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A B S T R A C T

Travel time to health facilities is one of the most important factors in evaluating health disparity. Previous 
extensive research has primarily leveraged the driving time to the nearest health facility to gauge travel time. 
However, such ideal travel time (ITT) may not accurately represent real individual travel time to health services 
and is often underestimated. This study aims to systematically understand such gaps by comparing ITT to actual 
travel time (ATT) derived from smartphone-based human mobility data and further identifying how various 
population groups across regions are most likely to be affected. This study takes mental health as an example and 
compares ATT with ITT to mental health facilities. Results indicate that ITT and ATT demonstrate significant 
disparities between urban and rural areas. ITT is consistently underestimated across the contiguous US. We 
compare travel times among diverse sociodemographic groups across eight geographical regions. The findings 
suggest that different age groups have similar travel times to mental health facilities. However, racial groups 
exhibit varied travel times. Hispanics have a larger percentage of the population experiencing longer ATT than 
ITT. We also employed spatial and non-spatial regression models, such as Ordinary Least Squares, Spatial Lag 
Model, and Spatial Error Model, to quantify the correlation between travel times and socioeconomic status. The 
results revealed that the proportion of older adults and high school dropouts positively correlates with travel 
times in most regions. Areas with more non-Hispanics show positive correlations with both travel times. Overall, 
this study reveals pronounced discrepancies between ITT and ATT, underscoring the importance of using 
smartphone-derived ATT to measure health accessibility.

1. Introduction

Access to timely, high-quality, and affordable health services is 
essential for all individuals, regardless of their sociodemographic or 
economic status (WHO, 2022). A lack of access can result in poor health 
outcomes (Alegana et al., 2018; Zipfel et al., 2021) and healthcare dis
parities (Rader et al., 2022; Yuan et al., 2023). Health access is evaluated 
in five dimensions, also known as the 5 A’s: affordability, accommoda
tion, acceptance, availability, and accessibility (Penchansky and 
Thomas, 1981). This framework is critical for assessing the effectiveness 
of health policy and service delivery, highlighting disparities in 
healthcare access, and guiding policy and resource allocation to improve 
health outcomes.

Accessibility refers to the physical access to healthcare services, 

considering the geographical distribution of healthcare facilities, pa
tients’ residential locations, and their transportation resources (Chen 
and Wang, 2022). Travel time, reflecting the inequality of access to and 
efficiency in the usage of health facilities, is one of the most important 
factors in evaluating geographical accessibility (Hiscock et al., 2008; 
Onitilo et al., 2014). Previous research has focused on utilizing travel 
time to the nearest health facility as a proximity metric to assess the 
accessibility of health services (Blanford et al., 2012; Huerta Munoz and 
Källestål, 2012). For instance, Ghorbanzadeh et al. (2020) analyzed 
accessibility metrics by calculating travel times from the centroids of 
census population block groups to the closest mental health facilities to 
assess spatial accessibility in Florida. Similarly, Khazanchi et al. (2022)
computed drive times from the center of each census tract to the ten 
nearest COVID-19 Test-to-Treat sites, subsequently identifying the 
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shortest time to assess accessibility for various subpopulations defined 
by race, ethnicity, age, and rurality. More recently, Rauch et al. (2023)
estimated the accessibility between residences and the nearest facilities 
by individual driving time and public transport, uncovering spatial in
equalities for elderly women in access to preventive breast cancer care 
services in Bavaria. The metric of travel time to the nearest health fa
cilities has also been applied to access to SARS-CoV-2 testing sites (Rader 
et al., 2020) and Emergency Medical Services (EMS), such as stroke 
centers (Rauch et al., 2021). However, this proximity metric has sig
nificant limitations, as it assumes people only access the nearest 
healthcare facilities, without accounting for factors like traffic and 
weather conditions, language barriers, or economic challenges. Conse
quently, relying exclusively on proximity to gauge accessibility can lead 
to biased and inequitable evaluations, particularly in healthcare service 
selection.

Several studies have explored approaches to improve the accuracy of 
travel time measurement and compared these with proximity-based 
metrics. For instance, Zhu and Levinson (2015) used GPS (Global Posi
tioning System) devices to accurately monitor travelers’ trajectories for 
three weeks and found that approximately two-thirds of participants did 
not use the shortest travel time path. Similarly, Tang and Levinson 
(2018) found that most commuters prefer longer routes than the shortest 
available path. Alford-Teaster et al. (2016) employed survey data from 
Breast Cancer Surveillance Consortium and geocoded participants street 
level addresses to calculate actual travel time to mammography facil
ities. The results revealed that only 35% of women in the study popu
lation visited their closest facility. Remarkably, approximately 75% of 
the women chose a facility within a 5-min travel time, but not neces
sarily the nearest one. Researchers have identified various factors 
influencing route decisions, including estimated traffic time (Abdel-Aty 
et al., 1997), travel cost, distances, traffic conditions, drivers’ habits 
(Chen et al., 2001), and the reliability of travel time (Train and Wilson, 
2008). Beyond GPS and survey-based methods, this study aims to 
employ a novel data source-smartphone user mobility data-to measure 
actual travel time to health services with greater accuracy, offering a 
more comprehensive and realistic understanding of healthcare 
accessibility.

In recent years, especially since the COVID-19 pandemic, the utili
zation of smartphone user mobility data has become increasingly 
prevalent. This trend is underscored by the comprehensive coverage of 
mobility data offered by SafeGraph, capturing approximately 10% of all 
GPS-enabled mobile devices in the US, thus providing a well-represented 
cross-section of various sociodemographic groups (Hu et al., 2021; Xu 
et al., 2023; Zhang et al., 2022). The growing reliance on mobile data is 
crucial in enhancing our understanding and analyzing health access 
behavior. For example, Jing et al. (2023) used mobile phone-based 
visitation data to estimate average mental health utilization, revealing 
disparities among immigrant concentrations across the US. Similarly, 
Wei et al. (2023) tracked social distancing behavior to discover dis
parities in COVID-19 transmission across communities with different 
sociodemographic and economic statuses. Owuor and Hochmair (2023)
leveraged smartphone user visitation data to discover patterns of visi
tation counts to several POI categories during the pandemic in Florida 
and California. Li et al. (2023) revealed distinct geographic disparities in 
visitation interruptions at Ryan White HIV facilities in the Deep South 
during the COVID-19 pandemic using mobile device-based visitation. 
Zeng et al. (2022) focused on revealing the geospatial disparities in 
population mobility and aging in local areas in relation to COVID-19 
transmission in the Deep South. Beyond the visitation pattern, smart
phone data have been instrumental in calculating travel times, a critical 
metric for assessing health facility access (Nilforoshan et al., 2023).

