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This study presents a comprehensive analysis of three types of multimodal data-
response accuracy, response times, and eye-tracking data-derived from a computer-
based spatial rotation test. To tackle the complexity of high-dimensional data anal-
ysis challenges, we have developed a methodological framework incorporating var-
ious statistical and machine learning methods. The results of our study reveal that
hidden state transition probabilities, based on eye-tracking features, may be contin-
gent on skill mastery estimated from the fluency CDM model. The hidden state tra-
jectory offers additional diagnostic insights into spatial rotation problem-solving,
surpassing the information provided by the fluency CDM alone. Furthermore, the
distribution of participants across different hidden states reflects the intricate na-
ture of visualizing objects in each item, adding a nuanced dimension to the char-
acterization of item features. This complements the information obtained from item
parameters in the fluency CDM model, which relies on response accuracy and re-
sponse time. Our findings have the potential to pave the way for the development of
new psychometric and statistical models capable of seamlessly integrating various
types of multimodal data. This integrated approach promises more meaningful and
interpretable results, with implications for advancing the understanding of cognitive
processes involved in spatial rotation tests.

Introduction

Given the prevalence of computer-based assessments and the abundance of
digital devices, diverse forms of multimodal data, including response times and
eye-tracking data, have become more accessible alongside traditional outcome
data like response accuracy. A wide array of psychometric models has emerged,
utilizing response accuracy and response time for inference, either independently
or in combination. This family of models includes Item Response Theory Models,
Cognitive Diagnostic Models (CDM), response time models, and joint models
developed within the frameworks of these modeling approaches (e.g., Baker, 2001;
Rupp et al., 2010; van der Linden, 2006, 2007). Recent studies in educational and
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psychological assessments have increasingly employed eye-tracking technologies
to investigate different research problems. These studies utilize eye-tracking data
for various purposes, such as uncovering cognitive processes during exams (Kac-
zorowska et al., 2021; Zhu & Feng, 2015), describing different testing behaviors
(Man & Harring, 2023), investigating or gathering valid evidence for item or
test construction (Yaneva et al., 2021, 2022), as well as exploring eye movement
patterns in relation to different test performances (Hu et al., 2017). In particular,
eye-tracking techniques applied to mental rotation tasks have emerged as powerful
tools in cognitive research, providing insights into spatial cognition and processing
(e.g., Just & Carpenter, 1976; Xue et al., 2017), problem-solving strategies (e.g.,
Khooshabeh & Hegarty, 2010; Nazareth et al., 2019), and gender differences (Heil
& Jansen-Osmann, 2008).

Methodological efforts have also been dedicated to developing novel joint mod-
els for these various forms of multimodal data within a structural equation modeling
framework (e.g., Zhan et al., 2022). In this framework, different latent constructs are
assumed to be reflected by different types of data, focusing on modeling a collective
distribution of multiple latent variables. The diagnostic insights provided to students
aggregate these latent variables estimated from various data sources concurrently.
However, lingering questions from prior research include the nature of relationships
between latent constructs identified in different forms of multimodal data, the possi-
bility of redefining diagnostic profiles that encompass students’ cognitive processes,
attributes, and behaviors by amalgamating individual multimodal data, and the po-
tential to quantify item characteristics using distinct multimodal data.

With these inquiries in mind, this study aims to conduct a multidimensional anal-
ysis of three types of multimodal data-response accuracy, response times, and eye-
tracking data-collected from a computer-based spatial rotation test. We have chosen
these three data types due to their extensive exploration in various applications in
educational measurement and assessment, as well as in some existing joint analyses
as reviewed above. The specific research questions we aim to address are as fol-
lows: (1) How are the latent constructs manifested in eye-tracking features related to
participants’ fine-grained spatial rotation skills, as estimated from a specific CDM,
the fluency CDM (Wang & Chen, 2020), based on response accuracy and response
time? (2) How can eye-tracking features reflect item characteristics in addition to
those identified in the fluency CDM?

A methodological challenge in this multidimensional exploratory analysis per-
tains to managing the high-dimensional eye-tracking variables. Unlike many prior
studies that concentrate solely on a limited set of metrics gleaned from eye-tracking
studies (e.g., Zhan et al., 2022; Man & Harring, 2023), our study utilizes a three-step
feature selection strategy, accompanied by a comprehensive data preprocessing
guide. This strategy enables us to effectively identify the most predictive and
meaningful eye-tracking features from a pool of 100 variables generated by the
Tobii Pro Lab software. Moreover, we introduce a comprehensive methodological
framework that leverages an array of statistical and machine learning techniques to
unveil the latent structure inherent within these selected variables. Consequently,
from a methodological standpoint, this study contributes to the management of
diverse types of high-dimensional multimodal data. From a practical and theoretical
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perspective, the answers to our research questions could potentially pave the way for
the development of novel psychometric and statistical models capable of handling
various types of multimodal data in a more integrated manner, ultimately yielding
more meaningful and interpretable results.

Experiment and Data

The experiment utilized the spatial rotation learning program developed by Wang
et al. (2020) to assess four mental rotation skills: 90 degree and 180 degree of rotation
along the x axis and y axis. These four skills are referred as the four attributes in
previous studies, which utilize this data set to conduct CDM analysis (Wang et al.,
2020; Zhang & Wang, 2018). This learning program consists of two testing modules
and two learning modules, with the learning modules positioned between the two
testing modules. The psychometric properties of this learning program can be found
in Wang et al. (2020).

The experiment was conducted in the eye-tracking laboratory of a University in
China. A computer equipped with a Tobii Pro Spectrum eye tracker was used to
collect data from participants. This eye tracker does not require wearing and allows
for minor head movements by the participants. The spatial rotation learning program
was presented on a display with a resolution of 1,920-1,080 and a screen refresh rate
of 60 Hz. Each question is displayed on a separate webpage, and participants are not
permitted to revisit or revise their responses to a question after they have submitted
it. The participants were positioned at a distance of roughly 60 cm from the screen.

Experiment Procedures

Ninety-one undergraduate students were randomly selected to participate in the
experiment, all possessing normal or corrected-to-normal vision without any color
blindness or color vision impairments. Prior to commencing the experiment, par-
ticipants were briefed on the instructions and assured a predetermined reward upon
completion. At the beginning of the experiment, the experimenter provided a clear
explanation of its purpose and pertinent instructions. Participants were explicitly
instructed not to use their hands or other objects to obstruct the space between the
eye tracker and their eyes. Furthermore, they were guided through the process of
signing an informed consent form before engaging in the experiment. Subsequently,
the eye tracker was adjusted to ensure correct seating, maintaining a consistent
distance of 60-65 cm between the device and participants’ eyes. According to the
Tobii Pro Spectrum eye tracker specifications, the acceptable angle error was kept
below 1.0°. Throughout the experiment, participants navigated spatial rotation test
questions displayed on the screen at their own pace. To avoid rushed responses and
forced guessing, no time limit was imposed. On average, the experiment duration
was approximately 40 minutes.

