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ABSTRACT: Matrix computations are at the heart of scientific computing, especially in models involving large-scale linear systems.
As the scale and complexity of the problems grow, energy-efficient matrix computation becomes critical in these applications.
Meanwhile, the advantages of miniaturizing conventional digital electronic processors, predicted by the Dennard scaling, diminish in
post-Moore’s law era. Analogue photonic devices based on passive and high-throughput interconnects are becoming promising
alternatives as next-generation energy-efficient computing units. However, the limited reconfigurability and precision of an analogue
photonic computing device make it unsuitable for scientific computing applications. Here, we report a general-purpose analogue
photonic matrix processing unit (MPU) based on coherent analogue photonic cores, which perform signed multiplications, with
reconfigurability and memory provided by digital electronics. Combined with error management strategies, our photonic MPU can
perform tasks conventionally dominated by floating-point digital processors, elevating analog photonic-based platforms toward
scientific computing applications. We have experimentally demonstrated its feasibilities in a range of computing tasks, including
matrix multiplication and inversion as well as solving finite-difference partial differential equations.
KEYWORDS: matrix processing, digital, photonic processors, analog computing, reconfigurability, MPU

■ INTRODUCTION
Numerical computing plays an essential role in addressing many
of the challenges in today’s society. From modeling of financial
markets to astrophysics, large-scale dynamic problems are
routinely solved numerically. As all fields of science evolve, more
computing power is required to process ever-increasing sets of
equations. Typically, solving these systems requires intensive
matrix multiplication with millions of elements and trillions of
multiply accumulate (MAC) operations. Yet, conventional
digital processors, such as CPUs and GPUs, cannot keep up
with the growing demand for computing power in post-Moore’s
law era.1−3 Alternative computing schemes have been proposed,
and in particular, analog accelerators have demonstrated high
throughput and energy efficiency4−8 in various large-scale
computing scenarios.
Unlike digital processors that fetch data/instructions and

execute them at rising edges of the clock signals, analog
accelerators rely on their intrinsic physical processes to model
specific mathematical operations. For example, in memristor

crossbar arrays, multiplications are performed as the voltage is
applied to the rows, and the conductance of the cells produces
currents on the readout columns. The currents from all
memristor cells along the column accumulate following
Kirchoff’s law, implementing MAC operation.9 Photonic
accelerators can operate at greater bandwidth and parallelism
thanks to the numerous orthogonal degrees-of-freedom in
optical signals,10 thus they could offer higher computing
throughput than their electronic counterparts. Currently,
analogue photonics has found success in artificial intelligence
(AI)-related computing paradigms, including neuromorphic
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computing, reservoir computing, and optical artificial neural
networks (ANNs). Photonic neuromorphic computing mimics
the neurobiological systems with photonic spiking neurons,11,12

with the potential to achieve superior speeds and scales than its
electronic counterparts.13−15 In reservoir computing, fixed
characteristic photonic reservoirs emulating complex dynamics
are constructed, which can reach steady states in the
subnanosecond timescale.16,17 Optical ANN implements the
topology of one or more network layers with photonic memory
and interconnects. Both feed-forward18−21 and recurrent22−24

architectures can be implemented. Since the ANN weights do
not update during inference, the power consumption of optical
ANN could be lower than that of electronic processors.
Despite the promising throughput and efficiency of analog

photonics, hybrid systems combining the advantages of
photonics with the flexibility of electronics have yet to mature
into practical general-purpose matrix accelerators.25,26 Numer-
ical computing applications involving linear systems typically
require dynamic updates on both the input vector and the
coefficient matrix. Photonic memories consume ∼2 orders of
magnitude higher in power14,27 and at least ∼1 order of
magnitude longer in latency20,28 when updating the coefficient
matrix than performing passive multiplications. In addition,
while photonics is suitable for performing MAC operations, the
elementwise nonlinear operations, such as the activations in
ANN, are more efficiently handled by conventional digital
electronics.29 Moreover, although low-precision ANN inference
has shown success on analog photonic platforms,30,31 the fixed-
point precision often leads to stagnation in iterative solutions of
many inverse problems in science and engineering.32

