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ABSTRACT 

 

Natural products, small molecules of biological origin, often show specific and potent biological 

activities. These specialized or secondary metabolites have important applications in agriculture, 

engineering, and medicine. Usually, the biosynthesis of natural products is governed by sets of 

co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To 

share information about BGCs in a standardized and machine-readable way, the Minimum 

Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated 

in 2015. Since its conception, MIBiG has been regularly updated to expand data coverage and 

remain up to date with innovations in natural product research. Here, we describe MIBiG version 

4.0, an extensive update to the data repository and the underlying data standard. In a massive 

community annotation effort, 267 contributors performed 8304 edits, creating 557 new entries and 

modifying 590 existing entries, resulting in a new total of 3059 curated entries in MIBiG. Particular 

attention was paid to ensuring high data quality, with automated data validation using a newly 

developed custom submission portal paired with a novel peer-reviewing model. MIBiG 4.0 also 

takes steps towards a rolling release model and a broader involvement of the scientific 

community. MIBiG 4.0 is accessible online at https://dev.mibig.secondarymetabolites.org/. 

 

  

mailto:marnix.medema@wur.nl
mailto:tiwe@biosustain.dtu.dk
mailto:kblin@biosustain.dtu.dk
https://dev.mibig.secondarymetabolites.org/


INTRODUCTION 

 

Many organisms are prolific producers of small molecules commonly referred to as natural 

products (NPs). Also known as specialized or secondary metabolites, these molecules often show 

a diversity of potent biological activities, which have been leveraged for the development of 

numerous drugs (1, 2). NPs are generally hypothesized to increase the fitness of the producing 

organism or its host. In microbes, the biosynthetic genes required for the production of a NP are 

co-regulated and frequently physically clustered in the genome, in a so-called biosynthetic gene 

cluster (BGC), and often transferred horizontally (3). BGCs, which by definition consist of two or 

more genes, encode the proteins/enzymes used in natural product biosynthesis of NPs and are 

the object of “genome mining” strategies that leverage analysis of genome sequence data for the 

discovery of (novel) metabolites (4). In rare cases, a single gene may be responsible for the 

biosynthesis of a natural product, such as a large NRPS; these standalone genes are also entered 

into MIBiG due to their relevance to specialised metabolism. 

Over the last decades, various methods using manually curated detection rules based on 

prior knowledge (5–7), and more recently, machine learning-based tools for genome mining have 

been developed (8–12). These tools rely on accurately curated and machine-readable 

experimental data for annotation, rule definition, and training purposes. Unfortunately, machine-

readable data is not readily available from the scientific literature nor is it universally required by 

journals to be directly deposited in databases. While there are efforts to mine data from the 

literature using computational methods (13, 14), these approaches currently often come with 

limitations when compared to human curators and may not be compatible with copyright laws. 

Therefore, manual data curation performed by researchers remains the gold standard for the 

generation of machine-readable data. 

 The largest manually curated resource on NP BGCs is the Minimum Information about a 

Biosynthetic Gene Cluster (MIBiG) data repository (15). Initiated in 2015 and based on the MIBiG 

Data Standard, it now holds over 2500 hand-curated entries of experimentally validated BGCs 

and their products, alongside additional information such as biological activities and gene 

annotations. Conceptualized as an open data repository curated by and for the NP community, it 

has seen three iterations of online community-driven data annotation and curation hackathons 

(also known as “annotathons”), with more than 250 participants from 33 countries (16, 17). 

