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Attentiveness Map Estimation for Haptic
Teleoperation of Mobile Robot Obstacle Avoidance

and Approach
Ninghan Zhong1 and Kris Hauser2

Abstract—Haptic feedback can improve safety of teleoperated
robots when situational awareness is limited or operators are
inattentive. Standard potential field approaches increase haptic
resistance as an obstacle is approached, which is desirable when
the operator is unaware of the obstacle but undesirable when
the movement is intentional, such as when the operator wishes
to inspect or manipulate an object. This paper presents a novel
haptic teleoperation framework that estimates the operator’s
attentiveness to obstacles and dampens haptic feedback for
intentional movement. A biologically-inspired attention model is
developed based on computational working memory theories to
integrate visual saliency estimation with spatial mapping. The
attentiveness map is generated in real-time, and our system
renders lower haptic forces for obstacles that the operator is
estimated to be aware of. Experimental results in simulation show
that the proposed framework outperforms haptic teleoperation
without attentiveness estimation in terms of task performance,
robot safety, and user experience.

Index Terms—Telerobotics and Teleoperation, Haptics and
Haptic Interfaces, Collision Avoidance

I. INTRODUCTION

TTELEOPERATION enables human operators to control
mobile robots in complex environments in which human

judgment and adaptability are necessary. However, operators
may not be aware of obstacles, and proximity-based haptic
feedback is a popular approach to inform an operator of ob-
stacles that pose a risk of collision [1], [2]. Experiments have
shown that haptic feedback is well-suited for alerting users
to conditions that they are not visually aware of and require
immediate response [3]. A disadvantage of such feedback is
that it can distract or annoy an operator who is alert and
attentive to an obstacle. Moreover, for mobile manipulators
that must approach or make contact with an obstacle, such as
reaching for items on tables and shelves or pushing furniture,
we do not wish for the robot to avoid contact, but rather
unintentional contact. For intentional movements toward an
obstacle, repulsive haptic forces would “fight” against the op-
erator, leading to control contention and frustration. Moreover,
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haptic proximity alerts such as vibrations would annoy and
distract the operator. Experiments have shown that contentious
haptic feedback both increases cognitive load and degrades
task performance [4], [5]. Recent studies have addressed this
issue using intent prediction, such as predicting intent from a
predefined task set [6] or as a goal location [7]. However, it is
difficult to infer intentions in open-world scenarios where the
set of possible tasks is hard to define and intent is ambiguous.

This paper introduces a new haptic teleoperation approach
that provides haptic feedback to avoid unintentional approach
toward obstacles, while allowing intentional approach toward
obstacles to be unimpeded. The method is based on the
premise that human attention is easier to model than intent,
and attention-modulated haptic feedback is sufficient to avoid
control contention during intentional obstacle approach. Our
system is based on an attentiveness map estimation (AME)
that continuously updates in a scalar field to approximate
how attentive the human is to all the obstacles around the
robot. Our biologically-inspired attention model is composed
of saliency estimation [8], which estimates how likely is the
operator to notice the obstacle at a point in time, and a working
memory model [9], which estimates how likely the operator
remembers obstacles currently being seen and previously
seen. It enables operators to intentionally approach obstacles
while experiencing lower contention than standard potential
field approaches and also provides haptic feedback to avoid
obstacles that operators have not seen or may have forgotten.
We reduce the haptic potential of an obstacle proportionally
to its estimated attentiveness. The model does not require the
environment to be known in advance, is updated in real-time,
and is applicable to any mobile robot equipped an RGB-D
camera.

The method is evaluated in a human subjects study with N =
21 subjects teleoperating a wheeled humanoid in simulated
environments involving mixed obstacle avoidance and obstacle
approach. Results demonstrate that the proposed framework
outperforms haptic teleoperation without our attentiveness
mapping approach. Specifically, operators complete tasks more
efficiently, with fewer collisions, experience lower contention,
and rate the system more favorably on subjective metrics.
Additional examples are found in the supplemental video.

