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ABSTRACT

Though photonic computing systems offer advantages in speed, scalability, and power consumption, they often have a limited dynamic
encoding range due to low signal-to-noise ratios. Compared to digital floating-point encoding, photonic fixed-point encoding limits the preci-
sion of photonic computing when applied to scientific problems. In the case of iterative algorithms such as those commonly applied in
machine learning or differential equation solvers, techniques like precision decomposition and residue iteration can be applied to increase
accuracy at a greater computing cost. However, the analog nature of photonic symbols allows for modulation of both amplitude and fre-
quency, opening the possibility of encoding both the significand and exponent of floating-point values on photonic computing systems to
expand the dynamic range without expending additional energy. With appropriate schema, element-wise floating-point multiplication can be
performed intrinsically through the interference of light. Herein, we present a method for configurable, signed, floating-point encoding and
multiplication on a limited precision photonic primitive consisting of a directly modulated Mach-Zehnder interferometer. We demonstrate
this method using Newton’s method to find the Golden Ratio within +0.11%, with six-level exponent encoding for a signed trinary digit-

equivalent significand, corresponding to an effective increase of 243 x in the photonic primitive’s dynamic range.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0216999

While CPUs and digital accelerators such as GPUs store numbers
in floating-point (FLP) format to guarantee high-precision operations,
photonic or analog computing uses signal amplitude equivalent to
fixed-point (FXP) format, which accommodates limited signal-to-
noise ratio (SNR) and reduces data storage requirements. The adop-
tion of FXP encoding guarantees an inherent error for any computing
applications, and while in some cases this is not detrimental, it often
leads to errors in iterative or high-precision solutions. For example,
our previous work on creating a photonic eigensolver showed that
using signed 4-bit FXP precision is not sufficient to achieve FLP-
equivalent accuracy.' Techniques such as precision decomposition”
and residue iteration’ can be used to increase the accuracy, but they
often involve exponentially increased computation requirements and
slower rates of convergence. Ultimately, for use in scientific comput-
ing, optics must provide not only scalability and energy efficiency but
also precision.

In digital floating-point (D-FLP) encoding, each value A is bro-
ken down into a significand s4 and corresponding exponent I, with a
global base f8 such that A = s4 x . For the 32-bit D-FLP encoding,
the significand and exponent are recorded within 31 bits using a global
base of 2 or 10." To multiply two numbers, their significands undergo

bitwise multiplication, their exponents are added, and an XOR opera-
tion is performed on the sign bits of each significand,” such that
AXB=(s4 xB")x (sgx %) =sys5 x p4T'. Each process
requires energy for computation. Previous attempts to unionize D-FLP
encoding and optical/photonic multipliers have tried to replicate the
bitwise operations on binarized optically encoded vectors.” However,
individually encoding each bit with only “0” and “1” states is untenable
for an optical system, as encoding 32- or 64-bit floating-point values
would require too large a format to scale to the millions of computa-
tions required for modern computing applications. Additionally, opti-
cal amplitude modulation can accommodate an integer base f, which
is greater than 2; methods such as pulse or quadrature amplitude mod-
ulation (PAM or QAM) can produce between 4 and 64 levels as long
as the signal-to-noise ratio (SNR) allows.”’ Therefore, a non-
binarized optical multiplicand could be represented with fewer “optical
bits” than the binary D-FLP representation.

This work demonstrates photonic floating-point encoding (P-
FLP), a method for implementing FLP encoding on photonic comput-
ing architectures using amplitude and frequency to represent signifi-
cand and exponent, respectively. P-FLP encoding enables passive
significand multiplication and exponent addition operations to
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increase energy efficiency and expand the dynamic range of photonic
computing systems. Utilizing (P-FLP) encoding, a photonic multiplica-
tion primitive with five signed input levels was used to implement the
Newton-Raphson root finding algorithm to find the Golden Ratio.
The P-FLP primitive shows improved accuracy compared to FXP
encoding, while maintaining the quadratic convergence rate achievable
with D-FLP encoding.

For a coherent optical source with narrow spectrum centered at
fo modulated by an RF carrier function g(t), the resulting electric field
is E(t) = g(t)exp(i2nfyt). In P-FLP encoding, each multiplicand is
encoded as a sub-carrier with amplitude corresponding to the signed
significand s and modulation frequency f; corresponding to the expo-
nent I, such that g(¢) — g(s, fi, t). With L available exponents,
the dynamic range will increase by a factor of !, corresponding to
(L — 1)log, f3 bits.