Representing the input and coefficient matrixes with directly
modulated signals enables dynamically programmable photonic
accelerators. Toward this end, works have been done to
represent the matrix elements either with a cascaded secondary
modulation33 or through a coherent mixing crossbar array.34

Nevertheless, multistage cascadedmodulation introduces higher
loss for the weight elements downstream, limiting the scalability.
Recently, the concept of coherent photonic MAC operation
with direct input matrix/vector encoding and large-scale fan-out
offers a pathway toward flexible and scalable photonic
accelerators,31,35,36 yet this concept has only been applied to
low-precision ANN inference scenarios. Here, we propose a
photonic matrix processing unit (MPU) based on coherent
multidimensional analog photonic cores for matrix-vector
multiplication, digital electronics for data storage and
reconfigurability, and a fixed-point linear algebra library32 for
error management. We have successfully deployed scientific
computing examples on the MPU, including matrix inversion
and solving partial differential equations, both of which require
precisions beyond the native analog precision. Our hybrid
photonic−electronic computing paradigm has the potential to
bridge the gap in precision and flexibility between analogue
photonics and high-performance scientific computing applica-
tions.

■ PRINCIPLE OF OPERATION
Coherent Photonic Processing. Figure 1 shows a

schematic diagram of the proposed MPU with an array of
photonic cores. Data representing an element in matrix A and
vector X are modulated as analogue optical signals and sent to

Figure 1. Schematics of the coherent photonic MPU. (a) The MPU consists of an array of photonic cores for matrix processing, along with peripheral
electronics for analog/digital interfaces and real-time signal processing. Each photonic core consists of a multidimensional interference unit that
calculates the dot product via coherent mixing between the multiplexed electronic fields representing two vectors. (b,c) Matrix-vector multiplications
on the photonic core with peripheral digital electronics and custom firmware. For the exemplary 16× 16matrix-vector multiplications in (b), coherent
mixing outputs from the computing packet (c) are digitized and accumulated (ACC) in real time. (d)Waveform and digitization results corresponding
to the multiplication between the first row of A and the vector X.
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the signal and local oscillator ports on the photonic core,
respectively. At the heart of a single photonic core is an
interference module that coherently mixes the input optical
fields EA and EX, and outputs their product using balanced
detection

| + | | | = { * }V E E E E E E2ReA X
2

A X
2

A X (1)

Equation 1 indicates that the differential readout from
coherent detection produces the signed product between the
scalar fields EA and EX, in which the positive and negative
multiplicands can be represented with 0 and 180° phases,
respectively.
The photonic core interfaces with peripheral electronics for

reconfigurability, storage, and communication with the host PC.
Giga-samples-per-second (GSPS) analog-to-digital (A/D) and
digital-to-analog (D/A) converters controlled by a field-
programmable gate array (FPGA) with custom firmware bridge
the analog domain of the optical signals (modulator inputs and
detector outputs) and the digital domain (see Methods for
details). The signal and local oscillator ports of the core,
respectively, receive the computing packet representing a
column vector X and a matrix row encoded in the time-division
multiplexing (TDM) format.
Figure 1b,c shows an exemplary computing packet for four 16

× 16 matrix-vector multiplications, with the matrix and vector
elements encoded in TDM. At a symbol rate of 0.5 GBd, we were
able to discretize the outputs into 9 equally spaced, signed levels
(integers from −4 to +4) with a symbol error rate of <0.01%,
matching the dynamic range required by five signed discrete
input levels (integers from −2 to 2). The matrix rows are loaded
onto the signal port (EA), while the column vector is loaded
repeatedly onto the local oscillator port (EX). Coherent mixing
results are digitized and accumulated in real time every 16
symbols, as shown in Figure 1d.
Multidimensional Photonic Core. The numerous degrees

of freedom available in optical signals, such as multiple
wavelengths, quadratures, polarizations, spatial modes, and
spatial locations, can simultaneously encode the elements in a
matrix row and a vector, extending the photonic core to matrix-
vector multiplications. To represent an N-element vector (or a
matrix row vector), the input electrical fields of the signal and
local oscillator ports are the superposition of N orthogonal
modes, i.e., EA = ∑n=1