Despite its size, the MIBiG repository still only describes a part of the continuously growing known 

biosynthetic space, which motivates further efforts in curating and systemizing information on 

BGCs. 

https://paperpile.com/c/KS60z6/A1IS+VsKK
https://paperpile.com/c/KS60z6/kGO4
https://paperpile.com/c/KS60z6/BkF6
https://paperpile.com/c/KS60z6/7HoV+nPIJ+3kIr
https://paperpile.com/c/KS60z6/nm4f+0fH8+A8Jk+0BxN+8MSg
https://paperpile.com/c/KS60z6/OGO6+n2ED
https://paperpile.com/c/KS60z6/GHry
https://paperpile.com/c/KS60z6/3M45+zri0


 Here, we present version 4.0 of the MIBiG data standard and repository. Besides a 

thorough update of the underlying MIBiG data standard, we have substantially grown the number 

of available entries by initiating a large-scale community curation effort. In the first half of 2024, 

267 contributors created 557 new entries and modified 590 existing entries in the scope of eight 

community annotathons (six general open events and two final data curation sessions with a more 

dedicated team). In this version of MIBiG, we focused on maintaining and further improving data 

quality in terms of completeness and accuracy. We encouraged contributors to fully complete 

entries before submission, which has significantly decreased the number of so-called minimum 

entries (entries with only the minimally required information) in the database. We also introduced 

a new peer-review model where modifications to entries are examined and approved by one or 

more expert reviewers, who can request corrections. Additionally, we have established a 

framework for efficient and standardized data submission, introducing a web interface (MIBiG 

Submission Portal) that allows for parallel, distributed data input featuring automated input 

validation. The latter refers to the tests that are performed by the submission portal itself to ensure 

the correct data types and formats are filled in. Together, these efforts further consolidate MIBiG 

as the leading database on experimentally characterized BGCs and prepare for the transition to 

a dynamic, rolling-release curation model. 

METHODS AND IMPLEMENTATION 

 

 

Rework of the MIBiG Data Standard  

 

The MIBiG Data Standard (from here: Data Standard) is the “blueprint” of all allowed data in the 

MIBiG repository. It defines mandatory and optional data fields, allows the use of controlled 

vocabularies and automated validation, and enables the organization of complex data in a 

consistent, human- and machine-readable way. In this update, we extensively updated the Data 

Standard to accommodate advances in NP research and to extend the scope and ease of (re-

)use of covered (meta)data. 

 Literature references and evidence qualifiers. Previously, all literature references 

associated with a MIBiG entry were collected in a single block, making it difficult to locate the 

origin of specific experimental data. In this update, we reorganized the Data Standard such that 

each data category (e.g. biosynthetic information, compound details) has its own list of literature 

references. Furthermore, evidence qualifiers can be selected from a controlled vocabulary (e.g. 



“Heterologous expression”) that concisely summarizes the experimental support for the claims. 

 Biosynthesis information, multiple loci, and class updates. Biosynthetic information 

is now organized in a “biosynthesis” section, tracking biosynthetic types, modules, operons, and 

newly introduced “biosynthetic path”, which allows contributors to describe cases where a single 

BGC can lead to multiple products or describe sub-clusters of genes that produce building blocks. 

The “multiple loci” system has been re-introduced, allowing the specification of satellite genes or 

gene clusters that are involved in the biosynthesis but are not clustered with the ‘main’ BGC. 

Nevertheless, we still require that multiple biosynthetic genes are clustered in the same genomic 

region, to exclude non-clustered pathways. Furthermore, it is now possible to mark genes that 

are located within the boundaries of a BGC but do not partake in the biosynthesis, such as 

pseudogenes or transposable elements. Additionally, we have separated biosynthetic 

classification from compound classification (e.g., we removed “alkaloid” as a biosynthetic class) 

and introduced a custom biosynthesis-inspired chemical ontology for NPs (Supplementary Data 

1, section 3.4) based on the work by Dewick (1). Notably, we have newly defined the nonribosomal 

peptide synthetase Type VI (modular, non-condensation-domain peptide-bond-forming), 

extending the current classification (18). 

