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The temperature dependence of spectra can reveal important insights into the structural and dynamical
behavior of the system being probed. In the case of linear spectra, this has been exploited to investigate
the thermodynamic driving forces governing the spectral response. Indeed, the temperature derivative of
a spectrum can be used to obtain effective energetic and entropic profiles as a function of the measured
frequency. The former can further be used to predict the temperature-dependent spectrum via a van’t Hoff
relation. However, these approaches are not directly applicable to nonlinear, complex-valued spectra, such as
vibrational sum-frequency generation (SFG) or two-dimensional infrared (2D-IR) photon echo spectra. Here,
we show how the energetic and entropic driving forces governing such nonlinear spectra can be determined
and used within a generalized van’t Hoff relation to predict their temperature dependence. The central idea
is to allow the underlying energetic profiles to themselves be complex-valued. We illustrate this approach
for 2D-IR spectra of water and SFG spectra of the air-water interface and demonstrate the accuracy of the
generalized van’t Hoff relationship as well as its implications for the origin of temperature-dependent spectral
changes.

I. INTRODUCTION

The changes of equilibrium and dynamical properties
with temperature offer a key window into the driving
forces for chemical processes. While these behaviors rep-
resent (literally) textbook examples for chemical equilib-
ria and reaction rates, they have been significantly less
well-studied for spectra.

One important example of such a study is that by Hare
and Sorensen,1 who measured the Raman spectrum of
dilute HOD in H2O over a wide range of temperatures.
They used these data to carry out a van’t Hoff-style anal-
ysis of the spectrum at each frequency which yielded an
effective enthalpy as a function of the OD vibrational
frequency. This approach has subsequently been used
by others to probe the temperature dependence of the
Raman and infrared (IR) spectra of water and other
liquids.2–14 Some interpretations of these enthalpy pro-
files link them directly to the energy required to break a
hydrogen-bond in the liquid, which is likely incorrect.15
Nevertheless, the method is one with significant potential
for revealing the factors that shape the spectrum.

In fact, the examination of the temperature depen-
dence of spectra in general, and IR and Raman spec-
tra in particular, has not been used or exploited to its
full potential. For example, once the effective enthalpy
(or internal energy) profile is obtained, an effective en-
tropy as a function of vibrational frequency is readily
accessible,14–16 but, to our knowledge, this has not been
obtained in any experimental study. Further, while it is
important to recognize that the enthalpies and entropies
obtained are effective ones because the spectra include
dynamical effects, their fundamental physical relevance is
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apparent in the accuracy of a van’t Hoff approximation.
That is, the effective energy (enthalpy) as a function of
frequency can be used to faithfully predict the IR15,16

or Raman14 spectrum over a wide range of temperatures
from the spectrum at one temperature. The fact that the
spectra, at least for the cases considered so far, are well
described by a van’t Hoff approximation gives the energy
profiles significant practical and interpretative weight.

The advent of nonlinear spectroscopic techniques raises
the question of whether the same ideas and van’t Hof-
fian assumptions can be applied to those spectra as well.
Addressing these issues is the focus of this Paper. As
is illustrated in detail in Sec. II, determining the inter-
nal energies (or enthalpies) underlying nonlinear spectra
is straightforward in principle. However, invocation of a
van’t Hoff approximation is more complicated, due to the
fact that the spectra are complex-valued and can be zero.
Here, we show how this can be readily accomplished sim-
ply by allowing the underlying energies and entropies to
be complex-valued themselves. Further, we demonstrate
that this generalized van’t Hoff approximation based on
those energies accurately describes the temperature de-
pendence. The different roles of the real and imaginary
parts of the energy are elucidated.

We use as examples the vibrational sum-frequency gen-
eration (SFG) spectra of the air-water interface and the
water two-dimensional infrared (2D-IR) spectra. While
the temperature dependence of these nonlinear spectra
is significantly less well studied than their linear IR
and Raman counterparts, there has been notable work
in this direction. In particular, there have been both
measurements17–19 and simulations20–22 of the air-water
SFG spectrum at different temperatures. Similarly, ex-
perimental studies of the temperature dependence of the
2D-IR spectra of multiple different systems have been
reported,23–27 along with simulation results primarily fo-
cused on water.25,28–31 However, none of these studies
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have explored the energetic and entropic factors under-
lying the temperature dependence.

This work thus clarifies the thermodynamic driving
forces that shape nonlinear spectra and place them on
a sound footing by demonstrating their relation to the
temperature-dependent behavior. Though the focus here
is on vibrational spectra, the approach is general and
should also be applicable to electronic and electronic-
vibrational spectra. Moreover, while the energy and
entropy profiles in this work are generated from direct
calculation of the spectrum derivative with respect to
temperature,10,15 they can also be obtained from numer-
ical derivatives determined from experimental measure-
ments.

