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ABSTRACT

Travel time to health facilities is one of the most important factors in evaluating health disparity. Previous
extensive research has primarily leveraged the driving time to the nearest health facility to gauge travel time.
However, such ideal travel time (ITT) may not accurately represent real individual travel time to health services
and is often underestimated. This study aims to systematically understand such gaps by comparing ITT to actual
travel time (ATT) derived from smartphone-based human mobility data and further identifying how various
population groups across regions are most likely to be affected. This study takes mental health as an example and
compares ATT with ITT to mental health facilities. Results indicate that ITT and ATT demonstrate significant
disparities between urban and rural areas. ITT is consistently underestimated across the contiguous US. We
compare travel times among diverse sociodemographic groups across eight geographical regions. The findings
suggest that different age groups have similar travel times to mental health facilities. However, racial groups
exhibit varied travel times. Hispanics have a larger percentage of the population experiencing longer ATT than
ITT. We also employed spatial and non-spatial regression models, such as Ordinary Least Squares, Spatial Lag
Model, and Spatial Error Model, to quantify the correlation between travel times and socioeconomic status. The
results revealed that the proportion of older adults and high school dropouts positively correlates with travel
times in most regions. Areas with more non-Hispanics show positive correlations with both travel times. Overall,
this study reveals pronounced discrepancies between ITT and ATT, underscoring the importance of using
smartphone-derived ATT to measure health accessibility.

1. Introduction

considering the geographical distribution of healthcare facilities, pa-
tients’ residential locations, and their transportation resources (Chen

Access to timely, high-quality, and affordable health services is
essential for all individuals, regardless of their sociodemographic or
economic status (WHO, 2022). A lack of access can result in poor health
outcomes (Alegana et al., 2018; Zipfel et al., 2021) and healthcare dis-
parities (Rader et al., 2022; Yuan et al., 2023). Health access is evaluated
in five dimensions, also known as the 5 A’s: affordability, accommoda-
tion, acceptance, availability, and accessibility (Penchansky and
Thomas, 1981). This framework is critical for assessing the effectiveness
of health policy and service delivery, highlighting disparities in
healthcare access, and guiding policy and resource allocation to improve
health outcomes.

Accessibility refers to the physical access to healthcare services,
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and Wang, 2022). Travel time, reflecting the inequality of access to and
efficiency in the usage of health facilities, is one of the most important
factors in evaluating geographical accessibility (Hiscock et al., 2008;
Onitilo et al., 2014). Previous research has focused on utilizing travel
time to the nearest health facility as a proximity metric to assess the
accessibility of health services (Blanford et al., 2012; Huerta Munoz and
Kéllestal, 2012). For instance, Ghorbanzadeh et al. (2020) analyzed
accessibility metrics by calculating travel times from the centroids of
census population block groups to the closest mental health facilities to
assess spatial accessibility in Florida. Similarly, Khazanchi et al. (2022)
computed drive times from the center of each census tract to the ten
nearest COVID-19 Test-to-Treat sites, subsequently identifying the
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shortest time to assess accessibility for various subpopulations defined
by race, ethnicity, age, and rurality. More recently, Rauch et al. (2023)
estimated the accessibility between residences and the nearest facilities
by individual driving time and public transport, uncovering spatial in-
equalities for elderly women in access to preventive breast cancer care
services in Bavaria. The metric of travel time to the nearest health fa-
cilities has also been applied to access to SARS-CoV-2 testing sites (Rader
et al., 2020) and Emergency Medical Services (EMS), such as stroke
centers (Rauch et al., 2021). However, this proximity metric has sig-
nificant limitations, as it assumes people only access the nearest
healthcare facilities, without accounting for factors like traffic and
weather conditions, language barriers, or economic challenges. Conse-
quently, relying exclusively on proximity to gauge accessibility can lead
to biased and inequitable evaluations, particularly in healthcare service
selection.

Several studies have explored approaches to improve the accuracy of
travel time measurement and compared these with proximity-based
metrics. For instance, Zhu and Levinson (2015) used GPS (Global Posi-
tioning System) devices to accurately monitor travelers’ trajectories for
three weeks and found that approximately two-thirds of participants did
not use the shortest travel time path. Similarly, Tang and Levinson
(2018) found that most commuters prefer longer routes than the shortest
available path. Alford-Teaster et al. (2016) employed survey data from
Breast Cancer Surveillance Consortium and geocoded participants street
level addresses to calculate actual travel time to mammography facil-
ities. The results revealed that only 35% of women in the study popu-
lation visited their closest facility. Remarkably, approximately 75% of
the women chose a facility within a 5-min travel time, but not neces-
sarily the nearest one. Researchers have identified various factors
influencing route decisions, including estimated traffic time (Abdel-Aty
et al., 1997), travel cost, distances, traffic conditions, drivers’ habits
(Chen et al., 2001), and the reliability of travel time (Train and Wilson,
2008). Beyond GPS and survey-based methods, this study aims to
employ a novel data source-smartphone user mobility data-to measure
actual travel time to health services with greater accuracy, offering a
more comprehensive and realistic understanding of healthcare
accessibility.

In recent years, especially since the COVID-19 pandemic, the utili-
zation of smartphone user mobility data has become increasingly
prevalent. This trend is underscored by the comprehensive coverage of
mobility data offered by SafeGraph, capturing approximately 10% of all
GPS-enabled mobile devices in the US, thus providing a well-represented
cross-section of various sociodemographic groups (Hu et al., 2021; Xu
et al., 2023; Zhang et al., 2022). The growing reliance on mobile data is
crucial in enhancing our understanding and analyzing health access
behavior. For example, Jing et al. (2023) used mobile phone-based
visitation data to estimate average mental health utilization, revealing
disparities among immigrant concentrations across the US. Similarly,
Wei et al. (2023) tracked social distancing behavior to discover dis-
parities in COVID-19 transmission across communities with different
sociodemographic and economic statuses. Owuor and Hochmair (2023)
leveraged smartphone user visitation data to discover patterns of visi-
tation counts to several POI categories during the pandemic in Florida
and California. Li et al. (2023) revealed distinct geographic disparities in
visitation interruptions at Ryan White HIV facilities in the Deep South
during the COVID-19 pandemic using mobile device-based visitation.
Zeng et al. (2022) focused on revealing the geospatial disparities in
population mobility and aging in local areas in relation to COVID-19
transmission in the Deep South. Beyond the visitation pattern, smart-
phone data have been instrumental in calculating travel times, a critical
metric for assessing health facility access (Nilforoshan et al., 2023).

