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It is well known that actuator saturation can cause destabilization and degradation in performance; similar

problemsare encounteredwhenactuation is quantized. This studyproposes the design of an antiwindup compensator

for systemswith actuators that are limited to a finite number of quantization levels. This combination of discrete-level

actuation and saturation poses a unique antiwindupproblem that has not yet been solved.To surmount this combined

issue, an antiwindup compensator is proposed, which provides ultimate boundedness of the system state within a

prescribed region and guarantees that the state does not stray outside a larger compact set. The use of shifted ramp

functions enables a less conservative bound on the control-signal error, which yields significantly lower L2 gain

bounds compared to a standard sector-bound antiwindup design approach. A numerical simulation example

illustrates the effectiveness on a rigid-body system, which inspired this study.

I. Introduction

A QUANTIZER maps a continuous-valued signal to a discrete-

valued signal [1] and can result from analog-to-digital convert-

ers, digital sensors, and binary actuators, to name a few [2–7]. The

issue of quantization was first discussed by Kalman in the 1950s [8].

However, it was not until the 1990s that Delchamps advocated a

direct analysis of the effects of quantization on a system [3]. The

effects of quantization are similar to those of actuator saturation; they

are unpredictable but typically detrimental to a system’s behavior

[3,8–10], and a system rendered globally asymptotically stable by a

control law will not necessarily remain so when quantization is

introduced [9]. Prior research has addressed logarithmic quantizers,

where quadratic stability analysis was applied [9,11,12]. However,

this analysis is not applicable to many practical systems with uniform

or nonuniform quantization.

Moreover, some mechanical and aerospace systems experience

control signals that are subject to both quantization and saturation.

For example, the NASA Lunar Pallet Lander uses a bank of unidi-

rectional binary actuators that, when used in unison, results in

quantized input forces to the vehicle [2]. Likewise, because a finite

number of actuators are available, saturation results when the thrust

demand exceeds the total available thrust. A scenario such as this is

typical of a number of practical systems and was the motivation for

this study.

The combination of saturation and quantization has not been

studied extensively in the literature, with perhaps the most compre-

hensive treatment given in [13]where conditionswere given for state-

feedback stabilization of a system subject to input quantization and

saturation. Crucially, the conditions ensured that the system statewas

ultimately bounded, with this set contained within another set that

approximated the region of attraction. These conditions made the

results of [13] applicable to both stable and unstable systems.

For systems with saturation, it is typical to rewrite the saturation
nonlinearity as sat�u� � u − Dz�u� and then use sector bounds on
the dead-zone, Dz�u�, to arrive at conditions that ensure stability.
These conditions can be stated globally for stable plants, and, by
using sector-narrowing techniques [14,15], local stability conditions
can be obtained for unstable plants. For instance, Fig. 1 shows that

when ψ�u� � Dz�u�, then for all u < u
̬
, ψ�u� ∈ sector �0; ϵ� with

ϵ < 1. However, this is not as straightforward for systems suffering
from actuator saturation and quantization because the sector-
narrowing approach cannot be applied. Using the same split as before
yields sat�q�u�� � u − π�u�, where π�u� models the difference
between the nominal control signal and its saturated, quantized
counterpart. It is clear from Fig. 1 that the narrowest sector that
π�u� can inhabit is sector �0; 1�, regardless of the local bound,

u
̬
, on the control signal used. Therefore, when ψ�u� � π�u� �

u − sat�q�u��, sector narrowing is not possible with the narrowest

sector being sector �0; 1�, regardless of the size of u
̬
. This is not

problematic for stable plants; however, for unstable plants, it effec-
tively prevents any conclusions about stability from being made.
Therefore, other approaches must be adopted.
An attractive alternative to standard sector constraints for

saturation/quantization nonlinearity can be obtained from the proper-
ties of ramp functions that were exploited in a previous study [16]
(also more recently in [17,18]) for the analysis of piecewise affine
systems. Similar to [16], it can be shown that the quantization/
saturation nonlinearity can be more accurately approximated using
ramp functions, and that such approximations naturally lead to a set
of quadratic constraints that can be used in Lyapunov analysis. These
more accurate approximations have the potential to reduce conserva-
tism in the stability analysis and, by imposing a limit on the energy of
the input that drives the antiwindup compensator, offer a suitable
alternative to sector narrowing in the case of open-loop unstable
systems.
The contribution of this study is the advocacy of antiwindup

compensation (AWC‡) to address the uniform quantization and sat-
uration problem.Antiwindup compensation has beenwell studied for
systems with input saturation (e.g., [19–22]) and assists a nominal a
priori designed controller during periods of saturation. Although
there is some work on applying AWC to input-quantized plants
[23,24], the results developed here have gone beyond those of
[23,24], where only quantization was considered, and instead have
used the ultimate boundedness/local stability ideas of Tarbouriech
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and Gouaisbaut [13] along with sharper characterizations of the
saturation/quantization nonlinearity, inspired by Groff et al. [16].
This provides less conservative quadratic constraints and, as shown
from the results, a significant reduction in the L2 gain bounds
compared with an antiwindup design algorithm using sector �0; I�.
The approach blends the practicality of the antiwindup approach and
the technical rigor of [13] while reducing conservatism in the design.
Crucially, ramp-function characterizations [16] were exploited for
AWC synthesis while only requiring the solution of a linear matrix
inequality. A preliminary version of this study was presented in [25].
The main additions found in this study include more complete
antiwindup derivations and a larger sample of simulation results.
This paper is structured as follows. Section II states theAWCdesign