II. RELATED WORK

Haptic feedback is widely used for warning signals and
shaping the user’s control to aid in obstacle avoidance for
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Fig. 1: Diagram of the AME model. Saliency Module uses the the RGB-D image to generate a saliency map. Mapping Module computes a
top-down occupancy map and pairs currently visible points with saliency scores. Visible obstacles enter Memory Encoding and out-of-view
obstacles undergo Memory Decay in the Memory Module, which updates the attentiveness map. Timesteps are exaggerated for illustration.

mobile robots [10], [11], [12]. The most common strategy to
avoid control contention during intentional obstacle approach
is to predict the operator’s intended task (e.g., a goal position)
and shape haptic feedback accordingly. The techniques differ
in how intent is predicted and how feedback is shaped. Intent
prediction is usually accomplished by modeling how the oper-
ator input signals map to one or more possible goals. Gottardi
et al. [13] use maximum entropy inverse optimal control to
predict the probability that a goal out of N candidate goals
is the next goal position. An artificial potential field (APF) is
constructed such that robot is repelled from obstacles while
being attracted toward the goals, where attraction scales with
the predicted probabilities. Gao and Zollner [6] formulated
intent as a finite set of tasks, which includes Object Bypass (i.e.
obstacle avoidance) and Object Inspection (i.e. obstacle ap-
proach), and proposed a Gaussian Process classifier that takes
as inputs the operator commands and environment information
to predict the current task. They did not, however, demonstrate
their approach in an integrated haptic teleoperation system.

Finite-task approaches are limited by a dependence on prior
knowledge of the environment, a known set of tasks, and/or
teleoperation data collected in the deployed environment.
Other researchers have inferred the intended goal as a con-
tinuous variable, e.g., using the operator’s velocity reference
input and a look-ahead time [14], [7] to predict a goal position,
or using a Hidden Markov Model to predict the intended
movement direction and distance [15]. In these prior works, an
RRT-style planner is used to find an obstacle-free path toward
the predicted goal, and the haptic feedback guides the operator
along the path while avoiding obstacles. These continuous goal
inference approaches cannot represent task ambiguity in the
inferred goal, and this could lead to operator surprise and
control contention when the inference is incorrect. We expect
these issues to be most severe with inattentive operators,
novice operators, movements toward obstacles that are outside
of the operator’s field of view, or exploratory movements that

do not call for strong goal-seeking behavior. In contrast, our
proposed model takes a perception-driven approach based on
visual attention rather than the operator’s input. We show that
modeling what the operator sees and is attentive to allows
our method to identify which obstacles are most important to
avoid, and does not require prior assumptions or data about
the environment or the tasks to perform.

Visual attention implies the focus of mental power upon
certain objects or areas for more detailed observation and
mental processing. Saliency prediction aims to model human
visual attention as a saliency level across an image, where
high saliency areas tend to attract more attention [16]. Classic
saliency models can be classified into top-down and bottom-
up. Top-down saliency models focus on task-dependent visual
attention and require prior knowledge specific to the task and
environment [17]. In contrast, bottom-up methods focus on
low-level visual stimuli such as color, contrast, and texture that
naturally attract involuntary visual attention [8], [18]. More
recent studies leverage deep neural networks to predict visual
attention by directly learning from eye-tracking datasets [19].
To ensure adaptability across environments and tasks, our work
uses Itti’s classical bottom-up saliency model [8], which is one
of the most influential models in the field [20] and does not
rely on external training data.

III. ATTENTIVENESS MAP ESTIMATION

The key component of our system is the Attentiveness Map
Estimation (AME) model (Fig. 1). AME continuously takes
as input the RGB-D image viewed by the robot’s camera, and
estimates an attentiveness map that represents the operator’s
current attentiveness distribution across possible obstacles. It is
comprised of saliency, mapping, and memory modules, which
are described in detail here. Later, Section IV describes how
we use AME to modulate the haptic feedback.

The goal of the model is to estimate in a scalar-valued
map how likely the operator notices obstacles in their visual
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field and is aware of obstacles that were previously seen.
This requires estimating how visually distinctive obstacles are
in the current image (saliency) as well as how the operator
encodes viewed obstacles in their working memory. The
memory model assumes that attentiveness increases for salient
obstacles and decays for obstacles outside of the visual field.
Our model uses biologically-inspired methods to implement
these functions in a spatial mapping framework.