Mental health services are essential components of health care,
connected to overall well-being (Bennett et al., 2015; Sartorius, 2007),
and directly bearing on the quality of life (Whiteford et al., 2013). The
demand for mental health services has been growing and drawing
increasing attention from scholars (Yang and Wang, 2023). According to
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the National Alliance on Mental Illness (NAMI), in 2021, 1 in 5 adults in
the US experienced mental illness each year (NAMI, 2023). However, in
2020, 48% of U.S. adults in nonmetropolitan areas with a mental illness
received treatment, while 62% of those with a serious mental illness
sought treatment (NAMI, 2023). This underscores the critical need for
accessible mental health facilities. Scholarly concern is growing over the
unequal access to these facilities (Smith-East and Neff, 2020). For
example, Cummings et al. (2017) found that the lowest-income com-
munities have a lower rate of office-based practices of mental health
specialists, including physicians and nonphysicians, but a higher rate of
outpatient mental health treatment facilities. Ghorbanzadeh et al.
(2020) assessed accessibility in Florida by calculating weighted scores
based on travel time to mental health facilities, identifying significant
access gaps, especially in the rural, demographically diverse northwest.
To ensure mental health equality, accessibility to mental health facilities
is fundamental. Moreover, accurately measuring access, especially the
method used to calculate travel time, is essential in determining esti-
mates of accessibility. Therefore, this study will utilize smartphone
mobility data to measure accurate driving time to mental health
facilities.

Accurately assessing travel time is pivotal for advancing health eq-
uity. Traditional methodologies frequently gauge health access dispar-
ities by measuring travel time to the nearest facilities. However, these
idealized metrics often fail to consider the practical preferences that
individuals exhibit when selecting health services. To bridge this gap,
our research leverages extensive smartphone user mobility data to
introduce a sophisticated travel metric, precisely measuring the actual
travel time to health services. Focusing on mental health as a case study,
our analysis compares ideal travel time (ITT) to the nearest health fa-
cility and smartphone-derived actual travel time (ATT) at the census
tract and state levels across the United States (US). We further employ
bivariate choropleth maps and bivariate LISA (Local Indicators of Spatial
Association) to provide a detailed visualization of spatial patterns and
associations. Moreover, our study delves deeper into the interplay be-
tween sociodemographic factors and travel time disparities. We
comprehensively identified discrepancies between ITT and ATT by
employing an integrated approach that combines both spatial and non-
spatial regression analyses. More importantly, we provided guidance to
policymakers for designing and implementing precise, data-driven in-
terventions to enhance health equity.

This paper is structured into five sections. The first section provides
an overview of previous studies and the objectives of our paper. The
second section describes the data and methodology used to calculate
travel times and perform statistical analysis. Following this, we
comprehensively compare the results between ITT and ATT. The fourth
section delves into the potential findings and their societal implications.
Finally, the conclusion summarizes limitations and proposes directions
for future research.

2. Data and methods
2.1. Data

2.1.1. Mental health facilities

SafeGraph is a company that monitors about 10% of GPS-enabled
mobile devices in the US (Li et al., 2023). The location of mental
health facilities is obtained from the SafeGraph POI (Points of Interest)
dataset (SafeGraph, 2023), which is distinguished by its extensive
collection of basic and enriched attributes for each POI. Basic attributes
include the POI’s name, address, geographical coordinates (latitude and
longitude), category, brand identification, and NAICS (North American
Industry Classification System) code. In addition, the dataset is further
enriched with various additional attributes, including operational hours,
website URLSs, and contact phone numbers, offering deeper insights into
the accessibility and availability of mental health services.

Furthermore, the dataset’s geometry attributes offer precise
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information regarding the physical dimensions and shapes of the POIs.
These attributes ensure precise geographic coordinates of the centroid of
the POI, which can be used to measure geographic access from the POI to
neighborhoods. In this study, we specifically focus on mental health
facilities classified under two NAICS codes: 621112, representing office-
based practices of mental health specialist physicians, and 621330,
indicating office-based practices of non-physician mental health pro-
fessionals. Using the SafeGraph POI dataset in 2023, we extracted
113,904 mental health facilities across the contiguous US. Fig. 1 shows
the spatial distribution of these facilities, revealing a significant con-
centration in urban areas.

2.1.2. Health facilities visit pattern data

The SafeGraph POI visit pattern dataset includes the total number of
visits to a POIL, the duration of these visits, the distance traveled by
visitors, and the origins of these visitors at the census block group level.
The determination of each device’s household block group is achieved
by analyzing six weeks’ data collected during nighttime hours, ensuring
a high degree of accuracy in identifying the residential base of mobile
device users (Li et al., 2024). This dataset is gathered from sources that
include anonymized and aggregated location data from mobile devices.
Notably, as highlighted in their 2019 report, SafeGraph’s dataset dem-
onstrates a high correlation with the actual US Census population fig-
ures, illustrating its strong representation of real-world patterns
(SafeGraph, 2019). In this study, the POI visit pattern dataset is instru-
mental in calculating travel time to mental health facilities.

2.1.3. Sociodemographic data

Sociodemographic and economic data are associated with health
outcomes (Clouston et al., 2021; Wei et al., 2023) and the inequality of
accessibility to healthcare facilities (Khazanchi et al., 2022; Rauch et al.,
2023). For example, factors such as age, race/ethnicity, income,
employment status, education, and rural/urban status have been
extensively studied as variables associated with health outcomes (Jing
et al., 2023; Yang and Wang, 2023) and health inequality (Holt and
Vinopal, 2023). In addition to these variables, the relationship between
limited English proficiency and health outcomes and disparities has also
been reviewed as an independent risk factor (Eneriz-Wiemer et al.,
2014; Wilson et al., 2005). In this study, demographic factors include the
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percentage of the population in different age groups, the percentages of
various racial groups, including White, Black, American Indian and
Alaska Native (AIAN), and Asian, and the percentages of ethnic groups,
including Hispanic and Non-Hispanic populations. Additionally, socio-
economic factors include median household income, unemployment
rate, percentage of the population over 25 who are high school dropouts,
rural-urban status, and percentage of households limited in English
proficiency. These sociodemographic and economic data are from the
2015 US Census American Community Survey (ACS, 2023). Table 1
summarizes the definition and explanation of variables.