 Biological activity and resource integration. MIBiG also accepts additional BGC-

related data. In this update, we have reworked fields registering the biological activity of BGC-

associated NPs: activities are now considered properties of a specific assay, and a controlled 

vocabulary (Supplementary Data 1, section 3.3) is available for defining bioactivity in a 

reproducible way. Additionally, we have included an optional “concentration” field, allowing 

submission of both qualitative and quantitative bioactivity data. At the same time, additional 

metadata parameters increase the scope of the already extensive Data Standard, and as such 

MIBiG references external resources where possible. Newly introduced links include references 

to the Minimum Information about a Tailoring Enzyme (MITE) data repository for annotation of 

tailoring enzyme-encoding genes (19), and CyanoMetDB for compound information on 

cyanobacterial NPs (20). 

 

Community mobilization and data curation 

 

Inspired by the contributions made to MIBiG 3.0, we again sought participation from the scientific 

community. Following calls on social media, 398 researchers signed up to participate in a series 

of eight three-hour online annotation sessions, accommodating different time zones (Figure 1). 

This enormous interest posed organizational challenges in terms of coordination and 

https://paperpile.com/c/KS60z6/A1IS
https://paperpile.com/c/KS60z6/TaPC
https://paperpile.com/c/KS60z6/2ceH
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communication, prompting us to develop a new model for community participation. Individual 

contributors were part of one or more Interest Groups that communicated using the MIBiG Slack 

(https://mibigannotathons.slack.com/) channel and were headed by Interest Group Coordinators: 

topic matter experts responsible for answering biosynthesis- and chemistry-related questions. 

Kanban-style boards (free version of Trello, https://trello.com/) were employed to coordinate work 

on entries. Data submission was performed using the MIBiG Submission Portal, a bespoke web 

interface that uses validated fields for data processing. Several curators with relevant expertise 

volunteered to take Reviewer roles, focusing on assessing the quality of newly generated or 

modified entries using the newly introduced peer review system. Aimed towards further improving 

the quality and confidence of entries, Reviewers could leverage the Kanban-style boards (Figure 

2) to request revisions of entries if errors were found. To facilitate data curation, we prepared 

extensive online documentation (Supplementary Data 1) and instructional videos, and trained 

Interest Group Coordinators and Reviewers for their roles in online meetings. Participants who 

made a significant contribution (defined as participating in at least two three-hour sessions or an 

equivalent time investment) were invited to be co-authors in the present publication. 

 

https://mibigannotathons.slack.com/
https://trello.com/


 
Figure 1. General workflow of the MIBiG annotation process. Data is submitted by annotathon 

contributors (organised by expertise into interest groups) or independent submitters to the 

database from new experimental data or existing/recent literature. The entries are then 

assessed by reviewers and revised when needed. Finally, they end up in the online MIBiG 

repository and become accessible by querying them online on the MIBiG web page or via 

interoperable tools.  

 

 



 
Figure 2. Architecture of the Kanban board used for the MIBiG annotathons. Every BGC would 

have its own ‘card’, where annotators with specific expertise could fill in and then check a specific 

part of its annotation. Once the checklist was complete, the card would move to review and, 

potentially, revision to repair any issues identified by the reviewers. 

 

RESULTS AND DISCUSSION 

 

Advancing the MIBiG Data Repository 

 

In this iteration of the MIBiG annotathons, we put a greater emphasis on self-organization and 

facilitating motivated contributors to act independently and confidently when curating data. During 

the call for participation, researchers not only signed up to participate, but also contributed to 

assembling a list of recent publications associated with the biosynthesis of NPs. This initial effort 

yielded 552 publications supporting new entries and 266 publications for improvements of existing 

entries, which were used as a starting point for the curation process. Over the course of the 

annotathons, 267 contributors made a total of 8304 edits (e.g. adding an entirely new entry, 

adding biological activity to an existing entry, etc.), resulting in 557 new and 590 modified existing 



entries. With the present update, MIBiG now contains a total of 3059 entries, a 22% increase in 

comparison to MIBiG 3.0. Of these, 1655 entries are now associated with 3604 biological 

activities, and 2634 entries have 5002 associated chemical structures. However, 672 entries still 

lack chemical structures; hence, future efforts will include attention to improving this aspect, 

especially with regard to structural information for ribosomally synthesized and post-

translationally modified peptides (RiPPs). Additionally, 7677 references and 8582 evidence 

qualifiers were provided, 171 biosynthetic paths were described for 110 entries, and cross-

references to 173 MITE and 93 CyanoMetDB entries were established.  