We note that saliency estimation is only a coarse approx-
imation of attention and could be improved by additional
instruments like eye tracking. Such eye gaze measurements
could easily replace the saliency module, and we leave this
option to future work.

A. Saliency Module

Our saliency module fuses bottom-up saliency detection
on RGB and depth saliency detection on the depth image to
produce a saliency map S, similar to Zhang et al. [18].

We adopt Itti’s bottom-up saliency model [8] to obtain an
image saliency map Sm from the RGB image. The claim is
that visual neurons are sensitive to a small region (center)
embedded inside a weaker and broader region (surround). To
estimate sensitivity computationally, low-level feature maps
indicating intensity, color, and orientation are calculated at
different scales and combined into a map Sm assigning each
pixel (u,v) an image saliency score Sm[u,v] ∈ [0,1]. A Python
implementation of the algorithm is used in our work1.

The depth saliency map assumes that closer regions receive
higher saliency scores, similar to Zhang et al. [18]. Assume
that Z is the depth image and Z[u,v] corresponds to the
perceptive depth of pixel (u,v), then the depth saliency score
Sd [u,v] ∈ [0,1] for pixel (u,v) is computed as:

Sd [u,v] =
zn

Z[u,v]
· z f −Z[u,v]

z f − zn (1)

where Sd is the depth saliency map and z f and zn are the
farthest and closest depth, respectively.

A final fusion step combines the image saliency map Sm
and the depth saliency map Sd together to generate the final
saliency map S. This is a linear combination of the image and
depth saliency maps, S = km ·Sm+kd ·Sd , where km and kd are
image and depth weighting factors that sum to 1, respectively.
Fig. 1 Saliency Module shows the combined effect of image
and depth saliency detections.

B. Mapping Module

The mapping module reprojects points that are currently
visible to the operator into a top-down view of the environ-
ment, and pairs these points with their associated saliency
scores. Its inputs include the camera focal length fx, fy, camera
principal point cx,cy, camera transformation [R|t] to the world
frame (e.g., computed via an IMU, visual odometry, or SLAM
system), the depth image, and the corresponding saliency

1https://github.com/akisatok/pySaliencyMap

map S. A pixel (u,v) from the depth image with depth z is
reprojected to the world frame using:xw

yw
zw

= R

z/ fx 0 0
0 z/ fy 0
0 0 z

u− cx
v− cy

1

+ t. (2)

The point is also associated with saliency score S[u,v].
Next, we discard points above the robot’s height and below

the ground plane, and drop the z-coordinate. The remaining
points represent the visible x-y coordinates in the robot
environment. They are then projected to a grid map M of
resolution β to give a set of visible grid cells Pv. β is a
tunable parameter that can be adjusted based on the available
computational power.

To calculate the saliency score of a grid cell, we take the
minimum saliency score amongst all points that are projected
to the cell. By taking the minimum saliency, we encourage the
obstacle avoidance feedback to behave more conservatively,
i.e., to respond strongly to an obstacle even if only a part of
it has low salience. Overall, the module outputs a top-down
saliency map Sv which is defined for all currently visible grid
cells.

C. Memory Module

The memory module continuously updates the estimated
attentiveness map that represents the operator’s current spatial
attention distribution. To robustly model human attention, the
memory module is formulated with a biologically-inspired
design corresponding to the Time-Based Resource Sharing
(TBRS) model [9].

TBRS is a well-known model of working memory in
cognitive neuroscience [21]. Its main idea is that both encoding
new memory and refreshing existing memory require mental
focus2, which is a limited mental resource. When mental focus
is switched to encode new memory, existing memory suffers
from a time-based decay. Further, there is a central bottleneck
that allows only one central process. Consequently, at a time,
either encoding new memory or refreshing existing memory
can take place, but not both. Originally presented as a verbal
theory, later studies [21], [22] proposed computational versions
of the TBRS model. We implement these versions using a
memory encoding component that simulates the process of
encoding new memories and a memory decay component that
handles the forgetting of memories over time.