N Amn Ψn and EX = ∑n = 1
N Xn Ψn. Here, Ψn

represents the electrical field of an orthogonal base, and Ψi·Ψj =
δij, where δij denotes the Kronecker delta. During the detection
process, the outputs from the photonic core with multiplexed
optical inputs naturally accumulate, and the result from each
interferometer is the dot product between the m-th row vector
Am and vector X.
Figure 2a depicts an exemplary coherent photonic core that

performs 2 × 2 matrix-vector multiplication Y = AX based on
WDM and in-phase/quadrature (I/Q) modulation. Here, λ1 =
1550 nm and λ2 = 1555 nm together with the two quadratures on
each wavelength encode the first (A12,A22)T and the second
column (A12,A22)T of the matrix, as well as the first (X1) and the
second element (X2) in the vector. The broadband balanced
photodiodes accumulate the optical intensity encoded in two
wavelengths, producing the signed dot product between the
two-element matrix row and the vector. Combining the
wavelength and quadratures allows 2 × 2 matrix-vector
multiplication in one clock cycle. To extend to the arbitrary
matrix and vector sizes, a system-level scheduler can be
employed to promote parallelization among multiple cores or
to process block matrix operations in serial.
We have experimentally implemented the coherent multi-

dimensional photonic core running at 5 GBd. Figure 2b shows
the waveforms representing matrix elements A11 to A22, vector
elements X1 and X2, and the output vector elements Y1 and Y2,
respectively. The precision of the coherent multidimensional
photonic core is quantified by the normalized mean-square error
(NMSE), defined in eq 2, between the ideal Y1 (red curve) and
measured YM (blue curve) multiplication outputs

=
| |

| |
=

=

Y t Y t

Y t
NMSE

( ) ( )

( )
N i

N
M i I i

N i
N

I i

1
1

2

1
1

2
(2)

Here, the summation is performed over all N-detected
symbols extracted at time stamps {ti,i = 1, 2, . . .,N}. The number
of effective analog levels, which can be characterized by the ratio
between the L2 norms of the error and ground truth, equals
1/ NMSE . Hence, the bit-equivalent precision is given by

NMSElog2 . Based on the plots in Figure 2b, the NMSEs are
0.0166 and 0.0196, respectively, for Y1 and Y2, indicating that the
photonic core reaches an effective precision of at least 7 signed
analogue levels, which can be represented in an equivalent
signed 4-bit fixed-point format.

Figure 2. Multidimensional coherent photonic core for matrix processing. (a) Schematics of a photonic core supporting 2 × 2 matrix-vector
multiplication using wavelength-division multiplexing (WDM) and quadratures (I/Q) to encode the matrix and vector elements. (b) 2 × 2 matrix-
vector multiplications on the photonic core at the 5 GBd symbol rate. Waveforms match the ideal coherent mixing model (eq 1) with more than 7
signed effective analog levels.
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Previous photonic computing implementations18,37,38 have
demonstrated sub-100MBd symbol rates. The photonic 2 × 2
matrix-vector core performs four multiplications and two
additions in every received symbol. With a 5 GBd symbol rate,
the overall throughput reaches 30 giga operations per second,
highlighting the advantage of photonic computing in speed.
Given the state-of-the-art electronic integrated circuit technol-
ogy, ADC with four channels at the 56 GBd symbol rate is
readily available,39 matching the throughput of 4 × 4 photonic
matrix-vector multiplication. This enables a single photonic core
running at a throughput of 0.4 tera operations per second
(TOPS), 1 order of magnitude higher than the state-of-the-art
digital processors or accelerators.40,41

■ RESULTS
Matrix Inversion. Matrix inversion is one of the routine

tasks in matrix computation. Here, we demonstrate numerical
matrix inversion that iteratively solves the linear system I = AA†

by minimizing the error |I-AA†|F2, where |·|F denotes the
Frobenius norm. The iteration starts with a random initial
guess of A(0)