Of the total 1147 contributed entries (557 new, 590 modified), 464 (40%) have been 

reviewed at the time of manuscript preparation. While all entries are available, those that are 

reviewed are highlighted in the MIBiG repository website to reflect the additional confidence. For 

applications using the MIBiG data where a high confidence level is required (e.g. machine learning 

applications), we recommend the use of reviewed entries only (the website facilitates 

filtering/sorting on this). We expect the “reviewed” part of the MIBiG repository to grow 

continuously once we have transitioned to the MIBiG rolling release model, and over time, we aim 

to formally review all entries in the MIBiG repository.  

 

 

Figure 3. Quantitative overview of updates to the MIBiG database. Changes/updates compared 

to the previous version 3.1 are indicated in blue. 

 

 

 

Initiating the MIBiG Rolling Release Model 

 



The efforts described above demonstrate the value of leveraging large community 

initiatives such as the MIBiG annotathons. We estimate that contributors volunteered 

approximately 4000 hours in curating and reviewing entries, an effort in time and expertise that 

could not be raised by any single research group. Besides expanding the MIBiG repository, the 

annotathons were appreciated for their community-building aspect, fostering communication and 

exchange of ideas in the NP research community. In addition, the interaction with other resources 

prompted improvements to these databases as well, e.g. when curators could not find matching 

entries for a structure in the NP Atlas, thus encouraging wider cooperation beyond MIBiG itself. 

The intrinsic motivation of contributors is demonstrated by the fact that many edits were performed 

in between the annotathon sessions (Figure 2). The broad interest of the community motivated 

the planning of a “rolling release” model of MIBiG. In addition to the biennial efforts that will lead 

to “major” releases of MIBiG (e.g. the current v4.0, or the next major release v5.0), curators will 

be able to contribute new or modify existing entries on an ad hoc basis, leading to monthly “minor” 

releases (i.e. 4.1, 4.2). Contributors will be able to correct bugs and add references at any time, 

instead of waiting for the “major” release cycle to perform all edits at once. This new system is 

currently under development, and we invite the scientific community to participate in the 

discussion on how to structure contributions and governance (i.e., by communicating with the 

corresponding authors of this publication or using the MIBiG Slack). Furthermore, to facilitate 

future MIBiG updates and curation we encourage authors to release BGC sequence data during 

the publication submission and peer review process, or immediately thereafter, and to provide the 

respective accession details in the manuscript text. 

 

In summary, we have conducted a large-scale community effort to make experimental 

data on NP BGCs freely accessible and machine-readable. As a resource created for and by the 

scientific community, the MIBiG repository is freely accessed on an entry-by-entry basis or can 

be downloaded and parsed in bulk. MIBiG 4.0 also serves as the stepping stone for creating the 

infrastructure to establish a Wikipedia-like model of continuous community curation. Such a 

decentralized organization will guarantee continuous development of MIBiG and help in including 

the next generations of scientists in the annotation and development process. 

 

DATA AVAILABILITY 

 



The MIBiG Repository is available at https://dev.mibig.secondarymetabolites.org/. Files in JSON 

format following the MIBiG data standard (https://github.com/mibig-secmet/mibig-json) can be 

found on the MIBiG webpage (https://mibig.secondarymetabolites.org/download) and on the 

MIBiG Zenodo Community page (10.5281/zenodo.13367755). Further materials are available on 

GitHub (https://github.com/mibig-secmet). All data is freely available with no restrictions for 

academic and commercial reuse under the OSI-approved CC BY 4.0 Open Source license 

(https://creativecommons.org/licenses/by/4.0/). 
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