Multiple methods of performing an element-wise multiplication
between two optically encoded vectors have been proposed, including
free space'’ and Mach-Zehnder interferometry.'' Our proposed
schema involves use of single-sideband (SSB) modulation'” using opti-
cal frequencies with spacing Af and selecting the spectral lines repre-
senting the FLP exponent to encode P-FLP symbols. In this schema,
g(s, fi, t) = s(t)exp(*i2nfit), where f; = IAf, and the sign of the
complex exponent is positive for upper sideband (USB) modulation
and negative for lower sideband (LSB) modulation. With the A multi-
plicand undergoing USB modulation and the B multiplicand undergo-
ing LSB modulation, the resulting electric fields are

Ea(sa, fi,, t) = sa(t)exp(i2nfy, t)exp(i2nfot), (1a)
Eg(sp, fi, t) = sg(t)exp(—i2nfi,t)exp(i2nfot). (1b)

Through coherent mixing, the product of two multiplicands A and B
can be determined from the following:"’

I(t) o Re{E,Ep}
= Re{sa(t)exp(—i2nfi, t)exp(—i2nfot)
* sp(t)exp(—i2nf, t)exp(i2nfot) }
= Re{sa(t)sp(t) }cos(2n(fi, + fi,)1)- (2)

This implementation eliminates the common carrier frequency
fo, performing passive exponent addition via sum-frequency genera-
tion corresponding to the summed exponents in the result and passive
significand multiplication through the interference of light. The signifi-
cand and exponent can be retrieved through RF signal measurement
(e.g., microwave filter banks).

Here, we demonstrate the P-FLP multiplication using direct mod-
ulation with RF sub-carrier frequencies to encode the exponents. The
photonic primitive' depicted in Fig. | and used herein consists of a bal-
anced coherent interferometer with independently modulated inputs
A and B generating the respective time-division multiplexed (TDM)
fields E4 and Ep. The resulting inputs undergo balanced photodetec-
tion to produce outputs proportional to signed magnitude E} Eg. The
E field amplitude accommodates five signed input levels (*2, =1, and
0). This is the total number of levels for FXP encoding, while FLP
encoding increases the effective bitwidth of the system without increas-
ing the signal power or SNR. The sub-carrier modulated symbol is syn-
thesized through a field programmable gate array (FPGA, Xilinx

pubs.aip.org/aip/apl

XCZU49DR) with two input modulators (JDSU IOA-MOD9140) and
can reliably accommodate carrier frequencies up to 500 MHz, while
the output is digitized by a streaming digitizer sampling at 6.25 GSa/s.
Each FLP symbol is repeated for a duration of 200 ns; a symbol dura-
tion of sub 10ns can be used in theory. For this schema,
g(s, fi, t) = s - cos(2mfit), and the resulting intensity at the output is
proportional to s sgcos(27f), t)cos(2mf, ).

A sample of the digitized TDM output is shown in Fig. 2(a). To
make symbol parsing more reliable, a signed header is added to each
packet for parity check. Additionally, a tail of constant positive ampli-
tude is added to verify constructive interference. The output has pri-
mary frequency components of *(fj, =), illustrated in Fig. 2(b). To
parse the result, the spectrum is determined by a type-II discrete cosine
transform (DCT-II), which intrinsically eliminates any negative fre-
quencies. This leaves frequency components f;, *f,. Since
S, — fi, <max(fi,, fi,) <fi, +fi,, manual filtering of any frequencies
less than max(f;, , f;,) ensures the dominant remaining frequency will
be fi, + fi,> which can be parsed as the exponent of the result. The sign
and significand can be determined from the amplitude of the detected
signal.

In our previous work, we have demonstrated photonic solvers
achieving precision beyond native analog precision by adjusting the
exponent of iterative solvers.”'" With a floating-point multiplier, we
can iteratively solve equations without additional exponent adjustment
steps. P-FLP multiplication is especially well-suited for convergent iter-
ative algorithms requiring greater precision, such as root-finding.
Here, we use the Newton-Raphson method'” to demonstrate solving a
quadratic equation using P-FLP multiplication. When deployed in
floating point, the solution will display a quadratic or better conver-
gence.'® In order to be deployed on the P-FLP photonic primitive, the
function f (x) must be precalculated and stored as a quantized version
fq(x) using the significands and exponents available to the P-FLP
encoding. The inverse derivative D(x) = 1/f’(x) must be similarly
precalculated and quantized. With these modifications to accommo-
date deployment on the photonic primitive of Fig. 1, the Newton-
Raphson method takes the form of Algorithm 1, in which x denotes
P-FLP multiplication.

