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Online Learning-Based Inertial
Parameter Identification of Unknown Object
for Model-Based Control of Wheeled Humanoids

Donghoon Baek

Abstract—Identifying the dynamic properties of manipulated
objects is essential for safe and accurate robot control. Most meth-
ods rely on low-noise force-torque sensors, long exciting signals, and
solving nonlinear optimization problems, making the estimation
process slow. In this work, we propose a fast, online learning-based
inertial parameter estimation framework that enhances model-
based control. We aim to quickly and accurately estimate the pa-
rameters of an unknown object using only the robot’s propriocep-
tion through end-to-end learning, which is applicable for real-time
system. To effectively capture features in robot proprioception
solely affected by object dynamics and address the challenge of
obtaining ground truth inertial parameters in the real world, we
developed a high-fidelity simulation that uses more accurate robot
dynamics through real-to-sim adaptation. Since our adaptation
focuses solely on the robot, task-relevant data (e.g., holding an
object) is not required from the real world, simplifying the data
collection process. Moreover, we address both parametric and
non-parametric modeling errors independently using Robot System
Identification and Gaussian Processes. We validate our estimator to
assess how quickly and accurately it can estimate physically feasible
parameters of an manipulated object given a specific trajectory
obtained from a wheeled humanoid robot. Our estimator achieves
faster estimation speeds (around 0.1 seconds) while maintaining
accuracy comparable to other methods. Additionally, our estimator
further highlight its benefits in improving the performance of model
based control by compensating object’s dynamics and re initializing
new equilibrium point of wheeled humanoid.

Index Terms—Inertial parameter estimation, real-to-sim
adaptation, representation learning.
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Fig. 1. Conceptual overview of the proposed method. Thousands of
wheeled humanoid robots, SATYRR, in a simulator shake an object to identify its
inertial parameters. Different object dynamics impact the robot’s proprioception
in varied ways. The effect of different object dynamics on the robot’s propriocep-
tion closely mirrors real-world conditions due to effective real-to-sim adaptation.
During training, the object’s inertial parameters can be sampled either randomly
or within specific shape boundaries.

I. INTRODUCTION

OLLABORATIVE robots (e.g., Humanoid and manip-

ulator) have become increasingly prevalent with great
potential in various fields such as manufacturing, healthcare, and
even disaster response [1], [2]. To facilitate seamless and safe
human-robot collaboration, these robots need an accurate under-
standing of the physical properties of the objects they interact
with. Understanding an object’s inertial parameters (mass, center
of mass, moment of inertia) enables robots to interact more
robustly and adaptively. For instance, insufficient information
may lead to excessive or insufficient force application, causing
slipping or damage during manipulation tasks.

Identifying the inertial parameters of an unknown object with
a humanoid robot is challenging due to several inherent factors:
(1) noisy signals from force-torque sensors, (2) the need for
long excitation trajectories to collect sufficient data, and (3)
solving nonlinear constraint optimization for physically feasible
parameters. These factors inherently slow down the estimation
process, and the use of force-torque sensors and cameras is not
always accessible.

In this letter, we propose alearning-based approach to quickly
identify the inertial parameters of an unknown object, enhanc-
ing the performance of a model-based controller. Our method
uses a data-driven regression model relying solely on propri-
oception errors influenced by object dynamics, not requiring
long excitation signals and constrained nonlinear optimization.
While using proprioception to identify parameters is not a new
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idea, estimating the physically feasible full inertial parameters
of unknown object in an end-fo-end manner is a novel ap-
proach. The main challenge is efficiently capturing the object’s
dynamic effects in the robot’s proprioception while successfully
transferring this information from simulation to the real world.
For example, proprioception is influenced by the robot’s own
dynamics, the object’s dynamics, and even the reality gap. To
achieve this, we identify an accurate model of the robot to
minimize its reality gap via real-to-sim adaptation, leaving only
the effect of object dynamics on the robot’s proprioceptive error.
Unlike other approaches, we focus only on robot dynamics,
eliminating the need to collect task-relevant data from the real
world (e.g., the robot does not need to hold an object in the
real world). Our adaptation addresses both parametric and non-
parametric modeling errors using a combination of Robot System
Identification (SysID) and Gaussian Processes (GPs). The data
collection and training of the estimator are conducted offline
and then transferred to the real world with zero-shot adaptation,
ensuring fast inference times without additional iterations or
tuning. We evaluate the estimation speed and accuracy of our
estimator by benchmarking it against previous methods and
also assessing the effects of the components in our adaptation
method. Results show that our estimator can identify an ob-
ject’s inertial parameters within 0.1 seconds while achieving
accuracy comparable to other baselines. Additionally, we show
benefits of our method in improving the performance of model-
based control by complementing object dynamics in manipula-
tion tracking and delivering object locomotion tasks, achiev-
ing 36% and 65% performance improvements in each task,
respectively.