1) From Saliency to Attention Rate: High saliency areas in
an image likely attract more visual attention [16], but due to
visual acuity being highest in the fovea of the eye, attention
cannot be paid to all salient areas of the image simultaneously
and instantaneously. To model the accumulation of attention
over time, we map saliency to a temporal increase in attention,
which we call the attention rate. The attention rate rx,y for
each visible grid point px,y ∈ Pv is computed based on the

2The term mental focus here refers to the concept of attention in the TBRS
model. In the TBRS model, attention is conceptualized as a cognitive resource
that could be focused to perform central processes. In the context of this paper,
we use the terms attention and attentiveness interchangeably, which refer to
the operator’s spatial awareness of the robot surroundings.
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associated saliency score sx,y ∈ Sv. We use a simple calculation
that normalizes saliency scores across the visible grids:

rx,y =
sx,y

∑Sv si, j
. (3)

This suffices to incorporate three effects demonstrated from
prior psychological studies: 1) visual saliency and working
memory performance are positively correlated [23], 2) high-
saliency areas suppress the memory encoding of low-saliency
areas [24], and 3) the memory resource an area receives is
relative to other areas’ saliency in the scene [25]. In other
words, salient areas receive more memory resources if they
are presented among less salient areas.

2) Memory Encoding: Following the TBRS memory model
from [22], memory encoding is formulated as an exponential
growth in [0,1] with 0 indicating no memory and 1 indicating
full current attention. Let mx,y[t] ∈ [0,1] be the attentiveness
estimation for grid cell px,y ∈M at time t. For each visible grid
cell px,y ∈ Pv ⊆ M, the attentiveness increases exponentially
toward 1, with exponent proportional to the estimated attention
rate:

mx,y[t] = mx,y[t −1]+ rx,y · c · (1−mx,y[t −1]). (4)

Here c is a memory encoding scaling factor that defines the
sensitivity of the memory encoding process. A smaller c results
in a more conservative model where the estimated operator
awareness of the visible obstacles grows slower.

3) Memory Decay: TBRS models attentiveness in areas
that are not currently visible as an exponential decay function.
While memory encoding updates visible grid cells, the decay
component updates attention for non-visible cells px,y ∈ M\Pv
according to:

mx,y[t] = (1−D) ·mx,y[t −1]. (5)

Here D ∈ [0,1] is a constant decay rate that defines the
sensitivity of the memory decay process. A larger D results in
a more conservative model where the operator is estimated to
forget recently seen obstacles faster.

We note that the TBRS model [9] provides an additional
mechanism named memory refreshing that models how hu-
mans might actively reflect on past experiences. This slows
memory decay when the human is not looking at previously
seen objects. To be conservative for obstacle avoidance, we do
not perform memory refreshing and assume that the operator’s
mental focus is always occupied with either the task at hand
or other distractions in the visual field.

D. Real-World Implementation

We implemented AME on a perception system consisting
of an Intel RealSense L515 camera and an Intel RealSense
T265 camera. The L515 camera provides RGB-D frames at
30 Hz, and the T265 camera provides odometry estimations at
30 Hz from its built-in tracking system. We use RTAB-MAP
[26] on an Intel NUC 12 Pro with a 10 Hz detection rate to
generate an occupancy map and the pose estimates. AME runs
at 10 Hz, and both occupancy map and attentiveness map have
a resolution of 2 cm. Parameters of the algorithm are set to

Fig. 2: Attentiveness map updates while approaching a wall. At-
tentiveness increases for obstacles in view and decays for out-
of-view obstacles. Brighter color represents obstacles with higher
attentiveness, leading to a reduced repulsive force.

Fig. 3: Estimated attentiveness modulates haptic feedback. Left:
the operator’s attentiveness is high around obstacle 1, resulting in
a stronger obstacle 2 repulsion f 2

rep due to lack of awareness on
obstacle 2. Right: the operator’s attentiveness is high around obstacle
2, resulting in a stronger obstacle 1 repulsion f 1

rep.

c = 50, D = 0.04, and km = kd = 0.5 as in the rest of our
experiments. Fig. 2 provides a working illustration of obstacle
attentiveness updates from the AME.