II. THEORY

We can consider the general case of a spectrum given
by an intensity I(ω) that is everywhere positive; one such
example would be the total intensity of a nonlinear spec-
troscopy measurement, e.g., the homodyne-detected SFG
spectrum. Then, one can define an effective free energy
given by,14–16

∆AI(ω) = −kBT ln I(ω). (1)

The approximation involved is the treatment of the spec-
tral intensity, I(ω), as a probability distribution in the
frequencies (or one of the frequencies in) ω despite the
fact that it generally includes non-trivial dynamical fac-
tors (and thus does not possess the qualities of a probabil-
ity distribution). Indeed, useful insight into non-Condon
and dynamical effects can be obtained by comparing
∆AI(ω) to the rigorous free energy for the underlying
frequency distribution, P (ω).15

A key motivation for invoking the effective free energy
is that it can be written in terms of effective internal
energy and entropy contributions,

∆AI(ω) = ∆UI(ω)− T∆SI(ω). (2)

It is straightfoward to show that15

∆UI(ω) = − 1

I(ω)

∂I(ω)

∂β
=

IH(ω)

I(ω)
, (3)

where β = 1/kBT and the last equality defines IH(ω).
The entropy can then be obtained as

∆SI(ω) =
1

T
[∆UI(ω)−∆AI(ω)]. (4)

These two factors, ∆UI(ω) and ∆SI(ω), are measures
of the effective thermodynamic driving forces that de-
termine the spectrum and, importantly, its temperature
dependence. While we have focused in previous work on
the calculation of these properties,14–16 they can be de-
termined experimentally through measurements of I(ω)
at different temperatures, and this has been done in a

number of cases for both IR and Raman spectra of water
and other liquids, as noted in Sec. I.

We note here that the focus of measurements has been
on the determination of ∆UI(ω), despite the importance
of entropic factors. Further, interpretations have at times
been misguided by treating I(ω) as the distribution of in-
stantaneous frequencies (it is not15) or making assump-
tions about how ∆UI(ω) relates to hydrogen-bond mak-
ing and breaking in water1,4 (they largely do not32). De-
spite these caveats, this kind of effective thermodynamic
analysis can be of great value in understanding the origins
of trends and gaining molecular insight. Unfortunately,
this approach has been largely overlooked and it should
be more widely adopted in spectroscopic studies.

In addition to the mechanistic insight that a thermo-
dynamic analysis can yield, one also obtains the ability
to predict behavior over a broad range of temperatures.
Namely, the effective internal energy and the spectrum
at a given temperature, Ta, can be used in a van’t Hoff
equation to predict the spectrum at a new temperature
Tb,

I(ω;Tb) = NI e
−(βb−βa)∆UI(ω) I(ω;Ta), (5)

where βa = 1/kBTa, βb = 1/kBTb, and NI a nor-
malizing factor that does not affect the line shape and
is present because the van’t Hoff transformation is not
norm-conserving.15 We have shown that such an ap-
proach can quantitatively predict the OH stretch IR spec-
trum for HOD in D2O from 280 to 360 K from simulations
of the spectrum and its temperature derivative at room
temperature.15

The approach described above cannot be directly ap-
plied to phase-resolved nonlinear spectra, like those for
SFG or 2D-IR, because the signals are both complex-
valued and not positive-definite. In particular, the latter
property leads to divergence in the calculation of the in-
ternal energy via Eq. (3). In the following, we present a
simple method for circumventing these issues.

In general, the product of a heterodyne-detected exper-
iment (or a full simulation) is a complex-valued function,

χ(ω) = χr(ω) + iχi(ω) = χm(ω)eiϕ(ω), (6)

with a total spectral intensity obtained from the square
modulus,

I(ω) = |χ(ω)|2 = χr(ω)
2 + χi(ω)

2 = χm(ω)2. (7)

Here, ω represents the frequency or frequencies upon
which the spectral signal depends. Note that χm and
ϕ are all real-valued as are χr(ω) = χm(ω) cosϕ(ω)
and χi(ω) = χm(ω) sinϕ(ω). It is possible to choose
χm(ω) > 0 everywhere (while χr and χi can be both
positive and negative) and we will adopt this choice in
the following.

In this notation, the effective thermodynamics under-
lying the total intensity of a nonlinear spectroscopy mea-
surement, Eq. (7), can be defined based on the magnitude
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of the complex spectral signal, χm(ω), i.e.,

∆AI(ω) = −kBT ln I(ω) = −2kBT lnχm(ω), (8)

with corresponding effective internal energy is then,

∆UI(ω) = − 1

I(ω)

∂I(ω)

∂β
= −2

∂ lnχm(ω)

∂β
, (9)

and ∆SI(ω) is still obtained from this result from Eq. (4).
Of course the total intensity for a nonlinear spectrum

such as vibrational SFG or 2D-IR is significantly less in-
teresting (and often harder to interpret) than the under-
lying phase-resolved components. We now discuss how
a complex-valued van’t Hoff relationship can be deter-
mined for the latter. The answer, in short, is to sim-
ply let the effective energies and entropies be themselves
complex-valued.

The total intensity free energy ∆AI(ω) is related to a
complex-valued effective free energy associated with the
underlying signal,

∆Aχ(ω) = −kBT lnχ(ω)

= −kBT lnχm(ω)− ikBTϕ(ω). (10)

It is then straightforward to show that

∆AI(ω) = ∆Aχ(ω) + ∆A∗
χ(ω) = 2Re[∆Aχ(ω)] (11)

where the ∗ indicates the complex conjugate and Re the
real part.

We can define complex-valued internal energy and en-
tropy contributions as

∆Aχ(ω) = ∆Uχ(ω)− T∆Sχ(ω). (12)

The entropy can be obtained from the temperature de-
pendence of the free energy as

∆Sχ(ω) = −∂∆Aχ(ω)

∂T
=

1

kBT 2

∂∆Aχ(ω)

∂β
. (13)

Inserting Eq. (10) into this expression yields, after some
algebra,

∆Sχ(ω) =
1

T

[
−∂ lnχ(ω)

∂β
−∆Aχ(ω)

]
, (14)

for the entropic contribution, which gives

∆Uχ(ω) = −∂ lnχ(ω)

∂β

= −∂ lnχm(ω)

∂β
− i

∂ϕ(ω)

∂β

≡ ∆Ur
χ(ω) + i∆U i

χ(ω) (15)

as the internal energy. Note that the real part ∆Ur
χ(ω) is

equal to ∆UI(ω)/2. In the Appendix, we derive expres-
sions for the two derivatives that make up the internal
energy. With this internal energy in hand, a van’t Hoff
approximation can then be applied,

χ(ω;Tb) = Nχ e−(βb−βa)∆Uχ(ω) χ(ω;Ta), (16)

where the only difference with the other van’t Hoff ex-
pressions presented here, Eq. (5), is that χ and ∆Uχ are
complex-valued. In Sec. IV, we demonstrate that this
equation accurately predicts the temperature dependence
of simulated SFG and 2D-IR spectra.