Our summarized contributions are: (1) a fastinertial parameter
estimation framework using an end-to-end data-driven model;
(2) effective handling of both parametric and non-parametric
modeling errors to identify accurate robot dynamics, reducing
its reality gap; (3) demonstration on physical hardware, high-
lighting the benefits of accurate inertial parameters in enhancing
model-based controller performance.

II. RELATED WORK

A. System Identification

Research on inertial parameter identification of rigid bodies
has a rich history [3]. Since the dynamics model of a multi-body
system is linear with respect to the inertial parameters, a linear
least squares method has been widely used for this identifica-
tion, whether through offline or adaptive means. However, this
traditional approach has several limitations that must be further
considered.

Without including constraints in the optimization process,
not all combinations of parameters correspond to the physical
system. Some studies have addressed this by incorporating
constraints like custom manifold optimization [4], linear matrix
inequalities (LMIs) [5], and Riemannian metrics [6]. These
methods ensure physical consistency but are time-consuming
(over 6 seconds) and require prior object knowledge (e.g., shape,
CAD data). Our approach implicitly enforces dynamic con-
sistency using regularization, achieving parameter estimation,
including trajectory generation, in under 0.1 seconds.

Force-torque (FT) sensors are essential for determining an ob-
ject’s inertial parameters but are often hindered by weight, cost,
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and noisy outputs [7]. Alternatives like neural network-based
force/torque estimation still require motor torque sensors [8].
A recent study [9] used encoder discrepancies and attention
mechanisms to estimate mass and center of mass (COM) without
FT sensors. Our approach builds on this by estimating the
full set of inertial parameters without relying on torque/force
Sensors.

Learning-based inertial parameter estimation has been ac-
tively studied, often utilizing extensive visual datasets like im-
ages and videos [10], [11]. While accessing a visual dataset is not
challenging, interaction with the object is crucial for estimating
dynamics due to limited information like density. Our approach
only relies on interacting with an object, without using cameras.

B. Sim-to-Real Transfer

With the recent advancements in reinforcement learning (RL),
sim-to-real transfer has gained significant attention and is be-
coming increasingly crucial. Domain randomization, optimizing
simulation parameters, and reducing parameter distribution [12],
[13], [14], [15], [16], [17], [18] have been studied to reduce the
reality gap. While these methods yield promising results, they
require multiple iterations, making them unsuitable for real-time
applications. Moreover, task-relevant data is often required in the
training process, which is challenging to obtain, especially for
the inertial parameters of an object. Similar work with ours can
be found in [19] regarding using Gaussian Processes for robot
system identification. In contrast, we employed these methods
independently to address both parametric and non-parametric
modeling errors. Some literature demonstrates the capability of
estimating inertial parameters with deep neural networks [20].
While this method is fast and effective, it requires to use a
pre-trained RL policy.

In the control perspective, approaches like domain randomiza-
tion and privileged learning [21], [22] are designed for zero-shot
policy transfer to the real world. While effective in reducing
the reality gap for control, they have limited performance in
matching state trajectories, which impacts parameter estimation
accuracy [21].

III. BACKGROUND

A. Inertial Parameter Identification

The inertial parameters of 7’th rigid-body are collected as
¢§ = [mi: c;r: Iz'zza Izyy': Ie?:z': Iizyi Ityz': I;zx] % € RiO’Wherem €
R is the mass, ¢ = [c;, ¢, c,|" € R3 is the the center of mass
(COM) position, and [ () are the moments and the products
of inertia. In the classical way, the inertial parameters of n,-
rigid-body system can be estimated by classical linear regression

model Y (a, w, w) using the rigid body dynamics,

ma

[af'] - quw + IL;J =X, (M

where the symbolic f € R® and 7 € R3 denote forces and
torques, respectively. The term m € RT denotes the mass,
a € R3 isthe linear acceleration, w € R3 is the angular velocity,
@ € R3 is the angular acceleration, and the bracket denotes [ -]
the skew-symmetric representation of a vector.

A simplistic estimation of inertial parameters with least-
square regression may result in physically invalid parameters [5].
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Hence, the regression could be enforced with physical consis-
tency [4] as follows,

2

i (n) __(n)
i, S[YOr@sem -
s.t. ReSO) (2b)
m >0, J; >0,i=1,2,3 (20)
Ji+ T+ J3>20,k=1,2,3 (2d)

to enforce the manifold constraint (2b), positive-semidefinitene
of mass and inertia tensor (2c) and a triangular inequality
(2d), where J;.y denotes the eigenvalues of the inertia tensor
of a rigid body (I = RJRT). The solution to this problem
is possible using nonlinear optimization on manifolds. In our
case, we implicitly consider dynamic consistency by using the
regularization (see (11)).