problem for the quantized and saturated control signals. Section III
provides the bounds on the control-signal error π�u� and preliminaries
for the main result. Section IV discusses the linear performance
recovery, stability, and performance analysis and presents the main
result. Section V provides and critiques sample simulation results.
Section VI draws conclusions and states efforts for future work.
Notation is mainly standard and follows that of [21]. The reader’s

attention is drawn to the following notation:Rn×m denotes the set of
matrices with real coefficients of dimension n by m. Let M�i;j�
denote the element in the �i; j� entry of matrix M, and Mi the ith
row of M, denote Dn � fM ∈ Rn×njM�i;j� � 0; i ≠ jg, Pn×m �
fM ∈ Rn×mjM�i;j� ≥ 0; ∀i; jg, and In ∈ fDnjIn�i;i� � 1g. A state-

space system

_x�t� � f�x�t�� f�⋅�∶Rn ↦ Rn

is described as locally ultimately bounded if for all x�0� ∈ X1 ⊂ Rn,
there exists a time t1 and a set X2 ⊂ Rn such that x�t� ∈ X2 for
all t ≥ t1.

II. Problem Statement

This study addresses control signals with a finite number of
quantized levels and is inspired by the problem of controlling rigid-
body systems with a limited number of quantized thrusters.
Consider m thruster banks made up of nTi

; i � 1; : : : ; m bidirec-
tional binary thrusters with equal thrust magnitudes δTi. Then, the
control signal u is subject to quantization with saturation described
by ϕ�u� � sat �u�q�u�� � �sat �u1�q1�u1�� : : : sat �um�qm�um��� 0, where

sat �ui�qi�ui�� ≔
− �ui if qi�ui� ≤ − �ui

qi�ui� if − �ui < qi�ui� < �ui

�ui; if qi�ui� ≥ �ui

qi�ui� ≔ sign�ui� ⋅ floor�juij∕δTi�δTi

and �ui � nTi
δTi. Symmetric actuation is assumed throughout; amend-

ments may bemade to deal with asymmetric actuators by allowing the
upper and lower bounds on the saturation function to differ.
Tomanage the effects of quantization plus saturation on the control

signal, the antiwindup architecture shown in Fig. 2 is considered,
where G�s�, K�s�, and Θ�s� are the plant, controller, and AWC,
respectively, with state-space realizations:

G�s� ∼ _xp � Apxp � Bpϕ�u�
y � Cpxp

(1)

K�s� ∼ _xc � Acxc � Bc�y� yd� � Bcrr

ulin � Ccxc �Dc�y� yd� �Dcrr
(2)

Θ�s� ∼
_xa � �Ap � BpF�xa � Bp ~u

ud � Fxa

yd � Cpxa

(3)

where the control signal is u � ulin − ud ∈ Rm, the measured output
is y ∈ Rp, and the reference input is r ∈ Rnr . The plant is driven by
the quantized and constrained signal û � ϕ�u�, and the AWC is
driven by the difference between the control signal and its quantized
and constrained counterpart ~u � π�u� � u − ϕ�u�, which is referred
to as the control-signal error. The AWC, which has a typical
antiwindup structure as, for example, found in [19,23], emits two
signals: ud ∈ Rm and yd ∈ Rp. It is assumed that in the absence of
quantization/saturation, the controller K�s� stabilizes G�s� and pro-
vides satisfactory performance. The objective is to design the AWC,
specifically F, such that in the presence of quantization/saturation,
the closed-loop system is stable, and satisfactory performance, as
defined in Sec. IV, is maintained.
Remark 1: The quantized and saturated closed-loop system is

represented by a set of differential equations with a discontinuous
right-hand side and thus may not admit classical solutions. In this
study, as in [13], unique Carathéodory solutions are assumed to exist
to these differential equations, and in this sense, the closed loop is
said to be well posed. Obviously, this excludes sliding mode and
other types of behavior; the interested reader may consult [26] for a
general coverage of the subject of discontinuous control systems, or
[27] for a differential inclusion formulation. □

III. Preliminaries for the Main Result

Motivated by the piecewise nature of the control-signal error, this
study extensively uses shifted ramp functions [16] to obtain tighter
quadratic constraints than are possible using sector bounds. A shifted
ramp function is given by

rsi�ui� ≔
0 if ui < si

ui − si if ui ≥ si
; i � 1; : : : ; m

The vector-valued decentralized shifted ramp function is

rs�u� ≔ rs1�u1� : : : rsm�um� 0

For a single thrust control signal, the control-signal error ~ui is
bounded by

j ~uij ≤ jui − rδTi
�ui� � r�nTi�1�δTi

�ui� � r−δTi
�ui�

− r−�nTi�1�δTi
�ui� � �uij (4)

For asymmetric quantization or quantization of differing levels,
Eq. (4) would need to be substituted with a different expression but
one that is similar in nature. This has repercussions on themain result,
but parallel derivations would yield similar results.