2.1.4. Region division

The rural and urban status plays a critical role in many studies
regarding accessibility and travel time (Haggerty et al., 2014; Khazanchi
et al., 2022; Rauch et al., 2023). The definition of rural and urban status
in this study refers to the 2010 US Department of Agriculture Economic
Research Service Rural-Urban Commuting Area codes (USDA, 2023),
which classifies census tracts using measures of population density, ur-
banization, and daily commuting into 10 primary codes. These codes
contain metropolitan cores (codes 1-3) as census tract equivalents of
urbanized areas, micropolitan areas (codes 4-6), small towns (cores
7-9), and rural areas (code 10). In this paper, we assigned metropolitan
and micropolitan areas (codes 1-6) to urban areas while others to rural
areas (see Fig. 1). To further analyze the difference in the association
between travel time and sociodemographic factors in subregions, we
divided the contiguous US into subregions with similar economic and
social conditions. The subregion division uses the Bureau of Economic
Analysis Regions (BEA, 2020), where the contiguous US is divided into 8
subregions: New England, Great Lakes, Southwest, Mideast, Plains, Far
West, Southeast, and Rocky Mountain, as shown in Fig. 1.

2.2. Methodology

2.2.1. Ideal travel time (ITT) to the nearest facilities

This study defines the ITT as the shortest driving time to the nearest
mental health facility. Following the method proposed by Khazanchi
et al. (2022), we estimate the ITT in two main steps. First, we calculate
the population centroid at the census tract level from block groups:

Mental Health Facility

0

250 500 1,000Miles

Fig. 1. Overview of study area, distribution of mental health facility, subregions, and urban areas.
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Table 1
Summary of explanatory variables used in this study.
Variable Category Variable Name Definition Source
Dependent Travel time ITT The minimum travel time from the population centroid of each census tract ~ Open Source Routing Machine
variable to the 10 nearest facilities (minutes) (OSRM)
ATT The smartphone users’ mobility data derived travel time weighted from the
population centroid of each census tract to the recorded facility (minutes)
Independent Economic Median household Median household income in the past 12 months (dollars) 2015 US Census American
Variable income Community Survey
Race White (%) Percentage of the White population (%)
Black (%) Percentage of the Black or African American population (%)
AIAN(%) Percentage of the American Indian and Alaska Native alone population (%)
Asian (%) Percentage of the Asian population (%)
Ethnicity Hispanic (%) Percentage of Hispanic or Latino population (%)
Non-Hispanic (%) Percentage of Non-Hispanic or Non-Latino population (%)
Demographics ~ Age 65+ (%) Percentage of the population over 65 years old (%)

Unemployment rate (%)
High school dropouts
(%)

Households limited in
English (%)

isUrban Urban/rural status

Percentage of unemployed population (%)
Percentage of population does not have high school diploma (%)

Percentage of Limited English speaking households (%)

2010 US Department of Agriculture
Economic Research Service

m m m m
X = jlxjpj/zj'lpj’ Y = Zj:l Yij/Zijj (€]

where Xj, Y; is the longitude and latitude of the centroid of block group j,
P; is the population of block group j, and m is the number of block groups
within census tract i.

Second, we select the top 10 nearest health facilities from the pop-
ulation centroid and use Open Source Routing Machine (OSRM) to
calculate the driving time T, from the population centroid to the 10
closest facilities. OSRM is a routing service based on ’OpenStreetMap’
data, providing routes, isochrones, travel time and distance matrices
(Huber and Rust, 2016). We get the minimum travel time among travel
times from the population centroid to 10 selected facilities (Khazanchi
et al., 2022) based on the equation below:

ITT; = min(T,) (n=1,2,3,...,9,10) )
2.2.2. Actual travel time (ATT) derived from smartphone user mobility
data

The travel time derived from smartphone user mobility is considered
ATT. As introduced in Section 2.1.2, SafeGraph data enables us to
calculate the travel time from visitors’ home block groups to mental
health facilities. Initially, to reduce potential data noise, we removed
block groups where the number of visitors to the mental health facility
equals or less than 2. Then, we calculate the weighted travel time for the
block group j as follows:

TBlock; = Y . TiVi / SV 3)

where Ty is the travel time from block group j to mental health facility k;
Vy is the number of visitors to mental health facility k; n is the number of
health facilities that visitors in block group j have visited.

Based on the travel time in block groups, we further calculate the
weighted travel time for the census tract as follows:

ATT, = ZJ_ZITBlocijj / ijlvj 0)

where TBlock; is the weighted travel time for block group j; V; is the
number of visitors in block group j; m is the number of block groups
within census tract i.

2.2.3. Spatial clustering analysis

Bivariate local indicator of spatial association (LISA) clustering is a
multivariate spatial correlation indicator that measures local spatial
autocorrelation (Anselin et al., 2002). It has been used to evaluate
spatial disparity and transit equity (Jin et al., 2022; Liang et al., 2023).
In this study, we use bivariate LISA to evaluate spatial disparity by
examining the spatial correlation between actual and ideal driving times
at the census tract level across the contiguous US. The bivariate LISA
calculates the local Moran’s I statistic as shown below:

L= ITTl-Zj:VVUATTj )

where ITT; is the ideal travel time of the census block i, ATT; is the ATT
of the census block j, and Wj is the neighborhood weight matrix
generated by queen contiguity weight.

Positive values for the local Moran’s I indicate a positive spatial as-
sociation pattern, while negative values indicate a negative association.
The output Cluster Map exhibits the local spatial correlation patterns by
classifying all observations into five categories: non-significant, High-
High, Low-Low, Low-High, and High-Low. A 5% significance level is
used to determine the statistical significance of the calculation, with
groups having a p-value above this threshold considered not significant.
High-High clusters indicate that areas with high values of ITT are
located near high values of ATT. Conversely, Low-Low clusters indicate
areas with low values of ITT are located near areas with low values of
ATT. High-Low clusters identify areas with high values of ITT that are
located near areas with low values of ATT, while Low-High clusters
identify areas with low values of ITT that are located near areas with
high values of ATT. Specifically, Low-High clusters are areas where
inequity is more pronounced, as people must travel significantly farther
to reach health facilities that meet their needs compared to the closest
available options. The bivariate LISA is conducted using GeoDa 1.20
(Anselin et al., 2010).