B. Real-to-sim Adaptation

In terms of dynamics, the realify gap ¢ is caused by a combina-
tion of inaccurate parameters in the parametric model and non-
parametric uncertainties (e.g., backlash, hysteresis, etc). The
reality gap ¢ regarding the nonlinear dynamics of a multi-body
system can be decomposed into a parametric modeling error & f
and non-parametric modeling error dg as follows:

6 = 5f(it,ﬁt;(:)+ 0g(X¢, i)
—_———

Parametric Error

(&)

Non-Parametric Error

where the system parameters ¢, the estimated states X, the
control effort {i, and time ¢. To compensate for the error caused
by & f and 64, we leverage the SysID and GPs, respectively.

In this work, we handle the errors 6f and 0§ separately,
ensuring that each error is corrected in its own step rather than
optimizing both simultaneously. Note that this approach focuses
on reducing the reality gap for arobot itself without considering
object dynamics, eliminating the need for real object datasets
during training, but still leaves a reality gap in object dynamics.

IV. METHODOLOGY

Our framework consists of two distinct steps: 1) Real-to-Sim
Adaptation aimed at enhancing the fidelity of the simulation via
Robot System Identification (SysID) and Gaussian Processes
(GPs); and 2) Learning the inertial parameters for an unknown
object via time-series data-driven regression model. As a pre-
liminary step for developing the end-to-end inertial parameter
estimation using a high-fidelity simulation, we assume that
the object can be perfectly held by the robotic hand, and a
single trajectory is leveraged [19]. The overview of the proposed
method is described in Algorithm 1.

A. Target System Description and Unknown Object Design

In this work, we utilize a four degrees-of-freedom (DoF)
manipulator of a wheeled humanoid, SATYRR [1], to hold and
shake an object. To focus on manipulation part, we fix its torso
to minimize the effect of the dynamics of whole-body SATYRR.
Inspired by the previous work [2], our object is designed to easily
and precisely calculate the ground truth inertial parameter of
various objects. This object consists of a combination of three
cuboids, ten-cylinder holes, and steel weights. These weights
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Fig. 2. Customized Object To Get Ground-Truth Inertial Parameters.
Depending on the location of the weights, the object can be represented as a
barbell(3), hammer(8), etc. Right side image shows a sample of an object(3)
with ground truth inertial parameters. The CoM is defined based on a central
fixed coordinate system.

can be placed in ten different locations as depicted in Fig. 2. The
ground truth of inertial parameters can be calculated based on
the moment of inertia, the density of each weight, and the size
of each cuboid.

B. Real-to-Sim Adaptation

1) Offline Robot System Identification: The goal of SysID is
to minimize the discrepancy between a source data Xg and a
target data Xt by searching for more realistic robot’s system
parameters ¢ in a simulation. The cost function can be some
distance function d(-, -) over a dataset of m samples where T’ is
the length of each sample (4). We chose the mean square error
(MSE) as a d function that is commonly used in SysID [5].

m T
o e 1 t wt
E= argcmm — E E d(Xg, X7). 4)

i=1 t=1

The optimal parameter ¢* can be chosen by solving the (4) and
we utilized the particle swarm optimization (PSO) algorithm due
to its global search ability and fast convergence speed. In this
work, data X € R® contains position ¢ and velocity ¢ in four
joints of the manipulator in SATYRR. The parameters ¢ € R®
to be optimized contain joint damping

d; € R* and link mass m; € R*. These parameters are cho-
sen based on the major components that impact the dynamics.
The center of mass and inertia tensor are determined using the
CAD file, after setting the material and the coordinate center.
To create a realistic simulation environment, we set the PD
controller gains (K, € R* K4 € R*) based on the real-world
gains used for SATYRR, with a control frequency of 400 Hz for
both simulation and real-world scenarios.

2) Non-Parametric Dynamics Modeling via Gaussian Pro-
cesses: To model the reality gap caused by non-parametric mod-
eling error §g(X¢, (i), such as nonlinear friction and backlash,
we leverage Gaussian Processes (GPs). GPs offer the benefit of
sample efficiency and the potential to construct a wide range
of functions without assuming a specific functional form [23].
Given the different scales between joint position and velocity,
we employed separate GP regression models to accurately depict
the residual errors for joint position and velocity, respectively.
(e.g., output of GPs y = X1 — Xg and Xg is acquired from
a simulation f(-;¢*)eim Which utilizes the optimal parameters
¢” from SysID). The non-parametric dynamics model g can be
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Algorithm 1: Procedure of Learning Inertial Parameter Es-
timation of unknown Object via Real-to-Sim Adaptation
Phase 1 Robot System Identification
Input: Target data D4 (Free case - not holding an object)
Initialize: ( e R, L€ R
while until EE converges) do