IV. HAPTIC FEEDBACK

Our haptic feedback module reduces the repulsive force
generated from obstacles that the operator is attentive to,
which has the effect that less repulsion is generated when
approaching an obstacle directly from the line of sight of
the operator, whereas full feedback is provided when the
operator backs into out-of-view obstacles or steers into ob-
stacles that suddenly appear in view. Our Attention-Modulated
Generalized Potential Field (AMGPF) extends the Generalized
Potential Field (GPF) method [10], which jointly considers
obstacle distance and relative velocity. Following GPF, for
each obstacle oi, AMGPF computes reserve avoidance time:

tres(di,vi) =
di

vi
(6)

where di is the robot’s distance to oi and vi is the relative
velocity in the direction of oi. For tsa f e as a safe reserve time
threshold, and dsa f e as a safe distance threshold, the combined
risk factor for the obstacle is:

r(di,vi) = rt(di,vi)+α · rd(di) (7)

where rt(di,vi) =
1

tres(di,vi)
− 1

tsa f e
is the temporal risk factor

and rd(di) =
1
di
− 1

dsa f e
is the distance risk factor, and are both
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lower-bounded by 0. α is a scalar that controls the balance
between temporal and distance risks. The non-modulated
repulsion from obstacle oi is computed as:

R(di,vi) =

{
1 r(di,vi)≥ 1

G
G · r(di,vi) otherwise

(8)

where G is a positive gain value to adjust field sensitivity. In
the presence of multiple obstacles, a combined repulsion is
generated by considering the risk from each obstacle.

To incorporate attention, we assume that an obstacle with
a high attention level is less likely to pose risk than an
obstacle with an equal risk factor but with a low attention level.
Specifically, assume obstacle oi is at position (xi,yi), and the
estimated attentiveness at the obstacle position is mxi,yi , the
obstacle repulsion with attentiveness estimation is:

Rattn(di,vi,xi,yi) = R(di,vi) · (1− γ ·mxi,yi) (9)

where γ is a tunable parameter in range (0,1] that dictates
how much to reduce repulsion based on obstacle attention.
This allows the system to render a light warning force even
when attention to an obstacle is full (i.e. mxi,yi = 1) or when
the attention is overestimated. Fig. 3 provides an illustration
of how estimated attentiveness modulates the haptic feedback
from each obstacle. The total repulsion from all obstacles O
is then computed:

ftotal = ∑
(xi,yi)∈O

wi · t̂i ·Rattn(di,vi,xi,yi) (10)

where t̂i is the unit vector from oi to the robot and wi is
a weight term. With a uniform weight we found that the
repulsion from small but “risky” obstacles could be canceled
by forces from large, less risky obstacles. Instead, our imple-
mentation boosts the effect of high-risk obstacles using the
nonuniform weight:

wi =
Rattn(di,vi,xi,yi)

n

∑(x j ,y j)∈O Rattn(d j,v j,x j,y j)n . (11)

where n is a tunable risk emphasis factor. A uniform weight
corresponds to n = 0, while in our setup, we chose n = 1.

A. Implementation and Illustration
Based on preliminary rounds of testing and informal feed-

back from the operators, γ = 0.65 is chosen. Fig. 4 illus-
trates the effect of AMGPF compared to GPF. To compare
the methods, we use the same recorded trajectory and plot
the feedback forces that would have been generated. In the
approach segment (Fig. 4, left), the robot passes by a trash
bin and approaches the target whiteboard. GPF generates
strong repulsive feedback when approaching the target, while
AMGPF generates about half as much feedback, estimating
that the operator is attentive during approach. The feedback
does not drop down to zero, as specified by the parameter γ .
In the leaving segment (Fig. 4, right) the robot backs away
from the target, running a risk of colliding with the chairs that
are out-of-sight of the camera. Both AMGPF and GPF render
strong haptic feedback during backing up to assist collision
avoidance and moderate feedback to steer around the corner.