Mental health services are essential components of health care, 
connected to overall well-being (Bennett et al., 2015; Sartorius, 2007), 
and directly bearing on the quality of life (Whiteford et al., 2013). The 
demand for mental health services has been growing and drawing 
increasing attention from scholars (Yang and Wang, 2023). According to 

the National Alliance on Mental Illness (NAMI), in 2021, 1 in 5 adults in 
the US experienced mental illness each year (NAMI, 2023). However, in 
2020, 48% of U.S. adults in nonmetropolitan areas with a mental illness 
received treatment, while 62% of those with a serious mental illness 
sought treatment (NAMI, 2023). This underscores the critical need for 
accessible mental health facilities. Scholarly concern is growing over the 
unequal access to these facilities (Smith-East and Neff, 2020). For 
example, Cummings et al. (2017) found that the lowest-income com
munities have a lower rate of office-based practices of mental health 
specialists, including physicians and nonphysicians, but a higher rate of 
outpatient mental health treatment facilities. Ghorbanzadeh et al. 
(2020) assessed accessibility in Florida by calculating weighted scores 
based on travel time to mental health facilities, identifying significant 
access gaps, especially in the rural, demographically diverse northwest. 
To ensure mental health equality, accessibility to mental health facilities 
is fundamental. Moreover, accurately measuring access, especially the 
method used to calculate travel time, is essential in determining esti
mates of accessibility. Therefore, this study will utilize smartphone 
mobility data to measure accurate driving time to mental health 
facilities.

Accurately assessing travel time is pivotal for advancing health eq
uity. Traditional methodologies frequently gauge health access dispar
ities by measuring travel time to the nearest facilities. However, these 
idealized metrics often fail to consider the practical preferences that 
individuals exhibit when selecting health services. To bridge this gap, 
our research leverages extensive smartphone user mobility data to 
introduce a sophisticated travel metric, precisely measuring the actual 
travel time to health services. Focusing on mental health as a case study, 
our analysis compares ideal travel time (ITT) to the nearest health fa
cility and smartphone-derived actual travel time (ATT) at the census 
tract and state levels across the United States (US). We further employ 
bivariate choropleth maps and bivariate LISA (Local Indicators of Spatial 
Association) to provide a detailed visualization of spatial patterns and 
associations. Moreover, our study delves deeper into the interplay be
tween sociodemographic factors and travel time disparities. We 
comprehensively identified discrepancies between ITT and ATT by 
employing an integrated approach that combines both spatial and non- 
spatial regression analyses. More importantly, we provided guidance to 
policymakers for designing and implementing precise, data-driven in
terventions to enhance health equity.

This paper is structured into five sections. The first section provides 
an overview of previous studies and the objectives of our paper. The 
second section describes the data and methodology used to calculate 
travel times and perform statistical analysis. Following this, we 
comprehensively compare the results between ITT and ATT. The fourth 
section delves into the potential findings and their societal implications. 
Finally, the conclusion summarizes limitations and proposes directions 
for future research.

2. Data and methods

2.1. Data

2.1.1. Mental health facilities
SafeGraph is a company that monitors about 10% of GPS-enabled 

mobile devices in the US (Li et al., 2023). The location of mental 
health facilities is obtained from the SafeGraph POI (Points of Interest) 
dataset (SafeGraph, 2023), which is distinguished by its extensive 
collection of basic and enriched attributes for each POI. Basic attributes 
include the POI’s name, address, geographical coordinates (latitude and 
longitude), category, brand identification, and NAICS (North American 
Industry Classification System) code. In addition, the dataset is further 
enriched with various additional attributes, including operational hours, 
website URLs, and contact phone numbers, offering deeper insights into 
the accessibility and availability of mental health services.

Furthermore, the dataset’s geometry attributes offer precise 
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information regarding the physical dimensions and shapes of the POIs. 
These attributes ensure precise geographic coordinates of the centroid of 
the POI, which can be used to measure geographic access from the POI to 
neighborhoods. In this study, we specifically focus on mental health 
facilities classified under two NAICS codes: 621112, representing office- 
based practices of mental health specialist physicians, and 621330, 
indicating office-based practices of non-physician mental health pro
fessionals. Using the SafeGraph POI dataset in 2023, we extracted 
113,904 mental health facilities across the contiguous US. Fig. 1 shows 
the spatial distribution of these facilities, revealing a significant con
centration in urban areas.

2.1.2. Health facilities visit pattern data
The SafeGraph POI visit pattern dataset includes the total number of 

visits to a POI, the duration of these visits, the distance traveled by 
visitors, and the origins of these visitors at the census block group level. 
The determination of each device’s household block group is achieved 
by analyzing six weeks’ data collected during nighttime hours, ensuring 
a high degree of accuracy in identifying the residential base of mobile 
device users (Li et al., 2024). This dataset is gathered from sources that 
include anonymized and aggregated location data from mobile devices. 
Notably, as highlighted in their 2019 report, SafeGraph’s dataset dem
onstrates a high correlation with the actual US Census population fig
ures, illustrating its strong representation of real-world patterns 
(SafeGraph, 2019). In this study, the POI visit pattern dataset is instru
mental in calculating travel time to mental health facilities.

2.1.3. Sociodemographic data
Sociodemographic and economic data are associated with health 

outcomes (Clouston et al., 2021; Wei et al., 2023) and the inequality of 
accessibility to healthcare facilities (Khazanchi et al., 2022; Rauch et al., 
2023). For example, factors such as age, race/ethnicity, income, 
employment status, education, and rural/urban status have been 
extensively studied as variables associated with health outcomes (Jing 
et al., 2023; Yang and Wang, 2023) and health inequality (Holt and 
Vinopal, 2023). In addition to these variables, the relationship between 
limited English proficiency and health outcomes and disparities has also 
been reviewed as an independent risk factor (Eneriz-Wiemer et al., 
2014; Wilson et al., 2005). In this study, demographic factors include the 

percentage of the population in different age groups, the percentages of 
various racial groups, including White, Black, American Indian and 
Alaska Native (AIAN), and Asian, and the percentages of ethnic groups, 
including Hispanic and Non-Hispanic populations. Additionally, socio
economic factors include median household income, unemployment 
rate, percentage of the population over 25 who are high school dropouts, 
rural-urban status, and percentage of households limited in English 
proficiency. These sociodemographic and economic data are from the 
2015 US Census American Community Survey (ACS, 2023). Table 1
summarizes the definition and explanation of variables.

