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Abstract—We present a photonic processing primitive based 

on coherent mixing with high-speed programmable electronic 

interface for sparse matrix-vector multiplications. The precision 

of the photonic primitive is sufficient for solving waveguide 

eigenmodes, which has been verified on an FPGA emulator of the 

primitive. 
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I. INTRODUCTION

In recent years, the demand for computing power in artificial 
intelligence (AI)-enabled industrial applications has spurred the 
research in fast and high-efficiency photonic computing 
platforms. These platforms typically consist of photonic 
memories and passive interconnects, which are designed to 
match the topologies of various artificial neural network (ANN) 
structures, including fully connected, convolutional, and 
recurrent ANNs [1]– [3]. Analog photonic networks with pre-
trained, limited-precision weights have demonstrated the 
potential for lower power consumption than electronic 
counterparts in inference tasks, due to the intrinsically passive 
photonic multiply-accumulate (MAC) processes with static 
weights [4]. 

However, existing photonic processors lack the flexibility 
for performing basic linear algebra subprograms (BLAS), which 
are common in numerical analysis and scientific computing. 
These routines typically require dynamically changing weight 
matrices, which pose challenges in speed and power 
consumption when updating them on a photonic-memory-based 
computing platform [5].  In addition, most BLAS routines in 
scientific computing, such as solving partial differential 
equations, involve large yet sparse matrices. Converting the 
large sparse matrix with millions of elements into a dense matrix 
in photonic memory is not only uneconomical, but in most cases, 
impossible. Here we present a coherent photonic processing 
primitive with direct modulations on both the inputs and the 
weights. A peripheral electronic interface with custom firmware 
provides flexibility for performing real-time BLAS routines 
with support for sparse matrix. In this work, we demonstrate the 
operation of our analog photonic primitive, and its potential in 
solving eigenmodes in waveguide structures using the data 
format compatible with the analog photonic primitive. 

II. COHERENT PHOTONIC PROCESSING PRIMITIVE

The core building block of the coherent photonic processing 
primitive, shown in Fig. 1 (a), is an interference and coherent 
detection unit. The electric fields representing the weight and 
input are generated by their respective electro-optic modulators 

(JDSU OC-192), coherently mixed, and detected by a pair of 
balanced photodiodes (Thorlabs BX1BA). The output 
differential photocurrent is proportional to the product 𝐸𝐴𝐸𝑋 .
The coherent photonic primitive can additionally incorporate a 
multitude of dimensions available in optical signals, including 
wavelength, spatial modes, time, and beam locations, to 
parallelize and accumulate the scalar multiplications. 

The photonic primitive is controlled through high-speed 
electronic interface to provide the capability of deploying 
various computing applications in real time. Figures 1 (b, c) 
show an example of the primitive running in time-division 
multiplexing (TDM) mode in conjunction with a custom FPGA 
firmware for streaming the input matrix / vector elements and 
accumulating the partial sums. In this example running at 
0.5GBd symbol rate, the photonic primitive accepts a stream of 
signed inputs (Fig. 1 (b)) within [-2, 2], and calculates the partial 
sums ranging from -4 to 4. The statistics (Fig.1 (c)) of all 1600 
output symbols in this stream exhibits good linearity among all 
possible output levels. The signal-to-noise ratio of the maximum 
output level is 19.5, indicating that more than 16 levels within 
the dynamic range of the photonic processor can be accurately 
digitized. 

Fig. 1. (a) A coherent photonic primitive for real-time sparse matrix-vector 

multiplication. (b) Experimental input streams representing the matrix and 

vector elements. (c) Partial sums and their statistics from the primitive’s output. 
The error bars indicate the standard deviation of each output digitization level 

within 1600 symbols. 

TDM provides the flexibility to avoid encoding and caching 
the full matrix as optical signals in sparse matrix-vector 
multiplication. The vector 𝐗 and the non-zero elements in the 
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large sparse matrix 𝐀 are loaded onto separate block memory 
(BRAM) regions, M-BRAM, and V-BRAM, inside the FPGA. 
The index, 𝑗[𝑖], of the non-zero element 𝐴[𝑗[𝑖]] in the sparse 
matrix drives the address port of V-BRAM to produce an input 
stream of corresponding vector elements 𝑋[𝑗] . The FPGA 
accumulates the digitized partial sums and resets the 
accumulator at the end of each matrix row. 