2.2.4. Spatial regression analysis

To explore the contributions of representative sociodemographic and
economic factors described above to travel times, we performed
regression analysis for different regions and overall contiguous US at the
census tract level. Traditional linear regression models, such as Ordinary
Least Squares (OLS), are limited by their assumption of data linearity
and do not account for potential spatial dependencies in the data.
Therefore, this study utilized spatial regression models, specifically the
Spatial Lag Model (SLM) and Spatial Error Model (SEM), to address
spatial heterogeneity within the study area. The SLM focuses on the
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dependencies of variables in one area with those in surrounding areas,
whereas the SEM accounts for the correlations between the error terms
of an area and the errors in its neighboring areas. In this study, ITT, ATT,
and the difference between ITT and ATT were analyzed using three
regression models (i.e., OLS, SLM, and SEM), with the sub-datasets
separated by regions.

Prior to running regression models, we checked for the multi-
collinearity using the Variance Inflation Factor (VIF) and discovered no
collinearity due to low VIF values (see Supplementary Table 1). Then we
run the OLS regression model. Before performing the spatial regression
analysis, it is essential to examine spatial correlation by calculating
Global Moran’s I, which ranges from —1 and 1. The value of Moran’s I
closer to 1 indicates a stronger spatial clustering, suggesting that similar
values are more likely to be found close to each other. Conversely, a
value closer to —1 indicates strong negative spatial autocorrelation,
where dissimilar values are adjacent, reflecting a dispersed pattern. A
value close to 0 indicates no spatial autocorrelation, meaning the values
are randomly distributed across the study area with no pattern of clus-
tering or dispersion. Global Moran’s I was calculated for both ITT and
ATT, with results of 0.4745 and 0.4235, respectively. These outcomes
imply moderate spatial autocorrelation in the residuals, indicating that
spatial regression analysis is necessary. Therefore, we conducted the
SLM (Anselin, 1988) to consider the influence of neighboring values of
the dependent variable on the dependent variable itself, following the
equation:

Yi = Xifp + poiyj; + 4y (6)

where y; is the dependent variable (e.g., travel time), x; is the inde-
pendent variables (e.g., sociodemographic), 3 represents the regression
coefficients, p is the spatial coefficient, w; is the weights matrix defining
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the spatial relationships between locations, w;y; is the spatially lagged
dependent variable for the weights matrix w;, and y; is a vector of error
terms.

In addition to the SLM, we also conducted the SEM. The results of the
SLM are presented in the results section, while the outcomes of linear
regression and SEM are included in Supplementary Tables 2-4. We
selected the SLM as the best-performing model based on its superior
performance, as detailed in Supplementary Tables 5-7. Both linear and
spatial regression analyses, along with the computation of Global Mor-
an’s I, were performed using GeoDa 1.20 (Anselin et al., 2010).

3. Result
3.1. Ideal travel time and actual travel time comparison

We visualized ITT and ATT through a bivariate choropleth map at the
census tract level, as illustrated in Fig. 2. It is observed that ITT and ATT
tend to be higher in rural areas compared to urban settings. Specifically,
in urban areas, travel times exhibit greater consistency, whereas rural
regions display significant variability. For instance, metropolitan areas
within California demonstrate lower ATT and ITT, contrasted by sur-
rounding rural areas marked in pink on the map, indicating significantly
higher ATT relative to ITT. In the Southwest, only metropolitan areas in
Texas report both travel times within 30 min, with other areas also
experiencing higher ATT than ITT. The Plains region is predominantly
rural, with both ATT and ITT being high. Conversely, the Mideast,
Southeast, and Great Lakes regions have lower travel times, with most
areas reporting both ATT and ITT within 30 min. However, most of these
regions still show pink, suggesting that ATT is much higher than ITT.

Moreover, beyond the absolute value of two travel times, the dif-
ference between ATT and ITT in urban areas shows more homogeneity

SL P e
] Pie.rne%-
N

D)

Denyer: Ifincoln
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;I}t‘tlLfRoél\ Nk
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Fig. 2. Bivariate choropleth map of ATT and ITT at census tracts level.
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than in rural areas. In urban settings, the difference is mostly within 15
min, meaning that urban residents’ ATT is only 15 min larger than their
ITT. However, for rural areas, the scenario is much more complex. Not
only are rural tracts typically far from mental facilities, making the ITT
quite large, but also people living in these areas need to travel more than
an hour to access mental health services that meet their needs, rather
than the nearest facility. In contrast, most urban residents need only a
maximum of 15 min more to access their preferred mental health fa-
cilities. This shows a significant travel time gap between rural and urban
residents. However, there are a few rural areas with blue/cold color,
suggesting that in these areas, ATT is smaller than ITT. This analysis
highlights the disparity in travel times between urban and rural areas,
emphasizing the challenges faced by rural populations in accessing
mental health facilities efficiently.

Fig. 3 illustrates the results of the bivariate LISA analysis, which
investigates the spatial correlation between ITT and ATT. The High-High
(pink) clusters, predominantly found in rural areas, signify areas of high
ITT surrounded by areas of high ATT. Conversely, the Low-Low (blue)
clusters are primarily situated in urban regions of major cities, including
Dallas, Houston, Austin, and San Antonio in Texas; Los Angeles, San
Diego, San Jose, and San Francisco in California; and Boston, Hartford,
New York City, and Philadelphia on the East Coast. This indicates that
residents near urban centers generally experience low ITT, surrounded
by low ATT. The Low-High (light blue) clusters represent census tracts
with low ITT surrounded by neighbors with high ATT. Besides the High-
High and Low-Low clusters, the result reveals a great number of Low-
High tracts but fewer High-Low (light pink) tracts. This suggests that
using ITT as the sole measure of accessibility may underestimate the
number of tracts with high ATT, especially in rural areas. Suburban
communities, on the other hand, exhibit Not Significant (grey) patterns,
indicating that actual driving times are distributed independently of the
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ideal driving times.

Furthermore, the correlation between ATT and ITT at the state level
is also explored to reveal discrepancies among states, as illustrated in
Fig. 4. We created scatter plots of ITT versus ATT for each census tract,
with each dot representing a tract, and performed linear regression
analysis between ITT and ATT for each state using the geographic to-
pology of the corresponding state location with the R package “geo-
facet”. The analysis shows that in almost all states, ATT is larger than
ITT, which means that using ITT to estimate the travel time to mental
health facilities generally results in underestimation across the contig-
uous US. Vermont is an exception where two travel times are the closest,
with the regression coefficient of 0.97, likely due to its low population
and small area. As of the 2022 US Census, Vermont is the second-least
populated state and has the second-highest percentage of White resi-
dents (92.6%) (US Census Bureau, 2023). Texas (2.08) has the most
significant underestimation of travel time using ITT, followed by Florida
(1.85) and Michigan (1.86). Texas is also the second-largest and
second-most populated state (US Census Bureau, 2023). Other states
with large discrepancies between ITT and ATT include Louisiana (1.78),
Massachusetts (1.77), and Washington, D.C. (1.73). Interestingly,
Wyoming, despite being the least populated state, also faces a substan-
tial underestimation of travel time to mental health facilities when
measured by ITT, with a regression coefficient of 1.72.

