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Abstract: We present a method for configurable, signed, floating-point encoding and multiplication

on limited precision photonic primitives, demonstrating Newton’s method with improved accuracy

and expanding the dynamic range of the photonic solver by over 200%. © 2024 The Author(s)
1. Introduction
While CPUs and digital accelerators such as GPUs use floating-point (FLP) format to guarantee high-precision
operations, photonic or analog computing uses signal amplitude equivalent to fixed-point (FXP) format, which
accommodates limited signal-to-noise ratio (SNR) and reduces data storage requirements. The adoption of FXP
encoding guarantees an inherent error for any computing applications, and while in some cases this is not detrimental,
it often leads to errors in iterative or high-precision solutions. Our previous work creating a photonic eigensolver
showed that using 4-bit FXP precision is not sufficient to achieve FLP-equivalent accuracy [1].

This work demonstrates a method for implementing FLP encoding on a photonic multiplication primitive with 5
signed input levels. The method performs passive significand multiplication and exponent addition operations,
promising increased energy efficiency for the same dynamic range. Here, the FLP photonic primitive was used to
implement the Newton-Raphson root finding algorithm to find the Golden Ratio. Compared to CPU-based FLP and
simulated FXP implementations, the photonic FLP primitive (P-FLP) shows good accuracy and equivalent
convergence rate with digital FLP (D-FLP) encoding.

2. Operating Principles

The photonic primitive depicted in Fig. 1(a) consists of a balanced coherent interferometer with independently
modulated inputs A and B generating the respective time-division multiplexed (TDM) fields E, and E. The resulting
inputs undergo balanced photodetection to produce outputs of signed magnitude E,Eg. The E field amplitude
accommodates 5 signed input levels (£2, =1, and 0). This is the total number of levels for FXP encoding, while FLP
encoding increases the effective bitwidth of the system without increasing the signal power or SNR.

In D-FLP encoding, each value A is broken down into a significand s, and corresponding exponent [, with a
global base S such that A = s, X ‘4. For 32-bit D-FLP encoding, the significand and exponent are recorded within
31 bits using a global base of 2 or 10 [2]. To multiply two numbers, their significands undergo bitwise multiplication,
their exponents are added, and an XOR operation is performed on the sign bits [3], such that A X B =
(sq X B'4) X (sp X B'B) = sysp x Ba*lB_ Each process requires energy for computation.

In P-FLP encoding, each multiplicand is encoded with a sub-carrier, with amplitude corresponding to the signed
significand and modulation frequency corresponding to the exponent: A = s, X B'4 - s, cos (27 f; ), where f; is
the subcarrier frequency assigned to the exponent I, and t is the time since the start of the symbol. To multiply two
numbers, P-FLP symbols A and B are encoded as time-division multiplexed (TDM) vectors and input to the photonic
primitive using directly controlled Mach-Zehnder modulation [1]. Within the primitive, the signed elementwise
product is taken at each point along the TDM vectors as shown in Fig. 1(b), resulting in an output A X B =
Sa Cos(ZnﬁAt) X Sg COS(ZTL’let) = 5,Sg cos(anlAt) cos(anlBt) captured via oscilloscope.

Figure 1. (a) Schematic for P-FLP multiplication. (b) Simulated multiplication A = 2 X 8714 multiplied by B = —1 x /5.

The maximum resulting output frequency will be f;, + f; and can be recovered through a DCT-II transformation,
while the sign and significand can be proportionally determined from the amplitude. To make symbol parsing more
reliable, a signed header is added to each packet for parity check. Additionally, a tail of constant positive amplitude is
added to verify constructive interference. The sub-carrier modulated symbol is synthesized through a field
programmable gate array (FPGA, Xilinx XCZU49DR) with two input modulators (JDSU OC-192) can reliably
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accommodate carrier frequencies up to 500 MHz, while the output is digitized by a streaming digitizer sampling at
6.25 GSa/sec. Each FLP symbol is repeated for a duration of 200 ns; symbol rate of sub 10 ns can be used in theory.
The multiplication, sign operation, and exponent addition are all performed solely through interference; the energy is
only expended for signal modulation and detection.