It is interesting to explore the implications of these
generalized, complex-valued relationships. In terms of
the real and imaginary parts of the spectrum, the van’t
Hoff relationship gives

χr(ω;Tb) = Nχ

[
χr(ω;Ta) cos[(βb − βa)∆U i

χ(ω)]

+ χi(ω;Ta) sin[(βb − βa)∆U i
χ(ω)]

]
× e−(βb−βa)∆Ur

χ(ω) (17)

for the real component and

χi(ω;Tb) = Nχ

[
χi(ω;Ta) cos[(βb − βa)∆U i

χ(ω)]

− χr(ω;Ta) sin[(βb − βa)∆U i
χ(ω)]

]
× e−(βb−βa)∆Ur

χ(ω) (18)

for the imaginary component. In these expressions, the
real part of the internal energy appears in a typical van’t
Hoff fashion while the imaginary part acts to rotate the
real part of the nonlinear spectrum into the imaginary
part and vice versa. Naturally, if the effective internal
energy is real, these reduce to the standard van’t Hoff
expressions for each component of the spectrum. In gen-
eral, however, they indicate that a component of the real
(imaginary) part of the nonlinear spectrum at one tem-
perature becomes part of the imaginary (real) part of the
spectrum at other temperatures.

III. COMPUTATIONAL METHODS

A. Calculation of Spectra

The SFG and 2D-IR spectra presented in Sec. IV are
calculated using the empirical, or electrostatic, mapping
approach that approximates the quantum mechanical
vibrational frequencies and transition dipole moments
from information directly available in a classical MD
simulation.33–36 Specifically, each quantity is written in
terms of an empirical relationship obtained by correlating
the results of explicit quantum mechanical calculations
on a cluster to the electric fields computed from classi-
cal MD models. We note that there are several other
effective approaches for calculating nonlinear vibrational
spectra,37–41 which could equally well be used.

For example, the fundamental transition frequency is
obtained as ω01 = c0+c1E+c2E2, where E is the (classical
MD) electric field component along the OH (OD) bond
evaluated at the H (D) atom position and c0, c1, and c2
are constants. The constants used in this work for the
transition frequency, dipole derivative (µ′), and coordi-
nate matrix element (x01) used to compute the transition
dipoles (µ01 = µ′ x01) are taken from Auer et al.35 For
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the 2D-IR spectra of HOD in H2O, the empirical maps
were taken from Carr et al.42

The resonant part of the SFG spectrum as a function of
the IR frequency is obtained as the Fourier transform,43

χijk(ωIR) = i

∫ ∞

0

eiωIRt φijk(t) dt, (19)

where

φijk(t) =
⟨
αij(0)µk(0) e

−i
∫ t
0

ω01(τ)dτ
⟩
e−t/2T1 , (20)

is the dipole-polarizability response function. Here, α
and µ are the 0 → 1 transition polarizability and dipole
moment, respectively. The polarization conditions for
the spectrum are labeled by ijk, which determine the
tensor and vector elements of α and µ; here, we consider
only the ssp polarization. The n = 1 vibrational life-
time is given by T1, which is taken to be 700 fs based on
experimental measurements;44 this does not account for
the variation in vibrational lifetime for OH groups de-
pending on their hydrogen-bond state at the interface.43
Note that in the calculation of φijk(t) OH groups with
the oxygen atom position below a z-coordinate chosen
near the center of the water slab have their contribution
multiplied by negative one. In addition, the approach
assumes the visible photon is non-resonant and ωvis thus
does not enter into the simulated spectrum.

The derivative of the SFG spectrum with respect to
temperature or, more precisely, β, can be calculated in
the same set of calculations that determine the spec-
trum itself. We have previously demonstrated this for
infrared,15,16 Raman,14 and 2D-IR30 spectra by applying
fluctuation theory for dynamics.45 Morita and co-workers
have pioneered such approaches,10–13 particularly ones
aimed at a numerical calculation of the derivative, and
applied them to SFG spectra.11 Briefly, it is straightfor-
ward to show that

∂χijk(ωIR)

∂β
= −i

∫ ∞

0

eiωIRt φH,ijk(t) dt, (21)

where

φH,ijk(t) =
⟨
δH(0)αij(0)µk(0) e

−i
∫ t
0

ω01(τ)dτ
⟩
e−t/2T1 .

(22)
Here, δH(0) = H(0)− ⟨H⟩ is the fluctuation of the total
energy from its average value at t = 0, with H the total
system Hamiltonian. We have neglected the tempera-
ture dependence of the vibrational lifetime T1, which is
known from experimental measurements25,46 to be weak;
for cases where this contribution is important, it can be
straightforwardly included.