Fig. 2 Antiwindup architecture: ϕ�u�, quantization and saturation
nonlinearity; Θ�s�, AWC.

Fig. 1 Sector-narrowing issues with quantization. ψ�u� � Dz�u�;
ψ�u� � π�u� � u − sat�q�u��.
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Figure 3 illustrates Eq. (4) for a thruster bank with three thrusters
(nTi

� 3) of equal thrust magnitudes δTi. For a more compact nota-
tion, we define rai ≔ rδTi

�ui�; r−ai ≔ r−δTi
�ui�; rbi ≔ r�nTi�1�δTi

�ui�,
and r−bi ≔ r−�nTi�1�δTi

�ui�. Then, for W ∈ Dm×m > 0, and since

sign� ~ui� � sign�ui� and j ~uij ≤ juij, the following quadratic inequal-
ity holds:

~u 0W�u − ra � rb � r−a − r−b � �u − ~u� ≥ 0 (5)

For unstable or marginally stable systems with poles that lie at the
origin of the complex plane (the latter being pertinent for the rigid-
body systems considered here), global stability properties, such as
finite L2 gain, are difficult or impossible to obtain. Thus, it is
necessary to confine attention to a region of the state space surround-
ing the origin. Notice from Fig. 3 that

jui − rai � rbi � r−ai − r−bi � �uij − j ~uij ≤ jδTij; ∀ui
Therefore, the following holds:

~u 0W�u − ra � rb � r−a − r−b � �u − ~u�Hxa� ≥ 0 (6)

∀xa satisfying satδT�Hxa� � Hxa. To ensure satδT�Hxa� � Hxa,
we impose a limit on the energy of the input ulin, which drives the
AWC (see Fig. 2 and discussion in Sec. IV). If it is true that there

exists a positive definite functionV�xa� � x 0
aP1xa such that _V�xa� ≤

2u 0
linulin whenever x

0
aP1xa ≤ s2 and kulink2 ≤ s∕ 2

p
, s < 1, then by

integrating _V�xa�

V�xa� ≤ 2kulink22 ≤ s2

Therefore, the following condition is imposed:

s2x 0
aH

0
iHixa∕δT2

i < x 0
aP1xa (7)

for all xa ≠ 0 and all i ∈ f1; : : : ; mg. Thus, when the control signal
satisfies the energy condition and the state remains in the ellipsoid

defined by P1 and s2, the sectorlike bound (6) can be used in the
ensuing Lyapunov analysis.
To establish the feasible linearmatrix inequalities introduced in the

next section, the following properties of the shifted ramp functions
are used:
1) Null property, rai�rai − �ui−ai��� 0, i� 1;: : : ;m. Therefore,

for Ta;Tb ∈Dm

r 0aTa�ra − �u − a�� � 0; r 0bTb�rb − �u − b�� � 0

2) Null property, �ui − ai� − �rai − r−ai � � 0; i � 1; : : : ; m.

Therefore, for any ζ ∈ Rnζ and Ra; Rb ∈ Rnζ×m

ζ 0Ra�u − a − ra � r−a � � 0; ζ 0Rb�u − b − rb � r−b � � 0

3) Positivity property, rai ≥ 0; r−ai ≥ 0; rai rbi ≥ 0; rai r
−
bi
≥ 0;

r−ai r
−
bi
≥ 0, where i � 1; : : : ; m. Therefore, for χ � �1r 0ar−a 0r 0br

−
b
0� 0

andM ∈ Pnχ×nχ , nχ � 1� 4m

χ 0Mχ ≥ 0

In the following section, the conditions for the “stability” of the
system comprising the plant, controller, antiwindup compensator,

and saturation/quantization nonlinearity are formulated. It will be
shown that part of this problem can be cast as that of guaranteeing
local ultimate boundedness of the AWC state. Therefore, similar to
[13], the following sets are introduced:

E�P1� � fxa ∈ Rn; x 0
aP1xa ≤ 1g; P1 � Q−1

1 (8)

E�P2� � fxa ∈ Rn; x 0
aP2xa ≤ 1g; P2 � Q−1

1 Q2Q
−1
1 (9)

where P1; Q1; P2, and Q2 are positive definite matrices, which are
introduced shortly. E�P2� represents the set of ultimate boundedness,
whereas E�P1� represents a larger set such that for all xa�0� ∈ E�P1�,
then xa�t� will converge to a region containing E�P2� in finite time.
Remark 2: For unstable plants, these sets are necessary to obtain

meaningful stability results. For stable plants, they are not necessary
but may improve local performance. □

IV. Main Result

The antiwindup approach proposed in this studymirrors that of [19]
in that conditions are sought to guarantee that the system is “stable” (in
the sense discussed in Remark 3) and that the mismatch between the
ideal linear system, without saturation and quantization, and the real
nonlinear system is minimized in some sense. This mismatch system
([19]; see also [15,28]) is governed by the dynamics:

N ∼
_xa � �Ap � BpF�xa � Bp ~u

u � ulin − Fxa

yd � Cpxa

(10)

where the difference between the ideal linear output ylin and the actual
output y is yd. This scenario is depicted in Fig. 4. Thus, for satisfactory
behavior, the goal is to synthesize theAWCgainF such that Eq. (10) is
stable and the L2 gain from ulin to yd is bounded by a constant γ.
Remark 3: The reader should understand “stability” in a slightly

generalized sense similar to that considered in [13]. In particular, and
with some abuse of terminology, N will be described as “stable” if,
for ulin ≡ 0, xa�t� converges to the smallest level set containing E�P2�
for all xa�0� ∈ E�P1� in finite time. Similarly, because ~u�t� will
generally not converge to zero (because the quantization is “active”
all the time), a true L2 gain will generally not be possible. Instead, as
noted in [23], the L2-gain like property enforced is

T

0

kyd�t�k2 dt < 2γ2
T

0

kulin�t�k2 dt� β (11)

for allT ∈ �0;∞� and some β > 0. Despite not being a “true”L2 gain,
it appears that minimizing the bound γ is useful. □

Stability, interpreted in the foregoing generalized sense, and per-
formance are guaranteed using the quadratic Lyapunov functions and
the L2 gain like property in Eq. (11). The following lemma, which
uses elements from the results of [13,23], was assembled as the
starting point for the analysis.
Lemma 1: Consider the following well-posed dynamic system:

S ∼ _x � f�x;w�
z � h�x;w�

where f�⋅; ⋅�∶Rn × Rm ↦ Rn and h�⋅; ⋅�∶Rn × Rm ↦ Rp, and well-
posedness is taken in the sense discussed in Remark 1. Consider a
quadratic Lyapunov function V�x� � x 0P1x; sets E�P1� and E�P2�;
and positive scalars τ1, τ2, ϵ, and γ. Assume that the following
inequality holds for all x ≠ 0, and w

Fig. 3 Control-signal error bound: , control-signal error ~ui; ,
bound ui − rδTi

� r4δTi
� r−δTi

− r−4δTi
� 3δTi.

Nominal
linear

closed-loop
system

Fig. 4 Mismatch system where the nonlinear dynamic system N is
presented in Eq. (10).

RICHARDS AND TURNER 1275

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f L

ou
is

vi
lle

 o
n 

Ju
ne

 2
5,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
77

24
 



_V�x� � ϵV�x� � 1

γ
kzk2 − γkwk2 � τ1�1 − x 0P1x�

� τ2�x 0P2x − 1� < 0 (12)

and assume further that P2 > P1 and τ2 > τ1. Then, the following

statements are true:
1) When w � 0, for all x�0� ∈ E�P1�, the state x�t� converges to

the smallest level set containing E�P2� in finite time.
2) When w is such that kwk2;�0;T� ≤ s∕ 2γ

p
, s < 1, and kw�t�k2 ≥

�τ2 − τ1�∕γ for all t ∈ �0; T�, then
a) x�t� ∈ E�P1� for all t ∈ �0; T�, and
b) the following L2 gain condition holds:

T

0

kz�t�k2dt < 2γ2
T

0

kw�t�k2 dt� β (13)

Proof: The proof is similar to Lemma 1 in [23] with modifications

accounting for the local behavior of the system:
1)Whenw � 0, x ∈ E�P1�, and x ∈= E�P2�, inequality (12) implies

simply that _V�x� � ϵV�x� < 0, which means that the state converges
exponentially to the smallest level set containing the set E�P2�.

2) Inequality (12) can be rearranged as

_V�x�� ϵV�x�� 1

γ
kzk2 − γkwk2 ��τ1 − τ2�� x 0�τ2P2 − τ1P1�x < 0

⇒ _V�x�� 1

γ
kzk2 − γkwk2 ��τ1 − τ2�� x 0�τ2P2 − τ1P1�x < 0

⇒ _V�x�− γkwk2 ��τ1 − τ2�� x 0�τ2P2 − τ1P1�x < 0

Because of the assumptions onP2 andP1 and τ2 and τ1, this inequal-
ity implies

_V�x� < γkwk2 � �τ2 − τ1�
Therefore, if �τ2 − τ1�∕γ ≤ kwk2 on the interval �0; T�, or equiva-
lently τ2 − τ1 ≤ γkwk2, then

_V�x� < 2γkwk2

on this interval and integrating V�x�T�� < s2, and thus, x�t� belongs
to the ellipsoid E�P1∕s2� over this interval. Since s < 1, this implies
that, forw satisfying the conditions in the lemma, x�T� ∈ E�P1�. This
is part 2.a.
Returning to inequality (12), over the interval �0; T�, it follows that

_V�x�� ϵV�x�� 1

γ
kzk2 − γkwk2 ��τ1 − τ2�� x 0�τ2P2 − τ1P1�x < 0

⇒ _V�x�� 1

γ
kzk2 − γkwk2 ��τ1 − τ2� < 0

This implies that

_V�x� � 1

γ
kzk2 < γkwk2 � τ2 − τ1 < 2γkwk2

Integrating this from �0; T� then gives Eq. (13). This is part 2.b.
Themain result is obtained by applying Lemma 1 to systemN and

adding the constraints in Sec. III.
Theorem 1:For a given scalar τ1 > 0, if there exist positive definite

matrices Q1 and Q2, a positive definite diagonal matrix U, diagonal

matrices Ta and Tb, matricesRa;4 andL, and positive scalars τ2 and γ
such that Eq. (18) and the linear matrix inequalities (20–22) are