† and refines the estimation with Richardson
iterations in eq 3

+† †A I A A A r( )k
T

k( ) ( 1) (3)

Here,A(k)
† is the numerical inverse at the k-th iteration,A (and

AT) is the matrix to be inverted (and its transpose), I is the
identity matrix with the same size asA, and r = τAT is the residue.
Given a step size τ, we use the matrix B = (I − τAT A) in the
iterations and deploy the fixed-point matrix−matrix operation
BA(k)

† on the photonic core.
The results of the numerical inversion of two 4 × 4 matrixes

on the photonic MPU are shown in Figure 3a. Both matrices are
modified from a 4 × 4 discrete cosine transform matrix with
different scaling coefficients on their eigenvalues. The condition
numbers κ of A1 and A2 are 11.1 and 25.0, respectively. The

analytical inverses, A1
−1 and A2

−1, are calculated with floating-
point LU decomposition and are considered the ground truth.
The photonic MPU with TDM encoding was used for 4 × 4
matrix-vector multiplications to match the throughput of
peripheral electronics. We combined two levels of precision
decomposition to expand the inputs from its native range [−2,
+2] to [−8, +8] in the firmware. The columns of Ak

† are treated
as independent vectors and cycle through the signal port (EX),
while the local oscillator port (EA) receives the elements in B
along the rows.
The error of the solution at step k is quantified by the NMSE

between the analytical and the numerical inverses under the
Frobenius norm, |·|F, defined in eq 4

=
| |

| |

†A A

A
NMSE

1

1
k F

F

( )
2

2 (4)

Figure 3d plots the NMSEs of the numerical inverses of A1
and A2 on the photonic MPU. The fixed-point matrix-vector
multiplications on the photonic MPU introduce cumulative
errors that stall the iterations, as shown by the flattening trend of
theNMSE in the inset of Figure 3d. To overcome the stagnation,
we updated the residue term r in the Richardson iteration with r
= I − AA(k)

† after 15 iterations. This is equivalent to solve r = A†

in a new equation r = AA† to correct the cumulative error. The
summation of these recursive solutions to the residue problems
asymptotically approaches the true inverse A−132 (see S4 in the
Supporting Information).
The residue update can be applied adaptively when the

convergence rate slows down. Figure 3e compares the error
curves of photonic MPU with an adaptive residue update and
that of a floating-point processor (i.e., CPU). We terminated the
iterations at a maximum of 50 steps for A2

† and 100 steps for A1
†,

giving the NMSEs of 4.1 × 10−4 and 6.4 × 10−4, respectively,
both of which are beyond the native signed 4-bit precision of the

Figure 3.Numerical inversion of two 4× 4matrices using Richardson iterations on the photonic core. (a) Two 4× 4matrices to be inverted,A1 andA2,
with condition numbers, κ = 11.1 and κ = 25.0, respectively. (b,c) Comparison between analytical inverses and numerical inverses on the photonic
MPU. (d,e) NMSE as a function of iteration steps. Residue update is performed (d) every 15 steps and (e) adaptively, to further refine the fixed-point
estimates (solid lines: photonic MPU, dashed lines: digital fixed-point simulation, dot-dashed lines: digital floating point).
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photonic MPU. The final solutions and elementwise errors from
photonic MPU are shown in Figure 3b,c. Because the ideal error
decay rate of a fixed-point iterative solver is the same as that of a
floating-point solver,32 the fixed-point estimation A† can be
arbitrarily close to the analytical solution with sufficient
iterations.
Numerical Solution of Partial Differential Equations.