The approach for calculating the 2D-IR spectra are
analogous, but more complicated as multiple time cor-
relation functions, each of which depends on three time
intervals, must be calculated. The details of the approach
used, including the calculation of the β derivatives, can
be found in our recent publication.30 The underlying
framework for the calculations of the spectra themselves
is that introduced by Skinner and co-workers.47,48

B. Molecular Dynamics

All MD simulations were performed using the Large-
Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).49,50 Each simulation consisted of 343
SPC/E water molecules51 in a rectangular simulation cell
of xy-dimensions of 21.725311 Å × 21.725311 Å and z-
dimension of 80 Å. The Lennard-Jones and Coulombic
interactions were cut off at 10.5 Å, and the long-range
electrostatics were included by a particle-particle parti-
cle mesh Ewald description with a tolerance of 10−4. A
time step of 1 fs was used in all cases.

The response function in Eq. (20) was calculated
using the trajectory sampling approach introduced
previously.52 Namely, a constant number, volume, and
temperature (NV T ) trajectory (with the temperature
controlled by a Nosé-Hoover thermostat53,54 with time
constant 100 fs) is propagated for 2 ns and restart files
are written every 1 ps. Each of the 2000 restart files
is then used to initiate a short, 10 ps, NV E trajectory
from which the SFG response function and its tempera-
ture derivative are calculated. In calculating the deriva-
tives, 20 such NV T trajectories at 298.15 K are used; for
reference spectra at other temperatures, one 1 ns NV T
trajectory is used (corresponding to 1000 NV E trajecto-
ries).

Errors in the computed results were obtained by block
averaging using 20 blocks (each block representing 2000
NV E trajectories) and are reported as 95% confidence
intervals using the Student’s t-distribution.55

The simulations to compute the 2D-IR spectra were
similar, but of 343 SPC/E water molecules in a cubic
simulation cell of side length 21.725311 Å. For this sys-
tem, four 2 ns NV T trajectories were propagated with
restart files written every 1 ps. The latter were used to
initiate 20 ps NV E trajectories for calculation of the re-
sponse function and its derivatives at 298.15 K. All other
simulation parameters are the same as described above.
The direct calculations at other temperatures were ob-
tained from 1000 NV E trajectories of length 10 ps each,
pulled from a 1 ns NV T trajectory.

IV. RESULTS

In this Section, we apply the generalized van’t Hoff
description to the vibrational SFG spectrum of the air-
water interface and the 2D-IR spectrum of water. In
both cases we make use of isotopic dilution to remove
effects of resonant vibrational coupling. These serve as
useful and general examples. We use the fluctuation the-
ory for dynamics45 approach to determine the derivative
of the spectra with respect to temperature as described
in Sec. III A, though experimentally (or computation-
ally) this can be done through measuring (calculating)
the spectra at multiple temperatures.
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FIG. 1: The real (blue) and imaginary (red) components
of the phase-resolved vibrational SFG spectrum of the

air-water interface are shown along with the total
intensity (black), Eq. (7). Shaded regions (smaller than
the linewidth here) indicate 95% confidence intervals.

A. Sum-Frequency Generation Spectra

1. Water-Air SFG Spectra

We first calculated the vibrational SFG spectrum for
the air-water interface system, described in Sec. III B, us-
ing the empirical mapping approach detailed in Sec. IIIA.
The real and imaginary parts of the spectrum for the ssp
polarization conditions are shown, together with the total
intensity, in Fig. 1. The results represent the spectrum
of dilute HOD in D2O as resonant vibrational coupling
is neglected in the description. The spectra are in good
agreement with those obtained by Auer and Skinner,43
which in turn are in accord with measurements by Ray-
mond et al.56

The imaginary part of the spectrum is the component
that carries the key information about the molecular sys-
tem. The sign of Im[χ(2)

ssp] reflects the direction of the OH
groups at that vibrational frequency. Thus, the positive
peak around 3720 cm−1 reflects OH groups at the inter-
face that are dangling into the air side of the interface.37

The remainder of Im[χ(2)
ssp] below ∼ 3665 cm−1 is nega-

tive, indicative of OH groups that are hydrogen bonded
to other water molecules and thus pointing into the wa-
ter. This negative-going signal is largest in magnitude
around 3400 cm−1, significantly redshifted from the dan-
gling OH moieties. The real part of the SFG spectrum
is less intuitive to interpret. It has a small negative peak
around 3750 cm−1, a large, bimodal peak between 3395
and 3730 cm−1, and a small amplitude, broad feature at
lower frequencies.

The total SFG intensity given by Eq. (7) is also shown

0

2

4

m
×

10
00

3000 3200 3400 3600 3800
IR (cm 1)

0

/2

3 /2

2

FIG. 2: The amplitude, χm (top panel, red line), and
the phase, ϕ (bottom panel, blue line), of the complex
SFG spectrum shown in Fig. 1 are shown as a function

of the vibrational frequency; see Eq. (6).

for comparison in Fig. 1. It has two peaks of roughly
equal intensity. The first is narrower and peaks at
3712 cm−1. The second is broad and peaks around
3420 cm−1. Of note here are the differences with Im[χ(2)

ssp]
in terms of the shifts in frequency of the dangling and
hydrogen-bonded peaks as well as the lack of informa-
tion about the directionality of the OH bonds contribut-
ing at different frequencies. This well-known behavior is
a key motivator for understanding the temperature de-
pendence of the complex SFG signal rather than only the
total intensity.

