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Abstract—Embedded systems comprise of low-power
microcontrollers and constitute computing systems from IoT nodes
to supercomputers. Unfortunately, due to the low power constraint,
the security of these systems is often overlooked, leaving a huge
attack surface. For instance, an attacker compromising a user task
can access any kernel data structure. Existing work has applied
compartmentalization to reduce the attack surface, but these
systems either incur a high runtime overhead or require major
modifications to existing firmware. In this paper, we present Em-
bedded Compartmentalizer (EC), a comprehensive and automatic
compartmentalization toolchain for Real-Time Operating Systems
(RTOSs) and baremetal firmware. EC provides the Embedded
Compartmentalizer Compiler (ECC) to automatically partition
firmware into different compartments and enforces memory
protection among them using the Embedded Compartmentalizer
Kernel (ECK), a formally verified microkernel implementing
a novel architecture for compartmentalizing firmware using
intra-kernel isolation. Our evaluation shows that EC is 1.2x faster
than state-of-the-art systems and can achieve up to 96.2% ROP
gadget reduction in firmwares. EC provides a low-cost, practical,
and effective compartmentalization solution for embedded
systems with memory protection and debug hardware extension.

I. INTRODUCTION

Embedded systems are microcontroller-based systems de-
signed to perform a specific task. They are pervasive and are
used extensively in high-criticality systems such as Unmanned
Vehicles (UV), health monitoring, and even general-purpose
computing systems such as mobile phones and personal comput-
ers. As these microcontrollers have to work continuously on a
constrained power budget, low computation power becomes an
inherent feature of embedded systems. Unfortunately, firmware
developers usually overlook the security implications in pursuit
of performance. For instance, embedded systems are often pro-
grammed in a flat address space with no security mechanisms in
place to minimize the runtime overhead. As a result, embedded
systems expose large attack surfaces, making them vulnerable to
various attacks [1], [2], [23], [31], [33], [34], including Denial-
of-Service [58], control hijacking [37], and arbitrary code
execution [7], [8]. Existing work [41], [50] has shown that it is
possible to overtake the control of an Unmanned Aerial Vehicle
(UAV) using a compromised WiFi System on Chip (SoC).

To tackle embedded systems security, existing work has used
Compartmentalization [48], [51] to reduce the attack surface.
Compartmentalization divides the firmware into multiple
components with dedicated resources called compartments.
Each compartment is only able to access resources within its
protection domain to achieve fine-grained isolation at the same
time. Minion [52] compartmentalizes the firmware based on

different threads in the system. ACES [28] compartmentalizes
baremetal systems based on developer-guided policies.
M2MON [50] can be used to compartmentalize firmware at a
device level. All of these systems require a reference monitor to
enforce runtime memory protections in the privileged execution
mode. However, the firmware itself runs in the privileged
execution mode. Hence to enforce memory protections, users
have to port the firmware to the unprivileged execution mode
leading to major changes in the firmware. Due to this reason,
each compartment switch raises an exception leading to a
substantial runtime overhead. Moreover, each solution has
limitations in terms of identifying different compartments in
the system. For instance, Minion can only compartmentalize
based on threads in the system, whereas ACES provides a
programmable interface but does not work on RTOSs.

In this paper, we present Embedded Compartmentalizer
(EC), an automatic compartmentalization toolchain for
RTOSs and baremetal systems. EC provides a custom
compiler, Embedded Compartmentalizer Compiler (ECC),
to automatically compartmentalize firmware into different
compartments, and generate EC-compatible binaries based
on programmable compartmentalization policies. EC relies
on Embedded Compartmentalizer Kernel (ECK), a formally
verified microkernel, to enforce runtime memory isolation
among different compartments using intra-kernel isolation.

ECC uses various program analyses to partition a firmware
and extends the C type system for programmers to guide
the compartment identification. ECC translates the firmware
source code into an Intermediate Representation (IR) with
information regarding the application and the RTOS, such as
threads, memory usage, etc. Next, ECC partitions the firmware
based on different user-defined policies. Finally, ECC enables
transparent interactions between different compartments by
instrumenting the firmware and generates metadata about the
identified compartments and their resources for ECK.

ECK is a formally-verified microkernel enforcing memory
protection using a novel operating system architecture that splits
the hardware privileged mode into a constrained and uncon-
strained privileged mode. Both constrained and unconstrained
privilege modes can carry out all privileged operations, except
that: The constrained privileged execution mode cannot issue
memory configuration updates to the hardware. ECK uses the
constrained mode for hosting firmwares with minimal changes,
while it runs inside the unconstrained execution mode and
enforces the compartments generated by ECC. To realize this
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intra-kernel isolation, ECK creates the constrained privileged
execution mode within the existing hardware privileged mode
using hardware memory protection and debug extensions.

We apply EC to baremetal and RTOS firmwares, such
as FreeRTOS. Our evaluation shows that EC can achieve
up to 96% ROP gadget reduction and 100% removal of
functional gadget set expressivity. Furthermore, the ECK
enforcement mechanism is 1.2x faster than the state-of-the-art
compartmentalization solutions. The main contributions of this
paper include:

• We propose ECC, an LLVM-based toolchain to
automatically compartmentalize a firmware supporting
programmable compartmentalization policies. ECC in-
struments each compartment to correctly interoperate with
other compartments and allows programmers to configure
the partitions by providing a programmable interface and
generating statistics for estimating the runtime overhead
cost of the current compartmentalization scheme.

• We design ECK, a formally verified microkernel that
uses a novel architecture for intra-kernel isolation to
enforce runtime memory protection without hardware
context switching. ECK leverages the memory
configuration metadata generated by ECC to enforce
compartmentalization at runtime. To the best of our
knowledge, ECK is the first ever system to bring
intra-kernel isolation to embedded systems.

• We apply ECC and ECK to baremetal and RTOS
firmwares to find the efficacy of EC protection. Our
evaluation shows that EC can protect commodity
baremetal applications and FreeRTOSs, achieving up
to 96.2% reduction in ROP gadgets and up to 100%
removal of function gadget set expressivity.

To further research on this topic, we have released the
source code for EC.

II. BACKGROUND

ARM Micrcontoller Profile. ARM Microcontroller profile is
the specification of ARM Reduced Instruction Set Computer
(RISC) that targets low latency and high determinism for
embedded systems [89] implemented by Cortex-M processor
series. Cortex-M mainly targets low-power systems and is the
most prevalent processor for embedded systems supporting
hardware privilege separation by providing a privileged
and unprivileged mode. It implements the Systick timer for
timekeeping and uses the Nested Vectored Interrupt Controller
(NVIC) for interrupting the core. Cortex-M implements
hardware context switching, i.e., upon a context switch request
the context of the running execution state is pushed on the
stack by the processor in a well-defined manner.
Memory Protection Unit (MPU). MPU is the hardware mem-
ory protection peripheral used by most Cortex-M processors.
It enforces access permissions on different memory regions.
However, unlike the conventional Memory Management Unit
(MMU), MPU does not provide any address translation but
enforces memory protection on flat address spaces. MPU can
have multiple memory protection ranges, varying from 8 to 16

depending on the processor. MPU also has limitations on the
memory region size and alignment. For instance, the memory
region offset should be a multiple of its size; the size of the
regions must be a power of two and should be greater than
32 bytes. MPU also allows memory regions larger than 256
bytes to be divided into equally sized sub-regions.
Data Watchpoint and Trace Unit (DWT). DWT provides
watchpoints, data tracing, and system profiling for ARM
processors. DWT can be used for both invasive and non-invasive
debugging. DWT consists of multiple comparators and the exact
count depends on the processor. Comparators can be configured
as hardware watchpoints, tracing triggers, program counter sam-
plers, or data address samplers. While DWT events are mainly
used with an external debugger, Cortex-M can also consume
DWT events internally using the Debug Monitor exception.

III. SECURITY MODEL

Trust Model/Assumptions. EC trusts the compiler for
correct instrumentation for firmware and compartmentalization
metadata generation. EC assumes the boot-time integrity
of the firmware and a flat address space. EC also assumes
the presence of an MPU or a similar device to enforce
hardware-based memory protection. Furthermore, EC assumes
the presence of a DWT or a similar peripheral that can monitor
memory address ranges for accesses.
Threat Model. EC targets attacks that compromise the embed-
ded system by exploiting vulnerabilities within the firmware.
The attacker tries to issue rogue memory and peripheral
accesses to carry out malicious activities in the system, such as
crashing the system or corrupting system data, leading to attacks
such as privilege escalation and arbitrary code execution.
Out-of-Scope. EC does not consider side-channel attacks or
physical attacks for this work. Furthermore, in the absence
of an Input-Output Memory Management Unit (IOMMU), EC
does not consider DMA-based attacks and assumes the correct
configuration of the DMA peripheral by the compartment
responsible for operating DMA.