Variables and Data

This study exclusively utilizes data from the initial module of the spatial rotation
learning program which consists of 10 questions for subsequent analysis. The ra-
tionale behind this choice is that the study’s primary objective is to investigate the
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Figure 1. Three specific AOIs from an example question shown in the question panel.

cognitive processes and attributes that signify an individual’s present capability or
performance within an assessment, rather than assessing their learning process.

Eye-tracking data throughout the experiment were captured using Tobii Pro Studio
software, and response accuracy and response time were recorded in text files from
the spatial rotation learning program. For each participant, the response accuracy
is defined as the binary response vector, indicating whether their response to each
question is right or wrong, to all questions. The response time to a question is defined
as the time they spend to complete that question. There are 100 eye-tracking variables
that were collected in total. The following subsection provides details on these eye-
tracking variables.

Eye-tracking variables. The eye-tracking variables are defined based on four
major metrics on eye movement. They are fixations, saccades, glances, and visits.
Fixations are defined as the periods of time where the eyes are relatively still and a
sequence of raw gaze points where the estimated velocity is relatively low in “Tobii
Pro Lab.” Saccades, on the other hand, are responsible for moving one’s eyes to dif-
ferent objects or areas of interest within their field of vision, which is the opposite
of fixation. The other two measures, visits and glances, are associated with general
looking behavior and attention to Areas of Interest (AOIs). An AOI refers to a spe-
cific region or area within a visual stimulus or scene that researchers define and track
to analyze participants’ eye gaze behavior. The visit associated with an AOI corre-
sponds to all the data between the start of the first fixation inside the AOI to the end
of the last fixation in the same AOI. The glance associated with an AOI is all data
(even saccades, blinks, or invalid gaze data) from the first saccade leading into the
AOI until the last fixation inside the AOI.

In our study, in addition to a single large AOI defined based on the overall region
of the interface, we subjectively define three smaller AOIs in one screen, the look
area, the question area, and the option area, as shown in Figure 1. The rationale of
defining these three specific AOIs is as follows. First, eye movements in the look
area are important because they provide insight into how a participant is studying the
mental rotation shown in the example object. Second, the question area contains the
instructions for the task and the presentation of a new object. Participants need to
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Table 1
A Summary of Eye-Tracking Features

Metrics Statistics AOI

Total duration (ms) Look
Glance Average duration (ms) Question

Maximum duration (ms) Option
Fixation Minimum duration (ms) Overall region

Number (count)
Visit Time to first (ms)

Duration of first (ms)
Saccade Number (count) Look

Peak Velocity (degree/ms) Question
Amplitude (degree) Option
Direction (degree) Overall region

encode the stimulus and identify the orientation of the stimulus in order to correctly
perform the same mental rotation task as shown in the example in the look area.
Finally, the information in the option area is critical. Participants need to figure out
the ending position of the stimulus in the question area following the same rotation
that they figure out from the look area. Based on a specific AOI, different variables
are defined for the four eye movement metrics, which are documented in Table 1.

Data preprocessing. During experiments, eye tracking data can be affected by
factors like subject blinking, unstable head positioning, or hand movements obstruct-
ing the eye tracker. The eye tracker’s sampling rate percentage is determined as the
ratio of the number of accurately identified eye tracking samples to the theoretical
maximum value, typically resulting in a 5%-10% data loss (Lab, 2023). This loss rate
correlates with the experiment’s duration; the longer the study, the more challenging
it becomes for subjects to maintain a stable head posture. Given the 30- to 40-minute
duration of our study, some data loss due to subjects’ fatigue or head instability is
inevitable. Therefore, in balancing the need for an adequate subject pool and the
quantity of valid eye tracking data per subject, we pragmatically selected subjects
with a sampling rate exceeding 70% as our final valid participants. As a result, data
from 21 participants were excluded, leaving 70 participants for data analysis.

We initially excluded a set of variables from the following analysis through a
specific procedure. First, we removed variables related to “Time to first” as they
only capture the date-time value of initial eye movement metrics, which does not
effectively reflect the promptness of subject responses to items. Second, our prelim-
inary quantitative analysis of two sets of eye-tracking metrics, namely “Visits” and
“Glances,” revealed a significant correlation between them. Among the 24 metrics
documenting “Visit” behavior, 22 variables exhibited a strong correlation (Pearson’s
correlation above.90) with their corresponding metrics in “Glances” behavior. Con-
sequently, we opted not to analyze variables related to “Visit” metrics. Finally, we
excluded variables with a high incidence of missing values, defined as those exceed-
ing 5% of the total number of observations. Appendix 1, Tables A1-A3 display the
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number of variables removed after each step in the data preprocessing procedure. The
full list of variables after the data preprocessing step can be found in Appendix 1,
Table A4. In summary, 65 eye-tracking variables remain after completing the data
preprocessing step.

Methods

Eye Tracking Feature Selection

In order to select the most predictable and meaningful eye-tracking features for
response accuracy and response times for subsequent statistical analysis, we pro-
pose a three-step feature selection strategy utilizing the generalized linear mixed-
effects model.

To start with, we denote Yi j as the response accuracy variable when ith participant
answering jth question, taking values from Yi j = {0, 1}, where 0 means that the an-
swer is wrong and 1 otherwise. A logistic link function model is used to connect the
expectation of the binary response given the data with a linear combination of the
predictors as follows:

P
(
Yi j = 1 | Xi j, Zi j, β, b

)
= h(Xi jβ + Zi jb),

Yi j ∼ Ber(P
(
Yi j = 1 | Xi j, Zi j, β, b

)
),

where h(·) is a link function, in this case, h(Xi jβ + Zi jb) = exp{Xi jβ+Zi j b}
1+exp{Xi jβ+Zi j b} . Xi j is the

eye tracking features vector of ith participant answering jth question in the eye track-
ing feature matrix, β is an unknown vector of fixed effects, Zi j is the design matrix
documenting which question the participant is answering, and b is an unknown vec-
tor of random effects. In the mixed effects model, the random effects b are assumed
to be multivariate normal with zero mean and covariance !. The model parameters
are estimated by maximizing the likelihood function.

max
β∈RL,b∈RJ



 1
N

N∑

i=1

J∑

j=1

{
Yi j log P

(
Yi j = 1 | Xi j, Zi j, β, b

)

+
(
1 − Yi j

)
log

(
1 − P

(
Yi j = 1 | Xi j, Zi j, β, b

))}


 .