The real and imaginary components of the SFG spec-
trum can be converted into an amplitude, χm(ω), and
phase, ϕ(ω) as noted in Eq. (6). These are plotted in
Fig. 2 as a function of the vibrational frequency, ωIR. As
noted above, the amplitude χm is simply the square root
of the total (non-phase-resolved) SFG intensity which is
shown in Fig. 1. The phase (which we have chosen such
that it is continuous between −π and π) then determines
the sign of the real and imaginary parts of the spectrum.
That is, as ϕ passes 3π/2 and π/2 the real part of the
spectrum changes sign and as it passes π the imaginary
part changes sign.

2. Water-Air SFG Spectra Derivatives and Energies

As was shown in Sec. II, the energetic driving forces
that underlie the complex SFG spectra can be deter-
mined from the temperature (or, more precisely, β)
derivatives of the amplitude and phase shown in Fig. 2.
Equations for these are given in the Appendix in terms
of the β derivatives of the real and imaginary compo-
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FIG. 3: Derivatives with respect to β of the real (blue)
and imaginary (red) components of the phase-resolved
vibrational SFG spectrum of the air-water interface at

298.15 K are shown. Shaded regions indicate 95%
confidence intervals.

nents of the spectrum. The latter can be calculated us-
ing the fluctuation theory for dynamics approach, which
we have previously applied to the calculation of the tem-
perature derivatives of infrared,15,16 Raman,14 and two-
dimensional infrared photon echo spectra.30

The β derivatives of the real and imaginary compo-
nents of the air-water SFG spectrum at room temper-
ature were calculated according to the fluctuation the-
ory for dynamics approach outlined in Sec. III A. The
results are shown in Fig. 3. First consider the imaginary
component derivative, ∂Im[χ

(2)
ssp]/∂β. It can be roughly

viewed as composed of two sigmoidal peaks, one centered
around the dangling OH peak in the SFG spectrum and
the other around the hydrogen-bonded OH peak. We see
the derivative changes from positive to negative around
3724 cm−1, a frequency just higher than the maximum
of the dangling OH peak. The magnitude of the deriva-
tive is larger for the frequencies in the hydrogen-bonded
region. It reaches a minimum around 3375 cm−1 and
changes sign from negative to positive at ∼ 3450 cm−1.
Note that, because the SFG spectrum in this frequency
range is negative, the interpretation of the sign of the
derivative is also flipped from that in the positive-going
dangling OH region.

The derivative of the real component of the spec-
trum, ∂Re[χ

(2)
ssp]/∂β, has a large, asymmetric positive

peak between 3350 and 3575 cm−1, which peaks around
3440 cm−1, this is shifted to lower frequencies compared
to the positive peak in the real part of the SFG spec-
trum itself. At frequencies lower than this the derivative
is small and negative. At higher frequencies the deriva-
tive has a negative peak centered around 3724 cm−1,
i.e., around the frequency of the dangling OH peak in

1
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A
i , 

U
i , 

T
Si

A i

T S i

U i

3000 3200 3400 3600 3800
IR (cm 1)

2

1

0

1

2

A
r , 

U
r , 

T
Sr

Ar

T Sr

Ur

FIG. 4: The imaginary (top panel) and real (bottom
panel) part of the free energy ∆A (black lines), internal

energy ∆U (purple lines), and entropy contribution
−T∆S (cyan lines) are shown (in kcal/mol) for the

air-water SFG spectrum as a function of the vibrational
frequency.

Im[χ(2)
ssp].

Interpreting these derivatives is most straightforwardly
done by converting them to (complex-valued) internal en-
ergy and entropy contributions as described in Sec. II.
This gives insight into the thermodynamic driving forces
that determine the temperature dependence of the spec-
tra and hence the spectral features themselves. The
real and imaginary free energies, defined in Eq. (10), are
shown in Fig. 4. These simply reflect the negative log-
arithms of the amplitude and phase shown in Fig. 2, so
that ∆Ai

χ is monotonically decreasing with ωIR and ∆Ar
χ

has minima at ωIR = 3400 and 3720 cm−1 (the locations
of the peak maxima of the total SFG intensity shown in
Fig. 1).

The complex-valued internal energy and entropy con-
tributions to the free energy are also shown in Fig. 4.
We first consider the real component of the internal en-
ergy which determines the more traditional van’t Hoff
behavior of the spectrum, as shown in Eqs. (17) and
(18). There is a broad global minimum in ∆Ur

χ be-
tween ∼ 3340 and 3380 cm−1, indicative of the most
energetically favored OH frequencies in the SFG signal.
This falls in the range of the broad negative peak of the
imaginary SFG spectrum that corresponds to hydrogen-
bonded OHs pointing into the water. At lower frequen-
cies, ∆Ur

χ reaches a local maximum at 3240 cm−1 after
which it becomes relatively flat. Toward higher frequen-
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cies, the internal energy rises slowly and nearly monoton-
ically; it has a prominent local minimum at 3710 cm−1

in the dangling OH region, though the internal energy is
∼ 1.4 kcal/mol higher there than at the global minimum.

The real component of the entropic contribution,
−T∆Sr

χ illustrates a strong energy-entropy compensa-
tion effect. Namely, −T∆Sr

χ, is nearly a mirror image of
∆Ur

χ. It has a broad global maximum between ∼ 3340

and 3380 cm−1 that reflects significant ordering for these
energetically favorable hydrogen-bonding arrangements.
The entropy contribution then falls off to both higher and
lower frequencies in a way that largely cancels the inter-
nal energy. It is the incomplete cancellation of the two
contributions that determines the free energy. One par-
ticularly notable feature of the entropy profile is that it
has a distinct minimum in the dangling OH region around
3735 cm−1, suggestive of the more disordered state of
these non-hydrogen-bonded groups, that is not mirrored
in ∆Ur

χ. The different behaviors of ∆Ur
χ and −T∆Sr

χ in
this high frequency region lead to the dangling OH peak
(minimum) in the SFG spectrum (free energy).