2.1.4. Region division
The rural and urban status plays a critical role in many studies 

regarding accessibility and travel time (Haggerty et al., 2014; Khazanchi 
et al., 2022; Rauch et al., 2023). The definition of rural and urban status 
in this study refers to the 2010 US Department of Agriculture Economic 
Research Service Rural-Urban Commuting Area codes (USDA, 2023), 
which classifies census tracts using measures of population density, ur
banization, and daily commuting into 10 primary codes. These codes 
contain metropolitan cores (codes 1–3) as census tract equivalents of 
urbanized areas, micropolitan areas (codes 4–6), small towns (cores 
7–9), and rural areas (code 10). In this paper, we assigned metropolitan 
and micropolitan areas (codes 1–6) to urban areas while others to rural 
areas (see Fig. 1). To further analyze the difference in the association 
between travel time and sociodemographic factors in subregions, we 
divided the contiguous US into subregions with similar economic and 
social conditions. The subregion division uses the Bureau of Economic 
Analysis Regions (BEA, 2020), where the contiguous US is divided into 8 
subregions: New England, Great Lakes, Southwest, Mideast, Plains, Far 
West, Southeast, and Rocky Mountain, as shown in Fig. 1.

2.2. Methodology

2.2.1. Ideal travel time (ITT) to the nearest facilities
This study defines the ITT as the shortest driving time to the nearest 

mental health facility. Following the method proposed by Khazanchi 
et al. (2022), we estimate the ITT in two main steps. First, we calculate 
the population centroid at the census tract level from block groups: 

Fig. 1. Overview of study area, distribution of mental health facility, subregions, and urban areas.

L. Yu et al.                                                                                                                                                                                                                                       Health and Place 90 (2024) 103375 

3 



Xi =
∑m

j=1
XjPj

/
∑m

j=1
Pj, Yi =

∑m

j=1
YjPj

/
∑m

j=1
Pj (1) 

where Xj, Yj is the longitude and latitude of the centroid of block group j, 
Pj is the population of block group j, and m is the number of block groups 
within census tract i.

Second, we select the top 10 nearest health facilities from the pop
ulation centroid and use Open Source Routing Machine (OSRM) to 
calculate the driving time Tn from the population centroid to the 10 
closest facilities. OSRM is a routing service based on ’OpenStreetMap’ 
data, providing routes, isochrones, travel time and distance matrices 
(Huber and Rust, 2016). We get the minimum travel time among travel 
times from the population centroid to 10 selected facilities (Khazanchi 
et al., 2022) based on the equation below: 

ITTi = min(Tn) (n = 1, 2, 3, …, 9, 10) (2) 

2.2.2. Actual travel time (ATT) derived from smartphone user mobility 
data

The travel time derived from smartphone user mobility is considered 
ATT. As introduced in Section 2.1.2, SafeGraph data enables us to 
calculate the travel time from visitors’ home block groups to mental 
health facilities. Initially, to reduce potential data noise, we removed 
block groups where the number of visitors to the mental health facility 
equals or less than 2. Then, we calculate the weighted travel time for the 
block group j as follows: 

TBlockj =
∑n

k=1
TkVk

/
∑n

k=1
Vk (3) 

where Tk is the travel time from block group j to mental health facility k; 
Vk is the number of visitors to mental health facility k; n is the number of 
health facilities that visitors in block group j have visited.

Based on the travel time in block groups, we further calculate the 
weighted travel time for the census tract as follows: 

ATTi =
∑m

j=1
TBlockjVj

/
∑m

j=1
Vj (4) 

where TBlockj is the weighted travel time for block group j; Vj is the 
number of visitors in block group j; m is the number of block groups 
within census tract i.

2.2.3. Spatial clustering analysis
Bivariate local indicator of spatial association (LISA) clustering is a 

multivariate spatial correlation indicator that measures local spatial 
autocorrelation (Anselin et al., 2002). It has been used to evaluate 
spatial disparity and transit equity (Jin et al., 2022; Liang et al., 2023). 
In this study, we use bivariate LISA to evaluate spatial disparity by 
examining the spatial correlation between actual and ideal driving times 
at the census tract level across the contiguous US. The bivariate LISA 
calculates the local Moran’s I statistic as shown below: 

Ii = ITTi

∑

j
WijATTj (5) 

where ITTi is the ideal travel time of the census block i, ATTj is the ATT 
of the census block j, and Wij is the neighborhood weight matrix 
generated by queen contiguity weight.

Positive values for the local Moran’s I indicate a positive spatial as
sociation pattern, while negative values indicate a negative association. 
The output Cluster Map exhibits the local spatial correlation patterns by 
classifying all observations into five categories: non-significant, High- 
High, Low-Low, Low-High, and High-Low. A 5% significance level is 
used to determine the statistical significance of the calculation, with 
groups having a p-value above this threshold considered not significant. 
High-High clusters indicate that areas with high values of ITT are 
located near high values of ATT. Conversely, Low-Low clusters indicate 
areas with low values of ITT are located near areas with low values of 
ATT. High-Low clusters identify areas with high values of ITT that are 
located near areas with low values of ATT, while Low-High clusters 
identify areas with low values of ITT that are located near areas with 
high values of ATT. Specifically, Low-High clusters are areas where 
inequity is more pronounced, as people must travel significantly farther 
to reach health facilities that meet their needs compared to the closest 
available options. The bivariate LISA is conducted using GeoDa 1.20 
(Anselin et al., 2010).

2.2.4. Spatial regression analysis
To explore the contributions of representative sociodemographic and 

economic factors described above to travel times, we performed 
regression analysis for different regions and overall contiguous US at the 
census tract level. Traditional linear regression models, such as Ordinary 
Least Squares (OLS), are limited by their assumption of data linearity 
and do not account for potential spatial dependencies in the data. 
Therefore, this study utilized spatial regression models, specifically the 
Spatial Lag Model (SLM) and Spatial Error Model (SEM), to address 
spatial heterogeneity within the study area. The SLM focuses on the 

Table 1 
Summary of explanatory variables used in this study.

