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Abstract: We present a method for configurable, signed, floating-point encoding and multiplication 
on limited precision photonic primitives, demonstrating Newton’s method with improved accuracy 
and expanding the dynamic range of the photonic solver by over 200×. 

1. Introduction
While CPUs and digital accelerators such as GPUs use floating-point (FLP) format to guarantee high-precision
operations, photonic or analog computing uses signal amplitude equivalent to fixed-point (FXP) format, which
accommodates limited signal-to-noise ratio (SNR) and reduces data storage requirements. The adoption of FXP
encoding guarantees an inherent error for any computing applications, and while in some cases this is not detrimental,
it often leads to errors in iterative or high-precision solutions. Our previous work creating a photonic eigensolver
showed that using 4-bit FXP precision is not sufficient to achieve FLP-equivalent accuracy [1].

This work demonstrates a method for implementing FLP encoding on a photonic multiplication primitive with 5 
signed input levels. The method performs passive significand multiplication and exponent addition operations, 
promising increased energy efficiency for the same dynamic range. Here, the FLP photonic primitive was used to 
implement the Newton-Raphson root finding algorithm to find the Golden Ratio. Compared to CPU-based FLP and 
simulated FXP implementations, the photonic FLP primitive (P-FLP) shows good accuracy and equivalent 
convergence rate with digital FLP (D-FLP) encoding. 
2. Operating Principles
The photonic primitive depicted in Fig. 1(a) consists of a balanced coherent interferometer with independently
modulated inputs A and B generating the respective time-division multiplexed (TDM) fields 𝐸𝐴 and 𝐸𝐵. The resulting
inputs undergo balanced photodetection to produce outputs of signed magnitude 𝐸𝐴𝐸𝐵. The 𝐸 field amplitude
accommodates 5 signed input levels (±2, ±1, and 0). This is the total number of levels for FXP encoding, while FLP
encoding increases the effective bitwidth of the system without increasing the signal power or SNR.

In D-FLP encoding, each value 𝐴 is broken down into a significand 𝑠𝐴 and corresponding exponent 𝑙𝐴 with a
global base 𝛽 such that 𝐴 = 𝑠𝐴 × 𝛽𝑙𝐴. For 32-bit D-FLP encoding, the significand and exponent are recorded within
31 bits using a global base of 2 or 10 [2]. To multiply two numbers, their significands undergo bitwise multiplication, 
their exponents are added, and an XOR operation is performed on the sign bits [3], such that 𝐴 × 𝐵 =
(𝑠𝐴  × 𝛽𝑙𝐴) × (𝑠𝐵  × 𝛽𝑙𝐵) =  𝑠𝐴𝑠𝐵 × 𝛽𝑙𝐴+𝑙𝐵 . Each process requires energy for computation.

In P-FLP encoding, each multiplicand is encoded with a sub-carrier, with amplitude corresponding to the signed 
significand and modulation frequency corresponding to the exponent: 𝐴 = 𝑠𝐴 × 𝛽𝑙𝐴 → 𝑠𝐴  cos (2𝜋𝑓𝑙𝐴

𝑡), where 𝑓𝑙𝐴
 is

the subcarrier frequency assigned to the exponent 𝑙𝐴 and 𝑡 is the time since the start of the symbol. To multiply two
numbers, P-FLP symbols 𝐴 and 𝐵 are encoded as time-division multiplexed (TDM) vectors and input to the photonic 
primitive using directly controlled Mach-Zehnder modulation [1]. Within the primitive, the signed elementwise 
product is taken at each point along the TDM vectors as shown in Fig. 1(b), resulting in an output 𝐴 × 𝐵 =

𝑠𝐴 cos(2𝜋𝑓𝑙𝐴
𝑡) × 𝑠𝐵 cos(2𝜋𝑓𝑙𝐵

𝑡) = 𝑠𝐴𝑠𝐵 cos(2𝜋𝑓𝑙𝐴
𝑡) cos(2𝜋𝑓𝑙𝐵

𝑡) captured via oscilloscope.

Figure 1. (a) Schematic for P-FLP multiplication. (b) Simulated multiplication 𝐴 = 2 × 𝛽𝑓𝑙𝐴 multiplied by 𝐵 = −1 × 𝛽𝑓𝑙𝐵. 
The maximum resulting output frequency will be 𝑓𝑙𝐴

+ 𝑓𝑙𝐵
 and can be recovered through a DCT-II transformation,

while the sign and significand can be proportionally determined from the amplitude. To make symbol parsing more 
reliable, a signed header is added to each packet for parity check. Additionally, a tail of constant positive amplitude is 
added to verify constructive interference. The sub-carrier modulated symbol is synthesized through a field 
programmable gate array (FPGA, Xilinx XCZU49DR) with two input modulators (JDSU OC-192) can reliably 
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accommodate carrier frequencies up to 500 MHz, while the output is digitized by a streaming digitizer sampling at 
6.25 GSa/sec. Each FLP symbol is repeated for a duration of 200 ns; symbol rate of sub 10 ns can be used in theory.  
The multiplication, sign operation, and exponent addition are all performed solely through interference; the energy is 
only expended for signal modulation and detection. 