IV. MOTIVATION

Compartmentalization retrofits existing firmware to enforce
privilege separation by identifying different compartments
in the system and allocating exclusive resources to each
compartment. Compartmentalization systems are characterized
by two features: 1) How are different compartments in the
system identified? (Compartment Identification), and 2) How
does the system enforce the runtime restriction of each
compartment?(Compartment Enforcement).

Table I shows the comparison of existing compartmentaliza-
tion solutions for embedded systems. In terms of compartment
identification, MINION [52] automatically compartmentalizes
different threads in the firmware. ACES [28] implements a
programmable interface for identifying compartments in a
firmware. M2MON [50] builds upon Minion, to provide a
device-based reference monitor for the firmware. These systems
are tailored to specific facets of the compartment identification
problem. For instance, MINION can work with RTOS but only
provide a fixed compartmentalization scheme. On the other
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System
Cross
Compart.
Overhead

TCB/
SLOC

Compartment
Identification

Compartment
Enforcement Target Porting

Effort
Comparted

Heap Stack
Object
Sharing Verified

MINION 24.36% 1K Thread-Based MPU + SVC RTOS Mode
Switch No No None No

ACES 24.36% N/A Programmable MPU + SVC Baremetal Mode
Switch No No Dynamic

Profiling No

M2MON 21.12% 3.4K Device-Based MPU + SVC
+ SFI RTOS Mode

Switch
No No

None No

EC 11.13% 160 Programmable
Tunable

Intra-kernel
Isolation

Baremetal
RTOS Minimal∗ Yes Yes Type

Extensions Partial+

TABLE I: Comparison of different compartmentalization solutions based on the Compartment Identification and Compartment Enforcement
scheme. (∗Cross compartment interfaces might require annotation to work with EC memory protections.) (+ Only ECK is verified.)

System Architecture Enabling Features
Hypersafe [71] x64 WP Bit+CFI
Nested Kernel [32] x64 WP Bit + Binary Analysis
SKEE [20] ARMv7/8A TTBCR + Binary Analysis
EC ARMv7M MPU+DWT+Binary Analysis

TABLE II: Comparison of different intra-kernel isolation solutions
based on the key enforcement technology and architecture.

hand, ACES can implement different compartmentalization
policies, but it lacks support for RTOS firmware, dynamic
memory, and controlling cross-compartment interactions. A
comprehensive compartmentalization solution for baremetal
and RTOS systems is still missing. To this end, EC should be
able to partition the firmware based on user-defined policies for
both baremetal and RTOS firmwares. Furthermore, EC should
support dynamic memory allocation and allow flexible mech-
anisms for resource sharing among different compartments.

For compartment enforcement, all of the aforementioned
systems use a security monitor to enforce memory protection.
The security monitor requires a separate privilege mode for
its execution. As the privilege mode is already in use by the
firmware, this design results in an extensive porting effort to
move legacy firmware to unprivileged mode and an expensive
context switch on each call to the security monitor. Ideally,
we want both the security monitor and the existing firmware
co-existing in the same privileged mode. Existing work for
commodity general-purpose OS has shown that it is possible to
enforce hardware memory protection without requiring a higher
privilege mode, using intra-kernel isolation. Hypersafe [71]
uses control flow integrity and the Write-Protection (WP) bit to
achieve intra-kernel isolation between the security monitor and
the hypervisor. The WP bit is an x64 paging feature that disal-
lows write access to memory regions. Similarly, Nested Kernel
[32] uses the WP bit to disable modifications to page tables and
uses binary analysis to remove any privileged instructions from
the normal kernel. SKEE [20] achieves intra-kernel isolation for
ARMv7-A and ARMv8-A by removing any instructions that
manipulate the paging base address register (TTBR0/TTBR1)
and explicitly making all paging data structures read-only.

In general, intra-kernel isolation systems work by disabling
access to paging-related data structures and filtering of memory
protection-related instructions that can update the configuration.
However, ARMv7-M enforces memory protection using a
Memory Protection Unit (MPU) which provides a very limited

Partitioner ECC 
firmware

Code + SVD

Error
Report

ECK

firmware.elf
Fig. 1: EC workflow: ECC compartmentalizes on firmware which
can be optionally annotated with ECC annotations. ECK enforces
the memory protections at runtime.

memory protection feature set1 and does not prevent access to
memory protection related configuration registers. Furthermore,
modifications to MPU’s configuration are not done using
special instructions. Instead, the MPU is memory-mapped and
configured using normal memory access. Therefore, filtering
out special instructions to protect MPU configuration is also
impossible in embedded systems. Hence, applying the same
strategy to embedded systems would not work. Table II shows
the comparison of existing intra-kernel isolation solutions. To
implement the monitor beside the existing firmware within the
same privileged mode, EC should tackle these challenges to
achieve intra-kernel isolation in embedded system firmware.

V. OVERVIEW

EC is an automatic compartmentalization framework for
embedded systems. For compartment identification, EC
provides a custom toolchain, EC Compiler (ECC), that
automatically compartmentalizes a firmware into several
self-contained partitions with exclusive resources, called
compartments, whereas for compartment enforcement EC uses
a formally-verified microkernel, EC Kernel (ECK), to enforce
the runtime memory protections for each compartment.

ECC accommodates existing compartment identification
techniques by providing a programmable interface for
developers to identify compartments in RTOS and baremetal
firmware. Users can program different policies to modify the
compartment identification behavior for ECC. Meanwhile,
ECC provides a series of compartment policies, including
thread-based policy [52], file-based policy [28], etc, covering all
existing solutions. ECC conservatively identifies compartments

1ARMv7-M memory protection is documented in only 22 pages, whereas
ARMv7-A documentation consists of 496 pages.
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Firmware
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Policy A

Policy Database

Partition
Engine

ECC
Linker

Partition
Generator Partition 

Stats

PDG Partitioned
PDG

Annotated
Source 

Code+SVD

Binary
IM

Fig. 2: ECC pipeline: Developers may annotate the source code to guide the ECC partition engine. The firmware parser parses the firmware and
sends PDG with metadata to the partition engine. The partition engine invokes the partition generator to partition the PDG and instruments the
firmware with appropriate inter-compartment calls using IM. Lastly, the linker generates the binary with associated metadata for the partition.

and allows users to guide the compartment identification
analyses and cross-compartment interactions by providing
program directives and adding type qualifiers to the C
language. Lastly, ECC generates heuristics about the runtime
overhead of the selected compartmentalization scheme.

ECK uses a novel operating system architecture for
embedded systems to tackle the challenges of existing
compartment enforcement techniques. ECK uses intra-kernel
isolation to run the firmware besides ECK in the same
privilege execution mode, instead of moving the firmware from
the privileged mode to the unprivileged mode, minimizing the
changes required to existing firmwares. Furthermore, ECK
can switch compartments without a context switch resulting
in minimal runtime overhead.

Figure 1 shows the workflow of EC. ECC takes in firmware
and compartmentalizes the firmware into various compartments
based on the selected policy. The compartmentalized firmware
is linked with ECK, which enforces the compartments using
the metadata provided by ECC.

VI. DESIGN

A. Compartment Identification

In EC, ECC identifies compartments using various program
analyses to compartmentalize the firmware. It takes firmware
as input and generates various self-contained compartments.
Each compartment can only access the resources assigned
to it by ECC. For interaction between compartments, each
compartment uses Cross-Compartment Calls (xcalls) to invoke
functions from other compartments.

Figure 2 shows the pipeline of ECC. ECC first extends
the C type system to enable developers to guide the static
analysis process (Language Extensions). The Firmware Parser
uses this information to generate a Program Dependency
Graph (PDG) with associated metadata about device usage
and OS-specific information for the Partition Engine, which
partitions the PDG using the Partition Generator. The partition
generator instruments each compartment for interactions
between different compartments and generates the metadata
of the compartments for ECK. The ECC Linker links the
firmware with ECK and lays out each compartment in the
memory such that it can be protected by ECK.