3.2. Comparative analysis of travel times by demographic groups

We further analyzed the disparity between ITT and ATT across eight
US regions, categorized by various demographic groups, including age,
race, and ethnicity. Figs. 5 and 6 depict the variation in two travel time
metrics among different demographic groups. The x-axis in these figures
shows the percentage of the population within different travel time
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Fig. 3. Bivariate local moran cluster map.
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Fig. 4. Correlation between ATT and ITT at the state level.

ranges for ATT (Fig. 5) and ITT (Fig. 6). In the previous step, we assigned
ATT and ITT to each census tract and obtained the percentage of pop-
ulation in each age group, race, and ethnicity from the sociodemo-
graphic data. This allows us to calculate the percentage of a certain
demographic group within different travel time ranges for rural and
urban areas separately. For example, in rural areas, the percentage of the
population aged 65+ with an ATT of less than 15 min is calculated by
taking the population of census tracts with an ATT of less than 15 min,
multiplying it by the percentage of people aged 65+ in each census tract,
and dividing it by the total population aged 65+ in rural areas.
Compared to the ITT results shown in Fig. 6, the percentage of the
population with ATT within 15 min in Fig. 5 is significantly reduced, and
the percentage of the population with travel time exceeding 30 min is
markedly increased, especially in rural areas. In the Southwest, Rocky
Mountain, Far West, Plains, and Southeast, rural residents have a higher
proportion of ATT over an hour than those in New England, Mideast, and
Great Lakes regions. Specifically, in rural Southwest and Rocky Moun-
tain regions, the percentage of population with ATT between 15 and 30
(8.8% and 7.5% respectively) is much lower than other regions (e.g.,
26.8% in New England), indicating that more than half of the population
in these areas has ATT exceeding 30 min. Similarly, the percentage of
the population in the Southwest with ATT greater than 60 min is almost
double that of the Great Lakes and Mideast regions. This disparity can be

attributed to several factors. The Southwest region is characterized by its
vast, sparsely populated rural areas, which often have fewer healthcare
facilities spread over larger distances. This results in longer travel times
for residents seeking mental health services. In contrast, the Great Lakes
and Mideast regions have higher population densities and better-
developed infrastructure, facilitating easier access to healthcare facil-
ities and shorter travel times. Furthermore, the concentration of
healthcare facilities in urban centers within the Great Lakes and Mideast
regions reduces the travel burden for rural residents in those areas.

It is further observed that ATT does not significantly differ among
age groups, as shown in Fig. 5. However, significant differences in travel
times by ethnicity exist in urban areas. Hispanics have a higher per-
centage of the population with ATT within 15 min, particularly in urban
areas of New England, the Mideast, and the Plains. In contrast, across the
entire contiguous United States and in the Southwest’s rural areas,
Hispanics have a higher percentage of population with ATT exceeding
an hour compared to non-Hispanics. Regarding race, Black residents
generally have a lower percentage of the population with ATT exceeding
an hour in rural areas, indicating better ATT for Black residents
compared to Asian and White residents, except in the Mideast. This
trend is notably observed in rural areas of New England, the Southwest,
the Rocky Mountain, and the Far West. In urban areas, White residents
have the lowest percentage ATT less than 15 min in New England, the
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Fig. 5. Demographic difference in ATT for each sociodemographic subgroup.

Mideast, the Great Lakes, and the Plains. Additionally, Native Hawaiian
and Other Pacific Islander residents have the highest percentage of ATT
between 30 and 60 min. American Indian and Alaska Native residents
generally have the worst travel time, with the highest proportion of ATT
exceeding an hour in urban areas across all regions except New England
and the Mideast.

The variation in ITT (see Fig. 6) across regions shows patterns that
are both similar to and different from those of ATT. Similar to ATT, rural
residents generally have longer ITT than their urban counterparts,
regardless of region, race, ethnicity, or age group. Compared to New
England, the Mideast, the Great Lakes, the Southeast, the Plains, the
Southwest, the Rocky Mountain, and the Far West regions exhibit a
higher percentage of population with ITT exceeding 1 h in rural areas. In

urban areas, the majority of residents can reach the nearest mental
health facilities within 15 min. Conversely, in rural regions, ITT is not
only longer but also varies significantly based on race and ethnicity,
with less than 50% of the population able to access the nearest mental
health services within 15 min. Moreover, a portion of the rural popu-
lation requires more than an hour to reach these services. Specifically, as
shown in Fig. 6, in the Rocky Mountain region, more than 10% of the
rural population needs to travel more than 60 min to access mental
health facilities. In rural areas of New England, the Mideast, the Great
Lakes, and the Southeast, a small portion of residents face travel times
exceeding an hour.

Regarding age groups, similar to ATT, the results indicate minimal
variation in ITT across different age groups, suggesting that age is not a
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Fig. 6. Demographic difference in ITT for each sociodemographic subgroup.

predominant factor contributing to the travel time disparity. However,
some patterns are notable. For example, in most regions, the 18-44 age
group in rural areas has the largest percentage of the population with
ITT less than 15 min, except in the Far West, where ITT tends to increase
with age, especially in rural areas. In terms of ethnicity, Hispanic in-
dividuals generally experience less ITT than non-Hispanic individuals in
both urban and rural areas, except for the rural Southwest and Far West
regions. Among races, American Indian and Alaska Native residents
generally have the longest ITT in both rural and urban areas, while Asian
residents have the shortest ITT in both settings. The disparity in ITT
between races is minimal in urban areas but significant in rural areas,
highlighting the gap between rural and urban travel times. For example,
in rural New England, Great Lakes, and Southwest, Black residents have

shorter ITT than Asian and White residents. Conversely, in the rural Far
West, Rocky Mountain, Southeast, Plains, and Midwest regions, Asian
residents have shorter ITT than Black and White residents. Additionally,
some American Indian and Alaska Native residents in urban areas of the
Plains and Rocky Mountain regions have long travel times to mental
health services, exceeding an hour.