In literature, response time is commonly modeled as the log normal distribution
(van der Linden, 2006; Wang et al., 2020). We conduct the logarithm transformation
for the response time variable Ti j , then fit log Ti j into a linear mixed effects regression
model, where the conditional probability of log response time given the predictors
Xi j is:

Pr(log
(
Ti j

)
| Xi j, Zi j ) = 1√

2πσ
exp

{

−
[
log

(
Ti j

)
− (Xi j β̃ + Zi j b̃)

]2

2σ2

}

.
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Exploring Latent Constructs through Multimodal Data Analysis

The model parameters are estimated by maximizing the likelihood function:

max
β̃∈RL,ũ∈RJ



 1
N

N∑

i=1

J∑

j=1

[
log

(
Ti j

)
− (Xi j β̃ + Zib̃)

]2



.

The parameters β̃ and b̃ are estimated using the lme4 R package (Bates et al., 2014).
Our proposed three-step feature selection strategy unfolds as follows. Initially, we

address the multicollinearity issue, given the considerable number of eye-tracking
features (65). We employ all 65 features as independent variables and construct an
initial mixed-effects model for both response accuracy and response times. Given
that eye-tracking features vary in scale, we standardize each variable prior to incor-
porating them into the generalized linear mixed-effects model. Through the initial
mixed effect model results, we are able to calculate the Variance Inflation Factor
(VIF) and p-values for each feature. VIF quantifies the correlation of a variable
with a linear combination of other predictors and is computed using the formula
VIFx = 1

1−R2
x
, where R2

x is the R2 value from regressing the predictor x on all other
predictors by mixed effects models. Typically, VIF values exceeding 10 indicate sig-
nificant multicollinearity concerns, prompting remedial action such as removing the
affected variables (Weisberg, 2005). In our current analysis, we adopt a more con-
servative threshold of VIF > 200. Variables with high VIF values (VIF > 200) and
p-values surpassing.5 for response accuracy and.1 for response time in the mixed-
effects model are iteratively eliminated. Following this initial step, we effectively
reduce the feature set to a manageable size. Subsequently, we refit the mixed-effects
models for both response times and accuracy, utilizing these selected eye-tracking
features. Further refinement involves selecting features significant at a.05 signifi-
cance level for response accuracy and.01 for response times. The final step involves
scrutinizing the correlation among the features selected in Step 2. Features exhibit-
ing moderate pairwise correlations with others (larger than the third quantile of the
absolute values of pairwise correlations) are pruned from the selection to ensure a
robust feature set.

The First-Order Hidden Markov Model

To uncover the underlying cognitive processes involved in visual perception and
attention, we use a hidden Markov model (HMM) to analyze the selected eye-
tracking features from “Eye-Tracking Feature Selection” section. The motivation for
using HMMs in eye-tracking research lies in the fact that eye movements are inher-
ently sequential in nature and often involve a dynamic interplay between bottom-up
sensory input and top-down cognitive influences. HMMs are particularly suited for
modeling sequential data because they can capture temporal dependencies in the data
and allow for the modeling of hidden (i.e., unobserved) states that may correspond
to different cognitive processes. In fact, not only for eye-tracking data (Xue et al.,
2017), HMMs have been utilized to discover hidden states for a variety of problem-
solving process data (Wang et al., 2023; Xiao et al., 2021). The particular HMM we
considered is the first-order HMM. This means that the model’s current state depends
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only on its immediate predecessor, which simplifies the state transition dynamics but
is appropriate given the context of our analysis.

To start with, we denote the selected eye-tracking features by (O1:J =
(O1

1, . . . , OM
1 , O1

2, . . . , OM
2 , . . . , O1

j , . . . , OM
j , . . . , O1

J , . . . , OM
J ) for M-variate time

series of length J , and O j is short for (O1
j , . . . , OM

j ). In our case, J is the number
of questions in the test and M is the number of selected eye-tracking features from
the eye-tracking feature selection process. In the dependent mixture model (Visser
&Speekenbrink, 2010), each observation is distributed as a mixture of the p states.
The time dependence between the observations can be modeled by the transition
probability between hidden states. Then the joint likelihood function of the obser-
vations O1:J given the hidden states S1:J = (S1, . . . , SJ ) and the model parameters θ
can be written as:

P(O1:J , S1:J | θ) = πθ1 (S1)
J−1∏

j=1

Pθ2

(
S j+1 | S j

)
Pθ3

(
O j | S j

)
, (1)

where θ = (θ1, θ2, θ3) is the general parameter vector consisting of three subvec-
tors with parameters for the prior model, transition model, and response models,
respectively. An appropriate density function needs to be determined based on the
nature of the dependent variables. The model is estimated by maximizing the joint
likelihood function using the expectation-maximization (EM) algorithm in the sta-
tistical package depmixS4 (Visser & Speekenbrink, 2010). The number of hidden
states is an important hyperparameter in the HMM, and the estimation of the remain-
ing model parameters relies on a fixed number of hidden states. To better interpret
the model results, we need to select an appropriate model. One important criterion
that guides us to select hyperparameters is the Bayesian information criterion (BIC),
BIC = r ln(N ) − 2 ln(L̂), where r is the number of parameters to be estimated, N is
the number of observations, and L̂ is the maximized value of the likelihood function.
The model with a lower BIC value is preferred.

The Fluency Cognitive Diagnostic Model

In addition to the hidden states discovered from the HMM, we also estimate the
latent attribute profiles, using the response accuracy and response times, through a
recently proposed fluency cognitive diagnostic model (CDM) (Wang & Chen, 2020).
The fluency CDM provides fine-graded diagnostic information regarding a person’s
mastery of assessed skills in an assessment by jointly analyzing the response times
and response accuracy. Specifically, assuming an assessment consists of J items mea-
sures K attributes. The item-attribute association is documented through a Q matrix
with binary component qjk , indicating whether item j measures attribute k (q jk = 1)
or not (qjk = 0). A sample of N participants complete the assessment, and the re-
sponse accuracy and response time from participant i to item j are denoted as Yi j

and Li j . The fluency CDM model defines a latent attribute with three levels: nonmas-
tery, partial-mastery, and mastery (i.e., fluency). Thus, if we denote αi as the latent
attribute profile of the participant i, then αi = (αi1, . . . , αik )T . In this case, αik = 0
indicates the nonmastery level, reflecting participant i has low response accuracy;
αik = 1 denotes the partial-mastery level, meaning participant i has high accuracy
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Exploring Latent Constructs through Multimodal Data Analysis

but low speed on correct answers; αik = 2 denotes the mastery level, which indi-
cates students not only have high accuracy on responses but also fast speed when
answering questions correctly, thus also presented as the fluency level. Within this
framework, the fluency CDM employs two measurement models, one for response
time and another for response accuracy, to assess both components.