Language Extensions: ECC works with C code and supports
optional code annotation with complementary type information
to guide itself for better compartmentalization. The annotations
inform ECC about how to properly pass parameters for
cross-compartment calls, capabilities for function, etc. The
complete list of type extensions is covered in Section A.
Firmware Parser: The firmware parser compiles C code,
understands the ECC type extensions, and extracts the
following information from firmware.
Code Annotations: The firmware parser goes through the
firmware to generate the PDG. If it finds any annotation for
a function, it attributes the PDG node with the information.
Device Usage: Firmware accesses peripherals using Memory
Mapped I/O (MMIO). The firmware parser finds MMIO
pointers by finding all pointers that are initialized with a
hard-coded address. The firmware parser uses the System
View Description (SVD) [17] files to associate MMIO pointers
to different devices available on the platform and associates
devices with the PDG nodes using the device.
RTOS Specific Information: The firmware parser analyses the
firmware and generates information related to the RTOS used
by the firmware, such as threads, components, configuration,
etc. These static analysis passes are specific to each RTOS and
they emit the information as metadata appended to the PDG.
Partition Engine: The partition engine works on the PDG
with the associated metadata generated by the firmware
parser. In general, no single solution fits all problems of
firmware partitioning. To this end, we offload the partitioning
to the Partition Generator that emits a partitioned PDG and
partitionin stats based on the selected partition policy. The
partition engine instruments the partitioned PDG with xcalls
using the Instrumentation Module.
Partition Generator: The partition generator is a programmable
module that can partition an input PDG based on the policy
selected by the user. Users can modify the policies or implement
new policies to create new partition schemes. After invoking
a policy, the partition generator runs the verification module
to verify that the generated partitions have exclusive access
to resources. By default, we provide a number of policies:

• Thread [52]: Each thread in the firmware is assigned a
separate compartment.
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• Component: An RTOS usually comprises of different
components. This policy assigns a separate compartment
to each component.

• File [28]: File policy assigns all the objects in a file in
a separate compartment.

• Device: Device policy assigns each device to a separate
compartment.

• Color: Color-based policy tries to evenly create
compartments using a greedy clustering algorithm.

During partitioning, ECC also caters to shared variables.
Existing work [28] relies on implicit data sharing found by
runtime profiling and uses an allow-list to check the access in
the runtime exception triggered upon cross-compartment access.
Therefore, each cross-compartment access incurs an overhead.
Furthermore, this approach has the inherent limitations of dy-
namic analysis and does not scale well for RTOS, as there is ex-
tensive implicit sharing of data between the kernel and threads.
For instance, the thread stacks are allocated dynamically by
the kernel escaping the static analyses for partitioning the
firmware. Therefore, local variable access within a thread stack
would generate a cross-compartment access, as the dynamically
created stack and the thread will be present in different com-
partments, resulting in high overhead. On the contrary, ECC
does not allow implicit sharing of data by default and mandates
explicit sharing of data by extending the C type system and
providing runtime services to implement various alternatives.

• Type Extensions: Users can ease and secure explicitly
shared variables using the shared type qualifier. The
partition engine merges compartments that share global
data. Users can relax this restriction by using the shared
type qualifier.

• Runtime Services: ECK provides runtime services to
enable data sharing in a controlled manner. For instance,
compartments can access the data of the last scheduled
compartment by using ECK. Section A describe the
complete list of runtime services provided by ECK.

Partition Stats: After the firmware is partitioned into different
compartments, the partition generator emits partition statistics
for the selected policy. These statistics include the number of
instructions, number of objects, dynamic memory usage, num-
ber of xcalls, number of Return Oriented Programming (ROP)
gadgets, etc. These statistics are generated using static analyses
and provide insights about the runtime cost and security
implications of the current policy. For instance, the number of
xcalls can hint to the user about the potential runtime cost of the
particular partitioning policy2, whereas the number of instruc-
tions can give information about the TCB reduction in a system.
Instrumentation Module (IM): The instrumentation module
imports the partitioned graph from the Partition Generator to
instrument the firmware to correctly call different compartments.
We conduct a Field and Context Sensitive Points-To Analysis
to minimize the amount of instrumentation in the firmware,
as shown in Algorithm 1. For direct calls, IM is aware of the

2Although this will be a crude estimate as a higher number of xcalls does
not mean during runtime more xcalls will be invoked necessarily.

Algorithm 1 ECC Call Instrumentation
Result: pF irmware
funcMap←∅
targets←∅
foreach func∈FUNCTIONS do

if addressTaken(func) then
funcMap[func]←func

end
foreach call∈INDIRECTCALLS do

foreach func∈funcMap do
if type(call)= type(func)∧alias(func,call) then

targets[call]←func
end

end
foreach func∈FUNCTIONS do

callerID←func.id
foreach call∈func.calls do

if type(call)=Direct∧target ̸=callerID then
pF irmware[inst] ←
Replace(call,xcall(call.func,call.id))

else
if ∀targeti, targetj ∈ targets[call] | targeti =
targetj∧target ̸=callerID then

pF irmware[inst]←Replace(call,xcall(target))
else

pF irmware[inst]←Replace(call,xcall())
end

end

70 int compart1_in() {
...

73 }
75 int compart1() {}

...
87     int (*xFunc2) (void);
88     xFunc2 = &compart1_in;
89     xFunc2();
90     
91     xFunc2 = &compart2;
92.    xFunc2();
94     if (temp) {
95         xFunc2 = &compart2;
95     }
96     else {
97         xFunc2 = &compart1_in;
98.    }
99.    xFunc2();

70 int compart1_in() {
...

73 }
75 int compart1() {}

...
87     int (*xFunc2) (void);
88     xFunc2 = &compart1_in;
89     xFunc2();
90     
91     xFunc2 = &compart2;
92.    xcall_arg0(2, xFunc2);
94     if (temp) {
95         xFunc2 = &compart2;
95     }
96     else {
97         xFunc2 = &compart1_in;
98.    }
99.    xcall_arg0_noid(xFunc2);Original Source Code

Instrumented Source Code

Fig. 3: Running instrumentation module on an example code with
File policy.

target function and the target compartment ID, therefore the
xcall is hardcoded with those parameters. Contrarily, indirect
calls may have multiple targets. To this end, IM uses the points-
to analysis and the data flow analysis to estimate the targets
of the call. If IM finds multiple targets for an indirect call, it
instruments the xcall without a target compartment. During
execution, ECK finds the compartment ID using a binary search
on the compartment metadata based on the target address.
Figure 3 shows an example of running the IM on source code
with the file-based partitioning policy. The call at line 89 is
not instrumented as the call has only one target that lies within
the same compartment. The call at line 92 is instrumented
with xcall with the compartment ID. Lastly, line 99 is
instrumented with xcall without compartment ID. ECK changes
the compartment protections based on the call target at runtime.
ECC Linker: The ECC Linker generates binaries compatible
with ECK. The linker 1) places each compartment in a
separate section such that the memory layout can be protected
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by ECK, and 2) links the metadata generated by ECC to
ECK, enabling ECK to enforce the correct memory protection
across compartment boundaries at runtime.

B. Compartment Enforcement

EC enforces runtime compartmentalization using ECK.
Our key insight behind ECK design is:

A reference monitor for memory protection hardware can
enforce memory protections on any firmware.

In other words, if a reference monitor protects the MPU,
it can enforce the runtime memory protection for different
compartments in the system. To this end, we set up the design
goals for our reference monitor and then explore the design
spaces to achieve our goals.

1) Design Goals: We derive our initial set of design require-
ments from the classic reference monitor design principles [46]:
G1: Complete Mediation. The monitor should be able to

mediate all accesses to memory configuration within the
system, i.e., the monitor should be non-bypassable and
always invoked.

G2: Tamperproofness The monitor should be tamper-proof
from any agents outside the TCB, which includes the
monitor code and data and the partition metadata to
enforce compartmentalization.

G3: Verifiability. The monitor should be verified to ensure
correct implementation of G1: Complete Mediation and
G2: Tamperproofness.

Considering the unique constraints of embedded systems
and the limitations of current compartmentalization solutions,
we mandate additional requirements for the monitor:
G4: Low Overhead. The monitor should only introduce

minimum runtime overhead, without violating the
real-time requirements of the system.

G5: Real-Time Design. As the monitor runs beside the
RTOS, the monitor itself should be deterministic in its
design, i.e., it should update memory configuration in
a deterministic manner.

G6: Minimal Changes. The monitor should be able to
enforce protection on existing firmwares with minimal
changes to ease deployment.