Variable Category Variable Name Definition Source

Dependent 
variable

Travel time ITT The minimum travel time from the population centroid of each census tract 
to the 10 nearest facilities (minutes)

Open Source Routing Machine 
(OSRM)

ATT The smartphone users’ mobility data derived travel time weighted from the 
population centroid of each census tract to the recorded facility (minutes)

Independent 
Variable

Economic Median household 
income

Median household income in the past 12 months (dollars) 2015 US Census American 
Community Survey

Race White (%) Percentage of the White population (%)
Black (%) Percentage of the Black or African American population (%)
AIAN(%) Percentage of the American Indian and Alaska Native alone population (%)
Asian (%) Percentage of the Asian population (%)

Ethnicity Hispanic (%) Percentage of Hispanic or Latino population (%)
Non-Hispanic (%) Percentage of Non-Hispanic or Non-Latino population (%)

Demographics Age 65+ (%) Percentage of the population over 65 years old (%)
Unemployment rate (%) Percentage of unemployed population (%)
High school dropouts 
(%)

Percentage of population does not have high school diploma (%)

Households limited in 
English (%)

Percentage of Limited English speaking households (%)

isUrban Urban/rural status 2010 US Department of Agriculture 
Economic Research Service
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dependencies of variables in one area with those in surrounding areas, 
whereas the SEM accounts for the correlations between the error terms 
of an area and the errors in its neighboring areas. In this study, ITT, ATT, 
and the difference between ITT and ATT were analyzed using three 
regression models (i.e., OLS, SLM, and SEM), with the sub-datasets 
separated by regions.

Prior to running regression models, we checked for the multi
collinearity using the Variance Inflation Factor (VIF) and discovered no 
collinearity due to low VIF values (see Supplementary Table 1). Then we 
run the OLS regression model. Before performing the spatial regression 
analysis, it is essential to examine spatial correlation by calculating 
Global Moran’s I, which ranges from −1 and 1. The value of Moran’s I 
closer to 1 indicates a stronger spatial clustering, suggesting that similar 
values are more likely to be found close to each other. Conversely, a 
value closer to −1 indicates strong negative spatial autocorrelation, 
where dissimilar values are adjacent, reflecting a dispersed pattern. A 
value close to 0 indicates no spatial autocorrelation, meaning the values 
are randomly distributed across the study area with no pattern of clus
tering or dispersion. Global Moran’s I was calculated for both ITT and 
ATT, with results of 0.4745 and 0.4235, respectively. These outcomes 
imply moderate spatial autocorrelation in the residuals, indicating that 
spatial regression analysis is necessary. Therefore, we conducted the 
SLM (Anselin, 1988) to consider the influence of neighboring values of 
the dependent variable on the dependent variable itself, following the 
equation: 

yi = xiβ + ρωiyji + μi (6) 

where yi is the dependent variable (e.g., travel time), xi is the inde
pendent variables (e.g., sociodemographic), β represents the regression 
coefficients, ρ is the spatial coefficient, ωi is the weights matrix defining 

the spatial relationships between locations, ωiyj is the spatially lagged 
dependent variable for the weights matrix ωi, and μi is a vector of error 
terms.

In addition to the SLM, we also conducted the SEM. The results of the 
SLM are presented in the results section, while the outcomes of linear 
regression and SEM are included in Supplementary Tables 2–4. We 
selected the SLM as the best-performing model based on its superior 
performance, as detailed in Supplementary Tables 5–7. Both linear and 
spatial regression analyses, along with the computation of Global Mor
an’s I, were performed using GeoDa 1.20 (Anselin et al., 2010).

3. Result

3.1. Ideal travel time and actual travel time comparison

We visualized ITT and ATT through a bivariate choropleth map at the 
census tract level, as illustrated in Fig. 2. It is observed that ITT and ATT 
tend to be higher in rural areas compared to urban settings. Specifically, 
in urban areas, travel times exhibit greater consistency, whereas rural 
regions display significant variability. For instance, metropolitan areas 
within California demonstrate lower ATT and ITT, contrasted by sur
rounding rural areas marked in pink on the map, indicating significantly 
higher ATT relative to ITT. In the Southwest, only metropolitan areas in 
Texas report both travel times within 30 min, with other areas also 
experiencing higher ATT than ITT. The Plains region is predominantly 
rural, with both ATT and ITT being high. Conversely, the Mideast, 
Southeast, and Great Lakes regions have lower travel times, with most 
areas reporting both ATT and ITT within 30 min. However, most of these 
regions still show pink, suggesting that ATT is much higher than ITT.

Moreover, beyond the absolute value of two travel times, the dif
ference between ATT and ITT in urban areas shows more homogeneity 

Fig. 2. Bivariate choropleth map of ATT and ITT at census tracts level.
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than in rural areas. In urban settings, the difference is mostly within 15 
min, meaning that urban residents’ ATT is only 15 min larger than their 
ITT. However, for rural areas, the scenario is much more complex. Not 
only are rural tracts typically far from mental facilities, making the ITT 
quite large, but also people living in these areas need to travel more than 
an hour to access mental health services that meet their needs, rather 
than the nearest facility. In contrast, most urban residents need only a 
maximum of 15 min more to access their preferred mental health fa
cilities. This shows a significant travel time gap between rural and urban 
residents. However, there are a few rural areas with blue/cold color, 
suggesting that in these areas, ATT is smaller than ITT. This analysis 
highlights the disparity in travel times between urban and rural areas, 
emphasizing the challenges faced by rural populations in accessing 
mental health facilities efficiently.

Fig. 3 illustrates the results of the bivariate LISA analysis, which 
investigates the spatial correlation between ITT and ATT. The High-High 
(pink) clusters, predominantly found in rural areas, signify areas of high 
ITT surrounded by areas of high ATT. Conversely, the Low-Low (blue) 
clusters are primarily situated in urban regions of major cities, including 
Dallas, Houston, Austin, and San Antonio in Texas; Los Angeles, San 
Diego, San Jose, and San Francisco in California; and Boston, Hartford, 
New York City, and Philadelphia on the East Coast. This indicates that 
residents near urban centers generally experience low ITT, surrounded 
by low ATT. The Low-High (light blue) clusters represent census tracts 
with low ITT surrounded by neighbors with high ATT. Besides the High- 
High and Low-Low clusters, the result reveals a great number of Low- 
High tracts but fewer High-Low (light pink) tracts. This suggests that 
using ITT as the sole measure of accessibility may underestimate the 
number of tracts with high ATT, especially in rural areas. Suburban 
communities, on the other hand, exhibit Not Significant (grey) patterns, 
indicating that actual driving times are distributed independently of the 

ideal driving times.
Furthermore, the correlation between ATT and ITT at the state level 

is also explored to reveal discrepancies among states, as illustrated in 
Fig. 4. We created scatter plots of ITT versus ATT for each census tract, 
with each dot representing a tract, and performed linear regression 
analysis between ITT and ATT for each state using the geographic to
pology of the corresponding state location with the R package “geo
facet”. The analysis shows that in almost all states, ATT is larger than 
ITT, which means that using ITT to estimate the travel time to mental 
health facilities generally results in underestimation across the contig
uous US. Vermont is an exception where two travel times are the closest, 
with the regression coefficient of 0.97, likely due to its low population 
and small area. As of the 2022 US Census, Vermont is the second-least 
populated state and has the second-highest percentage of White resi
dents (92.6%) (US Census Bureau, 2023). Texas (2.08) has the most 
significant underestimation of travel time using ITT, followed by Florida 
(1.85) and Michigan (1.86). Texas is also the second-largest and 
second-most populated state (US Census Bureau, 2023). Other states 
with large discrepancies between ITT and ATT include Louisiana (1.78), 
Massachusetts (1.77), and Washington, D.C. (1.73). Interestingly, 
Wyoming, despite being the least populated state, also faces a substan
tial underestimation of travel time to mental health facilities when 
measured by ITT, with a regression coefficient of 1.72.