satisfied, then with F � LQ−1
1 , system (10) is such that

1)When ulin � 0, ∀xa�0� ∈ E�P1�, the state xa�t� converges to the
smallest level set containing E�P2� in finite time.
2) When ulin ≠ 0, the L2 gain like condition (11) holds.
Proof:Using the systemN in Eq. (10) and the quadratic Lyapunov

function V�xa� � x 0
aP1xa, inequality (12) becomes

x 0
a�P1�Ap � BpF� � �Ap � BpF� 0P1�xa � 2x 0

aP1Bp ~u

� 1

γ
kydk2 − γkulink2 � τ1�1 − x 0

aP1xa� � τ2�x 0
aP2xa − 1� < 0

Using Eq. (6) yields the bound:

x 0
a P1�Ap � BpF� � �Ap � BpF� 0P1 xa � 2x 0

aP1Bp ~u

� 1

γ
kydk2 − γkulink2 � τ1 1 − x 0

aP1xa � τ2 x 0
aP2xa − 1

� 2 ~u 0W u − ra � rb � r−a − r−b � �u − ~u�Hxa < 0 (14)

Then, using the shifted ramp function properties in Sec. III gives

x 0
a P1�Ap � BpF� � �Ap � BpF� 0P1 xa � 2x 0

aP1Bp ~u

� 1

γ
kydk2 − γkulink2 � τ1 1 − x 0

aP1xa � τ2 x 0
aP2xa − 1

� 2 ~u 0W�u − ra � rb � r−a − r−b � �u − ~u�Hxa� � χ 0Mχ

� 2χ 0
aRa�u − a − ra � r−a � � 2χ 0

bRb�u − b − rb � r−b �
� 2r 0aTa�ra − �u − a�� � 2r 0bTb�rb − �u − b�� < 0 (15)

where χa � �1 x 0
a r 0a r−a

0� 0 and χb � �1 x 0
a r 0b r−b

0� 0. Partitioning Ra

as Ra��R 0
a;1 R 0

a;2 R 0
a;3 R 0

a;4 �0, where Ra;1 ∈ R1×m; Ra;2 ∈ Rn×m;
andRa;3; Ra;4 ∈ Rm×m. Applying similar partitioning to Rb and par-

titioning M as M � block�Mij�;where i; j � 1; : : : ; 5. Majorizing

inequality (15) then leads to the matrix inequality (16). This

M11 M12 �u 0 Ra;1 � Rb;1

M12 − Ra;1

�a 0Ta − a 0R 0
a;3

M13 � Ra;1 − a 0R 0
a;4

M14 � b 0Tb

−Rb;1 − b 0R 0
b;3

M15 � Rb;1

−b 0R 0
b;4

� M22

P1Bp − F 0W

�H 0W
Ra;2 � Rb;2

F 0Ta − Ra;2

−F 0R 0
a;3

Ra;2 − F 0R 0
a;4

F 0Tb − Rb;2

−F 0R 0
b;3

Rb;2 − F 0R 0
b;4

� � −2W W −W W W −W

� � � −γI R 0
a;3 − Ta R 0

a;4 R 0
b;3 − Tb R 0

b;4

� � � � M22 � 2Ta − 2Ra;3 M23 � Ra;3 − R 0
a;4 M24 M25

� � � � � M33 � 2Ra;4 M34 M35

� � � � � �
M44 � 2Tb

−2Rb;3

M45 � Rb;3 − R 0
b;4

� � � � � � � M55 � 2Rb;4

< 0

M11 � M11 − 2Ra;1a − 2Rb;1b� τ1 − τ2; M12 � −Ra;1F − Rb;1F − a 0R 0
a;2 − b 0R 0

b;2

M22 � P1�Ap � BpF� � �Ap � BpF� 0P1 �
1

γ
C 0
pCp − �Ra;2 � Rb;2�F − F 0�Ra;2 � Rb;2� 0 − τ1P1 � τ2P2 (16)
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inequality contains the product of matrix variables, which cannot be resolved through standard techniques (e.g., Schur complements or
congruence transformations). Therefore, choosing Ra;2 � F 0R 0

a;4, Rb;2 � F 0R 0
b;4, Ra;4 � Ta −Ra;3, Rb;4 � Tb −Rb;3, Ra;1 � −a 0Ra;4,

Rb;1 � −b 0Rb;4, and Ra;4 � R 0
a;4 � Rb;4 � R 0

b;4, a congruence transformation blockdiag �1; P−1
1 ;W−1; R−1

a;4; I; : : : ; I� and Schur complements

can be applied, which results in the matrix inequality (17), where U � W−1, Z � HQ1, and L � FQ1.
Matrix inequality (17) is still not linear because of the nonlinear terms in the (2,2), (3,4), (4,3), (4,4), and (10,10) blocks.