3.3. Regression results

This section examines the association between three travel time
metrics (ATT, ITT, and their differences), and sociodemographic and
economic variables across the contiguous United States and its eight
regions. This analysis utilizes three regression models as described in the
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methodology section. The corresponding results are presented in
Tables 2-4.

From the regression results, it is found that rural-urban status is the
most negatively significant factor in all three regression models, indi-
cating that both travel times and the difference between them are
significantly increased by the rural status. Median household income is
not associated with either travel time or the difference. The percentage
of older adults is positively associated with travel time in all three
models. The percentage of high school dropouts is positively associated
with ATT and ITT, but negatively associated with the difference,
meaning that high education would mitigate the increase in ATT more
significantly than ITT.

Table 2 provides the SLM modeling results of ATT across various
regions, highlighting the impact of several demographic and socioeco-
nomic factors. The percentage of the population aged 65 and older
demonstrates a highly significant positive association (p < 0.001) with
ATT in the contiguous US, Great Lakes, Plains, and Far West. The un-
employment rate exhibits a statistically significant positive association
with ATT in the Great Lakes and Far West, while showing a significant
negative association in the Plains. Additionally, the percentage of high
school dropouts highly significantly increases (p < 0.001) ATT in the
contiguous US, Plains, and Southeast. This indicates that higher dropout
rates are associated with longer travel times to access mental health
services in these regions. Regarding races, the percentage of Black res-
idents has a significant negative association with ATT in the contiguous
US, the Great Lakes, Southeast, Southwest, and Far West. Similarly, a
higher percentage of Asian residents is negatively associated with ATT in
the contiguous US, New England, Great Lakes, Southeast, Southwest,
and Rocky Mountain. In contrast, an increase in AIAN populations (p <
0.001) highly significantly raises ATT in the contiguous US, Great Lakes,
Plains, Rocky Mountain, and Far West. Furthermore, the percentage of
households with limited English proficiency has a highly significant
negative association (p < 0.001) with ATT in the contiguous US, and
significant negative in the Mideast and Far West but positive in South-
west. Urban status has a highly significant negative association (p <
0.001) with ATT in all regions, indicating that urban areas generally
have shorter travel times to mental health services compared to rural
areas. This effect is particularly pronounced in the Rocky Mountain re-
gion, where the coefficient reaches as low as —39.07.

Table 3 presents the SLM modeling results of ITT across various re-
gions. It is shown that higher median household income is highly sig-
nificant with the ITT (p < 0.001) in the contiguous US, Great Lakes,
Plains, Southeast, and Far West, suggesting economic well-being may
influence health service access. The percentage of the population 65+ is
positively associated with ITT with high significance (p < 0.001) in the
contiguous US, Great Lakes, Plains, and Rocky Mountain. The percent-
age of high school dropouts could increase the ITT significantly in most
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regions, except in New England. This indicates that lower educational
attainment may correlate with reduced access to mental health facilities.
Additionally, the negative association for the unemployment rate,
observed only in the contiguous US and the Rocky Mountain region,
suggests that higher unemployment rates are linked with shorter travel
times to mental health facilities in these areas. Regarding race and
ethnicity, the results are similar to those observed for ATT. The higher
percentage of AIAN is directly linked to longer ITT. Conversely, the
percentage of Black and Asian residents shows a negative association
with ITT. Additionally, Hispanic population is significant negatively
associated with the ITT in most regions, except for New England, sug-
gesting that non-Hispanic population tends to have longer ITT. The re-
sults for households limited in English proficiency show a significant
negative association with ITT in the contiguous US, Mideast, and
Southeast only. Similar to the ATT results, rural status highly signifi-
cantly increases (p < 0.001) ITT in all regions, though the effect is not as
substantial as in the ATT results. This effect is particularly pronounced
in the Rocky Mountain and Far West regions, where the coefficients
exceed 10.

Table 4 provides the SLM modeling results for the difference between
ATT and ITT across various regions. The impact of median household
income is marginally significant in the contiguous US, Mideast, and
Southeast. The percentage of the population aged 65 and over has a
highly significant positive association (p < 0.001) in the contiguous US,
New England, Great Lakes, Southeast, and Far West, indicating the aging
population has a larger bias if ITT is used as an estimator of their travel
time to mental health facilities. The unemployment rate shows varied
results, with a notably significant positive association in the Great Lakes
region and a significant negative association in the Plains region. High
school dropout rates have a significant negative association in the
contiguous U.S., Mideast, Great Lakes, Southeast, and Southwest re-
gions, while the Plains region shows a significant positive association.
Regarding races, the percentage of Black has a highly significant nega-
tive association (p < 0.001) with ATT-ITT in the contiguous US, Mideast,
Great Lakes, Southeast, indicating the travel time of Black population is
overestimated by ITT in those regions. The AIAN population shows a
highly significant positive association (p < 0.001) in the contiguous U.
S., Great Lakes, and Plains regions, suggesting that AIAN residents are
likely to experience greater underestimation of travel time when
measured by ITT. As for ethnicity, the percentage of Hispanic population
shows a highly significant positive association (p < 0.001) in the
contiguous US, with varied regional impacts. This includes a negative
association in New England and Plains, but a positive association in the
Far West. Moreover, limited English proficiency shows a significant
negative association in the contiguous US and Far West, but a positive
association in Southwest. The urbanity variable consistently shows a
highly significant reduction (p < 0.001) in the difference across all

Table 2
The result of the SLM for ATT.
Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00 0.00 0.00¢ 0.00 0.00" 0.00 0.00 0.00 0.00"
Age 65+ (%) 0.14¢ 0.23¢ 0.04 0.20¢ 0.36" 0.06¢ 0.07% 0.13 0.18¢
Unemployment rate (%) —0.02 0.07 0.05 0.08" —0.36° 0.02 —0.01 —0.36 0.13"
High school dropouts (%) 0.05¢ 0.01 —0.04 -0.02 0.47¢ 0.11¢ —0.06 -0.05 0.01
Black (%) —0.04¢ —0.04 —0.04¢ ~0.06° -0.05 -0.07¢ —0.08¢ 0.00 —0.09°
AIAN (%) 0.31¢ 1.08° 0.08 0.54¢ 0.54¢ 0.05 0.13° 0.54¢ 0.56°
Asian (%) —0.05¢ —0.16° -0.01 -0.12¢ —0.20° —-0.18¢ -0.20° —0.69" 0.01
Hispanic (%) —-0.01° -0.11¢ -0.02° -0.04" -0.30¢ -0.07¢ -0.00 -0.11 0.01
Limited in English (%) —0.09! 0.05 —-0.07" 0.00 —0.11 —0.05 0.12" 0.35 —0.12"
isUrban -16.01¢ —~11.55¢ -18.27¢ -9.76¢ —15.56¢ —-9.59¢ -25.81¢ -39.07¢ —31.24¢

Note.