XT = {q :439-‘1:4} 7l D’T
Xs = {§"*, ¢} + F(: Q)i t> IssacGym
Calculate the Loss function £ > (4)
Update parameter ¢ via particle swarm optimization
Return: (*

end while

Phase 2 Gaussian Processes
Input: Gaussian Processes G'P, Simulation with SysID
applied f(-; {*)sim. and Dy
do
Xr = {¢"4,4"} Dy
Xs = {61:4: qué} — f(5¢*)eim
Calculate non-parametric modeling error g(X, 11, )
(9(%,1,t) = X1 — Xs)
Optimize a GP regression model using GPy.
Save a GP model GP(u, k)
Apply the GP(p, k) to the simulation f(-; C*)eim
Return: f(-;¢*, GP)eim
end
Phase 3 Learning Inertial Parameter of an Object
Input: Ds < f(-;C%, GP)sim, Lan
while until (£, converges) do
Training a time-series data-driven model Section IV-C3
to minimize the loss Lysy > (11)
end while

> (5)

formulated with GPs as follows:

9(Xe, ) = GP(u(Xe, Ge), b(Re, g, Xpr, 0y)). (5)
here, the individual terms represent the state X, control effort
{1, and time ¢. The GPs GP(u, k) is expressed with a mean
function p and covariance function k£ where the mean p(X¢, Git)
represents the expected value of the process at each point in
the input space and the covariance function k(X¢, i, X}, 11},)
describes the correlation between outputs for two distinct sets of
inputs in the function g. We constructed and optimized the GP
regression model using the GPy library. Radial Basis Function
(RBF) kernel (both variance and length scale set to 1 for position
and 50 for velocity) is utilized. The RBF kernel parameters were
manually selected until the reality gap was sufficiently reduced
(see Fig. 5).

C. Learning Inertial Parameter of Unknown Object

1) Dynamic Trajectory Planning and Manipulation Control:
Periodic excitation trajectories, often based on Fourier series and
trigonometric functions, are commonly used for dynamic model
identification [2], [5], [24]. While effective, they can be time-
consuming (e.g., 35 seconds in [2]). Inspired by how humans
shake objects to identify them (with decreasing amplitude and
frequency over time), we designed the dynamic trajectory as
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Fig. 3. Input Data Distribution in Training Dataset. The graphs shows
the mean and standard deviation of joint trajectories in training dataset. This
represents how different object’s dynamics properties affect the trajectories of
joint position and velocity for each joint.

follows.

T/At

F(t) = hig — (hireq — liea)t/T,  &(T) = At > f(7)
=0

(6)
w(t) =3 (1 N (?)) ™
X () = asin(2rg(T))w(t) ®

where the frequency f(t) starts at hgeq and linearly decreases
to lfeq. The signal phase, ¢, is computed as the cumulative
sum of the frequency, scaled by the time step. The sinusoidal
trajectory X (¢) has an amplitude scaled by a factor «v and is
modulated by a Hann window, w(t), for smooth transitions.
The trajectory X (¢) is applied to the end-effector in = and
y axis (T' = 0.5, x-axis: hfreq = 5,lfreq = 1, @ = —1, y-axis:
hfreq = 3,lfreq = 1, = 5). The numerical inverse kinematics
using a pseudo-inverse Jacobian of the 4-DoF manipulator is
employed to control the manipulator of SATYYR, which is
defined as

Fh=(FLAnat,

Odes = 0 + AJte. &)
where JT represents a pseudo-inverse Jacobian leveraging a
Damped Least Squares method, aiding to improve stability near
a singular configuration and dealing with noisy data or slight
modeling errors by utilizing regularization (see Fig. 3). The
symbol A is damping, « is a hyperparameter, and € = Tg4.c — T
is task-space position error.

2) Database Construction: To build a learning-based object
dynamics estimator, we constructed the M number of source
dataset Dg = (Xg,yis)fil{M = 5000) using the IsaacGym
simulator, with 5,000 environments running simultaneously. To
directly apply the pre-trained estimation model to the SATYRR
without further manual tuning, we employed a more realistic
simulator to acquire the dataset Dg. All agents in the simulator
track the desired trajectory (8) while holding different objects.
The estimator takes as input the concatenated vector Xg and
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outputs estimated inertial parameter yg as:

gl @ g o af 42 .8 g T
Xs = g1 %or s G Yo s G Goors G G2

YS:[msczscy:cz:In:z:I IZ]T (10)

yyr iz
where g;.- and g;.- are the history of joint position and velocity
of each joint, respectively. The term yg denotes the vector of
inertial parameters. Each parameter component is either 1) ran-
domly generated with a uniform distribution, or 2) determined by
adjusting the weight location, length scale (width and height of
each cuboid), and density. After random generation, we verified
their mass and ensured the inertia tensor satisfies the triangular
inequality for physical feasibility. We simplify the problem
by focusing on estimating the diagonal terms in the inertia
matrix considering a more tractable analysis while retaining the
essential physics of the problem. To collect real-world data for
validation, the wheeled humanoid robot SATYRR [1] tracked a
pre-recorded shaking motion generated in simulation (see (9)). A
total of ten different objects were involved, along with a free case
where no object was held. For each object case, the trajectory was
applied to the SATYRR five times (i.e., a total of 45 real-world
dataset were obtained for the validation in the experiment).