M11 0 �u 0U −a 0 − b 0 M12 � 2a 0Ra;4 M13 − 2a 0Ra;4 M14 � 2b 0Ra;4 M15 − 2b 0Ra;4 0 0

� M22 BpU − L 0 � Z 0 2L 0 0 0 0 0 Q1C
0
p 2L 0

� � −2U R−1
a;4 −I I I −I 0 0

� � � −γR−2
a;4 −I I −I I 0 0

� � � � M22 � 2Ra;4 M23 � Ta − 2Ra;4 M24 M25 0 0

� � � � � M33 � 2Ra;4 M34 M35 0 0

� � � � � � M44 � 2Ra;4 M45 � Tb − 2Ra;4 0 0

� � � � � � � M55 � 2Ra;4 0 0

� � � � � � � � −γI 0

� � � � � � � � � R−1
a;4

< 0

M11 � M11 � 2a 0Ra;4a� 2b 0Ra;4b� τ1 − τ2; M22 � ApQ1 � BpL�Q1A
0
p � L 0B 0

p − τ1Q1 � τ2Q2

(17)

Therefore, to resolve this, in the (2,2) block element of Eq. (17) the
nonlinear term τ2Q2 is replaced with Q2 by imposing

τ2 < 1 (18)

Likewise, the (3,4), (4,3), and (10,10) block elements of Eq. (17),

which contain R−1
a;4, and the (4,4) block element, which contains

−γR−2
a;4, are replaced by linear block elements as follows. Define

R ≔
R−1
a;4 R−1

a;4

� −γR−2
a;4

≡ R−1
D

�RR−1
D < −Y; Y > 0 (19)

where RD � blockdiag�Ra;4; Ra;4�,

�R � Ra;4 Ra;4

R 0
a;4 −γIm

; Y � Y11 Y12

� Y22

and the block elements of Y conform with R. The inequality in
Eq. (19) is satisfied if the following is satisfied:

�R RD

RD −2I2m � Y
< 0 (20)

where Young’s inequality −Y−1 ≤ −2I � Y is used in this step [29].
Therefore, by imposing Eq. (20) and replacing the (3,4), (4,3), (4,4),
and (10,10) block elements by −Y12, −Y21, −Y22, and −Y11, respec-
tively, the linear matrix inequality (21) implies Eq. (17):

M11 0 �u 0U −a 0 − b 0 M12 � 2a 0Ra;4 M13 − 2a 0Ra;4 M14 � 2b 0Ra;4 M15 − 2b 0Ra;4 0 0

� M22 BpU − L 0 � Z 0 2L 0 0 0 0 0 Q1C
0
p 2L 0

� � −2U −Y12 −I I I −I 0 0

� � � −Y22 −I I −I I 0 0

� � � � M22 � 2Ra;4

M23 � Ta

−2Ra;4

M24 M25 0 0

� � � � � M33 � 2Ra;4 M34 M35 0 0

� � � � � � M44 � 2Ra;4

M45 � Tb

−2Ra;4

0 0

� � � � � � � M55 � 2Ra;4 0 0

� � � � � � � � −γI 0

� � � � � � � � � −Y11

< 0

M11 � M11 � 2a 0Ra;4a� 2b 0Ra;4b� τ1 − τ2; M22 � ApQ1 � BpL�Q1A
0
p � L 0B 0

p − τ1Q1 �Q2

(21)

Q1 < Q2 (22a)

Q1 Z 0
i

Zi δT2
i ∕s2

> 0 ∀ i ∈ f1; 2; : : : ; mg (22b)

To ensure E�P2� ⊂ E�P1� requires that x 0
aP1xa ≤ x 0

aP2xa ≤ 1 or

equivalently, P2 − P1 � Q−1
1 Q2Q

−1
1 −Q−1

1 ≥ 0, which is enforced

by Eq. (22a). Finally, using the Schur complement, inequality (7) is

satisfied by Eq. (22b).
To minimize the L2 gain and increase the region of stability

[achieved by maximizing E�P1� and the difference in volume

between E�P1� and E�P2�], the following optimization is executed

with performance weights η1; η2, and η3:

min η1γ − η2�jQ2j − jQ1j� − η3jQ1j

subject to Eqs. (18) and (20–22).
Remarkably, Theorem 1 enables one to design the AWC using

linear matrix inequalities, despite the initial Lyapunov analysis in

Eq. (15), which is somewhat complicated. From the solution to the

optimization problem, the AWCgain is determined fromF � LQ−1
1 ,

which is used in the implementation of Eq. (3).
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V. Simulation Results

A planetary lander with the general architecture shown in Fig. 5
was considered, which are governed by the nonlinear rigid-body
dynamics given by

_xp � I4 ⊗
0 1

0 0
xp � J−1a ⊗ 0

1
Tϕ�u� � g�xp� ⊗ 0

1

(23)

where xp � �z _z θx _θx θy _θy θz _θz� 0, Ja � diag�ml; Jx; Jy; Jz�,
g�xp� is a nonlinear function consisting of cross-product terms and

an Euler term for the gravitational force, and T is a mapping from
thrust to generalized body forces given by

T �
− cos θt − cos θt − cos θt − cos θt

−dy cos θt dy cos θt dy cos θt −dy cos θt
dx cos θt dx cos θt −dx cos θt −dx cos θt
− sin θt sin θt − sin θt sin θt