The measurement model for response accuracy is described by Equation 2, which
classifies the participants into three types of correct response probabilities. Specif-
ically, this model first defines the ideal response of a participant i to item j as
ηi j := ηi j (αi, q j ) = 1{∀k,q jk=1,αik=q jk} + 1{∀k,q jk=1,αik>q jk}. When ηi j = 0, it denotes a
participant lacks mastery in any of the required attributes for that item, so one may
have g j probability to guess this item correctly. When ηi j = 1, it indicates that a par-
ticipant has partial mastery of all required attributes, but at least one attribute has not
reached the fluency level. In this case, one can have 1 − s1 j probability to answer
this item correctly. Finally, when ηi j = 2, it suggests that a participant has mastered
all the required attributes, all these attributes have reached the mastery level. Thus, in
this case, one can correctly answer this item with probability 1 − s2 j . A monotonicity
assumption is imposed such that 0 < gj < 1 − s1 j < 1 − s2 j < 1.

P(Yi j = 1|αi ) =






g j, if ηi j = 0

1 − s1 j, if ηi j = 1

1 − s2 j, if ηi j = 2.

(2)

The measurement model for response time follows a log-normal distribution
(van der Linden, 2007), depending on whether Yi j = 1 or Yi j = 0. Essentially, when
Yi j = 1, the model leverages response time data to differentiate between a student
with partial mastery and one with fluency in correctly answering an item. Wang and
Chen (2020) introduced two response time models, each based on whether it assumes
that students have consistent or varying speeds when completing items correctly or
incorrectly. Here we present the response time model assuming that students have
the same base speed in the following Equation 3

log(Li j ) ∼






N
(
γ j − (τi + φi × g(αi, q j )),

1
a j

)
if Yi j = 1

N
(
γ j − τi,

1
a j

)
if Yi j = 0

, τi ∼ N
(
µτ, σ

2
τ

)
,

(3)

In this model, τi is the base speed of participant i, indicating participant i’s ini-
tial speed of answering questions. γ j is the time intensity parameter, it measures the
overall times when solving item j. a2

j is the time discrimination parameter, which
captures the variance of log-response times given τi and γ j , indicating the sensitivity
of item j to differentiate students- base speeds. The covariate g(αi, q j ) is a mono-
tonic function measuring how latent attribute profile αi, influences response times
on answering item j correctly. φi is student i′s speed change parameter, controls
the effect of function g(αi, q j ), and is constrained to be positive. Wang and Chen
(2020) provide three different forms of g(αi, q j ), suggesting the specific forms need
to be constructed based on a specific assessment structure. The model estimation
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procedures and identifiability issues have been addressed by Wang and Chen (2020).
For this study, we followed their developed MH-Gibbs algorithm to estimate the flu-
ency CDM.

Analysis for Two Research Questions

Building upon the findings from “The First-Order Hidden Markov Model” and
“The Fluency Cognitive Diagnostic Model” sections, we investigate the relationship
between the hidden states estimated by the first-order HMM model and the attribute
profile derived from the fluency CDM from two perspectives.

Initially, we investigate whether the empirical transition matrices of hidden states
vary across different levels of skill mastery between adjacent items. This analysis
sheds light on whether the transition matrix of the HMM depends on varying skill
mastery levels.

Subsequently, we scrutinize how state trajectories diverge among participants ex-
hibiting differing levels of skill mastery. A hidden state trajectory of participant is
defined as their hidden states across 10 items, as in our case, one item represents one
time point. To accomplish this, we categorize participants into three distinct groups
based on their latent attribute profiles, representing low, medium, and high skill lev-
els. We then examine the distribution of hidden states across the 10 items for each
of these latent profile groups. We also showcase the variation in hidden state trajec-
tories among participants sharing the same latent attribute profile identified through
fluency CDM.

Lastly, to gain insights into item characteristics, we analyze the estimated item
parameters from the fluency CDM model and assess the distribution of hidden states
for each item. Additionally, we compute the correlation between the proportions
of hidden states for each item and the fluency CDM item parameters. To facilitate
understanding, we employ a multivariate plotting approach to visualize each item
characterized by fluency CDM item parameters alongside hidden state proportions.

Results

Eye-Tracking Feature Selection Results

Through the three-step feature selection strategy, a total of 10 eye-tracking fea-
tures remained, and these are detailed in Table 2. The eye-tracking variables re-
moved in the initial step and those are selected in the second step are documented in
Appendix 2, Tables A1-A4.

Table 2 includes the associated regression coefficients and various statistics for
each of the eye-tracking variables. The chosen variables, based on both response
accuracy and response time, pertain to distinct types of eye movements, namely
fixation, glances, and saccades. Furthermore, these selected variables encompass all
regions of interest, including look, question, option areas, and the overall interface re-
gion. These selected eye-tracking variables are consistent with the major fixation and
saccade-related features, discussed by recent eye-tracking studies (Hu et al., 2017;
Kaczorowska et al., 2021; Xue et al., 2017; Yaneva et al., 2021; Zhu & Feng, 2015).

Three response accuracy-related variables have been selected: the average duration
of Glances in the option area, the maximum duration of Glances in the question area,
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Table 2
The Selected Eye-Tracking Features

Response Variables (Unit) Coef Min Mean Max

Accuracy Average duration of Glances
option (ms)

−.5499 104 1,130 9,074

Maximum duration of Glances
question (ms)

−.4833 54 2,681 23,264

Maximum peak velocity of
saccades (degree/ms)

0.4998 30.3 370.5 1061.2

RT Number of fixations look (count) .7387 0 49.43 1,124
Maximum duration of fixations

look (ms)
.0670 92 511.5 2,041

Average duration of fixations
option (ms)

−.0529 70 193 421

Maximum duration of fixations
question (ms)

.1226 38 517 6,041

Minimum duration of fixations
question (ms)

−.0334 33 70.79 200

Number of Glances .2098 1 2.942 35
Minimum duration of Glances

(ms)
−.3235 33 18326.5 150452.0

and the maximum peak velocity of saccades from the entire screen. Analysis of the
estimated regression coefficients suggests that an individual with a longer average
duration of glances in the option area and an extended maximum glance duration in
the question area is likely to exhibit lower response accuracy. Conversely, a person
with higher maximum peak velocities may demonstrate higher response accuracy,
even after accounting for other variables. A substantial average duration of glances in
the option area may signify heightened participant attention, especially in discerning
the orientation of objects within that region. Meanwhile, a longer maximum glance
duration may indicate that an individual requires more time for comprehension. The
presence of high peak velocities could suggest rapid gaze movements, potentially
reflecting confidence in the chosen answer and a desire to progress.