III. EIGENMODE SOLVER ON PHOTONIC PRIMITIVE 

In optical waveguides, the electric field 𝐸  of a transverse 

electric (TE) or transverse magnetic (TM) eigenmode satisfies 

the following characteristic equations [6] 
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Here 𝜀𝑟  is the relative permittivity, 𝑘0  is the wavenumber in 

vacuum, and 𝛽̅  is the effective index of the mode. After 
discretizing the cross section of the waveguide structure with 
grid size Δ𝑥 and Δ𝑦 along the horizontal and vertical directions 
respectively, both characterization equations for TE and TM 
mode (1) can be expressed in discrete form as 

 𝐀(𝜀𝑟)𝐄 = 𝛽̅2𝐄. (2) 

Here the matrix 𝐀(𝜀𝑟)  is a second-order finite difference 
operator in 2D that depends on the distribution of 𝜀𝑟. 

The fundamental eigenmode that has the highest effective 

refractive index 𝛽̅  can be solved using a fixed-point power 
iteration algorithm [7] tailored to the coherent photonic 
primitive, shown as Algorithm I. Starting with a random and 
quantized initial guess 𝐄0, the algorithm recurrently calculates 
the fixed-point sparse matrix-vector multiplications with signed 
8-bit or lower-precision integer format, targeting the available 
dynamic range of the photonic primitive. The normalization step 
in the vanilla power iteration is substituted with the adaptive 
exponent adjustment step [8] on host PC to prevent overflow 
elements after each matrix-vector multiplication.  

Algorithm I: Fixed-point power iteration for solving eigenmodes 

Initialize 𝐄0 with random values 

 for 𝑘=1 to 𝐾: 

        𝐄𝑘 ← 𝐀𝐄𝑘−1 //fixed-point FPGA or photonic primitive 

        𝑒𝑘 = ceil(log2(max|𝐄𝑘|)) //host PC 

        Adjust the exponent of 𝐄𝑘 to 𝑒𝑘 

Prior to the deployment of eigenmode solver on photonic 
hardware, we first emulated the fixed-point coherent sparse 
photonic primitive using DSP and BRAM slices available on an 
AMD Zynq-7000 system-on-chip device. Additional FIFO and 
transceiver blocks are included in FPGA firmware to handle 
PCIe communication with a host PC, following the architecture 
in [8]. 

The fixed-point eigenmode solver was tested with a silicon-
on-oxide (SOI) waveguide structure at 𝜆=1550nm, shown in 
Fig. 2 (a). The Si waveguide (𝜀𝑟 = 12) is 250nm in thickness, 
450nm in width, and is sandwiched between SiO2 (𝜀𝑟 = 2.1) and 
air. With a grid size Δ𝑥 = Δ𝑦 =25nm, the entire solution region 

consists of 48×64 pixels. The matrix 𝐀 is 3072×3072 in size 
with 15136 non-zero elements, averaging ~5 elements per row 
due to the use of 5-stencil finite difference operator. 

 
Fig. 2. Fixed-point eigenmmode solutions for a photonic structure in (a). (b) 

TE and TM modes from MATLAB floating-point eigen solver, and fixed-point 

eigen solvers (8-bit and 4-bit) on FPGA emulator. (c) Overlap integral as a 

function of the power iteration step. 

Figure 2 (b) shows the fundamental TE and TM modes from 
MATLAB’s double-precision floating-point eigen solver “eigs”, 
which we considered as the ground truth, as well as the solutions 
from fixed-point eigen solver on FPGA emulator with 8- and 4-
bit precisions. We evaluate the accuracy of the eigenmode 

solution using overlap integral 𝜂 between the fixed-point 𝐄̂ and 
ground truth 𝐄𝑡, defined in 

 
𝜂 =

|∑𝐄𝑡
∗𝐄̂|

2

∑|𝐄𝑡|
2  ∑|𝐄̂|

2. 
(3) 

Fig. 2 (c) plots the overlap integral as a function of iteration step 
𝑘 for both TE and TM mode solutions. Even with signed 4-bit 
precision, the fixed-point eigenmode solutions are reasonably 
close to the analytical ones with 94.7% for TE mode, and 93.2% 
for TM mode, in overlap integral. 

IV. SUMMARY 

We have demonstrated a flexible coherent photonic 
processing primitive for large-scale sparse matrix-vector 
multiplications. We have verified the deployment of an 
eigenmode solver using signed 4-bit fixed-point format that can 
be supported by the dynamic range (from -16 to 16) of the 
coherent sparse photonic primitive. 
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