The modified Newton-Raphson method is well-suited to find
roots of quadratic equations so long as the root is not also the vertex.
The application demonstrated herein is to find the Golden Ratio ¢,
defined as the value ¢ such that ¢ = ¢ = %}’, which can be converted
to the quadratic equation @*> — ¢ — 1 = 0. ¢ has an accepted value of
L5 1.6180.

Algorithm 1 was used to solve the Golden Ratio quadratic equa-
tion f (@) = ¢* — ¢ — 1 = 0 using P-FLP multiplication over 15 iter-
ations with an initial guess of xo = 1.2 [Fig. 3(a)]. The set of
exponents corresponding to the distinct carrier frequencies were cho-
sen as {—4, 1}, with global base fi;p = 3 to match the signed 5-level

ALGORITHM 1. Modified Newton-Raphson method.

fq(x) — quantize(f(x)); Dy(x) < quantize(D(x));
xo < Intial Guess
for k in range(N):

X — X1 — fa(xk—1) X Dg(xk—1)
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FIG. 1. Schematic for P-FLP multiplication, including representative decomposed frequency components of interim and final results.
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FIG. 2. (a) Sampled experimental waveform output. (b) Experimental spectrum of the digitized output from P-FLP multiplication.

inputs of the photonic primitive. This result was compared to the
double-precision D-FLP multiplication as well as base-2 FXP calcula-
tion simulated with 129 signed input levels, corresponding to 7-bit
fixed point photonic computing systems. f(x) and D(x) were precal-
culated in the domain [0, 4] to minimize quantization error due to the
exponent choice. For P-FLP quantization, each value in the precalcu-
lated f(x) and D(x) was rounded to its nearest value in the P-FLP
encoding schema. For FXP quantization, each value in f(x) and D(x)
was encoded as in Eq. (3), corresponding to a global base firxp = 2,
and where N is the number of positive FXP levels,

i) = roun Nf(xl)
Ja(xi) = round (zﬂoor(logz(max( f<x>|)))>
% 2ﬂoor(logz (max(|f(x)D))—round(logz(N)). (3)

Figure 3(a) plots the solution path of the modified Newton-
Raphson method for solving the Golden Ratio quadratic equation. The

P-FLP implementation converges to ¢ = 1.6198, a result within
0.11% of the accepted value. Compared to the 0.05% error of the
double-precision D-FLP on CPU and the 0.24% error of the 129-level
FXP implementation, P-FLP offers a significant advantage for limited
S/N encoding and approaches the accuracy required for scientific com-
puting. As the model converges closely to the expected value, the num-
ber of available FXP levels must be dramatically increased to match the
accuracy of the P-FLP implementation. Figure 3(b1) shows that P-FLP
and D-FLP maintain quadratic convergence, while the 129-level FXP
could not iterate at all with an initial guess of xo = 1.6, demonstrating
that P-FLP encoding offers immediate advantages for photonic com-
puting in expanding the accuracy and effective bitwidth with native
photonic SNR.

The P-FLP encoding system predicts an increase in the dynamic
range of 3° = 243, corresponding to an equivalent of 1215 signed
FXP levels (>10 signed bits) in the low-precision photonic primitive.
Figure 3(b2) shows that 2049 signed FXP levels (11 signed bits) must
be used to exceed the accuracy of the P-FLP implementation, while
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FIG. 3. Golden Ratio calculation. (a) Solution path, initial guess xo=1.2. Inlay
shows zoomed convergence locations near the zero. Plotted points indicate final
iteration values. (b1) Solution progression by iteration, initial guess xo=1.6. (b2)
Comparison of solution progression.

