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Abstract—We present a photonic processing primitive based
on coherent mixing with high-speed programmable electronic
interface for sparse matrix-vector multiplications. The precision
of the photonic primitive is sufficient for solving waveguide
eigenmodes, which has been verified on an FPGA emulator of the
primitive.
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I. INTRODUCTION

In recent years, the demand for computing power in artificial
intelligence (Al)-enabled industrial applications has spurred the
research in fast and high-efficiency photonic computing
platforms. These platforms typically consist of photonic
memories and passive interconnects, which are designed to
match the topologies of various artificial neural network (ANN)
structures, including fully connected, convolutional, and
recurrent ANNs [1]- [3]. Analog photonic networks with pre-
trained, limited-precision weights have demonstrated the
potential for lower power consumption than electronic
counterparts in inference tasks, due to the intrinsically passive
photonic multiply-accumulate (MAC) processes with static
weights [4].

However, existing photonic processors lack the flexibility
for performing basic linear algebra subprograms (BLAS), which
are common in numerical analysis and scientific computing.
These routines typically require dynamically changing weight
matrices, which pose challenges in speed and power
consumption when updating them on a photonic-memory-based
computing platform [5]. In addition, most BLAS routines in
scientific computing, such as solving partial differential
equations, involve large yet sparse matrices. Converting the
large sparse matrix with millions of elements into a dense matrix
in photonic memory is not only uneconomical, but in most cases,
impossible. Here we present a coherent photonic processing
primitive with direct modulations on both the inputs and the
weights. A peripheral electronic interface with custom firmware
provides flexibility for performing real-time BLAS routines
with support for sparse matrix. In this work, we demonstrate the
operation of our analog photonic primitive, and its potential in
solving eigenmodes in waveguide structures using the data
format compatible with the analog photonic primitive.

II. COHERENT PHOTONIC PROCESSING PRIMITIVE

The core building block of the coherent photonic processing
primitive, shown in Fig. 1 (a), is an interference and coherent
detection unit. The electric fields representing the weight and
input are generated by their respective electro-optic modulators
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(JDSU 0OC-192), coherently mixed, and detected by a pair of
balanced photodiodes (Thorlabs BXIBA). The output
differential photocurrent is proportional to the product E,Ey .
The coherent photonic primitive can additionally incorporate a
multitude of dimensions available in optical signals, including
wavelength, spatial modes, time, and beam locations, to
parallelize and accumulate the scalar multiplications.

The photonic primitive is controlled through high-speed
electronic interface to provide the capability of deploying
various computing applications in real time. Figures 1 (b, c)
show an example of the primitive running in time-division
multiplexing (TDM) mode in conjunction with a custom FPGA
firmware for streaming the input matrix / vector elements and
accumulating the partial sums. In this example running at
0.5GBd symbol rate, the photonic primitive accepts a stream of
signed inputs (Fig. 1 (b)) within [-2, 2], and calculates the partial
sums ranging from -4 to 4. The statistics (Fig.1 (¢)) of all 1600
output symbols in this stream exhibits good linearity among all
possible output levels. The signal-to-noise ratio of the maximum
output level is 19.5, indicating that more than 16 levels within
the dynamic range of the photonic processor can be accurately
digitized.
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Fig. 1. (a) A coherent photonic primitive for real-time sparse matrix-vector
multiplication. (b) Experimental input streams representing the matrix and
vector elements. (c) Partial sums and their statistics from the primitive’s output.
The error bars indicate the standard deviation of each output digitization level
within 1600 symbols.

TDM provides the flexibility to avoid encoding and caching
the full matrix as optical signals in sparse matrix-vector
multiplication. The vector X and the non-zero elements in the
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large sparse matrix A are loaded onto separate block memory
(BRAM) regions, M-BRAM, and V-BRAM, inside the FPGA.
The index, j[i], of the non-zero element A[j[i]] in the sparse
matrix drives the address port of V-BRAM to produce an input
stream of corresponding vector elements X[j]. The FPGA
accumulates the digitized partial sums and resets the
accumulator at the end of each matrix row.

