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Abstract
Quantum federated learning (QFL) is a novel 

framework that integrates the advantages of classi-
cal federated learning (FL) with the computational 
power of quantum technologies. This includes 
quantum computing and quantum machine 
learning (QML), enabling QFL to handle high-di-
mensional complex data. QFL can be deployed 
over both classical and quantum communication 
networks in order to benefit from information-
theoretic security levels surpassing traditional FL 
frameworks. In this paper, we provide the first 
comprehensive investigation of the challenges 
and opportunities of QFL. We particularly exam-
ine the key components of QFL and identify the 
unique challenges that arise when deploying it 
over both classical and quantum networks. We 
then develop novel solutions and articulate prom-
ising research directions that can help address the 
identified challenges. We also provide actionable 
recommendations to advance the practical reali-
zation of QFL.

Introduction
Federated learning (FL) transformed the field of 
machine learning (ML) by promoting the shift 
from centralized, cloud-based learning to distrib-
uted, on-device edge learning. With FL, devices 
can collaborate in training local ML models by 
sending only their local model parameters to a 
central server. The server then aggregates the 
parameters, updates them, and sends the updated 
global parameters to all clients to repeat their 
local training. Using FL, edge devices maintain 
their local data, leading to increased privacy, com-
munication efficiency, and scalability compared to 
centralized ML [1].

State-of-the-art communication technologies 
and services incorporate large volumes of sensi-
tive data about users’ health, motion, activities, 
and social behavior that are used in training 
local ML models in FL frameworks. However, 
recent FL advances face various challenges that 
limit unleashing their full potential, which mainly 
include: 1) the increasing demand for stronger 
computational capabilities at edge devices due 
to growing data volumes and dimensionality, 
and 2) security and privacy risks stemming from 
attacks on the communication of FL learning 

parameters and vulnerabilities associated with 
untrusted servers [1].

To address computational bottlenecks at the 
edge in FL, quantum federated learning (QFL) was 
proposed [2], [3]. QFL can potentially leverage 
advancements in quantum computing for effi-
cient, distributed quantum learning. In QFL, local 
clients utilize quantum machine learning (QML) 
models, characterized by parametrized quantum 
circuits (PQCs) with classically-optimized param-
eters. These QML models can outperform their 
classical counterparts in complexity and computa-
tional efficiency, making QFL an effective solution 
for accelerating FL tasks.

The classically-optimized nature of QML 
parameters facilitates the initial deployment of 
QFL frameworks over existing classical commu-
nication infrastructures. Additionally, as quantum 
communication networks (QCNs) mature, QFL is 
strategically positioned to leverage secure quan-
tum communication protocols, like quantum key 
distribution (QKD) and blind quantum computing 
(BQC) to enhance the robustness of FL against 
parameter-centric attacks and mitigate server-
based security vulnerabilities [4]. Implementing 
QFL over a classical network inherently presents 
numerous challenges. Furthermore, a seamless 
deployment of QFL over a QCN necessitates 
the incorporation of classical communication 
systems. This integration of both communication 
paradigms in QFL deployments intensifies exist-
ing challenges, which include QML scalability, 
hardware interface attenuation, and quantum 
noise considerations.

Prior works [2], [3], [4], [5], [6] studied the 
performance of QFL over classical networks, 
while utilizing both quantum [2] and classical data 
[3]. Furthermore, the works in [2] and [5] studied 
the impact of data non-uniformity on overall QFL 
performance. However, each of these prior works 
[2], [3], [5] focused solely on individual chal-
lenges confronting QFL, and none has provided 
a comprehensive analysis of QFL’s challenges over 
classical networks. Larasati et al. [6] provided a 
short analysis of QFL basics and challenges over 
classical networks. However, they did not pro-
vide an in-depth technical discussion of those 
challenges, nor did they shed light on potential 
solutions. Conversely, the examination of QFL 
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over QCNs has been largely overlooked, even 
though existing literature has explored distributed 
learning and quantum computing in the context 
of QCNs [4], [7], [8]. To the best of our knowl-
edge, there are no prior works that investigate the 
fundamentals of QFL, as well as the associated 
challenges and opportunities brought forward 
by deploying QFL over classical and quantum 
networks.