2) Design Exploration: We conduct a thorough literature
review of the embedded system design space to design the
reference monitor. We evaluate different configurations in
terms of the design goals presented in Section VI-B1.
SVC: Existing solutions [28], [50], [52] have employed
hardware execution modes to enforce memory protections.
Figure 4 shows the SVC-based design for the reference
monitor alongside other components. This design requires
moving the firmware from the privileged mode to the
unprivileged mode, resulting in non-trivial modifications to
the embedded firmware, violating G6 Minimal Changes. This
design also results in non-negligible overhead as shown by
existing systems, violating G4 Low Overhead.
Software Fault Isolation (SFI): To meet G6 Minimal
Changes, we can use SFI to ensure that only the monitor

can access the MPU without moving the firmware to the
unprivileged mode, as shown in Figure 4(b). However,
the MPU is implemented as a memory-mapped peripheral.
Therefore, protecting the MPU from access from the firmware
using SFI requires adding extra checks on each memory
access. As shown by existing work [28], [52], this results in
a high overhead and does not meet G4 Low Overhead.
TEE: Existing work [65] repurposes ARM TrustZone as a
hypervisor to host different firmware guests within the same mi-
crocontroller. We can utilize this design to declare the memory
protection unit (MPU) as a secure device and run the monitor
in the secure world. However, upon further research, we found
that ARM TrustZone is unable to restrict the MPU configuration
registers usage in the normal world. As the rule, RLDTN in
the ARM architecture specification [75] states that the System
Control Space (SCS), which includes the address range for
the MPU, is exempted from security violation checks. In other
words, any access from a non-secure world to the SCS cannot
be controlled from the secure world. Hence, running the monitor
in the secure world does not meet G1 Complete Mediation.
Furthermore, this design requires ARM TrustZone extensions
that are not widely available on existing microcontrollers.

C. ECK Design

While existing designs either move the firmware to the
unprivileged mode or use SFI for the monitor, we ask if running
the monitor beside the existing firmware as shown in Figure 4(c)
is possible. In doing so both the monitor and the RTOS will
execute in the privileged mode reducing the changes to the ex-
isting firmware and the slowdown of the monitor. The challenge
is how to protect the monitor from the RTOS in this design?

We propose ECK, a microkernel as a reference monitor for
the MPU by using the hardware watchpoints to watch the MPU
configuration, even from the RTOS. More specifically, we uti-
lize the DWT to watch MPU configuration to ensure that there
are no rogue accesses to MPU configuration. We further lock
the DWT configuration using the MPU. During booting, ECK
configures the MPU before passing control to the RTOS and
enables the DWT to watch the MPU configuration. If the RTOS
tries to access either MPU or DWT to bypass ECK, it would
result in either a Debug exception or a Hard Fault exception.

However, similar to security checks of TEE-based design,
upon implementation we found that the MPU is unable to
protect the DWT. Rule RTGQD

3 states that the MPU uses
the default memory map for all memory accesses to the SCS
in the privileged mode. Since we run both ECK and the
firmware in the same privilege level, the MPU is not able to
secure DWT configuration. Instead, we configure the DWT
to watch both MPU and DWT configurations to achieve G1
Complete Mediation. As shown in Figure 5, if the RTOS
tries to modify the MPU or the DWT configuration it results
in a Debug Exception served by ECK.

There is still a caveat, the RTOS can mask or override
the debug exception to bypass the enforced protections.

3The rule is taken from ARMv8-M specification, but the same design
applies for ARMv7-M.
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Listing 1 Code snippet for VeriFast proof assistant. Comments
starting with @ are consumed by the verifier. Some lines are
truncated for brevity.
11 typedef struct
12 {
13 uint32_t TYPE;
14 uint32_t CTRL;
15 ...
46 } MPU_Type;
47 MPU_Type MPU;

...
68 unsigned int switch_view(unsigned int to)
71 //@ requires pointer((void *)&MPU, ...
72 //@ ensures mpuM_CTRL(&mpum, MPU_C ...
74 {

...
80 MPU->RNR = 7;
81 //@assert mpuM_RNR(&mpum,7);
84 if (to < NUM_COMPS) {
85 int temp = (start[to] & MPU_RBAR ...
86 MPU->RBAR = temp;

Fortunately, interrupt control is implemented using specialized
instructions. These instructions can either 1) disable interrupts
globally, or 2) mask interrupts to a specific priority level.
We design a static analysis to find these instructions. For 1),
we downgrade all global interrupt disabling instructions to
interrupt masking instructions. For 2), we configure the debug
exception as the highest priority in the system. We ensure that
the firmware does not mask interrupts higher than the debug
exception’s priority level using compile-time instrumentation.

With the watching infrastructure in place, we can also
mediate access to other sensitive peripherals. For instance, the
firmware can try to override the debug monitor exception by

writing a malicious value to the Vector Table Offset Register
(VTOR). Similarly, the firmware can try to patch ECK code
using the Flash Patch and Breakpoint (FPB) Unit. To this end,
ECK also includes the VTOR and the FPB in the watched
region and simply denies any modifications to these registers.
This restriction does not impact the functionality of normal
firmware, as normally firmware does not modify either VTOR
or FPB after system bootup. With these restrictions in place,
ECK achieves G1 Complete Mediation. Furthermore, as
ECK is in control of the MPU, it configures the memory
protections such that ECK code and data are immutable to
ensure G2 Tamperproofness.

Since ECK is only responsible for memory configuration,
the code size for ECK is small rendering it possible for
formal verification. We formally verify ECK to ensure:

• Memory Safety: ECK is free of any buffer overflows.
• Correct Compartment Switching: After the switching call,

ECK always switches to the correct compartment.
• Thread Safety: ECK is free of concurrency errors such

as data races.
We use VeriFast [45] to prove the guarantees discussed

in ECK. For memory and thread safety, VeriFast reports
zero errors on ECK, implying that the program is free of
illegal memory accesses and data races. For the correctness
of compartment switching, we add VeriFast assertions in the
code to ensure that ECK switches to the correct configuration
supplied by ECC, as shown in Listing 1. We model the
MMIO peripherals, i.e., the MPU, using C structures, as shown
on Line 47 in Listing 1, and assume the hardware works
according to the architecture specification. The small code size
and the formal proof of ECK help us achieve G3 Verifiability.

Unlike existing solutions, our design does not require a mode
switch or an exception for a memory configuration update, and
we do not require any extensive code instrumentation for the
compartmentalized code. Thanks to this design, ECK imposes
a minimal overhead for enforcing memory protection, achieving
G4 Low overhead, as shown in Section VIII experimentally.

To achieve G5 Real-Time Design, each compartment switch
is done with the interrupts masked. ECC generates the system
configuration statically during compile time and ECK does
not use dynamic memory. Because of these considerations,
ECK operates in a highly deterministic manner. Lastly, since
ECK runs the firmware in the original execution mode, we
can run the firmware with minimal changes, achieving G6
Minimal Changes.
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In summary, ECK relies on the compile-time compartment
configuration generated by ECC for the correct operation
between different compartments. As mentioned in Section II,
the MPU has alignment and size requirements for the protected
regions. Furthermore, the MPU can support up to 16 protection
regions, although, in practice, most SoCs provide eight regions.
Figure 6 shows the assignment for the MPU regions. ECK uses
the lower four regions to enforce the protection for ECK code/-
data and shared code/data. For the current running compartment,
ECK switches the higher four regions for the current compart-
ment code, data, and two contiguous device memory ranges.

D. Runtime Memory Protection

As shown in Table I, existing solutions ignore dynamic
memory allocation as it is generally a hard problem to estimate
the dynamic memory required by firmware at compile time.
To tackle this problem, existing solutions either allow com-
partments to access memory across compartments leading to
weaker security guarantees, or require profiling the firmware dy-
namically, thus suffering from the incomplete profiling problem.
To overcome the limitations of existing systems, we propose
a compartmentalized dynamic memory allocation model.

Dynamic Memory Allocation: Dynamic memory allocation
allows firmware to create memory objects at runtime. Memory
allocators usually use one single contiguous chunk of memory
as the heap and allocate dynamic objects from the heap to

arg2
arg1 arg1

arg2Comp 1 Stack

Xcall Stacks

arg2
arg1

ret

ret
ret1Safe

Stack

Compartmentalized
Stack

Background
Stackret

Fig. 8: EC stack protection techniques used by ECK.
Compartmentalized stacks copy the local variables to a dedicated
stack, whereas Background stack uses a common stack, with a safe
stack to maintain control flow integrity.

callers. They use metadata to keep track of the allocated
and free memory, which is placed in-band within the same
memory chunk.