With modifications to accommodate deployment on the photonic primitive, the Newton-Raphson [4] method
takes the form of Algorithm 1 for a precalculated function f(x) with D(x) = 1/f'(x), and initial guess x,.

Algorithm 1. Modified Newton-Rhapson Method
fq(x) < quantize(f (x)); Dy (x) < quantize(D(x));
for k in range(N):

X < Xg—1 — (fg(xk—1) X Dg(xx—1))

The modified Newton-Raphson Method is well suited to find roots of quadratic equations so long as the root is
not also the vertex. The application demonstrated herein is to find the Golden Ratio ¢, defined as the value ¢ = a/b
such that a/b = (a + b)/a, which can be changed to the quadratic equation p? — ¢ — 1 = 0.
3. Results and Discussion
Algorithm 1 was used to solve the Golden Ratio quadratic equation ¢? — ¢ — 1 = 0 using P-FLP multiplication over
15 iterations with an initial guess of x, = 1.2 (Fig. 2(a)). The set of exponents corresponding to the distinct f; were
chosen as {-4, 1}, with global base z;» = 3 to match the signed 5-level inputs of the photonic primitive. This result
was compared to the single-precision D-FLP multiplication as well as base-2 FXP calculation simulated with 129
signed input levels. For P-FLP quantization, each value in the precalculated f(x) and D(x) was rounded to its nearest
value in the P-FLP encoding schema. For FXP quantization, each value in f(x) and D(x) was encoded as in Equation
1, corresponding to a global base Srxp = 2, and where N is the number of positive FXP levels.

£, () = Tound(zﬂoomf;{ ) ) X 2Moer(oga(max (F D) -rounddoga () (1)

b) c)

k-]
g
z GPU FLP, final value = 16188
= = = 2048-level FXP, fin 16177 g ——— Fiber FLP, final value = 1.6165
1025-Jevel FXP, fin 2
: = = = 128-devel FXP. final value = 1.6 2
H 1,605 -4 - ===~ Accepted Value: x = 1.6180 <
004 CPU FLP, final value =1.6172 H
———+ Fiber FLP, final value =1.6138
0.06 = = & 128-devel FXP, final value = 1.6219
rrrrr Accepted Value: x = 1.6180, f(x)= 0
-0.08 ——

= = =128-level FXP, final value = 1.6
- ===~ Accepted Value: x = 1.6180

Corresponding Value of f(x)
Calculated Root of x

1 . 1.595 1.595
161 1.615 162 1625 2 4 [ 8 10 12 14 2 4 6 8 10 12 14
Calculated Root of x lteration

Figure 2. Golden Ratio Calculation. (a) Convergence comparison, initial guess xy=1.6. (b) Iteration progression, initial guess xy=1.2. (c)
Simulated FXP iteration, initial guess xy=1.6.

Fig. 2(a) shows that the P-FLP implementation converges to ¢ = 1.6198, a result within 0.11% of the accepted
value. Compared to the 0.05% error of the double-precision D-FLP on CPU and the 0.24% error of the 129-level FXP
implementation, P-FLP offers a significant advantage for limited S/N encoding and approaches the accuracy required
for scientific computing. Additionally, all methods show the same rate of convergence.

However, as the model converges closely to the expected value, the number of available FXP levels must be
dramatically increased to match the accuracy of the P-FLP implementation. As shown in Fig. 2(b), the D-FLP
implementation cannot iterate with x, = 1.6 if 129-level FXP encoding is used, showing that P-FLP encoding offers
immediate advantages for photonic computing in expanding the accuracy and effective bitwidth. Fig. 2(c) further
shows that 2049 signed FXP levels must be used to exceed the accuracy of the P-FLP implementation. It is reasonable
to anticipate that with a better S/N ratio and enough bands to accommodate more than 6 exponents, the P-FLP
implementation could soon match or exceed the performance of the D-FLP implementation.

4. Summary

In summary, we have demonstrated a method for implementing FLP multiplications in photonic computing, using the
properties of the analog signal to perform sign operations, significand multiplication, and exponent addition without
expending energy. Using Newton’s method to find the Golden Ratio, P-FLP multiplications produced an accuracy of
+0.11%, which exceeded the accuracy of 1025-level FXP multiplications. This effectively increased the bitwidth of
the system by over 200x without increased requirements for SNR.
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