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Abstract: We present an inversely designed integrated photonic dot-product core based on mode-
division multiplexing. The core features a Spumx3um footprint for scalability and can perform
general-purpose vector dot-products with easily reconfigurable inputs for various computing
applications. © 2024 The Author(s)

1. Introduction

Photonic computing presents a promising alternative to electronics in handling high-throughput, data-intensive
computing applications, as photonic signals can pack a multitude of degrees of freedom, including wavelength, spatial
mode, polarization, and phase quadratures in a single transmission line at any given time. Driven by the computing
demand in artificial neural networks, analog computing platforms based on integrated photonic devices [1] have
demonstrated the potential of higher efficiency than the electronic counterparts, due to the intrinsically passive
photonic multiply-accumulate (MAC) process [2]. The existing photonic computing platforms mostly rely on
wavelength-division multiplexing or space-multiplexing to achieve parallelism. Using spatial mode as an additional
degree of freedom only begins to emerge as a viable approach in high-bandwidth optical communication [3], but its
application in photonic computing has not been exploited. In this work, we present an integrated mode-division
multiplexed (MDM) photonic computing core using inverse design. The core performs dot-products with easily
reconfigurable inputs and supports the deployment of various computing applications. As a specific application, we
have demonstrated a complex number multiplier in Sec. 3.

2. Photonic computing core design and fabrication
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Fig. 1. Operating principle and design of the mode-multiplexed dot-product core.
A photonic MDM-based dot-product core supporting two input vectors, d = (a;, a,)T and b = (b, by)7, consists of
four input ports and two output ports. Fig. 1 schematically illustrates the operating principle of performing dot-product
on 2-element vectors. Vector dot-product based on coherent mixing using single mode components requires 2 balanced
detections for multiplications and separated accumulation in electronic domain that consumes energy (Fig. 1(a)). In
the mode-multiplexed setup, two elements in the vector, a, (b,) and a, (b,), are mapped to the fundamental (1) and
the second order (yy;) TE modes of a few-mode waveguide, respectively. The mode-multiplexed photonic signals,
E, = ayY + a,¥y and E}, = by + by, undergo coherent mixing, producing the electrical fields on the upper and

lower arms E, = %(Ea +iE,) and E, = \/%(iEa + E,). Based on the orthogonality between ; and 1y, the

difference between the overall intensity of the upper and lower outputs Ig;¢r = |Ep |2 — |E,|? naturally produces the

dot-product between vectors d and b. Since accumulation is carried out in optical domain, and only requires one
balanced detection, the power consumption could be 2-3 folds lower than the single mode implementation.
Using conventional MDM devices, the dot-product core requires 2 mode multiplexers (MUXs, 20pmx4um each

[4]) for encoding @ and B, and 1 2x2 mixer based on multi-mode interference (MMI, 40umx>6pum [5]), giving an
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overall footprint of at least 60umx10pum (Fig. 1(b)). Our dot-product core packs the functionality of 2 MUXs and 1
MMI into a single symmetric layout (Fig. 1(c)) with a footprint of Sumx3pum. The core is designed following a
gradient-based optimization framework [6] using an in-house 3D vector-field finite-difference frequency-domain
(FDFD) Maxwell equation solver with perfectly matched layers [7]. The upper and lower output few-mode
waveguides are tapered to photonic crystal structures, which vertically couple out the light for imaging by a camera.

3. Results and discussions
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Fig. 2. Testing of the fabricated MDM dot-product core. (a) Optical, SEM, and setup images of the fabricated device under
testing. (b) Spatial mode profiles and S-matrix of the fabricated device. (c) Pre- and post-compensation waveforms representing a
TDM dot-product sequence. (d) Complex mulplier deployed as TDM symbol sequence on the core.

The intensity profiles on the vertical output couplers of the fabricated device (Fig. 2(a)), when input 1 and 2 are
individually excited, are shown in Fig. 2(b). The profiles match the target spatial modes. Fig. 2(b) also plots the S-
matrix obtained from Lumerical FDTD simulation of the fabricated device. Although the splitting ratio between the
upper and lower arm is not strictly 50/50 due to fabrication imperfections, the crosstalk between two spatial modes is
low. Therefore, we can treat two spatial modes independently in the S- matrix of the fabricated device.
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Following Eq. (1), the differential output in mode I is Ildiff = |a,|? (|5111|2 — 1852113 + 16212111212 = |S1221%) +
2Rela;b5(S111S112 — Si215122)], and similar output can be derived for mode II. This indicates that to produce the
result proportional to the dot-product, the uneven splitting can be corrected by a calibration process that removes the
differential outputs when only one of the four inputs is excited.

We generated two 2-element input vectors containing arbitrary, signed elements from four off-chip fiber-based
Mach-Zehnder modulators (JDSU OC-192) and edge-coupled the modulated signals into the core. Fig. 2(c) plots the
dot-product results after correcting for the uneven splitting between the upper and lower arms. After calibration, the
core natively supports signed 3-bit inputs (integers from -2 to 2) with an output dynamic range of signed 4-bits
(integers from -8 to 8).

Fig. 2(d) demonstrates a general-purpose complex number multiplier ((a + bi) X (¢ + di)) on the core. The real
and imaginary parts of the result ((ac — bd) + (ad + bc)i) are split into two equivalent dot-products deployed in a
time-division multiplexing (TDM) symbol sequence. 16 complex numbers represented by a sequence of 32 symbols
were multiplied on the core. The normalized root mean square error of all complex multiplications was 15.9%,
representing signed 6.27 effective levels in the results. The computing error is primarily attributed to the time-varying
phase of the four off-chip fiber inputs, which were not always constructively aligned within the symbol sequence.
This error can be greatly reduced with on-chip modulators.

In summary, we have designed and fabricated a compact, integrated photonic dot-product core using inverse
design. The core utilizes spatial mode as the multiplexing dimension to perform arbitrary 2-element vector dot-
products. We have demonstrated the deployment of a general-purpose complex number multiplier on the core. The
small (Sumx3pm) footprint enables high-density integration of the core in a parallel computing array.
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