Due to their runtime nature, dynamically allocated objects
escape ECC static analyses while partitioning. While this
does not violate the reference monitor guarantees of ECK, the
RTOS could crash if it accesses these dynamically allocated
objects. Naively, users could place the dynamic memory in a
shared section. However, doing so would allow compartments
to have free access to dynamic objects of other compartments.
To ensure compartmentalization over dynamic objects, we
design a compartmentalized memory allocator.

We split the heap buffer into different chunks based on
the information provided ECC. Figure 7 shows the changes
made from a flat heap to a compartmentalized heap. Each
chunk is placed in the respective compartment. The metadata
for accounting heap memory is placed into the allocator
compartment. The allocator queries ECK about the calling
compartment on each allocation request and returns a free
chunk from the respective compartment as an opaque pointer.
Note that, the allocator is designed as a library on top of
ECK and is outside the TCB of ECK.

To minimize the memory overhead of the compartmentalized
heap, we design a Heap Analysis on the firmware to find
compartments in the system that use dynamic memory. It also
looks for memory allocation requests to the RTOS, such as
the user thread stack and heap. For completeness, we consider
all indirect calls as potential dynamic allocation calls. ECC
generates the conservative memory consumption estimation of
each compartment based on the heap analysis. We remove heap
from the compartments that do not utilize dynamic memory.
Stack Protection: Similar to dynamic objects on the heap,
dynamically allocated objects on the stack can also escape
ECC analyses. Due to this reason, the callee compartment may
not have access to the stack of the caller compartment during an
xcall. We could also place the stack in the shared section. How-
ever, a compromised compartment can not only modify the local
objects of other compartments but also hijack the control flow
of different compartments. To tackle these security concerns,
ECK provides two configuration options for stack hardening.
Compartmentalized Stack: This configuration allocates a
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Fig. 9: ECC partitioning stats against different firmware. To summarize the partitions, the average number of xcalls (direct/indirect), global
variables, instructions, code size and data size, number of ROP gadgets, and the reduction of ROP gadgets are listed.

bank of xcall stacks within the accessible memory range of
respective compartments. During an xcall, the bridge code,
operated by ECK, copies the frame of the calling stack to
the dedicated xcall stack from the stack bank and switches
the stack. Similarly, on return, the return value is copied from
the xcall stack to the caller stack before switching the stack.
Compartmentalized stacks provide strong isolation between
different compartments as the callee is not able to access the
stack of the caller compartment.
Background Stack: This design allocates stacks from the
shared memory region. Since all stacks are allocated from
the shared memory region, the callee can use the stack of
the caller compartment. To ensure Control Flow Integrity
(CFI) across different xcalls, the xcall bridge code copies the
return address of the xcall in the shadow stack, which is not
accessible to any compartment in the system, therefore the
callee compartment is not able to modify the control flow and
always returns to the caller compartment4.

Figure 8 shows the difference between the two stack protec-
tion configurations. The compartmentalized stack provides bet-
ter inter-compartment isolation, as it guarantees isolation among
local variables of different compartments. However, this protec-
tion requires an extra copy of the call frame to the compartmen-
talized stack, resulting in a higher runtime and memory over-
head. Background stack mitigates these overheads by allocating
stacks in the shared memory regions. Compartments are not
able to modify the back edges of an xcall in either configuration.

4Forward edges are not protected in this scheme.

VII. IMPLEMENTATION

ECC: The partitioner is built upon Clang-12 and LLVM-12.
We use SVF [69] to generate the points-to analysis. Different
static analyses mentioned in Section VI are implemented as
LLVM passes. We also enhance LLVM to parse SVD file for the
running platform. The SVD parser and the Partition Generator
are implemented as Python scripts, based on CMSIS-SVD
[6]. To decouple the design from LLVM, we implemented an
intermediate representation (IR), allowing Partition Generator
plugin writers to work without any prior knowledge about
LLVM or Clang. New policies can be implemented as Python
classes extending the Partition Generator.

The EC linker is implemented as a Python wrapper around
the LLVM linker (LDD). We use GNU Binutils and LDD to gen-
erate the partitioning layout required for proper protection using
MPU. To generate an EC-compatible binary, we use multi-
stage linking: 1) EC-linker generates the binary with stubs for
EC data and partitioning metadata, 2) EC-linker lays out the
memory according to the requirements for MPU restrictions, 3)
EC-linker links the binary with the required layout, the initial-
ized ECK, and partitioning metadata into an executable binary.
ECK: ECK is implemented as a self-contained C library to
ensure that it is readily linkable to any embedded systems
firmware. We use CMSIS [16] device headers to extract the
device addresses and offsets required to implement the MPU
and DWT drivers.
FreeRTOS: The modifications in FreeRTOS for effective
interoperability with ECK are contained within the architecture-
specific code of FreeRTOS, whereas the interface annotations
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are implemented in the kernel interface headers as described
in Section A.

VIII. EVALUATION

Our evaluation dataset consists of six applications, including
three RTOS and three baremetal applications as described in
Section B. First, we evaluate the compartment identification
efficacy and partitioning statistics of ECC on the evaluation
firmwares, followed by an evaluation of ECK with different
firmwares. Lastly, we discuss the security evaluation of EC
with different attack scenarios and demonstrate how EC
protects against different CVEs.

A. ECC

We evaluate ECC by compartmentalizing the evaluation
dataset with different compartmentalization policies and emit-
ting the statistics for each policy. We do not evaluate the
thread policy for baremetal applications, as they do not use
threads in the firmware. To evaluate the distribution of code
and data across each compartment, we use the average number
of instructions and global variables across all compartments.
We list the number of compartments and the average number
of xcalls (both direct and indirect) for all compartments to get
an insight into the runtime overhead incurred by the policy.
Intuitively, the number of xcalls should be directly proportional
to the overhead. However, this is not always true, as there
could be compartments with a lower number of xcalls but with
higher usage of the xcalls (To this end, we conduct the runtime
evaluation Section VIII-B). Similarly, for the security impact
of the selected policy, we calculate the average number of ROP
gadgets found in all compartments and the average ROP gadget
reduction for all compartments. Similarly, we also calculate
the functional gadget set expressivity [25] for each policy. The
code/data size and the instruction count also hint to the user
about the security impact of the selected policy, as a larger in-
struction count and code/data size leave a larger attack surface.

Figure 9 shows the results of the compartmentalization of the
evaluation dataset. Our evaluation shows that stricter policies,
such as file policy, result in a higher number of compartments.
Consequently, these policies result in more xcalls and better
security guarantees. In general, stricter policies result in a higher
ROP gadget reduction, whereas each configuration results
in a full reduction in the functional gadget set expressivity.
Similarly, stricter policies result in a more balanced distribution
of memory and code resources. Generally, the file policy
results in the most fine-grained compartments, whereas the
color policy results in the most coarse-grained compartments.

B. ECK

Micro-benchmark. As shown in Figure 9, different
compartmentalization policies lead to diverse partition results.
To conduct a policy independent evaluation, we measure the
runtime overhead of a single xcall, which implements a wait
loop to emulate some workload and does not take any input
arguments. We compare the overhead incurred by ECK xcall
with existing compartment solutions including SVC, SFI with
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Fig. 10: Comparison of EC with existing compartmentalization
compartment enforcement techniques employed by existing systems.
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Fig. 11: Execution time of different FreeRTOS applications. The
Y-axis shows the percentage overhead incurred.

(W/) and without (W/O) indirect access instrumentation. SVC-
based compartment enforcement is used by Minion, ACES,
and M2MON, whereas SFI-based compartment enforcement
is used by M2MON for interrupt handling routines.

Figure 10 shows the results of the micro-benchmark
evaluation. Compared to native execution, ECK xcalls incurs
an overhead of 11.13%. SVC incurs 24.36% overhead; SFI
incurs 12.00% overhead without indirect access instrumentation
and 30.25% overhead with indirect access instrumentations.
Based on the micro-benchmark, ECK xcall is around 1.2
times faster than SVC and 1.8 times faster than SFI-based
compartment enforcement (on average). ECK outperforms the
existing solutions, as it does not require a runtime exception
nor does it require extensive code instrumentation to check
memory accesses at runtime.
Macro-benchmark. We benchmark the execution time of the
firmware using the ARM Systick timer [13]. We use the com-
partmentalized heap and the background stack configuration
for our evaluation. The purpose of the evaluation is two-fold.
First, we see the runtime overhead of EC on firmwares at the
application level. Secondly, we examine the correlation of ECC
compartmentalization statistics with actual runtime overhead.