3) Training Time-Series Data-Driven Model With Dynamic
Consistency Regularization: To learn the inertial parameter
bmg, we trained a time-series data-driven regression model (e.g.,
1D-CNN) using 4000 samples of the training set in dataset Dg
(500 for validation set and 500 for test set). Dynamic consistency
is implicitly taken into account by applying the regularization
term in the loss function to estimate more physically reliable
parameters. The total loss function considering dynamic consis-
tency is defined as

T A
Lyn = wi— D (v5 — 95)% + w2l + wsLlposYs

i=1

n 3 3
L) = % > > RelU (I; =N I;;)
k=1

i=1 j=1
o DB o ek
Lpos =~ _ |min (¥5(k),0)[, k=[0,4,5,6]  (11)
i=1

where the total loss £y combines mean square error, triangular
inequality loss Ly;(I()), and negative output penalization loss
Lpos¥s. The term wy , wo, and wy are the weight of each term and
are decided by manual tuning considering the importance of each
parameter. We have empirically observed that neural network is
capable of learning inertial parameters without accounting for
the varying scales of these parameters. Our 1D CNN architecture
processes sequential data with four 64-filter convolutional layers
(kernel size 3, stride 1, padding 1), ReLU activations, and a
MaxPooling layer (kernel size 2). It concludes with a dense
network transitioning from 512 to 128 neurons, leading to the
specified output size.

V. EXPERIMENT

The proposed learning-based inertial parameter identification
method is verified with a 4-DoF manipulator of SATYRR [1]
in both a simulation and the real world. The experimental setup
is illustrated in Figs. 1 and 2. Pre-defined trajectory, SATYRR
robot, HMI, and ground-truth of inertial parameters are utilized.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

We conducted three major experiments in total. Details are
described below.

A. Real-to-Sim Adaptation

The main purpose is to validate our sim-to-real adaptation by
answering two questions: (1) How effectively can SysID and
GPs compensate for parametric and non-parametric modeling
errors to reduce the reality gap? and (2) Does this method
generalize to test environments where object dynamics are taken
into account? We evaluate the real-to-sim adaptation ability
by comparing six separate baselines: (a) PureSim: simulation
using default physics parameters and PD controller with almost
perfect tracking performance (b) Sim+ActNet: using Actuator
Network [22] instead of PD controller. We collected a dataset
from SAYTRR and trained the Actuator Network parameterized
with f defined as
3=1,2,3,4 (12)
where desired joint position and velocity ¢g* and ¢*, actual joint
position and velocity ¢ and ¢, and controller gain K, and K.
(c) Sim+GPs: applying the GPs into PureSim (d) Sim+SysID:
applying the SysID into PureSim (e) Sim+SysID+GPs: Apply-
ing the GPs to (d) (f) ActNet+Gps: applying the GPs to (b).
The mean sqaure error (MSE, (4)) is used as an evaluation
index. Note that the GP model is trained exclusively on data
without objects, yet it’s tested under conditions where the robot
interacts with objects. This tests the adaptability of the optimized
SysID and GPs to unseen dynamics, evaluating their capability to
accurately estimate object inertial parameters in new scenarios.

Ty he{q;, qj, ql;! q.'j: KP'J Kd):

B. Inertial Parameter Estimation

This experiment addresses the following questions: (1) How
fast and accurate is our framework compared to previous meth-
ods for estimating the inertial parameters of unknown objects?
Which neural network models are most suitable? (2) How
does our method perform in real-world scenarios, and does our
adaptation method improve estimation performance? (3) How
does our method compare to previous works, and can it be
applied to a more generalizable object dataset? We evaluated the
performance of our framework against the following baselines:
(1) Ordinary Least Squares (OLS) [3] and (2) Weighted Least
Squares (WLS) [24]. Since these traditional methods require a
force/torque sensor, we used 45 samples from the simulation
test dataset to directly assess force and torque values. For a
fair comparison, we used the open-source MATLAB code pro-
vided by the authors [3], [24]. We also adopted TuneNet [16],
DROPO [13] and OSI [20] as learning-based baseline methods.
The mean absolute error (MAE=|7; — vx|) and the normalized

MAE (NMAE= 17 | %) are leveraged as evaluation

indexes which are commonly chosen in this field [7], [9].