With modifications to accommodate deployment on the photonic primitive, the Newton-Raphson [4] method 
takes the form of Algorithm 1 for a precalculated function 𝑓(𝑥) with 𝐷(𝑥) = 1/𝑓′(𝑥), and initial guess 𝑥0. 

Algorithm 1. Modified Newton-Rhapson Method 
𝑓𝑞(𝑥) ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑓(𝑥)); 𝐷𝑞(𝑥) ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝐷(𝑥)); 
for k in range(N): 
 𝑥𝑘 ← 𝑥𝑘−1 − (𝑓𝑞(𝑥𝑘−1) × 𝐷𝑞(𝑥𝑘−1)) 

The modified Newton-Raphson Method is well suited to find roots of quadratic equations so long as the root is 
not also the vertex. The application demonstrated herein is to find the Golden Ratio φ, defined as the value 𝜑 = 𝑎/𝑏 
such that 𝑎/𝑏 = (𝑎 + 𝑏)/𝑎, which can be changed to the quadratic equation 𝜑2 − 𝜑 − 1 = 0. 
3. Results and Discussion 
Algorithm 1 was used to solve the Golden Ratio quadratic equation 𝜑2 − 𝜑 − 1 = 0 using P-FLP multiplication over 
15 iterations with an initial guess of 𝑥0 = 1.2 (Fig. 2(a)). The set of exponents corresponding to the distinct 𝑓𝑙 were 
chosen as {-4, 1}, with global base 𝛽𝐹𝐿𝑃 = 3 to match the signed 5-level inputs of the photonic primitive. This result 
was compared to the single-precision D-FLP multiplication as well as base-2 FXP calculation simulated with 129 
signed input levels. For P-FLP quantization, each value in the precalculated f(x) and D(x) was rounded to its nearest 
value in the P-FLP encoding schema. For FXP quantization, each value in f(x) and D(x) was encoded as in Equation 
1, corresponding to a global base 𝛽𝐹𝑋𝑃 = 2, and where N is the number of positive FXP levels. 

𝑓𝑞(𝑥𝑖) = 𝑟𝑜𝑢𝑛𝑑(
𝑁×𝑓(𝑥𝑖)

2𝑓𝑙𝑜𝑜𝑟(log2(max(|𝑓(𝑥)|)))) × 2floor(log2(max (|𝑓(𝑥)|)))−round(log2(𝑁))  (1)  

 
Figure 2. Golden Ratio Calculation. (a) Convergence comparison, initial guess x0=1.6. (b) Iteration progression, initial guess x0=1.2. (c) 

Simulated FXP iteration, initial guess x0=1.6. 
Fig. 2(a) shows that the P-FLP implementation converges to 𝜑 = 1.6198, a result within 0.11% of the accepted 

value. Compared to the 0.05% error of the double-precision D-FLP on CPU and the 0.24% error of the 129-level FXP 
implementation, P-FLP offers a significant advantage for limited S/N encoding and approaches the accuracy required 
for scientific computing. Additionally, all methods show the same rate of convergence. 

However, as the model converges closely to the expected value, the number of available FXP levels must be 
dramatically increased to match the accuracy of the P-FLP implementation. As shown in Fig. 2(b), the D-FLP 
implementation cannot iterate with 𝑥0 = 1.6 if 129-level FXP encoding is used, showing that P-FLP encoding offers 
immediate advantages for photonic computing in expanding the accuracy and effective bitwidth. Fig. 2(c) further 
shows that 2049 signed FXP levels must be used to exceed the accuracy of the P-FLP implementation. It is reasonable 
to anticipate that with a better S/N ratio and enough bands to accommodate more than 6 exponents, the P-FLP 
implementation could soon match or exceed the performance of the D-FLP implementation.  
4. Summary 
In summary, we have demonstrated a method for implementing FLP multiplications in photonic computing, using the 
properties of the analog signal to perform sign operations, significand multiplication, and exponent addition without 
expending energy. Using Newton’s method to find the Golden Ratio, P-FLP multiplications produced an accuracy of 
±0.11%, which exceeded the accuracy of 1025-level FXP multiplications. This effectively increased the bitwidth of 
the system by over 200x without increased requirements for SNR. 
[1] Zhu et al., “Sparse coherent photonic processor for solving eigenmode problems”, in IPC 2023 Orlando Conference Proceedings 
[2] "IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008), vol., no., pp.1-84, 22 July 2019 
[3] Rafiquzzaman, M. Fundamentals of Digital Logic and Microcomputer Design. Germany: Wiley, 2005. 
[4] Kendall E. Atkinson, An Introduction to Numerical Analysis, (1989) John Wiley & Sons, Inc. 

JTh2A.109 CLEO 2024 © Optica Publishing Group 2024