Figure 11 shows the results of the macro-benchmark evalu-
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ation. The stream buffer app has the lowest overhead of
2.8% for the thread policy and the highest overhead of 5.9%
for the file policy. Similarly, the queue app has the lowest
overhead of 0.1% for the thread policy and the highest overhead
of 25.7% for the file policy. For the recursive mutex app,
we see the highest overhead for the component policy instead
of the file policy. Upon further investigation, we found that the
recursive mutex component is implemented on top of the
queue component. When the component policy is used, ECC
identifies them as different compartments. As a result, a single
call to a recursive mutex API could result in several xcalls,
thus the highest overhead of 63.7% for compartment policy.

For the LwIP TCP Echo application, the file policy shows
the highest overhead of 25.89%, while the component policy
results in 0.01% overhead. For the FatFS-uSD application,
the file policy results in a 32.65% overhead and the component
policy results in the lowest overhead of 1.6%. Lastly, for
the animation application, file policy results in a 25.2%
overhead, whereas the component policy results in the lowest
overhead of 7.07%.

The results show a high dependency on the application and
the selected policy. In general, the results correlate with ECC
heuristics in Figure 9. The color policy incurs the least runtime
overhead, whereas the file policy incurs the highest overhead.
The color policy usually results in very coarse-grained com-
partments, resulting in poor security guarantees, whereas the
file policy results in very fine-grained compartments, resulting
in a large number of xcalls during execution. For the RTOS
applications, the thread policy results in the second lowest over-
head, because this policy aims to include the resources used by
each application within its compartment. As shown in Figure 9,
the thread policy introduces no more than four compartments,
whereas the file policy generates up to 33 compartments.

Memory overhead. We evaluate EC memory overhead by
calculating the size of different sections of compartments
and ECK. Figure 12 shows the memory overhead for the
evaluation dataset with five different policies. Overall, the
memory overhead depends on both the application and the
selected policy, except ECK, whose overhead stays almost
constant for all of the applications due to 128 bytes large buffer
for the shadow stacks placed inside the ECK data section.
The microkernel, ECK incurs an average of 2.57% overhead.

ECC places the resource of each compartment, including the
stack and heap, in the memory so that ECK can enforce exclu-
sive memory protections for each region. However, this special
layout results in fragments across code and data regions of adja-
cent compartments, as the MPU imposes special requirements
on the address alignments of the protected memory regions (See
Section II). The fragmentation incurs 2.5x more code memory
and 2.3x more data memory for all applications. Overall, EC
incurs an average overhead of 2.4x. In general, we see less code
fragmentation with finer-grained policies, such as the file policy,
although the data fragmentation does not follow a fixed pattern.
Note that the fragmentation overhead does not result from EC,
but is incurred due to the limitation of the MPU design.

C. Security Evaluation:

EC drastically reduces the attack surface of the firmware.
In this section, we evaluate the security guarantees of EC.
More specifically, we assume different vulnerabilities in a
compromised compartment and evaluate 1) if the compromised
compartment is able to break the reference monitor guarantees
of ECK, and 2) if the compromised compartment can modify
the contents of other compartments.
Buffer Overflow: Buffer overflow arises when memory
buffers are indexed beyond the bounds of the buffer without
proper checking. A malicious user can index the memory
buffer to manipulate program memory.
Stack-Based Overflow: In this experiment, we allow a
compartment to overflow buffers on the stack. As explained
in Section VI, ECK provides two modes of stack protection.
For the compartmentalized stack design, the compromised
compartment is unable to access other stacks, because of the
ECK compartmentalization enforcement. For the background
stack design, the compromised compartment is able to access
the local variables for other compartments. However, the
compromised compartment was unable to alter the memory
protections of the current compartment. As the return address
is always saved in the safe stack region inside ECK, which
is not accessible to any compartment in the system.
Heap-Based Overflow: In this experiment, we assume a heap
overflow in one compartment, which could allow attackers to
overwrite: 1) the heap metadata and 2) the memory owned by
other compartments, including the stack. In EC, for 1) the heap
metadata is kept in a separate compartment, thus a malicious
compartment should not be able to access the heap metadata.
For 2), the compartmentalized heap ensures that dynamic mem-
ory is exclusively owned by each compartment. An attacker can
only corrupt the data belonging to its compartment and should
not be able to propagate its corruption to other compartments.

CVE-2018-16528 [79], CVE-2018-16525 [77], and
CVE-2018-16526 [78] are examples of buffer overflows in
FreeRTOS. Using EC, we experimentally show that these
CVEs can be confined within their affected compartments,
instead of compromising the whole system.
Privilege Escalation: Privilege escalation attacks exploit
vulnerabilities in the system to manipulate privileged resources
that are typically owned by the RTOS. CVE-2022-22733 [76]
is an example of privilege escalation in QNX RTOS. Since EC
provides fine-grained compartments, a generalization of this
attack is to access resources belonging to other compartments.
For instance, an attacker can 1) directly access the memory
belonging to another compartment, or 2) modify the memory
protection range of its compartment. For 1), accessing the
memory (code/data) belonging to another compartment results
in an illegal memory access exception as each compartment has
its exclusive memory range. For 2), the memory configuration
metadata is loaded from the Read-Only Memory (ROM) and
once it is loaded to RAM, ECK ensures the configuration
is read-only, disallowing a compartment to access memory
outside its compartments. Therefore, an attacker cannot
escalate the privilege beyond its own compartment.
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Fig. 12: Memory overhead of using EC on different firmwares.

One interesting implication of such attacks is the Confused
Deputy Attack [39], where instead of accessing privileged
resources directly, a compromised compartment can use
available interfaces to maliciously manipulate resources
beyond its privilege. EC does not enforce any interface
design on the RTOS for compatibility reasons. If the RTOS
is vulnerable to these attacks, an attacker might use xcalls
to carry out the attack, which could be defended by existing
preventive techniques [24], [26], [67], [68], [92].
Format String: Format string attack uses a malicious format
specifier string to access arbitrary memory locations in variadic
functions5. These attacks exploit the interpretation of the format
string specifiers to write to arbitrary memory locations. CVE-
2021-43041 [86], CVE-2021-35331 [90], and CVE-2021-30145
[84] are examples of format string vulnerabilities. Since an
xcall could be variadic and the bridge has to interpret the format
string, a fabricated format string can allow access to the memory
of the callee compartment. Since EC cannot enforce the proper
checking required by format string, EC cannot eliminate such
vulnerabilities. However, EC ensures that the corruption is
confined within its own compartment. Furthermore, EC does
not allow xcalls with variable arguments by default. Users can
either modify the ECC policy or the variadic interface to use
fixed argument interfaces to overcome this limitation. Note that,
users can still use variadic functions within a compartment.
Illegal Pointer Value: In memory-unsafe languages, a pointer
could be uninitialized, null, or pointing to an object that is not
owned by the pointer, i.e., dangling pointers. CVE-2021-3322
[85], CVE-2020-1939 [83], and CVE-2020-10066 [82] are
examples of malformed pointer accesses in an RTOS. Using
EC, if a compartment dereferences an illegal pointer pointing
to memory in some other compartment, it will result in an
illegal memory access exception.
Code Injection Attack: Code injection attacks write malicious
code to writable memory and transfer control to the malicious
code. CVE-2022-23603 [5], CVE-2022-23120 [4], and CVE-
2022-0895 [3] are examples of code injection vulnerabilities.

5Functions with a variable number of arguments.

To this end, EC ensures Data Execution Prevention (DEP) by
enforcing W ⊕X protection for compartment memory, i.e.,
if a memory region is writable, it cannot executable at the
same time.

