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Abstract: We present an inversely designed integrated photonic dot-product core based on mode-
division multiplexing. The core features a 5µm×3µm footprint for scalability and can perform 
general-purpose vector dot-products with easily reconfigurable inputs for various computing 
applications.  

1. Introduction
Photonic computing presents a promising alternative to electronics in handling high-throughput, data-intensive
computing applications, as photonic signals can pack a multitude of degrees of freedom, including wavelength, spatial
mode, polarization, and phase quadratures in a single transmission line at any given time. Driven by the computing
demand in artificial neural networks, analog computing platforms based on integrated photonic devices [1] have
demonstrated the potential of higher efficiency than the electronic counterparts, due to the intrinsically passive
photonic multiply-accumulate (MAC) process [2]. The existing photonic computing platforms mostly rely on
wavelength-division multiplexing or space-multiplexing to achieve parallelism. Using spatial mode as an additional
degree of freedom only begins to emerge as a viable approach in high-bandwidth optical communication [3], but its
application in photonic computing has not been exploited. In this work, we present an integrated mode-division
multiplexed (MDM) photonic computing core using inverse design. The core performs dot-products with easily
reconfigurable inputs and supports the deployment of various computing applications. As a specific application, we
have demonstrated a complex number multiplier in Sec. 3.

2. Photonic computing core design and fabrication

Fig. 1. Operating principle and design of the mode-multiplexed dot-product core. 

A photonic MDM-based dot-product core supporting two input vectors, 𝑎⃗ = (𝑎1, 𝑎2)
𝑇  and 𝑏⃗⃗ = (𝑏1, 𝑏2)

𝑇, consists of
four input ports and two output ports. Fig. 1 schematically illustrates the operating principle of performing dot-product 
on 2-element vectors. Vector dot-product based on coherent mixing using single mode components requires 2 balanced 
detections for multiplications and separated accumulation in electronic domain that consumes energy (Fig. 1(a)). In 
the mode-multiplexed setup, two elements in the vector, 𝑎1 (𝑏1) and 𝑎2 (𝑏2), are mapped to the fundamental (𝜓I) and
the second order (𝜓II) TE modes of a few-mode waveguide, respectively. The mode-multiplexed photonic signals,
𝐸𝑎 = 𝑎1𝜓I + 𝑎2𝜓II and 𝐸𝑏 = 𝑏1𝜓I + 𝑏2𝜓II, undergo coherent mixing, producing the electrical fields on the upper and
lower arms 𝐸𝑝 =

1

√2
(𝐸𝑎 + 𝑖𝐸𝑏) and 𝐸𝑛 =

1

√2
(𝑖𝐸𝑎 + 𝐸𝑏). Based on the orthogonality between 𝜓I and 𝜓II, the

difference between the overall intensity of the upper and lower outputs 𝐼𝑑𝑖𝑓𝑓 = |𝐸𝑝|
2
− |𝐸𝑛|2 naturally produces the

dot-product between vectors  𝑎⃗ and 𝑏⃗⃗. Since accumulation is carried out in optical domain, and only requires one
balanced detection, the power consumption could be 2-3 folds lower than the single mode implementation. 

Using conventional MDM devices, the dot-product core requires 2 mode multiplexers (MUXs, 20µm×4µm each 
[4]) for encoding  𝑎⃗ and 𝑏⃗⃗, and 1 2×2 mixer based on multi-mode interference (MMI, 40µm×6µm [5]), giving an
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overall footprint of at least 60µm×10µm (Fig. 1(b)). Our dot-product core packs the functionality of 2 MUXs and 1 
MMI into a single symmetric layout (Fig. 1(c)) with a footprint of 5µm×3µm. The core is designed following a 
gradient-based optimization framework [6] using an in-house 3D vector-field finite-difference frequency-domain 
(FDFD) Maxwell equation solver with perfectly matched layers [7]. The upper and lower output few-mode 
waveguides are tapered to photonic crystal structures, which vertically couple out the light for imaging by a camera. 

3.  Results and discussions 

 
Fig. 2. Testing of the fabricated MDM dot-product core. (a) Optical, SEM, and setup images of the fabricated device under 

testing. (b) Spatial mode profiles and S-matrix of the fabricated device. (c) Pre- and post-compensation waveforms representing a 
TDM dot-product sequence. (d) Complex mulplier deployed as TDM symbol sequence on the core. 

The intensity profiles on the vertical output couplers of the fabricated device (Fig. 2(a)), when input 1 and 2 are 
individually excited, are shown in Fig. 2(b). The profiles match the target spatial modes. Fig. 2(b) also plots the S-
matrix obtained from Lumerical FDTD simulation of the fabricated device. Although the splitting ratio between the 
upper and lower arm is not strictly 50/50 due to fabrication imperfections, the crosstalk between two spatial modes is 
low. Therefore, we can treat two spatial modes independently in the S-matrix of the fabricated device. 
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(1) 

Following Eq. (1), the differential output in mode I is 𝐼I𝑑𝑖𝑓𝑓 = |𝑎2|
2(|𝑆I11|

2 − |𝑆I21|
2) + |𝑏2|

2(|𝑆I12|
2 − |𝑆I22|

2) +

2𝑅𝑒[𝑎2𝑏2
∗(𝑆I11𝑆I12

∗ − 𝑆I21𝑆I22
∗ )], and similar output can be derived for mode II. This indicates that to produce the 

result proportional to the dot-product, the uneven splitting can be corrected by a calibration process that removes the 
differential outputs when only one of the four inputs is excited. 

We generated two 2-element input vectors containing arbitrary, signed elements from four off-chip fiber-based 
Mach-Zehnder modulators (JDSU OC-192) and edge-coupled the modulated signals into the core. Fig. 2(c) plots the 
dot-product results after correcting for the uneven splitting between the upper and lower arms. After calibration, the 
core natively supports signed 3-bit inputs (integers from -2 to 2) with an output dynamic range of signed 4-bits 
(integers from -8 to 8). 

Fig. 2(d) demonstrates a general-purpose complex number multiplier ((𝑎 + 𝑏𝑖) × (𝑐 + 𝑑𝑖)) on the core. The real 
and imaginary parts of the result ((𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖) are split into two equivalent dot-products deployed in a 
time-division multiplexing (TDM) symbol sequence. 16 complex numbers represented by a sequence of 32 symbols 
were multiplied on the core. The normalized root mean square error of all complex multiplications was 15.9%, 
representing signed 6.27 effective levels in the results. The computing error is primarily attributed to the time-varying 
phase of the four off-chip fiber inputs, which were not always constructively aligned within the symbol sequence. 
This error can be greatly reduced with on-chip modulators. 

In summary, we have designed and fabricated a compact, integrated photonic dot-product core using inverse 
design. The core utilizes spatial mode as the multiplexing dimension to perform arbitrary 2-element vector dot-
products. We have demonstrated the deployment of a general-purpose complex number multiplier on the core. The 
small (5µm×3µm) footprint enables high-density integration of the core in a parallel computing array. 
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