1025 signed FXP levels (10 signed bits) is not sufficient. For simula-
tions of a further 1500 experiments using random initial guesses of x,
in the range [1, 2], 5-level P-FLP encoding always converged within
0.2% of the accepted value, while 1025-level FXP encoding only con-
verged to the same accuracy in 92.5% of the results. Thus, the effective
increase in the system’s dynamic range matches or exceeds predictions.
It is reasonable to anticipate that with a better S/N ratio and enough
bands to accommodate more than six exponents, the P-FLP imple-
mentation could soon match or exceed the performance of the D-FLP
implementation. For example, further simulation of 1500 experiments
(random initial guesses of xq in the range [1, 2]) with expanded P-FLP
encoding using six exponents and a signed 257-level significand
showed that both P-FLP and D-FLP converge to high accuracy within
the same number of iterations; the expanded P-FLP encoding
required an average 2.084 iterations (standard deviation, 0.656) to
converge within 0.2% of the accepted value, comparable to D-
FLP encoding, which required 2.081 iterations (standard deviation,
0.657)

The P-FLP method shows closer convergence than the expanded
FXP implementation for two reasons: first, the calculation of
(ﬁi(xk, 1) X Dy (xk,l)) is more accurate, which reduces the chance of
overshooting the accepted value and causing the algorithm to find
another local minimum or require more iterations for convergence;
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FIG. 4. Quantization of f(x) using differing schema. Inlay shows zoomed region of
interest near the function root.

second, in the specific case of finding zeros, P-FLP has a smaller mini-
mum encodable value gmin, which means that the precalculated f; (x)
has more values encoded closer to the zero. Once f;(x) = 0, the itera-
tion stops, so the maximum error in a converged result is proportional
to 42 The quantization of f,(x) is shown in Fig. 4 for the imple-
mented and simulated schema. For the root-finding application, the
chosen exponents for the P-FLP implementation have been optimized
to produce better results closer to the root of the equation, at the
expense of quantization errors across the remaining domain.

For P-FLP encoding, 3* = 1x mew = 1><273~1 ~ 0.006, which is
consistent with the observed results. For FXP encoding,
in. — maximum encoded value — 16 — 8 With 129 signed levels, N =64,
and the maximum error is =0.125, so the iteration cannot occur with
a close initial guess of xp = 1.6. Once N = 1024, ‘7"‘7‘“ =~ 0.008, and the
FXP implementation can exceed the P-FLP implementation. However,
it should be noted that any S/N improvements, which would allow
more signed levels in photonic FXP implementations, can immediately
be adapted to the P-FLP methodology, further increasing its
advantage.

In addition to the predicted increase in the dynamic range, the
multiplication, sign operation, and exponent addition are all per-
formed solely through interference; energy is only expended for signal
modulation and detection, offering a direct advantage over semicon-
ductor D-FLP systems. These advantages are also scalable; using a fre-
quency comb for the source would allow 10* frequencies to be used for
exponent encoding, with micro-ring resonators used to efficiently
select the encoding frequency.

In the current directly modulated implementation, only one oper-
ation is carried out using P-FLP multiplication. With further adapta-
tions to the scalable architecture, a majority of mathematical
operations can be carried out using P-FLP multiplication. The ideal
schema with SSB modulation can be expanded to produce a floating-
point photonic matrix-vector multiplier (MVM): For a M x N matrix
W multiplied by vector X with N elements, each element-wise product
W (m,n)X(n) could be encoded in its own modulation arm, then
combined together row-wise using an optical multiplexer such that the
result Y(m) = SV W (m, n)X(n). Using a microwave photonic filter,
the accumulated significands and associated exponents for Y () could
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be determined in a single clock cycle. This opens the possibility of pho-
tonic inverse solvers, partial differential equation solvers, convolution,
and photonic linear layers for neural network applications."* Future
efforts will be directed to full-scale on-chip deployment of a floating-
point photonic tensor accelerator; many of the required elements,
including frequency comb sources,’”” MRR frequency selection, * and
modulation using MZM'” or MRR,”’ have already been demonstrated
on-chip with small formats and reduced power consumption.
Additionally, we can apply block decomposition techniques previously
demonstrated for our FXP hardware accelerator’ to further aid
scalability.

In summary, we have demonstrated a method for implement-
ing FLP multiplications in photonic computing using the proper-
ties of the analog signal to perform sign operations, significand
multiplication, and exponent addition without expending energy.
Using Newton’s method to find the Golden Ratio, P-FLP multipli-
cations produced an accuracy of *£0.11%, which exceeded the
accuracy of 1025-level FXP multiplications. This effectively
increased the bitwidth of the system by 243x or more without
increased requirements for SNR.

This work was supported in part by the National Science
Foundation (No. 1932858), the Army Research Office (No.
WO911NF2110321), and the Office of Naval Research (No. N00014-
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