IX. DISCUSSION

DMA Attacks: Currently, we do not consider DMA attacks in
our threat model. However, users can add EC-awareness to the
DMA device driver for some extent of DMA level isolation.
More specifically, the DMA Controller can be compartmental-
ized into a separate compartment and can serve DMA requests
based on the configuration data generated by ECC. The DMA
controller can ensure that compartments are not issuing transfers
to memory or peripherals beyond their compartment. However,
this design still suffers from several limitations: Firstly, without
the presence of an IOMMU, malicious peripherals may trigger
vulnerabilities in the RTOS using DMA [9]. Examples of such
peripherals include CAN bus controller, USB controller, WiFi
controller, etc. Furthermore, even if we assume the availability
of an IOMMU, existing work [14], [60], [61] has shown that the
peripherals can exploit the DMA interface within the constraints
imposed by an IOMMU. Lastly, if we assume all peripherals are
secure, we might still face the confused deputy problem if the
original firmware is not designed properly. Existing work [62]
has shown that legacy firmware can be modified to adapt Ex-
tensible Access Rights (EAR) to mitigate the confused deputy
problem. We intend to tackle these challenges in future work.
Scaling EC to Multicore: ARM-based multicore systems work
by instantiating the single core multiple times and providing
an SoC-specific mechanism for interprocessor communication.
Each core runs a separate firmware in these systems and
exceptions (such as the DebugMonitor exception) are kept
private to each core. Scaling EC to these multicore systems
would require running ECK on each core. Furthermore, EC
should ensure that it is the first agent executing on each
core to ensure EC can set up the memory protections before
transferring control to the RTOS. Furthermore, EC has to
ensure that it is still the owner of all of the required exceptions,
such as the DebugMonitor exception, in the multicore setup.
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However, EC cannot protect against race condition
vulnerabilities, such as Time-Of-Check-To-Time-Of-Use
(TOCTTOU), on multicore systems. CVE-2019-17102 [81]
and CVE-2019-11482 [80] are examples of race condition
vulnerabilities. Developers still need to rely on existing
synchronization primitives. However, accessing variables
outside their compartment should result in access fault. We
leave support for multicore systems as future work.
Compartmentalization Policies: ECC implements various
compartmentalization policies for partitioning an existing
firmware. Meanwhile, EC supports modifying existing policies
or creating new ones. For instance, we can compartmentalize
the firmware based on data flows to minimize the amount of
information flow across different compartments. We plan to
investigate new partitioning schemes in the future.
Trusted Computing: ARM TrustZone provides a trusted
hardware execution environment that runs code securely
with isolation from the non-secure world. As mentioned in
Section VI, EC does not use TrustZone as it fails to meet the
reference monitor guarantees. However, it is possible to treat
TrustZone as a secure partition and enhance ECC to move
code into the secure world. We plan to pursue this approach
as a future research direction.
Partitioning Runtime Heuristics: ECC generates partitioning
stats that help estimate the runtime overhead. Currently, the
stats are purely generated based on static analysis. Due to
the static nature of our estimates, the current estimates could
present an inaccurate representation of runtime overhead as we
do not know how frequently particular xcalls are executed on
runtime. Usually, the number of xcalls is directly proportional
to the overhead incurred, however, this is might not be always
true. Augmenting the runtime stats with either 1) developer-
provided hints about the frequency or 2) dynamic runtime
profiles should help ECC to generate better estimations for
runtime costs. Furthermore, finding more statistics to estimate
the runtime overhead remains an open problem. We plan to
explore this direction further in future work.

X. RELATED WORK

Compartmentalization Enforcement: There has been exten-
sive work on enforcing runtime compartments. Secure Virtual
Architecture [30] introduces a new architecture to enforce
memory safety and control-flow integrity. Nested Kernel [32]
uses a kernel that is in charge of memory operations with
x86_64 WP bit to ensure that only the nested kernel can do
memory operations. Lightweight Virtualized Domains [63] uses
VM functions (VMFUNC) to create different compartments in
the system. xMP [66] uses the alt2pm feature of Xen [21] hyper-
visor to enforce partitioning at runtime. Mondrix [74] Memory
Isolation for Linux uses Mondriaan Memory Protection (MMP)
[73] to create different protection domains. Shreds [27] uses the
domains feature of the ARM memory protection system to cre-
ate lightweight threads (called shreds) using a specialized com-
piler, kernel module, and userspace library. PUMP [35] tackles
memory-related challenges such as isolation, corruption, and
spatial and temporal issues by complementing software with

metadata processes using hardware extensions. Hodor [40] uses
Intel MPK [64] to protect libraries from the main applications
by analyzing the binary and watching instruction sequences
that can modify the PKRU register. ERIM [70] achieves the
same goal by using binary patching to forbid PKRU updates.
Program-mandering [59] compartmentalizes software using
a weighted PDG. It splits a program into low-integrity and
high-secrecy domains. Hsu et al. [42] provide APIs to secure
multithreaded applications so that each thread can have a
separate memory view. TZ-RKP [19] uses binary analysis and
TrustZone to provide lifetime integrity to the kernel. Similarly,
Hypersafe [71] uses intel’s virtualization extension and the
WP bit to provide lifetime integrity to the kernel. However,
all of these systems rely on features unavailable to embedded
systems. EC provides the same level of compartmentalization
enforcement within the constraints of embedded systems.
Microkernels: L3 [36] implements a microkernel with a
lightweight IPC mechanism. L4 [18] implements the next
generation of L3 by further reducing IPC overhead. seL4
[54] implements a formally verified version of the L4
kernel. L4Linux [87] is a Linux kernel port for the L4RE
(Fiasco.OC) [88] microkernel. TinyOS [57] implements
a component-based OS build using nesC [38]. PikeOS
(previously P4) [47] modifies the scheduling, partitioning, and
mapping infrastructure of the L4 kernel for embedded systems.
CAmkES [56] implements a component-based architecture
that builds on Iguana IPC and L4 for embedded systems. In
general, microkernels are notorious for their runtime overhead,
as they divide the monolithic kernel into small components,
which are isolated from each other. Each cross-component
interaction incurs a runtime overhead. EC intrakernel isolation
provides a fast mechanism to switch between components.
Embedded Systems Security Frameworks: There has been a
plethora of existing work on securing embedded systems using
various techniques [43], [44], [53], [93], [94]. Epoxy [29]
implements security mechanisms such as CFI for firmwares.
µRAI [15] prevents control-flow hijacking attacks targeting
backward edges by enforcing the Return Address Integrity.
Multiple tools [28], [50], [52] have tried to compartmentalize
embedded systems to reduce the attack surface. Similarly,
existing work [49], [55], [72] has used hardware security
extensions to provide trusted computing in embedded systems.
However, existing work either requires non-trivial modifications
to the existing firmware or incurs a high overhead to achieve
its security goals. In contrast, EC introduces a low overhead
and allows to run firmware with minimal changes.

XI. CONCLUSION

In this paper, we present EC, an automatic
compartmentalization framework that uses program analysis
to identify compartments in bare-metal and RTOS firmware.
EC partitions firmware using a custom toolchain, ECC, and
enforces runtime protection using ECK, a formally-verified
microkernel implementing a novel OS architecture. We
evaluate EC on real-world firmwares and show that EC is 1.2x
faster than state-of-the-art compartmentalization techniques,
and can achieve up to 96.2% ROP gadget reduction.
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APPENDIX

APPENDIX A
INTEROPERABILITY WITH RTOSS

While RTOS should be able to run without any modifications
with ECK, for better security guarantees (such as least
privilege) and an efficient cooperation with RTOS, we design
different interoperability services.
Bootstrapping. To reduce the TCB, we do not include any
boot logic inside ECK. To this end, we need to patch the
boot code of the RTOS to invoke ECK. We do not lose any
security guarantees in doing so, as the RTOS has to invoke
the ECK for the correct setup. Otherwise, as soon as the
firmware encounters the first xcall, it will leave the memory
configuration in an inconsistent state leading to a crash.
Interface Design. ECC instruments the firmware with xcalls
without any assumptions of these calls. As a consequence, all
xcalls are instrumented conservatively to ensure correct opera-
tion. For instance, if an xcall passes a pointer as an argument,
the xcall bridge code ensures to copy the memory pointed in the
calling compartment to a shared buffer and passes the shared
buffer as an argument to the callee compartment. To guide
the compartmentalization, we introduce new type qualifiers to
C types guiding the automatic compartmentalization by ECC.
The added extensions are as follows:
Opaque Pointers: RTOSs often use opaque pointers to provide
user tasks handles to kernel objects. These objects can have
a large size and if they are used as arguments to xcalls, they
incur significant overhead for copying between compartments.
Since ECC cannot statically determine opaque pointers, we
introduce the opaque type qualifier that informs ECC and
ECK to pass the argument as an opaque pointer. For opaque
pointers, ECC does not copy the pointed memory to the
shared buffer and passes the pointer without any modifications