Solving partial differential equations (PDEs) is a central
problem in physics modeling. Numerical solutions of PDEs
are typically carried out by discretizing space (and/or time) and
approximating the partial derivatives as a linear superposition of
neighboring grid points in a finite difference form, which
amounts to solving a sparse linear problem. In this example, we
demonstrate the solution of the electrostatic equation in free
space, given a predefined charge density.
The electrostatic potential, V, induced from a given static

charge distribution, ρ, in free space (vacuum permittivity ε0) is
described by Gauss’s Law, which is expressed as eq 5 in the
differential form

=V2

0 (5)

Here, both potentialV and the charge density ρ are discretized
onto a uniform 2D grid. The discrete Laplacian operator is
expressed by five stencils around each grid point, and the finite-
difference coefficients are arranged into a sparse matrix L, as
shown in Figure 4a. The domain of the electrostatic equation
comprises a 64 × 64 mesh with a uniform grid size of 1 mm. The
finite-difference coefficient matrix L contains 4096 × 4096
elements, among which 19162 elements are nonzero, giving a
sparsity of 0.11%. The charge density ρ consists of two unitary
point sources centered at (20 and 20 mm) and (44 and 44 mm),
respectively. A grounded perfectly conducting shell with a radius
of 16 mm centered at (40 mm and 40 mm) is also introduced
into the solution domain. Dirichlet boundary condition with V =
0 is applied to all four boundaries of the solution domain, which

is equivalent to setting the boundaries to grounded conductors.
The electrostatic problem is thus translated into a system of
linear equations LV = y, where V and y = −ρ/ε0 represent the
vectorized potential and charge density, respectively, after
discretization.
The linear system of equation LV = y is iteratively solved with

the weighted Jacobi method due to the highly sparse and strictly
diagonal coefficient matrix L.42 From an all-zero vector V(0),
each iteration k updates the solution according to eq 6

+V d r UV V( ) (1 )k k k( ) 1 ( 1) ( 1) (6)

Here, vector d stores the diagonal elements in matrix L,U = L-
diag(d) is a sparse matrix containing only the off-diagonal
elements in L, and⊙ denotes the elementwise product. A weight
ω = 0.9 was chosen for enhanced stability under the presence of
computational errors. The multiplications betweenU and V(k−1)

are deployed on the photonic MPU, and the elemental
multiplications, additions, and solution updates are carried out
on a digital computer.We incorporate the residual corrections in
the Jacobi method (see S4 in the Supporting Information) and
update the residue term r with the cumulative error r = y-LV(k)

every five iterations.
For the numerical solution of PDEs, the photonic MPU with

TDM encoding is loaded with sparse matrix processing firmware
supporting 256 nonzero elements per computing packet with
signed 3-bit precision. Figure 4b illustrates the principle of spare-
dense matrix-vector multiplication on the photonic MPU. The
matrix U is represented in the compressed sparse row (CSR)
format, which stores the nonzero elements, Ui, along with their
indexes, j[i], in each row. The entirety of dense vector V(k−1) is
stored in the FPGA block memory. The nonzero elements, Ui,
are streamed in real time onto the signal port of the photonic
core via DAC. The indexes j[i] drive the address port of the
block memory to load the corresponding elements, Vj[i]

(k−1),
onto the local oscillator port of the photonic core via another
DAC channel. After all nonzero elements in each matrix row are

Figure 4. Numerical solution of an electrostatic problem deployed on a photonic MPU. (a) Overview of the electrostatic problem, which consists of
two point charges and a grounded conducting shell, surrounded by perfect conducting boundary conditions in the solution domain. The Laplacian
operatorL, electrostatic potentialV, and charge distribution ρ are all discretized on a finite element grid. Off-diagonal elements in L are represented as a
sparse coefficient matrixU in the CSR format. (b) Analog photonic and digital electronic schemes for solving the Poisson equation with sparse matrix-
vector multiplication. The nonzero elements inU are streamed onto the signal port of the photonic core via DAC. The indexes drive the address port of
the block memory storing the dense vectorV, thus streaming the corresponding vector elements onto the local oscillator port of the photonic core. The
results are accumulated in real time and fed to the next iteration after host PC processing. All clock ports are synchronized with ADC and DAC
sampling clocks. (c) Solutions from the photonic MPU after iterations 1, 100, and 500, respectively (Supporting Information Video 1). The electrical
potential is depicted as the 3D surface, and the electrical field lines are plotted below. The residual error of the photonic solution, |y-LV|2, indicates a
precision better than 5.3 bits. (d) Floating-point solution for comparison.
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depleted, a delimiting pulse resets the accumulator and outputs
one element in the result vector. Figure 4c plots the electrical
potential computed from the photonic MPU at iteration steps k
= 1, 100, and 500, respectively. The photonic MPU reaches a
residual error, |y-LV|2, of 0.024, achieving an indistinguishable
solution from the floating-point iterative solver (Figure 4d, see
Supporting Information Video 1 for the comparison between
the photonic MPU and floating-point solutions at each
iteration).
For numerical solution of PDEs, converting the sparse finite-