The development of these dynamics is described in [21].
As depicted in Fig. 5, each corner of the lander had a thruster bank

consisting of three thrusters. The thrusters were unidirectional on/off
thrusters, each producing a mass-normalized thrust of 0.455 N/kg.
The thrusters were tilted slightly toward each corner by a thrust tilt
angle θt to provide the yaw forces. The landerwas assumed to operate

in theMartian gravitational field (g � 3.7 m∕s2). Thevehicle param-
eters are listed in Table 1. The required thrust force for hover does not
correspond to the available quantized thrust. Instead, each thruster
bank must cycle between two and three thrusters.
The controller and AWCwere designed from the linearized lander

dynamics about the hover operating point [g�xp� � 0 in Eq. (23)],
and it was assumed that all states were measurable, y � xp. The
linearization of Eq. (23) resulted in a plant structure: G�s� �
blockdiag�G1�s�; : : : ; G4�s��T, which was a set of marginally stable
double integrators with input coupling resulting from the thrust
to generalized body force mapping matrix T. Therefore, following
[21], the control signal was taken as u � T−1�ulin − ud�, and the
controller and AWC were structured, respectively, as K�s� �
blockdiag�K1�s�; : : : ; K4�s�� and Θ�s� � blockdiag�Θ1�s�; : : : ;
Θ4�s��T. Then, ifΘi�s� is designed via Theorem 1 to stabilize the ith
plant–controller combination, the diagonally structured system is
asymptotically stable.
EachKi�s� implemented full-state feedback control with reference

tracking:

Ki�s� ∼ _xc � Crylin � r
ulin � KIxc � Kxylin

where Cr � �−1 0� such that zp � �z θx θy θz� 0 are the tracked

states, and KI and Kx are integral and full-state feedback gains,
respectively, designed such that the nominal closed-loop system
poles lie at �−1; − 1.5; − 2� for each channel. The procedure implied
by Theorem 1 was implemented to design each Θi�s� with
τ1 � 0.75; s � 1∕25, and η � ~η∕ ~η, where ~η � �5 300 200�.
The AWC synthesized using this approach is referred to as the
proposed AWC.
For comparison, an AWCwithout the benefit of the ramp function

properties given in Sec. III was designedwith only the standard sector
�0; I� constraints considered, that is, inequality (14) with
ra; r

−
a ; rb; r

−
b , and �u excluded, and like the proposed AWC design,

Eqs. (18) and (22) were included in this design. The AWC syn-
thesized by this approach is referred to as the sector �0; I� AWC.
Table 2 lists the L2 gain upper bounds γ of the nonlinear mapping

N ∶ulin ↦ yd. From this, we see that the less conservative ramp
function constraints of the proposed method yield significantly less
L2 gain bounds (four orders of magnitude lower than the bounds
provided by the sector �0; I� design method). This performance out-
come is reflected in the simulation results.
The design parameters described previously were used for all

simulations. Likewise, the controller K�s� remained the same
throughout. Finally, for the simulations presented, the full nonlinear
dynamics (23) were included. Remark 4 provided at the end of this
section summarizes the results when the nonlinear dynamics are
excluded.
Figure 6 shows the response to a reference commanding the

vehicle to decrease in altitude and roll about the three axes, whereas
Fig. 7 illustrates the corresponding thrust produced by thruster bank
ϕ1. (Note that similar characteristics were seenwith the other thruster
banks.)WithoutAWC, thevehiclewas unable to follow the reference,
and the thruster bank ϕ1 remained saturated after 9 s. With the sector
�0; I�AWC, the vehicle deviated considerably from the reference and
eventually recovered after 40 s. Moreover, the performance of the
thruster bankwas unsatisfactory, as the entire bank of thrusters cycled
between all thrusters on and all thrusters off. The proposed compen-
sator was able to follow the reference (noting that the slowest closed-
loop time constant was 1 s), and the thruster bank cycled between two
and three thrusters upon reaching a steady state. This is the appro-
priate cycling for hover.
Of additional interest is the steady-state error of the vehicle’s

vertical position ez;ss � rz;∞ − zss. Although ez;ss � 0 for the sector
�0; I�AWC, it does so at the cost of on/off cycling of all the thrusters.
In contrast, a nonzero ez;ss existed for the proposed method. By

synthesizing a more localized compensator, the steady-state error
can be reduced. Choosing s � 1∕250 for both sector �0; I� and the
proposed compensator resulted in the responses shown in Fig. 8 and
the thrusts shown in Fig. 9. Although there is some minor improve-
ment to the responsewith the sector �0; I�AWC, the notable improve-
ment is in the steady-state error for the response with the proposed
compensator. Similar to the previous case with s � 1∕25, the thrust
with the sector �0; I� AWC had unsatisfactory performance, cycling
between all thrusters on and all thrusters off, whereas the thrust with
the proposed compensator design cycled between two and three
thrusters (appropriate cycling for hover) upon reaching a steady state.
To emphasize the capability of AWC to manage quantization, the

number of thrusters per thruster bankwas increased to six. Figure 10
illustrates the response to reference commands similar to the pre-
vious case, whereas Fig. 11 illustrates the corresponding thrust
produced by thruster bank ϕ1. (As in the previous case, similar
characteristics were observed with the other thruster banks.)