Seven variables are selected based on response time. A higher number of fixations
in the look area may indicate that participants require additional time for content
comprehension. Extended fixation durations may suggest heightened cognitive pro-
cessing or increased concentration on the content. Specifically, prolonged fixations
in the option area indicate participants’ meticulous attention and consideration for
each option. Shorter minimum fixation durations may hint at instances where par-
ticipants overlook certain parts of the question, potentially leading to faster, albeit
potentially inaccurate, responses. An increased number of glances suggests that par-
ticipants frequently check and reevaluate their answers or the content, contributing
to prolonged response times. Shorter glance durations may indicate swift evaluations
or dismissals of specific options or content.

11
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Figure 2. The BIC values of HMM with different states.

Table 3
Transition Probability of Three Hidden States from the HMM

to S1 to S2 to S3

from S1 .500 .489 .012
from S2 .252 .629 .119
from S3 .132 .605 .264

Table 4
Initial Probabilities of Three Hidden States from the HMM

State 1 State 2 State 3

.032 .300 .668

In summary, these chosen variables provide valuable insights into participants’
visual and cognitive processes within specific and overall areas of interest.

HMM Results

Because the selected eye-tracking features have different scales, as shown in
Table 2, for this study, we applied a box-cox transformation to each selected eye-
tracking feature. After the transformation, the eye-tracking features are significantly
normal and validated by the normality tests. Thus, the normal density is selected for
the HMM. As illustrated in Figure 2, the HMM with three hidden states exhibits
the lowest BIC value. In addition, beyond the BIC value, we take into account the
model’s interpretability. Considering both factors, we ultimately choose the HMM
with three hidden states. The transition probabilities for these states are presented
in Table 3. The initial probabilities are presented in Table 4. The emission probabil-
ity of the multivariate response variable given each hidden state follows multivariate
Gaussian distribution, and the mean and standard deviation (SD) of the emission
probability is given in Table 5. Upon analysis of the table, we can conclude that
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Table 5
Emission Probabilities of the Multivariate Response Variables Given Each of Three Hidden
States

Mean (SD) State 1 State 2 State 3

Variable 1 10.064 (.800) 11.521 (1.394) 435.393 (106.358)
Variable 2 9.982 (.945) 11.674 (1.844) 364.078 (145.409)
Variable 3 9.767 (1.375) 9.748 (1.888) 265.334 (157.868)
Variable 4 54.706 (42.639) 12.668 (1.452) 27.308 (3.066)
Variable 5 56.619 (68.806) 12.127 (1.882) 24.933 (3.716)
Variable 6 17.807 (14.458) 10.456 (1.507) 24.536 (4.707)
Variable 7 8.841 (.807) 3.489 (.213) .479 (.541)
Variable 8 8.453 (1.117) 3.433 (.000) .533 (.573)
Variable 9 7.361 (.923) 3.425 (.266) .344 (.428)
Variable 10 47.996 (26.379) 47.528 (28.003) 44.864 (22.967)

Figure 3. The mean response time and mean response accuracy of three hidden states on
each question.

when a participant is in State 1 (S1), there is a tendency to either remain in this state
or transition to State 2 (S2). If a participant is in State 2, there is a preference to stay
in State 2. For participants in State 3 (S3), there is a tendency to transition to State 2
or remain in State 3 compared with transitioning to State 1.

To better interpret the three hidden states, we plotted the mean response time,
mean response accuracy, and the selected eye-tracking features across different
items. Figure 3 presents the documented mean response time and response accuracy
for three hidden states. These values are computed based on the data of participants
who belong to the same state. When considering individual items, participants in
State 2 tend to exhibit longer response times compared to those in States 1 and 3.
However, their response accuracy is generally similar to that of participants in State
1. On the other hand, participants in State 3 typically demonstrate shorter overall
response times and higher response accuracy for items assessing a single skill. For
items measuring multiple skills, their response accuracy is lower, except for items 7
and 8, where they stand out as exceptions when compared to the other two states.

The mean values of the eye-tracking statistics gathered from the three states
for each item across four Areas of Interest (AOIs) are presented in Figures 4–7.
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Figure 4. The mean of eye tracking feature statistics on the whole screen.

Figure 5. The mean of eye tracking feature statistics in the AOI look.

Figure 6. The mean of eye tracking feature statistics in the AOI question.

Figure 7. The mean of eye tracking feature statistics in the AOI option.

When examining the 10 eye-tracking features within these AOIs, a consistent trend
emerges: participants in State 3 consistently exhibit the lowest values for most
eye-tracking features. State 1 and State 2, on the other hand, display a more similar
performance compared to State 3. In particular, State 1 generally exhibits the highest
values for many of the eye-tracking features. Based on the meaning of the selected
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Exploring Latent Constructs through Multimodal Data Analysis

eye-tracking features (“Eye-Tracking Feature Selection Results” section), we inter-
pret the three hidden states based on the eye movement characteristics as follows:

State 1: Participants in State 1 exhibit the highest maximum peak velocity sac-
cades across the entire screen, the longest maximum fixation duration in
the look and question area, relatively large number of fixation in the look
area, and the lengthiest average fixation duration in the option area across
all 10 items. These statistics imply that these participants may possess a
keen attention to detail, excellent concentration, and the ability to make
rapid decisions when solving problems. However, it is worth noting that
these data may also suggest that these participants could face challenges
in the visualization process. We define this State as “Precision Naviga-
tion.”

State 3: Participants in State 3 display characteristics that are notably distinct
from those in State 1. They exhibit the smallest maximum peak veloc-
ity of saccades across the entire screen, the shortest maximum fixation
duration in the look and option areas, the fewest fixations in the look
area, and the shortest maximum duration of glances in the question area.
These statistics imply that these participants excel in rapid information
processing, maintain focused attention on critical details, and exhibit a
preference for fast-paced environments. Based on these characteristics,
we define State 3 as “Quick Analyzing.”

State 2: Participants in State 2 in general have similar eye-tracking features as
State 1, they are more like the blend of the other two states, balancing
between searching and processing visual information. We define this state
as “Balanced Precision Navigation.”