3.2. Comparative analysis of travel times by demographic groups

We further analyzed the disparity between ITT and ATT across eight 
US regions, categorized by various demographic groups, including age, 
race, and ethnicity. Figs. 5 and 6 depict the variation in two travel time 
metrics among different demographic groups. The x-axis in these figures 
shows the percentage of the population within different travel time 

Fig. 3. Bivariate local moran cluster map.
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ranges for ATT (Fig. 5) and ITT (Fig. 6). In the previous step, we assigned 
ATT and ITT to each census tract and obtained the percentage of pop
ulation in each age group, race, and ethnicity from the sociodemo
graphic data. This allows us to calculate the percentage of a certain 
demographic group within different travel time ranges for rural and 
urban areas separately. For example, in rural areas, the percentage of the 
population aged 65+ with an ATT of less than 15 min is calculated by 
taking the population of census tracts with an ATT of less than 15 min, 
multiplying it by the percentage of people aged 65+ in each census tract, 
and dividing it by the total population aged 65+ in rural areas.

Compared to the ITT results shown in Fig. 6, the percentage of the 
population with ATT within 15 min in Fig. 5 is significantly reduced, and 
the percentage of the population with travel time exceeding 30 min is 
markedly increased, especially in rural areas. In the Southwest, Rocky 
Mountain, Far West, Plains, and Southeast, rural residents have a higher 
proportion of ATT over an hour than those in New England, Mideast, and 
Great Lakes regions. Specifically, in rural Southwest and Rocky Moun
tain regions, the percentage of population with ATT between 15 and 30 
(8.8% and 7.5% respectively) is much lower than other regions (e.g., 
26.8% in New England), indicating that more than half of the population 
in these areas has ATT exceeding 30 min. Similarly, the percentage of 
the population in the Southwest with ATT greater than 60 min is almost 
double that of the Great Lakes and Mideast regions. This disparity can be 

attributed to several factors. The Southwest region is characterized by its 
vast, sparsely populated rural areas, which often have fewer healthcare 
facilities spread over larger distances. This results in longer travel times 
for residents seeking mental health services. In contrast, the Great Lakes 
and Mideast regions have higher population densities and better- 
developed infrastructure, facilitating easier access to healthcare facil
ities and shorter travel times. Furthermore, the concentration of 
healthcare facilities in urban centers within the Great Lakes and Mideast 
regions reduces the travel burden for rural residents in those areas.

It is further observed that ATT does not significantly differ among 
age groups, as shown in Fig. 5. However, significant differences in travel 
times by ethnicity exist in urban areas. Hispanics have a higher per
centage of the population with ATT within 15 min, particularly in urban 
areas of New England, the Mideast, and the Plains. In contrast, across the 
entire contiguous United States and in the Southwest’s rural areas, 
Hispanics have a higher percentage of population with ATT exceeding 
an hour compared to non-Hispanics. Regarding race, Black residents 
generally have a lower percentage of the population with ATT exceeding 
an hour in rural areas, indicating better ATT for Black residents 
compared to Asian and White residents, except in the Mideast. This 
trend is notably observed in rural areas of New England, the Southwest, 
the Rocky Mountain, and the Far West. In urban areas, White residents 
have the lowest percentage ATT less than 15 min in New England, the 

Fig. 4. Correlation between ATT and ITT at the state level.
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Mideast, the Great Lakes, and the Plains. Additionally, Native Hawaiian 
and Other Pacific Islander residents have the highest percentage of ATT 
between 30 and 60 min. American Indian and Alaska Native residents 
generally have the worst travel time, with the highest proportion of ATT 
exceeding an hour in urban areas across all regions except New England 
and the Mideast.

The variation in ITT (see Fig. 6) across regions shows patterns that 
are both similar to and different from those of ATT. Similar to ATT, rural 
residents generally have longer ITT than their urban counterparts, 
regardless of region, race, ethnicity, or age group. Compared to New 
England, the Mideast, the Great Lakes, the Southeast, the Plains, the 
Southwest, the Rocky Mountain, and the Far West regions exhibit a 
higher percentage of population with ITT exceeding 1 h in rural areas. In 

urban areas, the majority of residents can reach the nearest mental 
health facilities within 15 min. Conversely, in rural regions, ITT is not 
only longer but also varies significantly based on race and ethnicity, 
with less than 50% of the population able to access the nearest mental 
health services within 15 min. Moreover, a portion of the rural popu
lation requires more than an hour to reach these services. Specifically, as 
shown in Fig. 6, in the Rocky Mountain region, more than 10% of the 
rural population needs to travel more than 60 min to access mental 
health facilities. In rural areas of New England, the Mideast, the Great 
Lakes, and the Southeast, a small portion of residents face travel times 
exceeding an hour.

Regarding age groups, similar to ATT, the results indicate minimal 
variation in ITT across different age groups, suggesting that age is not a 

Fig. 5. Demographic difference in ATT for each sociodemographic subgroup.
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predominant factor contributing to the travel time disparity. However, 
some patterns are notable. For example, in most regions, the 18–44 age 
group in rural areas has the largest percentage of the population with 
ITT less than 15 min, except in the Far West, where ITT tends to increase 
with age, especially in rural areas. In terms of ethnicity, Hispanic in
dividuals generally experience less ITT than non-Hispanic individuals in 
both urban and rural areas, except for the rural Southwest and Far West 
regions. Among races, American Indian and Alaska Native residents 
generally have the longest ITT in both rural and urban areas, while Asian 
residents have the shortest ITT in both settings. The disparity in ITT 
between races is minimal in urban areas but significant in rural areas, 
highlighting the gap between rural and urban travel times. For example, 
in rural New England, Great Lakes, and Southwest, Black residents have 

shorter ITT than Asian and White residents. Conversely, in the rural Far 
West, Rocky Mountain, Southeast, Plains, and Midwest regions, Asian 
residents have shorter ITT than Black and White residents. Additionally, 
some American Indian and Alaska Native residents in urban areas of the 
Plains and Rocky Mountain regions have long travel times to mental 
health services, exceeding an hour.