The consequences of the imaginary components of the
internal energy and entropy contributions, shown in the
top panel of Fig. 4 are more challenging to interpret.
What is clear from Eqs. (17) and (18) is that ∆U i

χ acts,
as the temperature is changed, to rotate the real part
of the SFG spectrum into the imaginary part and vice
versa. Thus, the larger ∆U i

χ, the bigger this effect; if
∆U i

χ = 0, the behavior with temperature is determined
by traditional van’t Hoff relations for the real and imag-
inary components of the spectrum separately. We can
see from Fig. 4 that ∆U i

χ has a broad minimum between
∼ 3420 and 3520 cm−1. Moving to lower frequencies,
∆U i

χ rises through a wide maximum after which it de-
creases before rising to zero. On the higher frequency
side of the minimum, the internal energy rises steadily
through a local maximum around 3690 cm−1, which is
followed by a sharp local minimum at 3725 cm−1 (cor-
responding to the dangling OH peak). This behavior of
the internal energy is nearly perfectly mirrored by the en-
tropic contribution, −T∆Si

χ, except that ∆U i
χ decreases

more rapidly with increasing ωIR across the entire range
of frequencies, giving rise to the monotonically decaying
imaginary component of the free energy, ∆Ai

χ.

3. Generalized van’t Hoff Predictions

In addition to providing insight into the thermody-
namic driving forces determining the spectrum, the in-
ternal energy contributions can be used to predict the
nonlinear spectrum as a function of temperature. Here,
we illustrate this for the air-water SFG spectrum us-
ing the internal energies determined from the temper-
ature derivatives of the spectrum at room temperature
and presented in the previous section. Specifically, we
have applied Eqs. (17) and (18) using the complex-valued
SFG spectrum and the complex-valued internal energies

at 298.15 K shown in Figs. 1 and 4, respectively, to pre-
dict the spectrum at temperatures from 280 to 360 K.
Each spectrum is normalized so that the maximum is
equal to one.

The results are shown in Fig. 5 where they are com-
pared to direct calculations of the SFG spectrum at each
temperature. The agreement of the predicted spectra
based on the generalized van’t Hoff relation and the di-
rectly calculated ones are very good. The imaginary
component of the spectrum shows a modest 10 cm−1

blueshift of the dangling OH peak with increasing tem-
perature. The broad, negative-going peak corresponding
to hydrogen-bonded OHs is also blueshifted with temper-
ature from ∼ 3385 to 3450 cm−1 between 280 and 360 K
and it simultaneously broadens. The van’t Hoff predic-
tions differ only slightly from the direct calculations due
to statistical noise in the internal energy, e.g., note the
oscillations in the predicted spectrum around the directly
calculated result at 360 K.

The real component of the spectrum likewise is well-
predicted by the generalized van’t Hoff relation, except
for some error due to noise in the internal energy. The
negative peak in the dangling OH region exhibits only
a 3 cm−1 blueshift in this temperature range. How-
ever, the large, bimodal peak at intermediate frequencies
becomes more asymmetric with increasing temperature;
the peak on the blue side increases in prominence, but
does not shift, while the low-frequency peak blueshifts by
∼ 30 cm−1 and decreases in relative magnitude.

We can understand these trends in the temperature
dependence by isolating the effects of the real and imagi-
nary parts of the internal energy. This is shown in Fig. 6
where the SFG spectra are predicted as a function of
temperature assuming ∆U i

χ = 0. In other words, these
predictions assume that the imaginary part of the spec-
trum is determined only by the imaginary spectrum at
298.15 K and a van’t Hoff exponential scaling based on
∆Ur

χ and similarly for the real part of the spectrum. In
the context of Eqs. (17) and (18), this means there is no
rotation of the real part of the spectrum into the imagi-
nary part (and vice versa) as the temperature is changed.

The shortcomings of this approximation are clear from
Fig. 6 where the simplified predictions depart notably
from the directly calculated spectra. In particular, in the
imaginary part of the spectrum, while the dangling OH
peak is still well described, the blueshift of the negative-
going hydrogen-bonded peak is significantly underesti-
mated and its amplitude decreases too rapidly. This leads
to discrepancies in the 3400-3700 cm−1 range. Similarly,
in the real part of the spectrum, this approximate de-
scription underestimates the blueshift of the peak around
3500 cm−1 and its decrease in amplitude with increasing
temperature. In addition, the decreasing amplitude with
temperature of the peak in the dangling OH region is
underestimated.
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FIG. 5: The predicted a) imaginary and b) real components of the air-water SFG spectrum, χ(2)
ssp(ωIR), (solid lines)

are compared to directly calculated results at each temperature (dashed lines of the same color); each spectrum is
normalized to a maximum value of one. Results are shown for 280, 298, 320, 340, and 360 K (bottom to top; blue to

red); above 280 K each curve is shifted by 0.4 for clarity.
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FIG. 6: Same as Fig. 5 except that the predicted spectra are obtained by assuming ∆Ui(ωIR) = 0.