Latent Attribute Profiles from Fluency CDM Model

The fluency CDM described in “The Fluency Cognitive Diagnostic Model”
section was used to fit the response accuracy (binary response data) and response
times from 70 participants to the 10 questions. Given the relatively small sample
size, the covariate g(αi, g) was chosen with a simple form of 1{ηi j=2}., which differ-
entiates the speed at the highest attribute level from the other two. The MH-Gibbs
algorithm converged after 4,500 iterations based on the Gelman-Ruin proportional
scale reduction factor (PSRF; Gelman & Rubin, 1992). We thus used a chain length
of 20,000 and the first 5,000 iterations as burn-in. The trace plot and auto-correlation
plot of the key model parameters were also produced to monitor model convergence.
We also conducted Bayesian posterior productive check to evaluate model-data
fitting (Gelman et al., 1995). We define the testing statistics used in the posterior
predictive checking as the sum of response scores and sum of response times. The

posterior predictive p value (PPP) is calculated as
∑N

i=1
∑R

r=1(
∑J

j=1 Y posterior(r)
i j ≥

∑N
j=1 Yi j )

NR ,
where R represents the MCMC chain length, N is the sample size, and J is the
number of test questions. Y posterior(r)

i j denotes the predicted posterior data for the ith
person’s response accuracy or response time to the jth question in the rth MCMC
iteration generated by the fluency CDM. Yi j represents the corresponding observed

15

 17453984, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jedm

.12412, W
iley O

nline Library on [29/12/2024]. See the Term
s and Conditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable Creative Com
m

ons License



Figure 8. The mean response accuracy and response times for three latent groups based on
fluency model.

data. Following Gelman et al. (1995), a PPP value close to.5 indicates minimal
disparity between observed and predicted values. A PPP value exceeding.95 or
falling below.05 suggests poor model-data fitting. In this case, the fluency CDM
model exhibits a PPP value of.491 for response accuracy and.601 for response times,
indicating reasonable model-data fitting.

A total of 80 latent attribute profiles were estimated using fluency CDM. To better
interpret the meaning of different latent profiles, we check the participants’ classifi-
cation results on each item. More specifically, based on the estimated latent profile,
the fluency CDM model classifies a participant into one of three groups: nonmas-
ter, partial master, or master. We then calculate the mean response accuracy and
mean response times for each of the three latent groups on each item. The results
are documented in Figure 8. It is very clear that the master group has the high-
est response accuracy in responding to each question and they also have the fastest
speed in responding to most items. The mean response accuracy for the partial master
group is the next, and this group also tends to have the slowest speed in responding
to each question. The nonmaster group answers each with the lowest accuracy and
fastest speed.

The Relationship between Fluency CDM Latent Attribute Profiles and Hidden
States from Eye-Tracking Features

Hidden states transition matrix and skill mastery. We first report the results
about whether the empirical transition matrices of hidden states vary among different
types of skill mastery levels of two adjacent items. We created empirical transition
matrices for the following three cases: (1) when the skill mastery level (ηi j) remains
consistent across two adjacent items; (2) when ηi j shifts from a high to low value;
and (3) when ηi j transitions from low to high. A total of nine empirical transition
matrices are documented in Figure 9.
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Figure 9. The conditional transition matrices.

Among these 9 empirical transition matrices, most of them align with the esti-
mated transition matrix in Table 3. However, we do observe several differences. First,
when examining individuals whose skill levels remain unchanged between two con-
secutive items, those with ideal responses of (0 to 0) or (1 to 1), and who are in State
1 during the current item, show a notable tendency to transition to State 2 for the next
item. If these individuals are in State 3 during the current item, they display a strong
inclination to transition to State 2 for the subsequent item. However, for participants
whose ideal responses shift from 2 to 2, those in State 1 during the current item
typically remain in State 1, while those in State 3 have a slightly higher chance of
transitioning to State 2 compared with remaining in State 3 or transitioning to State 1.

Second, individuals whose ideal responses shift from a high value to a low value
between two consecutive items, as in (1 to 0) and (2 to 0), exhibit transition patterns
closely resembling the overall transition matrix found in Table 2. However, for those
whose ideal responses shift from 2 to 1, if they are in State 1 during the current item,
they tend to transition to State 2 for the next item.

Third, for participants whose ideal responses change from a low value to a high
value between two adjacent items, intriguing patterns emerge. For those shifting from
0 to 2, which constitutes a substantial increase, they remain largely in State 1 if they
are in State 1 during the current item. This contrasts with the overall pattern, which
features a.489 transition probability from State 1 to State 2.

A final note is for participants whose ideal response change from 0 to 2, from 1 to
2, or remain in 2 between consecutive items, all have the highest rate of staying in
State 1.

Hidden states distribution and skill mastery. To present the distribution of hid-
den states across 10 items for different latent attribute profile groups, we categorize
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Figure 10. The distribution of hidden states of three latent profile group.

participants into three distinct groups based on their latent attribute profiles, repre-
senting low, medium, and high levels. The low latent attribute profile group consists
of 16 participants, characterized by ideal response scores of 0 or 1 for most items.
The medium latent attribute profile group comprises 35 participants, where a major-
ity of the participants exhibit ideal response scores of 1 across their items. In contrast,
the high latent attribute profile group includes 15 participants, with most individuals
in this group displaying ideal response scores of 2 for the majority of items.1

The distribution of hidden states across 10 items for the three latent profile groups
is illustrated in Figure 10. A common feature among these groups is the predominant
presence of participants in State 2 (utilizing balanced precision navigation in solving
the item) across all 10 items, surpassing the proportions in the other two latent states
for each group. For the easiest item (item 1), which requires a singular skill, all three
latent profile groups exhibit the highest proportion of participants in State 3 (quick
navigation).

Examining differences among the groups, we observe variations in the distribu-
tion of the three latent states discovered by eye-tracking across different item types.
Specifically, for items 3 to 7, the low and high latent attribute profile groups share
a similar proportion of State 1, both higher than the medium latent attribute pro-
file group. For the most complex item (item 9), where objects are challenging to
visualize, about 75% of participants in the low latent attribute profile group be-
long to State 1 (Precision Navigation), with 20% in State 3 (Quick Navigation).
In contrast, only 20% of the other two groups are in State 1, with the majority
in State 2. We conducted a chi-square test to examine the association between the
distribution of the latent states and the latent profile groups for each item. The re-
sults revealed a statistically significant difference in the distribution of the three
latent states across the three latent profile groups for item 9, χ2(4) = 19, p <

.001. These findings underscore both between-group and within-group individual
differences.
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Figure 11. The first 10 state trajectories of the high latent profile group.

Figure 12. Latent trajectories with combined latent levels.