3.3. Regression results

This section examines the association between three travel time 
metrics (ATT, ITT, and their differences), and sociodemographic and 
economic variables across the contiguous United States and its eight 
regions. This analysis utilizes three regression models as described in the 

Fig. 6. Demographic difference in ITT for each sociodemographic subgroup.
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methodology section. The corresponding results are presented in 
Tables 2–4.

From the regression results, it is found that rural-urban status is the 
most negatively significant factor in all three regression models, indi
cating that both travel times and the difference between them are 
significantly increased by the rural status. Median household income is 
not associated with either travel time or the difference. The percentage 
of older adults is positively associated with travel time in all three 
models. The percentage of high school dropouts is positively associated 
with ATT and ITT, but negatively associated with the difference, 
meaning that high education would mitigate the increase in ATT more 
significantly than ITT.

Table 2 provides the SLM modeling results of ATT across various 
regions, highlighting the impact of several demographic and socioeco
nomic factors. The percentage of the population aged 65 and older 
demonstrates a highly significant positive association (p < 0.001) with 
ATT in the contiguous US, Great Lakes, Plains, and Far West. The un
employment rate exhibits a statistically significant positive association 
with ATT in the Great Lakes and Far West, while showing a significant 
negative association in the Plains. Additionally, the percentage of high 
school dropouts highly significantly increases (p < 0.001) ATT in the 
contiguous US, Plains, and Southeast. This indicates that higher dropout 
rates are associated with longer travel times to access mental health 
services in these regions. Regarding races, the percentage of Black res
idents has a significant negative association with ATT in the contiguous 
US, the Great Lakes, Southeast, Southwest, and Far West. Similarly, a 
higher percentage of Asian residents is negatively associated with ATT in 
the contiguous US, New England, Great Lakes, Southeast, Southwest, 
and Rocky Mountain. In contrast, an increase in AIAN populations (p <
0.001) highly significantly raises ATT in the contiguous US, Great Lakes, 
Plains, Rocky Mountain, and Far West. Furthermore, the percentage of 
households with limited English proficiency has a highly significant 
negative association (p < 0.001) with ATT in the contiguous US, and 
significant negative in the Mideast and Far West but positive in South
west. Urban status has a highly significant negative association (p <

0.001) with ATT in all regions, indicating that urban areas generally 
have shorter travel times to mental health services compared to rural 
areas. This effect is particularly pronounced in the Rocky Mountain re
gion, where the coefficient reaches as low as −39.07.

Table 3 presents the SLM modeling results of ITT across various re
gions. It is shown that higher median household income is highly sig
nificant with the ITT (p < 0.001) in the contiguous US, Great Lakes, 
Plains, Southeast, and Far West, suggesting economic well-being may 
influence health service access. The percentage of the population 65+ is 
positively associated with ITT with high significance (p < 0.001) in the 
contiguous US, Great Lakes, Plains, and Rocky Mountain. The percent
age of high school dropouts could increase the ITT significantly in most 

regions, except in New England. This indicates that lower educational 
attainment may correlate with reduced access to mental health facilities. 
Additionally, the negative association for the unemployment rate, 
observed only in the contiguous US and the Rocky Mountain region, 
suggests that higher unemployment rates are linked with shorter travel 
times to mental health facilities in these areas. Regarding race and 
ethnicity, the results are similar to those observed for ATT. The higher 
percentage of AIAN is directly linked to longer ITT. Conversely, the 
percentage of Black and Asian residents shows a negative association 
with ITT. Additionally, Hispanic population is significant negatively 
associated with the ITT in most regions, except for New England, sug
gesting that non-Hispanic population tends to have longer ITT. The re
sults for households limited in English proficiency show a significant 
negative association with ITT in the contiguous US, Mideast, and 
Southeast only. Similar to the ATT results, rural status highly signifi
cantly increases (p < 0.001) ITT in all regions, though the effect is not as 
substantial as in the ATT results. This effect is particularly pronounced 
in the Rocky Mountain and Far West regions, where the coefficients 
exceed 10.

Table 4 provides the SLM modeling results for the difference between 
ATT and ITT across various regions. The impact of median household 
income is marginally significant in the contiguous US, Mideast, and 
Southeast. The percentage of the population aged 65 and over has a 
highly significant positive association (p < 0.001) in the contiguous US, 
New England, Great Lakes, Southeast, and Far West, indicating the aging 
population has a larger bias if ITT is used as an estimator of their travel 
time to mental health facilities. The unemployment rate shows varied 
results, with a notably significant positive association in the Great Lakes 
region and a significant negative association in the Plains region. High 
school dropout rates have a significant negative association in the 
contiguous U.S., Mideast, Great Lakes, Southeast, and Southwest re
gions, while the Plains region shows a significant positive association. 
Regarding races, the percentage of Black has a highly significant nega
tive association (p < 0.001) with ATT-ITT in the contiguous US, Mideast, 
Great Lakes, Southeast, indicating the travel time of Black population is 
overestimated by ITT in those regions. The AIAN population shows a 
highly significant positive association (p < 0.001) in the contiguous U. 
S., Great Lakes, and Plains regions, suggesting that AIAN residents are 
likely to experience greater underestimation of travel time when 
measured by ITT. As for ethnicity, the percentage of Hispanic population 
shows a highly significant positive association (p < 0.001) in the 
contiguous US, with varied regional impacts. This includes a negative 
association in New England and Plains, but a positive association in the 
Far West. Moreover, limited English proficiency shows a significant 
negative association in the contiguous US and Far West, but a positive 
association in Southwest. The urbanity variable consistently shows a 
highly significant reduction (p < 0.001) in the difference across all 

Table 2 
The result of the SLM for ATT.

Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00 0.00 0.00c 0.00 0.00b 0.00 0.00 0.00 0.00b

Age 65+ (%) 0.14d 0.23c 0.04 0.20d 0.36d 0.06c 0.07a 0.13 0.18d

Unemployment rate (%) −0.02 0.07 0.05 0.08b −0.36c 0.02 −0.01 −0.36 0.13b

High school dropouts (%) 0.05d 0.01 −0.04 −0.02 0.47d 0.11d −0.06 −0.05 0.01
Black (%) −0.04d −0.04 −0.04d −0.06d −0.05 −0.07d −0.08d 0.00 −0.09c

AIAN (%) 0.31d 1.08c 0.08 0.54d 0.54d 0.05 0.13c 0.54d 0.56d

Asian (%) −0.05d −0.16c −0.01 −0.12c −0.20a −0.18d −0.20c −0.69b 0.01
Hispanic (%) −0.01a −0.11c −0.02a −0.04b −0.30d −0.07d −0.00 −0.11 0.01
Limited in English (%) −0.09d 0.05 −0.07b 0.00 −0.11 −0.05 0.12b 0.35 −0.12b

isUrban −16.01d −11.55d −18.27d −9.76d −15.56d −9.59d −25.81d −39.07d −31.24d

Note.
All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.

a p < 0.1.
b p < 0.05.
c p < 0.01.
d p < 0.001.
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regions, emphasizing that the underestimation of travel time is more 
pronounced for rural residents compared to their urban counterparts.

4. Discussion

This is the first study to estimate the demographic disparities in 
travel time to mental health facilities using smartphone user mobility 
data. This study utilizes this data in a novel way to calculate ATT. Re
sults demonstrate that extra time is needed when people are seeking 
mental health services to fulfill their needs rather than just choosing the 
closest facilities, especially in rural areas. Moreover, our work investi
gated the relations between sociodemographic factors and travel time in 
the contiguous US and various regions to provide insightful findings to 
health researchers and policy makers.

One of the key findings from the study is the notable underestimation 
of travel times to mental health facilities when relying solely on ITT. The 
difference between the ITT and the ATT exhibits the pronounced 
disparity faced by residents in rural versus urban areas. Rural residents 
consistently experience longer travel times in both ITT and ATT. As 
depicted in Fig. 2, most urban central areas have ITT within 30 min 
while a great number of rural areas require more than an hour of travel 
time to reach the nearest mental health facility. This distinction between 
rural and urban access aligns with previous research, underscoring 
significant accessibility barriers that are distinctly present in rural set
tings (Ghorbanzadeh et al., 2020; Rauch et al., 2023). Many rural 
Americans have less access to mental health services than their urban 
counterparts (Safran et al., 2009), which could potentially correspond to 

significant disparities in mental health outcomes for rural residents 
(Morales et al., 2020). In addition to the longer travel time, the larger 
difference between ITT and ATT is also aggregated in rural areas. Ac
cording to our results, residents in rural areas face more inequality than 
those in urban areas if ITT is used as the measurement of accessibility. 
Approximately half of the urban residents would only need an extra 15 
min to fulfill their needs beyond the nearest facility, and nearly 90% 
need less than 30 min extra. However, half of rural residents require 30 
min or more.

Besides the rural and urban status, demographic disparities in access 
to mental health services exist as well. From the regression analysis 
result, it is found that age is also a significant factor. Census tracts with a 
higher concentration of older adults experience longer travel times and a 
larger difference between ITT and ATT in terms of mental health service 
access compared to areas with younger residents. Previous study in
dicates that a disproportionate share of older adults live in rural areas 
(Cohen and Greaney, 2023), with 17.5% of the rural population being 65 
years and older compared to only 13.8% in urban areas (Smith and 
Trevelyan, 2019). The older adults in rural areas may face greater bar
riers to accessing mental health facilities. Additionally, we found that 
the Hispanic population is significantly negatively associated with ITT in 
all regions except for New England, while it is significantly associated 
with ATT only in New England, the Great Lakes, Plains, and Southeast 
regions. Although Asians represent the most urbanized ethnic group in 
the US, with around 95% living in urban rather than rural areas, this 
primarily demonstrates improved access as depicted in Fig. 6 concerning 
ITT, but not in the results of ATT. These findings highlight the 

Table 3 
The result of the SLM for ITT.

Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00d 0.00b 0.00c 0.00d 0.00d 0.00d 0.00b 0.00a 0.00d

Age 65+ (%) 0.03d 0.01 0.01 0.04d 0.12d 0.01 0.02b 0.18d −0.01
Unemployment rate (%) −0.02d 0.00 −0.01 0.01 −0.02 −0.01 −0.03 −0.21b 0.03
High school dropouts (%) 0.09d 0.02 0.05d 0.05d 0.15d 0.14d 0.06d 0.18b 0.05d

Black (%) −0.02d −0.01 −0.01d −0.02d −0.01 −0.03d −0.03d 0.03 −0.02b

AIAN (%) 0.15d 0.45c 0.07b 0.11d 0.12d 0.05c 0.09d 0.40d 0.42d

Asian (%) −0.04d −0.05c −0.02d −0.07d −0.09c −0.09d −0.06d −0.20a −0.02c

Hispanic (%) −0.03d −0.02 −0.03d −0.04d −0.11d −0.04d −0.02d −0.11c −0.03d

Limited in English (%) −0.04d −0.03 −0.03d −0.00 0.04 −0.04c −0.01 0.02 −0.02
isUrban −4.04d −3.26d −2.00d −2.61d −4.06d −1.13d −6.17d −15.30d −10.65d

Note.
All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.

a p < 0.1.
b p < 0.05.
c p < 0.01.
d p < 0.001.

Table 4 
The result of the SLM for ATT-ITT.

Overall New England Mideast Great Lakes Plains Southeast Southwest Rocky Mountain Far West

Median household income 0.00b 0.00 0.00b 0.00a 0.00 0.00b 0.00 0.00 0.00
Age 65+ (%) 0.12d 0.24d 0.04 0.16d 0.21c 0.06d 0.03 −0.04 0.20d

Unemployment rate (%) 0.01 0.08 0.06a 0.08b −0.30b 0.03 0.01 −0.10 0.11a

High school dropouts (%) −0.05d −0.01 −0.12d −0.08c 0.26c −0.07c −0.13c −0.25 −0.06
Black (%) −0.02d −0.03 −0.02d −0.03d −0.02 −0.03d −0.05b −0.05 −0.07b

AIAN (%) 0.14d 0.64 0.01 0.44d 0.34d −0.00 0.01 0.13 0.12
Asian (%) 0.00 −0.11b 0.02 −0.03 −0.05 −0.06 −0.13b −0.55b 0.04b

Hispanic (%) 0.03d −0.10c 0.01 0.00 −0.15b −0.02 0.03 0.00 0.05b

Limited in English (%) −0.05b 0.10 −0.03 0.02 −0.15 −0.00 0.13b 0.36 −0.10b

isUrban −11.50d −8.00d −14.92d −6.98d −9.07d −8.17d −18.9d −26.70d −19.75d

Note.
All values are rounded to two decimal places. A value of 0.00 represents a coefficient that is very small but non-zero.

a p < 0.1.
b p < 0.05.
c p < 0.01.
d p < 0.001.
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complexity of demographic disparities in accessing mental health ser
vices and underscore the need for more accurate measures, like ATT, to 
understand and address these disparities effectively.