Table 1 Mass normalized landing vehicle parameters

Parameter Variables Values Units

Mass ml 1.0 — —

Mass moment of inertia �Jx; Jy; Jz� [0.3, 0.3, 0.6] m2

Half-spans dx; dy 2.5 m

Thrust tilt angle θt 2.75 deg

Table 2 L2 gain upper bounds γ of
nonlinear mappingN ∶ulin ↦ yd

Channels

Compensator 1 2 3 4

Proposed 12 119 119 33
Sector �0; I� 19e4 216e4 216e4 58e4

Fig. 5 General architecture of a planetary lander.
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Fig. 6 Response with three thrusters per thruster bank (s � 1∕25):
reference; , without antiwindup; , with sector �0; I� antiwindup;

, with the proposed antiwindup.

Fig. 9 Thrust with three thrusters per thruster bank (s � 1∕250): ,
without antiwindup; , with sector �0; I� antiwindup; , with the
proposed antiwindup.

Fig. 7 Thrust with three thrusters per thruster bank (s � 1∕25); ,
without antiwindup; , with sector �0; I� antiwindup; , with the
proposed antiwindup.

Fig. 8 Response with three thrusters per thruster bank (s � 1∕250):
, reference; , without antiwindup; , with sector �0; I� anti-

windup; , with the proposed antiwindup.
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Without AWC the vehicle was unable to follow the reference, and

the thrust remained saturated after 6 s. With the sector �0; I� AWC

(s � 1∕25�, the vehicle deviated from the reference and eventually

settled after 40 s. In addition, similar to the previous case, the

thruster bank illustrated unsatisfactory control as the entire thruster

bank cycled between all thrusters on and all thrusters off. Although

some deviation was present with the proposed antiwindup

(s � 1∕25�, this deviation and the settling time were considerably

less than those of the sector �0; I� AWC. Once a steady state was

achieved, where again a nonzero ez;ss occurred, the thruster banks
cycled between two and three thrusters after 25 s, which is the

appropriate cycling for hover.

To minimize the steady-state error of the proposed method, a

more localized compensator was again synthesized (s � 1∕250).
Using this value for both sector �0; I� and the proposed method

resulted in the responses and thrusts shown in Figs. 12 and 13,

respectively. Although an improved performance was achieved

with the sector �0; I� compensator, this approach was outperformed

by the proposed approach, which also had zero steady-state error.

Similar to the previous simulation cases, the thrust of the proposed

approach exhibited a preferred behavior. It should be emphasized

that while response performance is critical for accurate navigation

of the vehicle, maintaining the proper thrust is equally important for

practical reasons: minimizing fuel consumption and wear on the

thrusters.

Remark 4: Simulations with the lander dynamics linearized about

the hover operating point (g�xp� � 0 in Eq. [23)] were executed. The
performance of the vehicle response was comparable for the sector

�0; I� AWC and the proposed method. However, the thrusts of the

sector �0; I�AWCcontinued to have undesirable behavior, fluctuation

between all thrusters off and all thrusters on. In fact, this full-off and

full-on fluctuation occurs even when saturation can be prevented

using all thrust levels (see Fig. 14 for an example response and Fig. 15

for the corresponding thrust). Note that all thrust levels were used

Fig. 10 Response with six thrusters per thruster bank (s � 1∕25�: ,
reference; , without antiwindup; , with sector �0; I� antiwindup;

, with the proposed antiwindup.

Fig. 11 Thrust with six thrusters per thruster bank (s � 1∕25): ,
without antiwindup; , with sector �0; I� antiwindup; , with the
proposed antiwindup.

Fig. 12 Response with six thrusters per thruster bank (s � 1∕250): ,
reference; , without antiwindup; , with sector �0; I� antiwindup;

, with the proposed antiwindup.
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when AWC was absent and when the proposed method was imple-
mented. Saturation was avoided in both cases, and the response was
improved using the proposed approach. □

VI. Conclusions

An antiwindup designmethod was developed for systems subject
to input quantization and saturation. The salient features of this
study are as follows: 1) the AWC synthesis conditions are framed as
linear matrix inequalities; 2) ramp functions have been exploited to
obtain less conservative bounds on the control-signal error com-
pared with a standard sector bound; and 3) the results are applicable
to rigid-body systems, which was the motivation for this study. A
key outcome is that the design method provides a significant
reduction in L2 gain bound compared with a standard sector anti-
windup design. This approach is transferable to many nontradi-
tional control problems (e.g., drug delivery, which is often
inherently quantized, and environmental management, which is
often quota-based), as well as to traditional control fields where
quantization is intrinsic (network control, communications, and
event-triggered control systems). Because practical quantized
actuation systems may suffer from limited switch rate, a future
study will explore extensions that address issues resulting from
the finite rate of switching. The simultaneous controller and AWC
design will also be investigated to explore their potential in expand-
ing the region of stability.
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Fig. 13 Thrust with six thrusters per thruster bank (s � 1∕250): ,
without antiwindup; , with sector �0; I� antiwindup; , with the
proposed antiwindup.

Fig. 14 Linearized response with six thrusters per thruster bank
(s � 1∕250�: , reference; , without antiwindup; , with sector
�0; I� antiwindup; , with the proposed antiwindup.

Fig. 15 Thrust of the linearized lander with six thrusters per thruster
bank (s � 1∕250): , without antiwindup; , with sector �0; I� anti-
windup; , with the proposed antiwindup.
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