difference coefficient matrix to dense and adopting systolic
tensor core structures43 would be extremely inefficient for large
grids. Since the number of nonzero elements in each row of the
finite difference matrix U is always four (except for the rows on
the domain boundary) when using the fie-stencil Laplacian
operator, we can expand the multidimensional photonic core
with four wavelengths to encode each row of U. Meanwhile,
multiple rows can be processed synchronously by using parallel
photonic cores in the MPU. The vector elements can be fanned
out with parallel DAC channels driven from a common FPGA
block memory. Thus, parallel multidimensional photonic cores
with digital memory can potentially scale to large sparse finite-
difference matrices, extending the applicability of the photonic
MPU to scientific computing.

■ CONCLUSIONS AND DISCUSSION
We have demonstrated a flexible photonic matrix processing
unit based on a coherent, multidimensional photonic core that
supports arbitrary, signed multiplications. Using digital elec-
tronics for precision control, memory, and reconfiguration, our
photonic platform can be tailored to a variety of numerical
computing tasks. Combined with residual iterations for error
management, we have shown that our photonic MPU can
perform several numerical computing tasks beyond its native
hardware precision limit, including matrix inversion, feedback
control, and solving partial differential equations, reaching
solutions with errors comparable to those on a floating-point
processor. It is worth noting that the residual iterations converge
at the same rate as the floating-point gradient-descent
iterations.32 The computing overhead from the residue
adjustment step is thus inversely proportional to the number
of iterations between the two adjustments.
Based on the latest silicon photonics foundry process,

coherent photonic MPU supporting 16 × 16 matrix-vector
multiplication is available with the industry standard on-chip
modulator, photodiode, and interferometer footprints44 (see S2
in the Supporting Information). The MPU can be practically
scaled up by using dense wavelength-division multiplexing
(DWDM) and large-scale parallel fan-outs. Because the
multiplication and accumulation in photonic cores are passive,
the only energy consumption arises from the electrical power in
driving the lasers, modulators, ADCs, and coherent receivers as
well as the memory access for the matrix/vector elements. ForN
× N matrix-vector multiplications, the overall energy efficiency
asymptotically approaches a floor of ∼10fJ/MAC for matrix size
N on the order of hundreds (see S3 in the Supporting
Information), suggesting a 101−102-fold higher efficiency than
electronic accelerators (∼pJ/MAC).45 For N × N matrix−
matrix multiplications using fan-outs, the power consumptions
of lasers, modulators, ADCs, and coherent receivers scale with
N2, while the number of MACs is N3. Hence, the overall energy
consumption per MAC is proportional to 1/N, which is a strong
indication that coherent photonic MAC operations can surpass

digital electronic counterparts by orders of magnitude on large
scales. We envision an array of photonic MPU nodes with
dedicated DSP units to form the backbone of high-speed,
energy-efficient computing in data center applications.

