreTakeRecursive is an exist-

ing FreeRTOS API to take a semaphore. The API requires a

handle to the mutex of type SemaphoreHandle_t and the

number of ticks the API is allowed to wait. However, CRT-C

does not allow user tasks to handle raw pointers to kernel

objects. Therefore, the compatibility layer redefines the raw

pointer to a safe pointer as shown below:

1 #define SemaphoreHandle_t const ptr<Queue>

This enables transparent redefinition of all mutex handles

in the application. However, due to this redefinition, the old

API becomes incompatible with the redefined handle type.

Therefore, to this end, the compatibility layer defines a safe

interface that is compatible with the safe handle as shown

below:

1 #define xSemaphoreTakeRecursive(mut, tick)

2 SafeQueueTakeMutexRecursive(mut, tick)

The safe interface has the same interface as the legacy

API but uses safe handles instead of raw pointers to kernel

objects. However, since the raw pointers are already redefined,

we can use existing code without any modifications by using

the compatibility layer. The safe interface sanitizes the input

173024

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

arguments before passing them to the kernel and tracks the

ownership of any dynamic objects. To port the recmutex app,

we extend the compatibility layer for all four APIs used by

the application. We provide a helper library for object tracking.

Note that, once the interfaces are added to the compatibility

layer, future applications can easily use this function without

any modifications, which drastically eases the adaption process

for CRT-C.

Object Sharing Errors: CRT-C also reports any implicit shar-

ing of data between different threads. For the recmutex app,

CRT-C reported a total of six errors. In general, the resolution

of each error is case by case. For instance, in the recmutex, all

threads share a global variable to set the status of the demo.

Therefore, we explicitly share the variable among all of the

threads as shown in the following listing:

1 OWNER(taskA ,taskB , taskC)

2 BaseType_t xErrorOccurred = pdFALSE;

183025

Authorized licensed use limited to: Purdue University. Downloaded on October 08,2023 at 20:12:25 UTC from IEEE Xplore. Restrictions apply.