The main contribution of this work is the first 
thorough investigation of the integration of FL 
and different quantum technologies (see Fig. 
1). In particular, we discuss the potential role 
of quantum computing, QML, and quantum 
communications in overcoming pressing FL chal-
lenges through the development of QFL. Our 
proposed framework lays down the foundations 
for deploying QFL over both classical and quan-
tum networks. Towards this goal, we make the 
following key contributions:
•	 We analyze potential opportunities related 

to the integration of QML and FL to cre-
ate a QFL framework. We then study the 
opportunities and prospects of deploying 
the QFL framework over classical and quan-
tum networks.

•	 We list and analyze the challenges facing 
practical deployments of QFL over classi-
cal networks. We thoroughly investigate the 
technical aspects of every challenge and its 
unique, quantum-specific impacts on QFL. 
Moreover, we propose several novel solu-
tions and research directions that must be 
undertaken to overcome these challenges 
and ease the practical deployment of QFL 
over classical networks.

•	 We present the first thorough investigation 
of the integration of QFL with QCNs. In par-
ticular, we articulate crucial research ques-
tions that need to be addressed and identify 
key challenges that hinder this integration. 
Moreover, we propose solutions and discuss 
fundamental research directions necessary 
to establish the foundations of QFL over 
QCNs.

QFL Over Classical Networks

Opportunities and Prospects
Deploying QFL over classical networks offers a 
myriad of opportunities. In such a deployment, 
QFL can exploit quantum computers at the edge 

to run QML models, thus, providing enhanced 
capabilities for handling large-dimensional data. 
This is due to the intrinsic parallelism and proven 
efficiency of quantum computers [9]. Moreover, 
leveraging collaborative QML training across 
multiple quantum devices in QFL could offer 
faster and more efficient performance com-
pared to centralized QML approaches. This is 
achieved through the aggregation of the classi-
cal QML learning parameters at a central server, 
which facilitates joint learning while preserving 
data privacy [2].

Challenges
Real-world practical deployments of QFL over 
classical networks faces many key challenges, as 
discussed next.

1) Quantum Gate Noise: Local QML model 
training by QFL clients involves applying quan-
tum gates and circuits, which, given the current 
state of noisy intermediate-scale quantum (NISQ) 
devices, are highly susceptible to significant noise 
generation. This intrinsic local noise, produced 
during the training phase, will be inextricably 
integrated into the learning parameters, i.e., the 
quantum circuit parameters. Consequently, the 
information encapsulated within these learning 
parameters will contain a combination of use-
ful local information and undesirable noise. This 
inherent embedding of noise within the learn-
ing parameters poses a substantial challenge in 
discerning the beneficial information from the 
noise [7]. Furthermore, at the QFL server, the 
aggregation of the intrinsically-noisy learning 
parameters from different clients may result in 
the obfuscation of useful information, leading to 
an extended training period and a consequent 
degradation in the overall QFL performance. 
One additional challenge here is the fact that 
the gate noise varies among different physical 
realizations of NISQ devices, which results in 
heterogeneous noise in the learning parameters 
at the server.

2) Data Non-Uniformity: In QFL, various 
clients often possess non-independent and iden-
tically distributed (non-IID) data, which follow 
distinct underlying distributions. As the number 
of clients with non-uniform and non-IID data 
participating in QFL increases, the necessary 
number of global communication rounds to 
accomplish training escalates accordingly [5]. 
While non-IID data is a well-known challenge 

FIGURE 1. Proposed QFL framework at the intersection of FL and quantum technologies.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2024 at 02:49:21 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • January/February 2024126

for classical FL, this problem becomes more 
pronounced within the context of QFL when 
non-IID quantum data is leveraged (like quan-
tum sensor data) due to the inherently-high 
dimensionality of such data and its unique prop-
erties, like superposition and entanglement [2]. 
Accordingly, non-uniformity in the clients’ data 
will pose significant communication overhead 
during QFL training. Moreover, for efficient 
QFL performance, each client’s data should be 
embedded into quantum states in a way that dif-
ferences in the data are easily distinguished in 
the resulting Hilbert space. This allows for more 
accurate training and prediction. However, con-
ventional quantum embedding techniques that 
rely on predefined quantum embedding cir-
cuits result in lossy training and degraded QFL 
performance.