■ METHODS
Coherent Photonic Processing Core. The photonic core

consisted of two zero-chirp Mach−Zehnder modulators
(MZMs, JDSU IOAP-MOD9140) as the vector elements and
two I/Q modulators (Sumitomo Osaka Cement Co., Ltd.,
T.SBX1.5-10-S-FK) as the matrix elements. Each modulator
port was driven by an amplifier, JDSUH301. A total of four 2× 2
fiber couplers (Fiber Store PLC-202-ST) were used as
interferometers and for wavelength mixing in WDM. The
balanced photodiodes for coherent detection were Thorlabs
BDX1BA mounted on the BDX1EVB evaluation board. The
input lasers were 1550 nm tunable sources (Santec TSL-210)
with a maximum output power of 8 mW amplified by erbium-
doped fiber amplifiers (EDFAs, Amonics AEDF-18-B-FA). We
designated 0 dBm (1 mW) average power on the photodiode to
ensure the signed 8-bit SNR of the readout. The maximum
optical output of the Amonics EDFA was 18 dBm at 1550 nm,
which provided sufficient optical power to drive all MZMs in the
core.
The MZMs were controlled by DACs to generate the symbol

sequences representing the elements in the vector and matrix
rows. The DAC output voltages were skewed to compensate for
the nonlinear distortion of each MZM, yielding uniform spacing
between adjacent analogue input (and output) levels. The
photocurrent from the balanced detector pair was converted
into an analogue voltage signal via a transimpedance amplifier
(TIA) and then digitized with an A/D converter for digital signal
processing (DSP). The DSP routines on the FPGA extracted the
digitized analogue symbols, accumulated them in real time, and
translated them into the multiplication results for streaming
back to the host PC.

Electronic Interface with the Photonic MPU. The
photonic core was complemented with a firmware and software
suite supporting both dense and sparse matrix-vector multi-
plications. The digital electronics for PCIe communication,
block memory, and signal processing routines, including symbol
extraction, accumulation, and compensation of modulator
nonlinearity, were embedded in the customized firmware in
the Xilinx VC707 FPGA evaluation board, which was connected
to the PCIe expansion slot of the host PC. A dual-channel D/A
converter daughter card (Euvis FMC2662) was attached to the
FMC port of the FPGA evaluation board to drive the signal and
local oscillator ports of the photonic core. The A/D converter
(GaGe CobraMax) was connected to another PCIe expansion
slot, and the samples from the A/D converter were directly
streamed into the FPGA for processing. The digitized samples
were delimited by the FPGA and accumulated in real time to
produce the elements in the result vector Y, which were
streamed back to a host PC. The communications between the
host PC, FPGA evaluation board, and A/D converter were
implemented through PCIe Gen2 × 8, which supports a
continuous stream throughput of 2GSa/s for 8-bit samples.
For themultidimensional photonic core running at 5 GBd, the

input and output ports of the coherent multidimensional core
were connected to an arbitrary wave generator (AWG, Keysight
M8195A) for signal generation and an oscilloscope (Keysight
Infiniium 95004Q) for signal detection. The linearized inputs
for each analog level were transferred onto the AWG memory.
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The waveform corresponding to the computing packet was then
synthesized and loaded onto the modulator ports. The recorded
waveforms were downloaded onto a host PC for symbol
extraction and post-processing.
Software Backend for the Photonic MPU. The software

consists of a low-level backend and a high-level application
interface for implementing various numerical computing
algorithms in the experiments. The backend sends the
precompensated multiplication symbols and retrieves the
accumulated multiplication results from the FPGA block
memory (see Section S1 of the Supporting Information). In
the case that high-precision inputs beyond signed 3 levels are
necessary, the backend automatically decomposes the matrix A
and vector Xwith base β (a configurable parameter) as A = β AH
+ AL and X = β XH + XL, where AH, AL, XH, and XL all have a
range of −2 to +2, and β = 3 is the base matching the calibrated
quantization levels on the photonic MPU. The decomposed
matrices and vectors were loaded onto the photonic core by
alternating the two range levels. This decomposition gave rise to
four partial results, AHXH, AHXL, ALXH, and ALXL, which were
scaled by β2, β, β, and 1, respectively, before digital summation.
To interface with high-level applications, the low-level

backend provided a packaged C library including dense and
sparse matmul() functions. Matrix inversion and PDE solvers
were implemented in Python by calling these backend functions.
Details of the high-level algorithms are provided in Sections S3
and S4 of the Supporting Information.
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