Figure 11 depicts the eye-tracking hidden state trajectories for the first 10 partici-
pants in the high latent attribute profile group. Despite all being classified as having
high skill mastery by fluency CDM, they employ distinct eye-movement patterns,
as evidenced by their membership in different latent states for different questions.
Figure 12 combines item latent scores using levels from eye-tracking hidden states
and ideal response scores for each participant. This reveals additional individual dif-
ferences among participants.
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Table 6
The Item Characteristics Based on Fluency CDM and Eye-Tracking Hiden States

Item Measured Attributes g s1 s2 a γ State 1 State 2 State 3

1 x90 .884 .028 .012 1.09 2.515 .015 .273 .712
2 y90 .575 .164 .064 2.092 3.171 .197 .576 .227
3 x180 .518 .120 .049 2.172 3.512 .348 .561 .091
4 x90y180 .490 .189 .089 1.955 3.693 .303 .606 .091
5 y180 .326 .312 .152 2.246 3.652 .273 .606 .121
6 x90y90 .422 .202 .104 2.124 3.551 .379 .485 .136
7 x90y90 .321 .325 .164 1.950 3.635 .364 .576 .061
8 x90y180 .373 .115 .050 1.942 3.722 .227 .667 .106
9 x180y90 .295 .406 .230 2.013 3.757 .318 .561 .121
10 x180y90 .501 .133 .060 1.802 3.688 .258 .682 .061

Item Characteristics

The fluency CDM’s item parameters and the hidden state distribution for each
item are detailed in Table 6. These fluency CDM item parameters align with findings
from a prior study that analyzed binary responses and response times using the same
spatial rotation learning platform instrument (Zhang & Wang, 2018). In essence,
items designed to measure a single skill exhibit relatively large guessing parameters
(g), small time intensity parameters (γ), and minimal time discrimination parameters
(a). Conversely, items assessing two or more complex skills display relatively large
sleeping parameters (s1, s2), substantial time intensity parameters, and elevated time
discrimination parameters. Beyond these established characteristics, the distribution
of participants across three hidden states also provides additional insights into item
characteristics. Notably, Item 1, serving as the initial question in the assessment and
measuring a single, straightforward skill (rotation along the x-axis by 90), shows the
highest proportion of participants in hidden state 3. As the complexity of skill or the
number of skills for an item increases, there is a general decrease in the proportion
of participants in state 3 and an increase in the proportion in State 1. This trend is
evident in Figure 10.

Additionally, we computed the correlation between hidden state proportions and
fluency CDM item parameters (g, s1, s2, a, γ). Employing a significance level of.05,
we observed that item-state 3 proportion has a significantly positive association with
the guessing parameter g (r = .86, p = .035) and a significantly negative association
with the time intensity parameter (r = −.96, p < .001). The proportion of item-state
2 is significantly positively related to time intensity parameters (r = .86, p = .035).
These findings suggest that items categorized as relatively easy are more likely to be
addressed through eye-tracking movement reflected by state 3 (quick Navigation).
Items that are more difficult require are likely to require balanced Navigation (state
2).

Figure 13 visually represents each item through Chernoff Faces, utilizing the
8 variables outlined in Table 6. It is easy to observe that Item 1 stands out dis-
tinctly from the other items. Items 5, 7, and 9 exhibit closer proximity to each other
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Figure 13. Items charted by both fluency CDM item parameters and eye tracking state
distribution.

compared to the remaining items, while Items 8 and 10 display similarities. The re-
maining items—2, 3, 4, 6, and 8—show some distinct features from one another.

Discussion

This exploratory study presents a comprehensive multimodal data analysis frame-
work that employs several statistical and machine learning methods. These methods
aim to unveil cognitive outcomes and the problem-solving process by examining
response accuracy, response times, and eye-tracking variables. Our findings related
to the two primary research questions posed in “Introduction” section are summa-
rized below.

The first research question explores the connection between hidden states identi-
fied through eye-tracking features and the latent attribute profiles estimated from the
fluency CDM model based on response accuracy and response time. Our observa-
tions reveal that the empirical hidden state transition probability appears to be influ-
enced by changes in latent attribute mastery levels between two consecutive items
(refer to “Hidden States Distribution and Skill Mastery” section). This suggests the
potential development of a new hidden Markov model that incorporates discrete la-
tent attribute profiles as covariates. Such a model could better capture varying transi-
tion probabilities based on different levels of attribute skill mastery. This is similar to
the idea from a recent study by Tang (2023) which proposed a latent hidden Markov
model that integrates continuous latent traits. This model was utilized to describe the
response process and its variations among respondents. Additionally, our investiga-
tion indicates that participants with the same or similar latent attribute profiles, as
determined by the fluency CDM, exhibit different hidden state trajectories based on
their eye-tracking features. This suggests that eye-tracking features can offer addi-
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Wang et al.

tional diagnostic insights into the problem-solving processes related to spatial rota-
tion questions. Figure 12 illustrates how a combined representation of latent levels
can describe more individual differences.

The second research question aims to identify additional insights that can be
gleaned from the eye-tracking features related to the spatial rotation items. The find-
ings, as detailed in “Item Characteristics” section, demonstrate that the distribution
of participants across various hidden states reflects the complexity of visualizing ob-
jects in each item. This introduces an additional dimension to the characterization of
item features, complementing the information obtained from the item parameters in
the fluency CDM model, which is based on response accuracy and response time.

The limitations of the current study can be succinctly outlined as follows. First,
the generalizability of the findings may be constrained to context-specific scenar-
ios or relatively small sample sizes. Studies utilizing eye-tracking variables typically
feature small sample sizes, ranging from 26 to 90 participants (Hu et al., 2017; Kac-
zorowska et al., 2021; Yaneva et al., 2021; Zhu & Feng, 2015; Zhan et al., 2022). Our
study’s valid sample size of 70 falls within this established range. The smaller sample
size is primarily attributed to the limited availability of eye-trackers during the ex-
periment, which significantly hindered the efficient collection of eye-tracking data.
In the current study, the stability of the feature selection procedure is constrained
by the small sample size. Consequently, further validation of the selected features is
warranted through future studies with larger sample sizes. Another potential factor
that impacts the findings of the current study is the method of defining an Area of
Interest (AOI). Since we rely on numerous eye-tracking variables aggregated over a
specified AOI, the definition of this area significantly influences the information sum-
marized from it. In our current study, we established three reasonable AOIs based on
the item’s design to assess spatial rotation abilities. However, these AOIs could be
further segmented into smaller, more specific regions to capture more detailed infor-
mation about eye movement. For instance, defining an AOI based on a specific side
of an object could offer a more granular perspective. The final note is that our cur-
rent study still utilizes summary variables from the eye-tracker. In future research, it
may be worthwhile to directly analyze eye-movement action sequences, describing
how a participant moves within several defined AOIs across the entire screen. This
approach goes beyond utilizing measures within a singular AOI and provides a more
comprehensive understanding of eye-movement patterns.

Appendix

The appendix shows the details of data processing procedures, model parameters,
and more experimental results.