B. Two-Dimensional Infrared Spectra

1. HOD/H2O 2D-IR Spectra

We also considered the case of the 2D-IR spectra of
dilute HOD in H2O, probing the dynamics of the OD
stretch. The results of the empirical mapping-based sim-
ulations of the spectra at 298.15 K are shown in Fig. 7
for two different waiting times, Tw = 0 and 1 ps. The
real part of the spectrum, labeled as Re[χ], shows the
expected change with waiting time. Namely, the peaks
show significant correlation between the initial frequency,
ω1, and the final frequency, ω3, as they are elongated at
Tw = 0 ps in a direction parallel to the diagonal, but
are significantly more rounded and elongated parallel to
the ω1 axis at the 1 ps waiting time. This is consis-
tent with the relatively rapid spectral diffusion time of
∼ 1− 1.5 ps.57

In the context of the approach described in Sec. II,

we also plot the imaginary component of the spectrum,
Im[χ] in Fig. 7, which exhibits a different structure than
the real contribution, but also shows the loss of correla-
tion between the initial and final frequency at the longer
waiting time.

The real and imaginary parts of the 2D-IR spectrum
can be converted to a magnitude χm and phase ϕ, as
given in Eq. (6), and these are also plotted in Fig. 7.
The magnitude χm(ω1, ω3) is positive everywhere and
centered around the peak for the OD stretch in the IR
spectrum.30,42 It also displays the loss of correlation with
waiting time between the initial and final frequencies
through a change in the elongation of the central peak.
The sign of the real and imaginary spectra are deter-
mined by the phase ϕ(ω1, ω3), which reaches π/2 at the
nodal line of Re[χ] that separates the 0 → 1 and 1 → 2
peaks. Thus, while the general feature that ϕ increases
monotonically with ω3 is observed at both waiting times,
the slope of the contours approaches zero as Tw grows.
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FIG. 7: Calculated 2D-IR spectra for HOD/H2O at 298.15 K are plotted; from left to right are shown the real
component, Re[χ], the imaginary component, Im[χ], and the magnitude, χm, and phase, ϕ, of the complex signal.

Results are shown for waiting times of a) Tw = 0 ps, and b) Tw = 1 ps.

2. HOD/H2O 2D-IR Spectra Derivatives and Energies

As with the SFG spectra, the derivatives of the 2D-IR
spectra can be obtained from a time correlation function
that includes both the normal spectral response function
correlated with the fluctuation of the total system en-
ergy. We have previously demonstrated this for 2D-IR
spectra of HOD/H2O with and without urea.30 Here, we
use the calculated derivatives with Eq. (15) to determine
the real and imaginary components of the effective in-
ternal energy of the spectra. These are shown in Fig. 8
for Tw = 0 and 1 ps. (Note that, as in the case of IR
spectra, these effective energies can exhibit effects due
to subtle line shape changes and greater statistical noise
that appear outside the main peaks of the spectra.)

The interpretation of these effective internal energy
surfaces is not as straightforward as the one-dimensional
profiles for IR,15 Raman,14 or SFG spectra (Fig. 4). Cer-
tainly, greater insight will be developed by examination
of such surfaces for a variety of different systems. At this
point, however, one perspective is to view them in the
context of the generalized van’t Hoff relation (discussed
in greater detail below). Then, ∆Ur(ω1, ω3) reflects the
favorability of initial and final frequency pairs as a func-
tion of temperature: Lower ∆Ur values indicate regions
of the spectrum that will increase in intensity as tem-
perature is lowered while larger magnitudes of ∆Ui are
associated with greater rotation of the real and imaginary
components of the spectra with temperature changes.

Within this viewpoint, we see that the ∆Ur surfaces
plotted in Fig. 8 do not share the same shape as the 2D-
IR spectra or the magnitude χm. Rather, they show a
broad minimum valley that encompasses both the 0 → 1
and 1 → 2 peaks in Re[χ] and extends down to lower
values of ω3 (the final, or probed, frequency). This min-
imum value becomes more parallel to the ω3 axis at the
longer waiting time. The ∆Ur rises outside of this region,

but most strongly as the initial frequency, ω1 is increased.
The imaginary component of the internal energy shows

a different structure. It also does not follow the shape of
the spectra themselves, and changes sign moving across
Re[χ] peaks. It tends to be negative in the region of the
0 → 1 peak of the real spectrum with the positive ∆Ui

values overlapping primarily with the 1 → 2 peak. Gen-
erally, ∆Ui is small in magnitude, but as will be shown
below, significant.

The corresponding entropic contributions are also
shown in Fig. 8. These, combined with the internal
energies give the effective complex free energy, which
is equivalent to the 2D-IR spectra through inversion of
Eq. (10). In the generalized van’t Hoff interpretation,
the effective entropies correspond to the temperature-
independent part of the spectrum as can be seen by their
absence in Eq. (16). The real component of the entropy,
−T∆Sr, tends to be most favorable at higher ω1 and ω3,
corresponding to weaker, but more loosely constrained,
hydrogen bonds. The imaginary component generally de-
creases with increasing ω3 and is lowest for higher values
of this final frequency.

3. Generalized van’t Hoff Predictions

We have used the effective internal energies for the 2D-
IR spectra, given in Fig. 8, to predict the temperature de-
pendent spectra (real components) from 280−360 K. The
inputs are the spectra at 298.15 K and the effective inter-
nal energies; we normalize the resulting predicted 2D-IR
spectra to be one at the maximum value. These gener-
alized van’t Hoff-predicted spectra are shown in Fig. 9
where they are compared to spectra directly calculated
from simulations at each temperature.