III. EIGENMODE SOLVER ON PHOTONIC PRIMITIVE

In optical waveguides, the electric field E of a transverse
electric (TE) or transverse magnetic (TM) eigenmode satisfies
the following characteristic equations [6]
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Here ¢, is the relative permittivity, k, is the wavenumber in
vacuum, and f is the effective index of the mode. After
discretizing the cross section of the waveguide structure with
grid size Ax and Ay along the horizontal and vertical directions
respectively, both characterization equations for TE and TM
mode (1) can be expressed in discrete form as

A(e,)E = B2E. 2)
Here the matrix A(e,) is a second-order finite difference
operator in 2D that depends on the distribution of €,..

The fundamental eigenmode that has the highest effective
refractive index § can be solved using a fixed-point power
iteration algorithm [7] tailored to the coherent photonic
primitive, shown as Algorithm I. Starting with a random and
quantized initial guess E;, the algorithm recurrently calculates
the fixed-point sparse matrix-vector multiplications with signed
8-bit or lower-precision integer format, targeting the available
dynamic range of the photonic primitive. The normalization step
in the vanilla power iteration is substituted with the adaptive
exponent adjustment step [8] on host PC to prevent overflow
elements after each matrix-vector multiplication.

Algorithm I: Fixed-point power iteration for solving eigenmodes

Initialize E, with random values

for k=1to K:
E, < AE,_, //fixed-point FPGA or photonic primitive
e, = ceil(log,(max|E|)) //host PC
Adjust the exponent of E, to e,

Prior to the deployment of eigenmode solver on photonic
hardware, we first emulated the fixed-point coherent sparse
photonic primitive using DSP and BRAM slices available on an
AMD Zyng-7000 system-on-chip device. Additional FIFO and
transceiver blocks are included in FPGA firmware to handle
PCle communication with a host PC, following the architecture
in [8].

The fixed-point eigenmode solver was tested with a silicon-
on-oxide (SOI) waveguide structure at A=1550nm, shown in
Fig. 2 (a). The Si waveguide (&, = 12) is 250nm in thickness,
450nm in width, and is sandwiched between SiO» (g, = 2.1) and
air. With a grid size Ax = Ay =25nm, the entire solution region
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consists of 48x64 pixels. The matrix A is 3072%3072 in size
with 15136 non-zero elements, averaging ~5 elements per row
due to the use of 5-stencil finite difference operator.
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Fig. 2. Fixed-point eigenmmode solutions for a photonic structure in (a). (b)
TE and TM modes from MATLAB floating-point eigen solver, and fixed-point
eigen solvers (8-bit and 4-bit) on FPGA emulator. (c) Overlap integral as a
function of the power iteration step.

Figure 2 (b) shows the fundamental TE and TM modes from
MATLAB?’s double-precision floating-point eigen solver “eigs”,
which we considered as the ground truth, as well as the solutions
from fixed-point eigen solver on FPGA emulator with 8- and 4-
bit precisions. We evaluate the accuracy of the eigenmode
solution using overlap integral  between the fixed-point E and
ground truth E;, defined in
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Fig. 2 (c) plots the overlap integral as a function of iteration step
k for both TE and TM mode solutions. Even with signed 4-bit
precision, the fixed-point eigenmode solutions are reasonably
close to the analytical ones with 94.7% for TE mode, and 93.2%
for TM mode, in overlap integral.

IV. SUMMARY

We have demonstrated a flexible coherent photonic
processing primitive for large-scale sparse matrix-vector
multiplications. We have verified the deployment of an
eigenmode solver using signed 4-bit fixed-point format that can
be supported by the dynamic range (from -16 to 16) of the
coherent sparse photonic primitive.
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