C. Control Task Experiments

How beneficial are the identified inertial parameters for im-
proving model-based controller performance, even with imper-
fect estimation accuracy? To verify this, we conducted real-
world manipulation and locomotion tasks using a SATYRR
robot holding a 1.5 kg drill (see Fig. 7). In the manipulation task,
we assessed the robot’s trajectory tracking with the object, which
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Results of Real2Sim Adaptation. The graphs depict the mean and standard deviation of the normalized Mean Squared Error (MSE) between trajectories

derived from simulation and the real world, employing min-max normalization for straightforward comparison. The 45 target objects, which are not considered in
the optimization process, are utilized for evaluation. The numbers on the graph represent the MSE. Based on the normalized total MSE outcomes, Sim+SysID+GP
exhibits the smallest reality gap. The MSE for Sim+SysID is also notably low, showing only a minor performance gap compared to Sim+SysID+GP. This is
because the error of parametric model has a large portion in causing the reality gap. The error from non-parametric modeling can become substantially larger in

scenarios involving contact.
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Fig. 5. Trajectory Comparison Results Obtained From Real World and
Simulation. The trajectory produced by Puresim is closely located with the
desired trajectory (black). First, SysID is applied to PureSim, followed by
GP to SysID to handle the errors in parametric and non-parametric modeling,
respectively. Each step brings the simulation trajectory closer to the target
trajectory (red). In the case of Sim+SysID+GP, all joint trajectories in position
and velocity are almost perfectly matched with the actual trajectories.

is essential for warehouse tasks. For locomotion, we evaluated
the robot’s proficiency in transporting the object.

VI. RESULTS AND DISCUSSION

A. Real-to-Sim Adaptation

As shown in the Fig. 5, the SysID and GPs contribute to
reduce the reality gap in both position and velocity trajectories.
In the case of GPs, it learns not only non-parametric error but
also noise in real data.

Although we successfully reduced the reality gap in the robot
system, residual dynamics errors caused by the object’s dynam-
ics still remain. The results illustrated in Fig. 4 shows that our
method, developed without object dynamics information, per-
forms effectively even in a situation where new object is applied.
Implementing the SysID on a PureSim environment signifi-
cantly diminishes the reality gap for all examined object cases.
Note that none of objects are utilized in optimizing the SysID
and GPs. Overall, Sim+SysID+GP exhibits the smallest reality
gap in comparison to other approaches. It has been observed that
incorporating SysID contributes to a more generalizable adap-
tation from real to simulated environments. This is evidenced
by the superior performance of Sim+SysID+GP over the use of
Sim+GP, even though Sim+GP also perfectly reduce the reality
gap within the training set. This supports that the parametric
model can be more generalizable than non-parametric model
using the GPs model. While the Actuator Network demonstrated
potential in narrowing the reality gap [22], it fell short in aligning
the trajectories between the simulated and real environments.
This discrepancy suggests that while the Actuator Network can

help RL algorithms learn more realistic actions based on more
accurate state information, it does not guarantee a complete
convergence of trajectories across the two domains. The similar
result can be observed in [21].

While the Sim+SysID+GP approach has shown effectiveness
in closing the reality gap across different objects, it still requires
enhancements in several aspects. The real-to-sim adaptation
relies on a single trajectory, making its effectiveness highly
dependent on the selected trajectory. This constraint is par-
ticularly pronounced due to the reliance on GPs [19] and the
trajectory used for SysID. It is well-known that the performance
of data-driven models is significantly influenced by the training
data distribution. Exploring and combining physics-based and
data-driven models could be an interesting direction for future
research.

B. Inertial Parameter Estimation

1) Benchmark Results With Simulation Dataset: We vali-
dated the proposed inertial parameter estimation framework
against conventional methods in terms of accuracy, speed, and
dynamic consistency (see Fig. 6). The simulation dataset is
employed to obtain crucial measurements such as acceleration,
torque, and force at the object level, which are fundamental
elements in conventional methods. The proposed estimator us-
ing a 1D-CNN achieved the highest accuracy in estimating
the inertial parameter of unknown objects with SATYRR. As
shown in Table III, the total estimation time for our method
is around 0.1 second including generating a trajectory (e.g.,
arm shaking motion). On the other hand, we observed that the
existing methods such as OLS ans WLS took more time as
they depend on a long persistently exciting signal, highlight-
ing our method’s potential for real-time object characteristic
identification. The 1D-CNN surpassed LSTM and TCN in es-
timation performance, efficiently capturing local dependencies
via Convolutional filters. This is because the distinct behaviors
associated with dynamics are likely concentrated within specific
segments of the entire trajectory. This localization makes the
1D-CNN particularly adept at identifying these critical features
for enhanced performance.

2) Estimation Results With Real World Dataset: In the
real-world estimation of inertial parameters (see Table I),
both Sim+SysID and Sim+SysID+GP models exhibit supe-
rior estimation performance, underscoring the effectiveness of
real-to-sim adaptation. While the results are not as high as
those achieved in simulations (shown in Fig. 6), they surpass
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-CNN showed most accurate estimation performance compared to other baselines.