Appendix 1: Procedure of Data Preprocessing

Step Description Variables Left

1 Remove redundant and meaningless information. 82
2 Remove variables with too many missing values. 65

22

 17453984, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jedm

.12412, W
iley O

nline Library on [29/12/2024]. See the Term
s and Conditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable Creative Com
m

ons License



Exploring Latent Constructs through Multimodal Data Analysis

Variables Removed due to Missing Values

Table A1
Variable Names and Their Units

Variable Name Unit

Standard deviation of peak velocity of saccades degree/ms
Time to exit saccade ms
Time to entry saccade ms
Time to exit saccade (look) ms
Time to entry saccade (look) ms
Time to exit saccade (option) ms
Time to entry saccade (option) ms
Peak velocity of exit saccade degree/ms
Time to exit saccade (question) ms
Peak velocity of entry saccade degree/ms
Time to entry saccade (question) ms
Peak velocity of exit saccade (look) degree/ms
Peak velocity of entry saccade (look) degree/ms
Peak velocity of exit saccade (option) degree/ms
Peak velocity of entry saccade (option) degree/ms
Peak velocity of exit saccade (question) degree/ms
Peak velocity of entry saccade (question) degree/ms

Variables Removed related to “Time to First”

Table A2
Variable Names and Their Units

Variable Name Unit

Time to first fixation ms
Time to first fixation (look) ms
Time to first fixation (option) ms
Time to first fixation (question) ms
Time to first Glance ms
Time to first Glance (look) ms
Time to first Glance (option) ms
Time to first Glance (question) ms
Time to first Visit ms
Time to first Visit (look) ms
Time to first Visit (option) ms
Time to first Visit (question) ms
Time to first saccade ms
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Variables Removed related to “Visits”

Table A3
Variables and Their Units

Variable Name Unit

Number of Visits (look) count
Duration of first Visit ms
Number of Visits (option) count
Total duration of Visit ms
Time to first Visit (look) ms
Average duration of Visit ms
Maximum duration of Visit ms
Minimum duration of Visit ms
Time to first Visit (option) ms
Duration of first Visit (look) ms
Time to first Visit (question) ms
Total duration of Visit (look) ms
Average duration of Visit (look) ms
Duration of first Visit (option) ms
Maximum duration of Visit (look) ms
Minimum duration of Visit (look) ms
Total duration of Visit (option) ms
Average duration of Visit (option) ms
Duration of first Visit (question) ms
Maximum duration of Visit (option) ms
Minimum duration of Visit (option) ms
Total duration of Visit (question) ms
Average duration of Visit (question) ms
Maximum duration of Visit (question) ms
Minimum duration of Visit (question) ms

Full List of Variables after Data Preprocessing

After removing the variables with large proportion of missing values, and some
variable contains meaningless information, there are 65 variables left. Here we give
the full list of the variables after data preprocessing, including their units.

Table A4
Variables and Their Units

Variable Name Unit

Pupil mm
Number of fixations count
Number of fixations (look) count
Duration of first fixation ms
Number of fixations (option) count

(Continued)
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Table A4
(Continued)

Variable Name Unit

Total duration of fixations ms
Number of fixations (question) count
Average duration of fixations ms
Maximum duration of fixations ms
Minimum duration of fixations ms
Duration of first fixation (look) ms
Total duration of fixations (look) ms
Duration of first fixation (option) ms
Average duration of fixations (look) ms
Maximum duration of fixations (look) ms
Minimum duration of fixations (look) ms
Total duration of fixations (option) ms
Duration of first fixation (question) ms
Average duration of fixations (option) ms
Maximum duration of fixations (option) ms
Minimum duration of fixations (option) ms
Total duration of fixations (question) ms
Average duration of fixations (question) ms
Maximum duration of fixations (question) ms
Minimum duration of fixations (question) ms
Number of Glances count
Number of Glances (look) count
Duration of first Glance ms
Number of Glances (option) count
Total duration of Glances ms
Number of Glances (question) count
Average duration of Glances ms
Maximum duration of Glances ms
Minimum duration of Glances ms
Duration of first Glance (look) ms
Total duration of Glances (look) ms
Duration of first Glance (option) ms
Average duration of Glances (look) ms
Maximum duration of Glances (look) ms
Minimum duration of Glances (look) ms
Total duration of Glances (option) ms
Duration of first Glance (question) ms
Average duration of Glances (option) ms
Maximum duration of Glances (option) ms
Minimum duration of Glances (option) ms
Total duration of Glances (question) ms
Average duration of Glances (question) ms
Maximum duration of Glances (question) ms
Minimum duration of Glances (question) ms
Number of saccades count

(Continued)
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Table A4
(Continued)

Variable Name Unit

Average peak velocity of saccades degree/ms
Minimum peak velocity of saccades degree/ms
Maximum peak velocity of saccades degree/ms
Average amplitude of saccades degree
Minimum amplitude of saccades degree
Maximum amplitude of saccades degree
Total amplitude of saccades degree
Direction of first saccade degree
Peak velocity of first saccade degree/ms
Average velocity of first saccade degree/ms
Amplitude of first saccade degree
Number of saccades in AOI count
Number of saccades in AOI (look) count
Number of saccades in AOI (option) count
Number of saccades in AOI (question) count

Appendix 2: The Three-Step Feature Selection Results

Variables Removed in the First Step: Accuracy as Predictions

Table A1
Variables and Their Units

Variable Name Unit

Number of fixations count
Number of fixations (look) count
Number of fixations (option) count
Number of fixations (question) count
Total duration of fixations (question) ms
Number of saccades in AOI count

Variables Removed in the First Step: Response Time as Predictions

Table A2
Variables and Their Units

Variable Name Unit

Number of fixations count
Number of fixations (look) count
Number of fixations (option) count
Number of fixations (question) count
Total duration of fixations (question) ms
Number of saccades in AOI count
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Exploring Latent Constructs through Multimodal Data Analysis

Variables Selected in the Second Step: Accuracy as Predictions

Table A3
Variables and Their Units

Variable Name Unit

Total duration of fixations ms
Average duration of fixations (option) ms
Average duration of Glances (option) ms
Minimum duration of Glances (option) ms
Total duration of Glances (question) ms
Maximum duration of Glances (question) ms
Maximum peak velocity of saccades degree/ms

Variables Selected in the Second Step: Response Time as Predictions

Table A4
Variables and Their Units

Variable Name Unit

Number of fixations count
Number of fixations (look) count
Number of fixations (question) count
Maximum duration of fixations (look) ms
Maximum duration of fixations (question) ms
Minimum duration of fixations (question) ms
Number of Glances count
Total duration of Glances ms
Average duration of Glances ms
Maximum duration of Glances ms
Minimum duration of Glances ms
Average duration of Glances (option) ms
Minimum duration of Glances (option) ms
Total duration of Glances (question) ms

Note
1The total sample size is 66 due to 4 participants have some missing values on

some of the selected eye-tracking features, thus do not have hidden states estimated
from the HMM
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