Fig. 4: Haptic feedback forces, indicated by red arrows, of AMGPF
(ours) vs standard GPF along an evaluation trajectory. The trajectory
is split into approach (left) and leaving (right) segments. The higher
estimated attentiveness to the target location during approach causes
AMGPF to reduce repulsive forces. (Best viewed in color)

Fig. 5: Simulated SATYRR robot and experiment setup

V. HUMAN SUBJECT EVALUATION

A. Experiment Setup

We conduct experiments on a simulated wheeled humanoid
robot performing navigation and mock manipulation tasks. The
platform is the wheeled humanoid robot SATYRR (Fig. 5,
left) [27], and the robot’s dynamics and interactions with
obstacles are simulated in the MuJoCo physics simulator.
Subjects observe a simulated first-person view from the robot,
and another monitor displays instructions (Fig. 5, right). The
robot is operated via a haptic control device that provides 3-
DOF force feedback (Novint Falcon).

A vertical z-axis damping force feedback is constantly
applied to restrict the operator to manipulate the haptic device
in the x-y plane. The device’s position along the x-axis and the
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TABLE I: Experimental results (N = 21) comparing AMGPF, GPF, and LH. The significance of the results is indicated by “***”, “**”, and
”*“ if respectively p ≤ 0.001, p ≤ 0.01, and p ≤ 0.05. ↑ indicates higher is better; ↓ indicates lower is better.

Models Completion time↓ (s) Collisions↓ Total distance↓ (m) Average speed↑ (m/s) TLX↓ Average force↓ (N)

Average AMGPF (Ours) 162.3±4.9 0.56±0.12 54.11±0.82 0.372±0.011 36.78±1.86 5.11±0.00
GPF 181.8±5.9 0.67±0.18 55.82±1.03 0.342±0.010 45.49±1.87 6.93±0.01
LH 167.9±6.4 1.81±0.31 53.54±0.69 0.366±0.012 34.66±1.61 2.40±0.00

ANOVA F-Score 12.5449 9.5770 2.8758 3.1802 20.0867 464.1455

ANOVA p-value 0.0001∗∗∗ 0.0004∗∗∗ 0.0681 0.0523 < 0.0001∗∗∗ < 0.0001∗∗∗

Post-hoc p-value AMGPF v. GPF 0.0433∗ 0.9339 - - 0.0018∗∗ < 0.0001∗∗∗
AMGPF v. LH 0.7635 0.0002∗∗∗ - - 0.6792 < 0.0001∗∗∗

GPF v. LH 0.2084 0.0008∗∗∗ - - 0.0001∗∗∗ < 0.0001∗∗∗

Fig. 6: The two virtual environments used for evaluation. From the
robot’s initial position (circled in red) it must reach the green goal
region after approaching each working area (blue) and remaining
inside for 15 s to perform a simulated task. (Best viewed in color)

y-axis are mapped to the target forward velocity and angular
velocity for the robot, respectively. To help the operators
stabilize the robot, a light damping force toward the zero
position is constantly applied. We incorporated a deadband to
prevent unwanted robot movements from unintentional small
displacements, and outside of the deadband the position is
mapped linearly to the desired velocity. The target velocities
are fed into a Linear Quadratic Regulator (LQR) controller to
determine wheel torques, and a wheeled inverted pendulum
(WIP) system is used to stabilize the robot’s pitch.

B. Experimental Procedures

We compare the proposed attention-modulated haptic sys-
tem (AMGPF) against two baseline systems. The first baseline
provides haptic feedback but does not modulate feedback
strength using attentiveness estimates (“vanilla” GPF). The
second baseline, Low-Haptic (LH), is a system that does not
render haptic feedback for obstacle avoidance, but only the
light spring damping force toward the device zero position.