To the best of our knowledge, no other research in health services has 
utilized large-scale smartphone data to attain such a granular level of 
detail in travel time analysis within the US. This study measures ATTs to 
mental health services, thereby providing a more precise evaluation of 
patient travel times. Numerous studies have demonstrated an associa
tion between travel time to health facilities and patient health outcomes 
(Kelly et al., 2016; Caldwell et al., 2016)). Consequently, neglecting ATT 
could potentially lead to an underestimation of the impact of travel time 
on health outcomes. This is particularly significant in rural areas where 
travel distances can be considerable. Furthermore, the measurement of 
ATT enables researchers to accurately identify potential barriers pre
venting patients from accessing the nearest health facilities. These bar
riers could include transportation issues, previous negative experiences 
with the healthcare system, lengthy waitlists for appointments, and the 
acceptance of health insurance (Ahmed et al., 2001; Brems et al., 2006). 
This nuanced understanding can significantly aid decision-makers in 
optimizing healthcare services. It can also inform the strategic allocation 
of services to minimize travel time, thereby enhancing accessibility. 
Ultimately, the actual travel time could contribute significantly to the 
improvement of health outcomes by ensuring that patients can access 
the care they need in a timely manner. Therefore, this research has the 
potential to facilitate health policy decisions and shape future strategies 
in healthcare service provision.

Overall, this research contributes significantly to the understanding 
of health disparities by highlighting the inadequacy of ITT in accurately 
assessing accessibility to mental health services. By advocating for the 
use of ATT and incorporating diverse sociodemographic factors into the 
analysis, the study provides valuable insights for policymakers and 
healthcare practitioners. Research has shown that poor health access 
could potentially result in worse health outcomes (Kelly et al., 2016). As 
demonstrated in this study, the rural area’s travel behavior cannot be 
estimated by proximity measurement, this study highlights the need for 
policymakers to act on tailored interventions. Many prior studies have 
emphasized the necessity of both horizontal and vertical equity, 
appealing to the distribution of accessibility benefits that should not be 
evenly distributed among all regions but target populations in need 
specifically (Ashik et al., 2024; Guo and Brakewood, 2024). Texas, 
Florida, Michigan, 3 states having the most underestimated travel time 
using ITT, also need targeted interventions to improve real accessibility, 
such as preferential support transit policy, tax breaks or grants, online 
resources, remote techniques, etc. (Cyr et al., 2019). Especially the 
Low-High cluster areas in Fig. 5 experiencing disproportionate disparity 
are where people are in greater need and demand to receive more action 
from policymakers and urban planners. From the regression results, the 
significance and direction coefficient are different in the overall US from 
each region, which means that the spatial heterogeneity must be 
included in the consideration. It is crucial to tackle these significant 
disparities in travel times to guarantee that everyone, irrespective of 
their geographical location or demographic characteristics, has fair ac
cess to healthcare. Moving forward, future research should continue to 
explore innovative methodologies and data sources to further elucidate 
the complexities of health disparities and inform targeted interventions 
and policies.

5. Conclusion

This study systematically compares conventional driving time met
rics and smartphone-derived ATT to mental health facilities. It uncovers 
pronounced discrepancies, particularly within certain geographical re
gions and specific demographic groups. Such discrepancies underscore 
the importance of using ATT as a measure of health accessibility in 
future research. The findings of the study will contribute to the devel
opment of more equitable healthcare systems, ensuring that vulnerable 

populations have better access to the health services they need.
While smartphone-based SafeGraph data offers invaluable insights 

into human mobility patterns, critical limitations must be acknowledged 
to ensure the robustness of research findings. Firstly, the representa
tiveness of SafeGraph’s dataset is contingent on smartphone ownership 
and usage, which may not uniformly capture all demographic groups 
and regions, potentially biasing outcomes toward certain populations in 
rural areas (Curtis et al., 2022). Secondly, while SafeGraph data captures 
POI visit information, it does not always accurately reflect detailed 
visitor information. For example, visits to hospitals may include not only 
patients but also accompanying family members, making it difficult to 
discern the exact purpose of the visit. This limitation can impact ana
lyses that require precise visitation counts and the context of those visits. 
Thirdly, privacy concerns and data anonymization processes can lead to 
the exclusion of small visitation events, thus underrepresenting less 
frequent or shorter visits to health facilities (Middleton et al., 2013). In 
contrast, conventional surveys, especially when augmented by GPS 
tracking, emerge as reliable and precise methods for documenting daily 
travel behavior, offering direct feedback in the absence of alternative 
data sources (Schneider et al., 2013) and also an efficient supplement to 
direct individual feedback when there is a lack of other data sources 
(Carson et al., 2023; Jiménez-Espada et al., 2022). Nonetheless, this 
approach is constrained by financial, temporal, and representational 
limitations, restricting its broader application. Hence, employing a 
combination of multi-source data, including smartphone mobility data, 
GPS tracking, and surveys, presents a comprehensive solution for 
accurately understanding complex travel behaviors, particularly in rural 
settings (Kelly et al., 2016; Cummings et al., 2017).

In addition to the SafeGraph data, the calculation of travel time in 
this study is based solely on driving durations, omitting other modes of 
transportation. This approach particularly overlooks the robust public 
transit systems available in certain urban centers, such as Boston and 
New York City, where alternatives to driving are extensively utilized and 
highly efficient, such as bus and subway. Therefore, it is important to 
consider multiple modes of transportation to assess travel time system
atically and accurately. Another focus would be further exploration of 
the association between sociodemographic and travel time using 
advanced spatial regression models, e.g., Geographically Weighted 
Regression (GWR) and Multiscale Geographically Weighted Regression 
(MGWR). Beyond identifying sociodemographic correlations, it is also 
crucial to investigate how disparities in healthcare access impact health 
outcomes. Specifically, the link between limited access to mental health 
services and adverse mental health outcomes can be further examined. 
For instance, individuals who face significant barriers in accessing 
mental health care may experience worsening symptoms, delayed 
treatment, and overall poorer mental health. This could lead to 
increased rates of depression, anxiety, and other mental health disor
ders. Lastly, expanding the scope to general public healthcare, in addi
tion to mental health services, can illuminate broader obstacles and 
deficiencies within the health sector.
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