All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.
#p<0.1.
> p <0.05.
¢ p<0.01.
4 p < 0.001.
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Table 3
The result of the SLM for ITT.
Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00¢ 0.00" 0.00°¢ 0.00¢ 0.00¢ 0.00¢ 0.00" 0.00" 0.00°
Age 65+ (%) 0.03¢ 0.01 0.01 0.04¢ 0.12¢ 0.01 0.02" 0.18¢ —0.01
Unemployment rate (%) -0.02¢ 0.00 -0.01 0.01 ~0.02 -0.01 -0.03 -0.21" 0.03
High school dropouts (%) 0.09¢ 0.02 0.05¢ 0.05¢ 0.15¢ 0.14¢ 0.06° 0.18" 0.05¢
Black (%) —0.02¢ -0.01 -0.01¢ -0.02¢ —0.01 -0.03¢ —0.03¢ 0.03 —0.02"
AIAN (%) 0.15¢ 0.45° 0.07° 0.11¢ 0.12¢ 0.05° 0.09¢ 0.40¢ 0.42¢
Asian (%) -0.04¢ —0.05" -0.02¢ -0.07¢ —0.09¢ —0.09¢ —0.06 —0.20" —0.02¢
Hispanic (%) -0.03¢ -0.02 —0.03¢ —0.04¢ -o0.11¢ —0.04¢ -0.02¢ -0.11¢ —0.03¢
Limited in English (%) —0.04¢ -0.03 -0.03¢ ~0.00 0.04 —0.04¢ ~0.01 0.02 ~0.02
isUrban —4.04¢ —3.26¢ —2.00¢ -2.61¢ —4.06¢ -1.13¢ -6.17¢ -15.30¢ -10.65¢

Note.

All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.
2 p<o0.l.
b p<0.05.
¢ p<0.01.
4 p < 0.001.

Table 4

The result of the SLM for ATT-ITT.

Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00" 0.00 0.00" 0.00° 0.00 0.00" 0.00 0.00 0.00
Age 65+ (%) 0.12¢ 0.24¢ 0.04 0.16¢ 0.21¢ 0.06° 0.03 —0.04 0.20¢
Unemployment rate (%) 0.01 0.08 0.06° 0.08" -0.30" 0.03 0.01 -0.10 0.11°
High school dropouts (%) —0.05¢ —0.01 -0.12¢ —0.08° 0.26° —0.07¢ —0.13¢ -0.25 —0.06
Black (%) —0.02¢ —0.03 —0.02¢ —0.03¢ —0.02 —0.03¢ —0.05" —-0.05 —0.07"
AIAN (%) 0.14¢ 0.64 0.01 0.44¢ 0.34¢ —0.00 0.01 0.13 0.12
Asian (%) 0.00 -0.11" 0.02 —0.03 -0.05 —0.06 —-0.13" -0.55" 0.04"
Hispanic (%) 0.03¢ —~0.10° 0.01 0.00 —0.15" —0.02 0.03 0.00 0.05"
Limited in English (%) —0.05" 0.10 -0.03 0.02 -0.15 —0.00 0.13" 0.36 —0.10°
isUrban ~11.50¢ -8.00¢ ~14.92¢ -6.98¢ -9.07¢ -8.17¢ -18.9¢ —-26.70¢ -19.75¢

Note.

All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.
?p<o0.l.
b p <0.05.
¢ p<0.01.
4 p < 0.001.

regions, emphasizing that the underestimation of travel time is more
pronounced for rural residents compared to their urban counterparts.

4. Discussion

This is the first study to estimate the demographic disparities in
travel time to mental health facilities using smartphone user mobility
data. This study utilizes this data in a novel way to calculate ATT. Re-
sults demonstrate that extra time is needed when people are seeking
mental health services to fulfill their needs rather than just choosing the
closest facilities, especially in rural areas. Moreover, our work investi-
gated the relations between sociodemographic factors and travel time in
the contiguous US and various regions to provide insightful findings to
health researchers and policy makers.

One of the key findings from the study is the notable underestimation
of travel times to mental health facilities when relying solely on ITT. The
difference between the ITT and the ATT exhibits the pronounced
disparity faced by residents in rural versus urban areas. Rural residents
consistently experience longer travel times in both ITT and ATT. As
depicted in Fig. 2, most urban central areas have ITT within 30 min
while a great number of rural areas require more than an hour of travel
time to reach the nearest mental health facility. This distinction between
rural and urban access aligns with previous research, underscoring
significant accessibility barriers that are distinctly present in rural set-
tings (Ghorbanzadeh et al., 2020; Rauch et al., 2023). Many rural
Americans have less access to mental health services than their urban
counterparts (Safran et al., 2009), which could potentially correspond to
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significant disparities in mental health outcomes for rural residents
(Morales et al., 2020). In addition to the longer travel time, the larger
difference between ITT and ATT is also aggregated in rural areas. Ac-
cording to our results, residents in rural areas face more inequality than
those in urban areas if ITT is used as the measurement of accessibility.
Approximately half of the urban residents would only need an extra 15
min to fulfill their needs beyond the nearest facility, and nearly 90%
need less than 30 min extra. However, half of rural residents require 30
min or more.

Besides the rural and urban status, demographic disparities in access
to mental health services exist as well. From the regression analysis
result, it is found that age is also a significant factor. Census tracts with a
higher concentration of older adults experience longer travel times and a
larger difference between ITT and ATT in terms of mental health service
access compared to areas with younger residents. Previous study in-
dicates that a disproportionate share of older adults live in rural areas
(Cohen and Greaney, 2023), with 17.5% of the rural population being 65
years and older compared to only 13.8% in urban areas (Smith and
Trevelyan, 2019). The older adults in rural areas may face greater bar-
riers to accessing mental health facilities. Additionally, we found that
the Hispanic population is significantly negatively associated with ITT in
all regions except for New England, while it is significantly associated
with ATT only in New England, the Great Lakes, Plains, and Southeast
regions. Although Asians represent the most urbanized ethnic group in
the US, with around 95% living in urban rather than rural areas, this
primarily demonstrates improved access as depicted in Fig. 6 concerning
ITT, but not in the results of ATT. These findings highlight the
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complexity of demographic disparities in accessing mental health ser-
vices and underscore the need for more accurate measures, like ATT, to
understand and address these disparities effectively.