For each trial, the subjects are asked to control the robot
to approach each of three blue working areas and reach a
green goal region, as shown in Fig. 6. At each of the working
areas, the robot is next to an obstacle, and the robot must
remain inside continuously for 15 s to simulate some kind
of task. When the robot is in the middle of the working
areas, we find that vanilla GPF produces approximately 10 N
of haptic feedback. Environment 1 (E1) simulates an indoor
hallway and the working areas represent workstations for
manipulation tasks. Environment 2 (E2) simulates a warehouse
and the working areas represent shelves for pick-and-place
tasks. E2 is designed to be more challenging than E1 with
denser obstacles and less pathway clearance. Once tasks are

completed, driving the robot into the goal region completes
the trial. The subjects are instructed to complete each trial as
fast as possible while avoiding collisions. Both environments
are linear to prevent users from taking alternative paths that
might affect experimental results.

Subjects are informed that they will be using three different
haptic feedback systems labeled System A, System B, and Sys-
tem C with letters assigned at random to the three experimental
conditions. Each subject is first trained to operate the robot in
an obstacle-free environment to get familiar with the basic
controls for 10 minutes. The subject then runs three mock
trials, one for each system, in a training environment with ob-
stacles to get familiar with trial tasks. Then, each subject runs
each haptic system on each environment twice for a total of 12
recorded trials. The 12 trials are completed in random order
under the constraint that environments and haptic systems are
non-repeating. This is to minimize and balance learning effects
on both haptic systems and environments. Before each trial,
the subject is informed which haptic system they are about
to use so that they can hopefully remember how the robot
behaved under that system during training. After each trial,
the subjects complete a NASA-TLX questionnaire to rate the
trial experience.

C. Evaluation Metrics

Following Ju and Son [5], trials are evaluated along three
aspects: task performance, robot safety/stability, and control
effort. Task performance consists of three metrics: trial com-
pletion time (s), total distance traveled (m), and average speed
(m/s). The robot safety/stability metric is the total number
of collisions per trial. The control effort metrics consist of
the average feedback force (N) rendered to the operator
and the task load index (TLX) assessed by the NASA-TLX
questionnaire, which ranges from 0 to 100.

VI. RESULTS AND DISCUSSIONS

The experiment was approved by the Institutional Review
Board of UIUC with an exempt determination (IRB #23559).
A total of 21 participants were selected for the experiment.
Evaluation results are summarized in Table I. The evalua-
tion metrics were first analyzed through repeated measures
ANOVA. Post-hoc analysis was conducted to make pairwise
model comparisons on significant ANOVA results. A p-value
less than 0.05 indicates a statistically significant difference.
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Completion time using AMGPF is significantly lower than
that of GPF and indistinguishable from LH. This suggests
that operators are more efficient with less interference from
force feedback during intentional obstacle approach. Similar
observations can be made from total distance and average
speed, but these differences were not found to be statistically
significant. Furthermore, repulsive haptic feedback in AMGPF
and GPF significantly reduces the collision rate compared to
LH, which suggests that AMGPF assists with unintentional
obstacle avoidance. AMGPF has a slightly lower collision rate
than GPF, which could be due to less control contention, but
this difference is not statistically significant.

The participants rate AMGPF and LH as having signifi-
cantly lower Task Load Index than GPF, and no significant
difference was found between AMGPF and LH. This also
suggests that operators did not experience significant control
contention with AMGPF. Corroborating this interpretation, we
find that the average feedback force for AMGPF was lower
than than of GPF. However, the feedback force was larger
than that of LH. Overall, these results indicate that AMGPF
inherits the safety benefits from GPF while avoiding control
contention to a large extent.

VII. CONCLUSION

In this paper, a haptic control framework with a novel
attentiveness map estimation (AME) model is presented. AME
is a biologically inspired estimator of the operator’s spatial
attentiveness that does not rely on prior training data or
information about the environment. By reducing repulsive
forces from obstacles with high attentiveness estimates, the
haptic control system was shown to be more user-friendly
and effective in simulated tasks involving combined obstacle
avoidance and obstacle approach.

These results raise several interesting questions for future
work. Our current system assumes that attention is driven
by the entire image, and does not incorporate eye gaze
information, which is likely to be more informative than pure
images. Moreover, we do not estimate the operator’s intended
task, or whether operators are alert or distracted, and better
signals for estimating these mental states is also likely to
improve attentiveness estimation accuracy.
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