to the callee compartment. Developers can use opaque pointers
to securely share handles to objects with secure isolation
from user threads. Due to the memory protections enforced by
ECK, if a user thread accesses an opaque pointer, it results
in an illegal memory access exception.
Custom Bridging: Some functions require context-specific
information to correctly process arguments. For instance, a
queue creation function could take the size of each data item
in the queue and save it in the queue handle. Since the queue
utility already knows the size of the items enqueued, the
queue append function could have a polymorphic pointer to
the data to be enqueued without size information. To correctly
copy the complete memory pointed by the polymorphic
pointer, we need a custom method that can copy arguments
based on the item size in the queue handle. ECC provides the
custom_bridge annotation to facilitate such scenarios. If a
user-supplied function with custom_bridge annotation is
called, ECC expects a custom bridge function and terminates
with a compilation error if it is not found.
Helper/Utility Functions: Some functions purely work on
data supplied by other compartments. For instance, a list utility
can provide a helper function for creating and manipulating
lists. To reduce xcalls for such functions, we can either 1)
provide each compartment with a local version of the utility
library, or 2) allow the utility compartment to gain access to
the calling compartment.
ECK User Routines: Some functions such as context
switching routines need access to various compartments. As
these functions need cross-compartment accesses, we include
them inside ECK via the "eck_user" annotation. We
use SFI on user routines to ensure that they cannot modify
the ECK data. We keep the number of these routines to a
minimum to minimize the potential impact on the established
least privilege in the system and runtime performance.
Context Switching. RTOSs usually use the thread stack to
save the context of a running thread, which requires a thread
compartment to have a complete access to almost all stacks in
the system. Instead, we design a Split Context Stack architecture
to restrict the cross-compartment accesses. In this design,
once the initial stack is populated using ECK User Routines,
the threading compartment saves the context of the running
thread on a separate stack, called the Context Stack, which
is allocated inside the threading component and is exclusively
for saving the context of the running thread. The threading
compartment has exclusive access to the context stacks.
Interrupt Handling. The interrupt handling routines could
be contained within a single compartment or multiple com-
partments. During normal execution, the compartment of the
running compartment is enforced and is often different from the
interrupt handlers. To this end, EC instruments interrupt handler
memory protection using a trampoline mechanism, which sets
the memory view of the interrupt handler, serves the interrupt
request, and switches back to the previous memory view.

Table III shows the complete set of type extensions added
by EC. Users can use these qualifiers to tune the behavior
of ECC partitions.
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Qualifier Target Input Usage
OPAQUE Function argument None If the base type is a pointer type ECK does not copy the pointed memory to the target compartment.
STRING Function argument None If the base type is a pointer type, ECC uses strlen to infer the size of the pointed memory.
LEN(AR) Function argument Integer If the base type is a pointer type, ECK uses the value of ARth argument as size of pointed memory.
UTILITY Function prototype None Utility functions can access the memory belonging to the calling compartment.
SHARED Global Object None The qualified variable will be accessible to all compartments in the system.
USER Function prototype None The qualified function has global access to memory, beside ECK memory.
SIZE(SI) Function argument Integer If the base type is a pointer type, ECK copies SI bytes to the target compartment.
CUSTOM Function argument None The qualified function uses a custom bridge with the same identifier suffixed by "custom".

TABLE III: Different type qualifier offered by EC to guide the partitioning behavior.

APPENDIX B
EVALUATION DATASET AND SETUP.

We include six applications from three different projects
in our evaluation dataset. We describe the evaluated projects
and provide a brief description of the evaluated applications.
FreeRTOS [22]: We use different applications shipped with
FreeRTOS for our evaluation. We pick these applications to
cover different features of FreeRTOS. We run the RTOS appli-
cations on STM32F407VG [91], including stream buffer,
queue and recursive mutex. stream buffer uses a
single-reader single-writer queue to communicate between two
tasks. queue uses general purpose queues to communicate
between two tasks. recursive mutex uses a recursive
mutex to synchronize between different tasks.
STM32F4Cube [11]: STM32F4Cube is a firmware package
repository for STM32F4 family of microcontrollers. We use
STM32F469NI [91] to run these applications. FatFS-uSD
and Animation applications are from this package.
Fatfs-usd creates a File Allocation Table (FAT) file system
on an external Micro SD(uSD) card. Animation displays
an animation from an external uSD card.
STM32F7Cube [12]: STM32F7Cube is a firmware package
repositry for STM32F7 family of microcontroller. We run
these applications on STM32F769NI-EVAL [10]. We use the
Lightweight IP (LwIP) TCP echo application from this pack-
age. The echo runs a TCP Echo client on the microcontroller.

APPENDIX C
ANNOTATION CASE STUDIES:

In this section, we evaluate the impact of different user
annotations.
FatFS-uSD (Shared Variables): EC requires explicit sharing
of data across different compartments. If two compartments are
sharing a variable, EC merges them into a single compartment.
During the partitioning process, ECC logs the merger of differ-
ent compartments due to shared variables. EC user can easily
go through the logs to find the offending variables. They can
either create local copies of the variables or mark the variable
as shared variables to avoid the compartment being merged.

During our evaluation, we see this problem for nearly every
firmware. For instance, for the FatFS-uSD application, initially,
the device policy resulted in only four compartments. However,
EC was able to find 15 distinct devices. Following up on the
diagnostic message we found that each device driver used the
clock configuration variable to initialize the device. We over-
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Fig. 13: Execution time of bridge functions for different sizes of
buffers.

came this problem by explicitly marking the clock configuration
variables as a shared variable, resulting in ten compartments.

The annotation of the shared attribute could be automated,
but we leave the final decision to the user. ECC emits all the
shared variables with usage information. Users can apply the
qualifier based on the policy requirements.
FreeRTOS (Opaque Pointers): During transitioning between
different compartments, opaque pointers are passed without
copying the pointed memory. Opaque pointers have both
performance and security implications. Opaque pointers
drastically decrease the overhead of an xcall. Figure 13
shows the time taken by an xcall using a normal pointer in
comparison to an opaque pointer.

On the other hand, opaque pointers also reduce the exposure
of data among compartments. RTOSs usually use handle
objects to manipulate different kernel resources. For instance,
FreeRTOS’s task APIs use a task handle (xTaskHandle). The
task creation APIs return the task handle to the caller, which
is used to manipulate the task in the future. If the caller can
modify the object associated with the object handle, a malicious
caller could compromise the kernel threading operations. To
this end, EC users can mark such object handles as opaque
pointers, ensuring that only the RTOS can modify these objects.
With an opaque task handle, a malicious caller trying to modify
the task object would result in a memory protection fault.

ECK prints potential opaque pointers, such as void/char
pointers, MMIO pointers (i.e. pointers pointing to IO memory),
and pointers to large objects, in the diagnostic messages.
Using these diagnostic messages, EC users can easily attribute
the required pointers based on the policy requirements.
List library (Utility Functions): FreeRTOS implements a
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Fig. 14: EC annotation usage in different firmware packages.

list library (vList family of functions) that can be used for
list management. This library is used extensively by different
components in the system. We use the utility attribute to
disassociate the library from other components in the system.

Note that the usage of utility attributes is not needed for
most use cases. Opaque and shared attributes can usually result
in a similar effect. However, it provides an elegant solution
by minimizing the sharing between different compartments
without code duplication. The usage for this attribute is usually
determined per case and is triggered due to fault investigation
during runtime.
Inter-Task Communication (Custom Bridges): ECC
automatically instruments input firmware to cater for xcalls.
However, during this instrumentation, ECC only copies data
based on the type of the object. If the interface uses a char or
a void pointer, ECC would only copy one byte of information.
To this end, users can use annotations to point to the size infor-
mation, which could be another input argument or in the case of
strings the length of the string. Users can also fully implement
the bridge function using the custom bridge annotation.

The Queue application shows a scenario where the size of
the buffer cannot be inferred from the type or the function
interface. More specifically, FreeRTOS’s queue creation APIs
takes the size of the queued item during queue creation as
an input. The item size information is stored in the queue
metadata. Due to this design, ECC cannot correctly copy the
queued item, as the Send/Receive API does not contain the
size information. To this end, we had to create custom bridges
for the queue send and receive APIs. In the custom bridge,
we copy the required amount of memory based on the size
metadata field to correctly implement the queue operations.

Similar to utility functions, the usage for these attributes is
determined per case and is triggered due to fault investigation
during runtime.
Conclusion. As shown in the above case studies, to correctly
compartmentalize firmware, EC provides several ways to
control the compartments and their interactions. The usage
of these annotations includes ensuring the correct operation of
the firmware, application of security policies, and performance
tuning of the firmware. The annotation-based guidance is one
of the ECC key features and helps EC outperform where
existing solutions struggle. Figure 14 shows the usage of

annotations in the different projects used in our evaluation. We
see the minimum number of annotation usage in FreeRTOS,
as we specifcally design ECC extensions with RTOS design
patterns under consideration. FreeRTOS only required 76
annotations, whereas STM32CubeF4 and STM32CubeF7
required 142 and 82 annotations respectively. The majority of
the annotations are associated with data sharing and interface
description, such as opaque pointers.
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