To the best of our knowledge, no other research in health services has
utilized large-scale smartphone data to attain such a granular level of
detail in travel time analysis within the US. This study measures ATTs to
mental health services, thereby providing a more precise evaluation of
patient travel times. Numerous studies have demonstrated an associa-
tion between travel time to health facilities and patient health outcomes
(Kelly et al., 2016; Caldwell et al., 2016)). Consequently, neglecting ATT
could potentially lead to an underestimation of the impact of travel time
on health outcomes. This is particularly significant in rural areas where
travel distances can be considerable. Furthermore, the measurement of
ATT enables researchers to accurately identify potential barriers pre-
venting patients from accessing the nearest health facilities. These bar-
riers could include transportation issues, previous negative experiences
with the healthcare system, lengthy waitlists for appointments, and the
acceptance of health insurance (Ahmed et al., 2001; Brems et al., 2006).
This nuanced understanding can significantly aid decision-makers in
optimizing healthcare services. It can also inform the strategic allocation
of services to minimize travel time, thereby enhancing accessibility.
Ultimately, the actual travel time could contribute significantly to the
improvement of health outcomes by ensuring that patients can access
the care they need in a timely manner. Therefore, this research has the
potential to facilitate health policy decisions and shape future strategies
in healthcare service provision.

Overall, this research contributes significantly to the understanding
of health disparities by highlighting the inadequacy of ITT in accurately
assessing accessibility to mental health services. By advocating for the
use of ATT and incorporating diverse sociodemographic factors into the
analysis, the study provides valuable insights for policymakers and
healthcare practitioners. Research has shown that poor health access
could potentially result in worse health outcomes (Kelly et al., 2016). As
demonstrated in this study, the rural area’s travel behavior cannot be
estimated by proximity measurement, this study highlights the need for
policymakers to act on tailored interventions. Many prior studies have
emphasized the necessity of both horizontal and vertical equity,
appealing to the distribution of accessibility benefits that should not be
evenly distributed among all regions but target populations in need
specifically (Ashik et al., 2024; Guo and Brakewood, 2024). Texas,
Florida, Michigan, 3 states having the most underestimated travel time
using ITT, also need targeted interventions to improve real accessibility,
such as preferential support transit policy, tax breaks or grants, online
resources, remote techniques, etc. (Cyr et al., 2019). Especially the
Low-High cluster areas in Fig. 5 experiencing disproportionate disparity
are where people are in greater need and demand to receive more action
from policymakers and urban planners. From the regression results, the
significance and direction coefficient are different in the overall US from
each region, which means that the spatial heterogeneity must be
included in the consideration. It is crucial to tackle these significant
disparities in travel times to guarantee that everyone, irrespective of
their geographical location or demographic characteristics, has fair ac-
cess to healthcare. Moving forward, future research should continue to
explore innovative methodologies and data sources to further elucidate
the complexities of health disparities and inform targeted interventions
and policies.

5. Conclusion

This study systematically compares conventional driving time met-
rics and smartphone-derived ATT to mental health facilities. It uncovers
pronounced discrepancies, particularly within certain geographical re-
gions and specific demographic groups. Such discrepancies underscore
the importance of using ATT as a measure of health accessibility in
future research. The findings of the study will contribute to the devel-
opment of more equitable healthcare systems, ensuring that vulnerable
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populations have better access to the health services they need.

While smartphone-based SafeGraph data offers invaluable insights
into human mobility patterns, critical limitations must be acknowledged
to ensure the robustness of research findings. Firstly, the representa-
tiveness of SafeGraph’s dataset is contingent on smartphone ownership
and usage, which may not uniformly capture all demographic groups
and regions, potentially biasing outcomes toward certain populations in
rural areas (Curtis et al., 2022). Secondly, while SafeGraph data captures
POI visit information, it does not always accurately reflect detailed
visitor information. For example, visits to hospitals may include not only
patients but also accompanying family members, making it difficult to
discern the exact purpose of the visit. This limitation can impact ana-
lyses that require precise visitation counts and the context of those visits.
Thirdly, privacy concerns and data anonymization processes can lead to
the exclusion of small visitation events, thus underrepresenting less
frequent or shorter visits to health facilities (Middleton et al., 2013). In
contrast, conventional surveys, especially when augmented by GPS
tracking, emerge as reliable and precise methods for documenting daily
travel behavior, offering direct feedback in the absence of alternative
data sources (Schneider et al., 2013) and also an efficient supplement to
direct individual feedback when there is a lack of other data sources
(Carson et al., 2023; Jiménez-Espada et al., 2022). Nonetheless, this
approach is constrained by financial, temporal, and representational
limitations, restricting its broader application. Hence, employing a
combination of multi-source data, including smartphone mobility data,
GPS tracking, and surveys, presents a comprehensive solution for
accurately understanding complex travel behaviors, particularly in rural
settings (Kelly et al., 2016; Cummings et al., 2017).

In addition to the SafeGraph data, the calculation of travel time in
this study is based solely on driving durations, omitting other modes of
transportation. This approach particularly overlooks the robust public
transit systems available in certain urban centers, such as Boston and
New York City, where alternatives to driving are extensively utilized and
highly efficient, such as bus and subway. Therefore, it is important to
consider multiple modes of transportation to assess travel time system-
atically and accurately. Another focus would be further exploration of
the association between sociodemographic and travel time using
advanced spatial regression models, e.g., Geographically Weighted
Regression (GWR) and Multiscale Geographically Weighted Regression
(MGWR). Beyond identifying sociodemographic correlations, it is also
crucial to investigate how disparities in healthcare access impact health
outcomes. Specifically, the link between limited access to mental health
services and adverse mental health outcomes can be further examined.
For instance, individuals who face significant barriers in accessing
mental health care may experience worsening symptoms, delayed
treatment, and overall poorer mental health. This could lead to
increased rates of depression, anxiety, and other mental health disor-
ders. Lastly, expanding the scope to general public healthcare, in addi-
tion to mental health services, can illuminate broader obstacles and
deficiencies within the health sector.
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