The TuneNet exhibited poor performance in estimating mass, while demonstrating comparable performance in estimating the center of mass (CoM) and inertia.
Learning-based methods generally outperformed conventional least-squares methods, highlighting their potential to achieve fast and accurate parameter estimation.

TABLE I
RESULTS OF INERTIAL PARAMETER ESTIMATION OF UNKNOWN OBJECTS IN THE REAL-WORLD

Mean Absolute Error (MAE) Normalized Mean Absolute Error (NMAE)
Inertia Mass CoM x [CoM y| CoM z Ixx Iyy Izz Mass |CoM x CoMy CoMz| Ixx Iyy Izz Physically
Parameters (kg)  (m) (m) (m) |(kgm2) (kgm2)|(kgm'2) | (kg) | (m) (m) (m) |(kgm'2) (kgm'2)|(kgm'2)| | Feasibility
Sim 0286 0.004 | 0.039 | 0023 | 0.002 | 0.004 | 0.002 055 460 | 236 | 092 1.20 725 1.73 0/45
+ActNet+GP | (0.18) | (0.001) |(0.015)] (0.001) | (0.003) | (0.003) | (0.001) |(0.24)] (1.96) [(20.44)| (0.06) | (1.38) | (5.00) | (1.24)
Sim 0216 | 0.002 | 0.011 | 0.001 0.001 | 0.001 | 0.001 041 | 1.63 | 468 0.05 0.66 22 0.54 8/45
+ SysID  |(0.13) | (0.001) |(0.008)|(0.0001)| (0.001) | (0.001) | (0.001) |(D.21)] (1.02) | (4.90) [(0.005)| (0.6) | (1.96) | (0.5)
Sim+SysID [0.293 | 0.001 | 0.010 | 0.0009 | 0.001 | 0.0005 | 0.001 063 | 1.09 366 | 0039 | 086 0.78 0.94 1/45
+GP (0.35) | (0.0004) | (0.008) | (0.001) | (0.002) | (0.001) | (0.002) |(0.53)| (0.44) | (3.51) | (D.04) | (0.9) | (1.16) | (0.92)

The numbers (e.g., A (B)) represent the mean (A) and standard deviation (B) of the estimation performance of our estimator (1D-CNN case) for nine different objects, as shown in
Fig. 2 of our manuscript. We excluded the results of the PureSim, Sim+GP, and Sim+ActNet models due to overfitting. The physically feasible value indicates the rate of non-feasi-
ble outcomes out of the total number of trials (zero means all outputs are physically feasible).

TABLE I
BENCHMARK RESULTS OF PARAMETER ESTIMATION IN THE REAL-WORLD

Mean Absolute Error (MAE) Normalized Mean Absolute Error (NMAE)

Inertia Mass CoM x |[CoMy CoMz Inxx Iyy Izz Mass CoM x|CoM y CoM z  Ixx Iyy Izz | Physical Inference
Parameters | (kg) (m) (m) (m) (kgm'2)|(kgm'2) (kgm'2) | (kg) (m) | (m) (m) (kgm'2) (kgm2)|(kgm"2)| Feasible Time (s)
Ours 0,176 | 0.013 [ 0.010 | 0.026 | 0.002 | 0.005 | 0002 | 0357 | 1341 | 2749 [1.045 [ 1.352 | 1037 | 1307 245 0.102

(SysID+GPs)| (0.16) | (0.003) |(0.009)|(0.0007)|(0.0009)|(0.0015)| (0.001) |(0.274)|(3.803)|(4.904) | (0.03) | (0.999) | (4.997) | (1.036) !
OSI 0243 0.049 [0.032 | 0.053 | 0.052 | 0.041 | 0075 | 0478 [49.03 | 1855 | 2.140 | 29.41 | 8048 | 4476 0/45 0.100
SysID+GPs |(0.172)| (0.011) |(0.013)| (0.019) | (0.007) | (0.005) |(0.0067) |(0.277)|(11.89)| (15.6) |(0.785)| (12.27) | (32.68) | (19.81) ’
TuneNet 03 | 0.004 [ 0.0I5 | 0.025 | 0.0008 | 0.0007 | 0.0008 | 0.744 | 4828 [ 9.425 | 1.020 | 0.368 | 1.474 | 0.355 0/45 7.8
(Obs) (0.2) |(0.0001)((0,007)|(0.0004) [(0.0004)|(0.0006)|(0.0001) |(0.490)| (0.15) |(7.704)|(0.016)| (0.196) | (0.859) | (0.16)
DROPO 034 | 0.009 | 0.014 | 0.026 | 0.0025 | 0.0025 | 0.0024 [ 0.965 | 9.812 | 6.056 | 1.061 | 1.444 | 4697 | 1.438 | 11745 61
(0.21) | (0.001) [(0.009)] (0.009) ((0.0008)|(0.0001)((0.0009) |(0.889)|(1.031)|(4.428)|(0.380)| (0.969) | (4.39) | (1.014)

The numbers represent the same meaning in Table I. Here, we trained our method with a new dataset, where each inertial parameter was randomly sampled with a uniform distribu-
tion, independent of the object’s shape (Testset is the same with Table 1). We employed TuneNet (Obs) with three iterations. For DROPO, the range bound of each parameters are
defined considering the maximum weight of the target object (e.g, mass = [0.0, 1.5]). We used the default hyperparameter settings, except for the budget (e.g., 100), which was

adjusted to consider estimation speed.