The predicted spectra are in excellent agreement with
the direct calculations across the full range of tempera-
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FIG. 9: Predicted real component of the 2D-IR spectra for HOD/H2O using the generalized van’t Hoff approach
(colored contours) are compared to directly calculated spectra (dashed black contour lines) at 280, 320, 340, and

360 K. Results are shown for waiting times of a) Tw = 0 ps, and b) Tw = 1 ps.

tures. At 280 and 320 K the generalized van’t Hoff spec-
tra are in essentially perfect agreement with the directly
calculated results. At 340 and 360 K we see some small
differences between the two, primarily in the negative-
going 1 → 2 peak. This is likely due to incomplete con-
vergence in the effective internal energy (which is magni-
fied by its presence in the exponential of the van’t Hoff
expression, Eq. (16).

It is also useful to compare these results to our re-
cent efforts on the temperature dependence of 2D-IR
spectra.30 We observed that a Taylor series expansion in

the inverse temperature, β, is adequate at nearby temper-
atures (within ∼ 20 K), but is a poor description outside
this range. This Taylor series approach represents the
first-order approximation to the generalized van’t Hoff
relation presented in this work.

It is useful to probe the “generalized” aspect of the
present van’t Hoff relation given by Eq. (16). We do this
in the same way as for the SFG spectra, by assuming
that ∆Ui = 0 such that the generalized van’t Hoff pre-
diction reduces to a traditional van’t Hoff relationship
with no rotation of the real and imaginary components
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FIG. 10: Same as Fig. 9 except the predicted spectra assume ∆Ui(ω1, ω3) = 0.

of the spectra. These results are shown in Fig. 10 for
temperatures of 280 − 360 K. We can see that this nor-
mal van’t Hoff relation predicts the spectra reasonably
well for 280 and 320 K, but does increasingly poorer at
higher temperatures. In particular, it predicts that the
peak positions for both the 0 → 1 and 1 → 2 peaks shift
further to the blue for the initial frequency ω1. It simi-
larly overpredicts the blueshift for the 0 → 1 peak in ω3

while exhibiting too large a redshift in the 1 → 2 peak in
the final frequency.

V. CONCLUSIONS

We have shown how the van’t Hoff relationship can
be generalized to predict the temperature dependence of
nonlinear, complex-valued spectra. The central features
of this approach are an effective free energy as a func-
tion of frequency that is determined directly from the
spectra and corresponding internal energy and entropic
contributions that can be obtained from the tempera-
ture dependence of the spectra. These provide both key
insight into the effective thermodynamic driving forces
that determine a spectrum as well as the ability to pre-
dict the spectrum over a wide range of temperatures.
The changes with temperature arise from two factors.
The real component of the internal energy acts in a tra-
ditional van’t Hoff exponential scaling with inverse tem-
perature while the imaginary component serves to rotate
the real component of the spectrum into the imaginary
component with temperature and vice versa.

We illustrate the approach on the vibrational sum-
frequency generation spectrum of the air-water interface.
We show that the generalized van’t Hoff relationship ac-
curately predicts SFG and 2D-IR spectra at tempera-
tures from 280 to 360 K based only on the spectra and
their temperature derivatives at room temperature. The

derivative is, in this work, obtained from a fluctuation
theory for dynamics approach; this approach is general
and we have, for example, recently applied it to calcula-
tion of the temperature derivatives of 2D-IR spectra.30
However, the derivatives can also be obtained numeri-
cally from measured or calculated spectra at nearby tem-
peratures. Thus, this approach can be applied to the
results of experimental measurements. In this context,
the complex-valued internal energies and corresponding
entropies obtained from such an analysis – though they
are effective ones because the spectra necessarily include
dynamical factors – can be viewed as the fundamental
measures of the thermodynamic driving forces that deter-
mine the spectral features. While we have used SFG and
2D-IR spectra as an illustration, the approach is general
and can be straightforwardly applied to other nonlinear
spectra, including those probing vibrational, electronic,
or vibrational and electronic motions.

These results add to other recent evidence providing
strong impetus for greater focus on the temperature de-
pendence of spectra. Such studies, both experimental
and computational, can improve our fundamental under-
standing of the factors determining the spectra.
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APPENDIX

Here we relate the β derivatives of χr and χi to those
of χm and ϕ. We first note that

∂χr(ω)

∂β
=

∂

∂β
[χm(ω) cosϕ(ω)]

=
∂χm(ω)

∂β
cosϕ(ω)− χm(ω) sinϕ(ω)

∂ϕ(ω)

∂β

=
1

χm(ω)

∂χm(ω)

∂β
χr(ω)− χi(ω)

∂ϕ(ω)

∂β
. (A1)

Similarly, we have

∂χi(ω)

∂β
=

∂

∂β
[χm(ω) sinϕ(ω)]

=
1

χm(ω)

∂χm(ω)

∂β
χi(ω) + χr(ω)

∂ϕ(ω)

∂β
.(A2)

Using these two results, one can show that

χr(ω)
∂χr(ω)

∂β
+ χi(ω)

∂χi(ω)

∂β
= I(ω)

∂ lnχm(ω)

∂β
(A3)

and

χr(ω)
∂χi(ω)

∂β
− χi(ω)

∂χr(ω)

∂β
= I(ω)

∂ϕ(ω)

∂β
. (A4)

This gives us expressions for the derivatives of χm and ϕ
with respect to β as

∂ lnχm(ω)

∂β
=

1

I(ω)

[
χr(ω)

∂χr(ω)

∂β
+ χi(ω)

∂χi(ω)

∂β

]
,

(A5)

and

∂ϕ(ω)

∂β
=

1

I(ω)

[
χr(ω)

∂χi(ω)

∂β
− χi(ω)

∂χr(ω)

∂β

]
. (A6)

These equations show how the derivatives for the χm

and ϕ can be obtained from the directly measured real
and imaginary parts of the nonlinear spectrum and their
derivatives.
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