TABLE III
RUNTIME BENCHMARK IN SIMULATION

Method OLS(S) WLS(S) OLS(L) WLS(L)|LSTM | TCN 1D-CNN
Time (s) [ 0525 | 056 [ 1009 | 104 | 0102 [0.105] 0.102
All learningbased methods demonstrated rapid estimation speeds, with runtimes around 0.1
second. Traditional methods take much time due to the persistently excitation signal.

traditional methods in estimating the CoM and inertia. In con-
trast, the PureSim, Sim+GP, and Sim+ActNet models demon-
strate overfitting to simulation data, which is influenced by
their limited sim-to-real adaptation ability. (see Fig. 4). We ob-
served that using a GP slightly improves estimation performance
compared to Sim+SysID, likely because GPs are not trained
with specific object information, limiting their generalization.
Additionally, the noise inherent in the signals captured by the
GPs could impede the extraction of crucial features needed
for accurate estimation. Despite applying soft regularization
to ensure physically feasible solutions, 44 out of 45 solutions
of Sim+SysID+GP meet the criteria for physical consistency,
whereas most solutions from existing methods using non-
constrained optimization did not satisfy physical consistency.
3) Benchmark Results Using More Generalizable Dataset:
We reported benchmark performance comparison results
in Table II. Our proposed has no noticeable decrease in
performance even when trained on a more generalizable dataset

with uniformly and independently selected parameters. Training
with a uniform distribution for each parameter independently
helps estimate mass due to its wide coverage, but is less effective
for estimating the center of mass (CoM) and inertia, which are
more influenced by the object’s shape. Our method achieves
comparable accuracy to baselines like TuneNet and DROPO,
which require multiple iterations for parameter estimation, but
ours operates significantly faster. While additional iterations can
enhance accuracy, they also increase inference time, rendering
them unsuitable for real-time applications. Since we handle the
adaptation entirely offline and separate it from the actual eval-
uation step, it provides advantages in both speed and accuracy.
Specifically, we reduce the reality gap of the robot system offline
and then train a data-driven estimator on this adapted model. In
contrast, other methods iteratively tune simulation parameters
to reduce the reality gap.

C. Control Task Experiments

1) Manipulation Task: After estimating an object’s inertial
parameters, we use these parameters for gravity compensation,
effectively demonstrating the benefits of explicit parameter
utilization. As illustrated in Fig. 8, there is a notable 36% perfor-
mance enhancement along the y-axis, where gravity is exerted.
Transitioning to a controller based on impedance control or
inverse dynamics, which rely more heavily on model accuracy,
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(a) Manipulation task
with holding a drill

(b) Locomotion task with holding
a drill

Fig. 7. Control Task Experiments. The recorded motion obtained from a
Human machine interface (HMI) is used as a desired trajectory in a manipulation
task. The forward and backward driving tests were conducted using HMI (refer
to the attached video).

Angider Position [rad]
Anguiar Valocity

Time {sac]

(b) Locomotion Task Result

Time [sac]

(a) Manipulation Task Result

Fig. 8. Results of Task Experiments. Integrating the estimated inertial pa-
rameters of an object with a baseline controller significantly improves tracking
performance for both manipulation and locomotion tasks. The estimated param-
eters are as follows: yg = [1.1, —0.008, 0.1, 0.025, 0.005, 0.0007,0.005] .

promises even greater performance improvements in handling
dynamic environments and interactions.

2) Locomotion Task: We integrated the estimated parameters
into the baseline controller by recalculating the SATYRR robot’s
equilibrium point, considering the combined CoM and mass.
This updated equilibrium point was used as the desired pitch
angle in an LQR controller, resulting in a 65% improvement in
position tracking (Fig. 8). Even greater performance gains can
be expected with model-predictive or whole-body controllers,
which rely more on model accuracy.

VII. CONCLUSION

In this letter, we propose a fast online learning-based frame-
work to identify the inertial parameters of unknown objects,
enhancing the accuracy of model-based controllers and making
them more suitable for real-time applications. We introduce a
real-to-sim adaptation that combines Robot System Identifica-
tion and Gaussian Processes to reduce the reality gap caused
by parametric and non-parametric modeling error, respectively.
The adaptation method maintained effective performance even
with new objects attached, and our estimation framework is
significantly faster than other methodologies. Exploring the
impact of accurate system parameter estimation on RL policy
would be an interesting future research direction.
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