3) Heterogeneous Quantum Capabilities: 
Participating QFL clients often exhibit hetero-
geneous quantum capabilities (numbers of 
available qubits, their fidelities, lifetimes, and 
memory decoherence characteristics) and utilize 
various qubit topologies (like superconducting 
qubits, and trapped ions), which introduce 
a unique set of challenges to QFL [4]. In gen-
eral, QFL clients obtain similar high-level global 
learning parameters from a centralized server. 
While these global parameters correspond 
to a common QML circuit and quantum gate 
sequences, those gates and circuits are real-
ized as distinct, hardware-specific instructions 
across diverse quantum computing platforms 
available to different QFL clients. In this regard, 
each QFL client must optimally transpile the 
high-level global model onto its hardware 
topology. However, transpiling a quantum cir-
cuit from one topology to another often does 
not yield equivalent performance. In fact, it can 
commonly lead to degraded performance due 
to increased circuit depth or complexity. More-
over, every QFL client must optimize and map 
the global learning parameters to ones suited for 
its specific quantum hardware topology. After 
training, the parameters must be generalized 
again so that they can be shared with the server. 

This back-and-forth process can introduce addi-
tional noise and errors, which can degrade QFL 
performance.

4) Small-Scale Quantum Devices: In the era 
of NISQ devices, the number of qubits available 
for manipulation within a quantum circuit is pre-
dominantly confined to the scale of hundreds of 
qubits [3]. This constraint limits the amount of 
quantum gates and operations that can be exe-
cuted and restricts the feasible depth of QML 
models. The number of currently feasible quan-
tum gates and operations varies across different 
hardware realizations and is limited due to the 
inherent restrictions of current quantum technol-
ogies. Specifically, quantum circuit noise rapidly 
accumulates, and maintaining qubit coherence 
over extended periods is nontrivial [4]. The con-
sequences of these limitations are particularly 
significant in QFL, since each client is constrained 
to train a small-scale local QML model. This 
inherently restricts the capacity to analyze high-di-
mensional data and substantially diminishes the 
potential benefits that would otherwise be gained 
from exploiting high-dimensional QML in QFL. 
As such, the small-scale nature of current NISQ 
devices poses a significant bottleneck to the 
expansion and maturation of QFL.

5) Quantum-Specific Classical FL Attacks: 
QML models in QFL frameworks introduce unique 
vulnerabilities, especially when deployed over clas-
sical networks. The direct transmission of QML 
classical learning parameters creates exposure to 
conventional FL attacks such as eavesdropping 
and parameter tampering. These vulnerabilities 
become more intricate due to quantum-specific 
features like quantum superposition which may be 
inherently encoded in the classical learning param-
eters. Key risks include membership inference 
attacks, which, when integrated with quantum 
generative models, risk exposing sensitive data, 
and quantum shadow model attacks that allow an 
adversary to approximate quantum circuit features 
[1]. Both elevate privacy and security concerns in 
QFL deployments over classical networks.

Proposed Solutions and Future Directions
To address the aforementioned challenges, we 
next explore various research avenues and pro-
pose potential solutions, as summarized in 
Table 1.

1) Mitigating Noise and Errors: In QFL, 
mitigating the noise present in the learning 
parameters entails the isolation of noise from the 
intrinsic useful information. This decoupling can 
be performed either by the server or client. At 
the server, new QFL averaging algorithms are 
needed to segregate noise from the beneficial 
client data distributions during the aggregation of 
client learning parameters, which is a nontrivial 
operation. Alternatively, at the client side, quan-
tum error mitigation (QEM) techniques such as 
probabilistic noise cancellation can be utilized. 
This approach involves numerous stochastic 
sampling operations, which can incur substantial 
computational overhead. While QEM techniques 
minimize noise and errors, quantum error correc-
tion (QEC) methods target completely removing 
errors, which makes them complex and compu-
tationally demanding as they require additional 
qubits for error detection and correction. Different 

TABLE 1. Summary of challenges and proposed solutions for deploying QFL over 
a classical communication network.

Challenges Proposed Solutions

Quantum gate noise in QFL 
learning parameters [7]

•	 New averaging algorithms with noise isolation at server [10].
•	 Probabilistic noise cancellation by QFL clients [2].
•	 Advanced QEC techniques [7].
•	 Novel noise-capturing QFL performance metrics.

Data non-uniformity and 
communication overhead [5]

•	 Customized variational quantum data embedding circuits [3], [5], [11].
•	 Real-world and synthetic non-uniform and non-IID federated quantum datasets [2], [5].

Heterogeneous quantum 
capabilities [4]

•	 QAS equipped with quantum search algorithms and QRL [3].
•	 Hardware-specific performance metrics to guide the transpilation operation [7].

Small-scale quantum devices [3]
•	 Advanced quantum hardware to have more qubits with longer coherence time [8].
•	 Data re-uploading techniques in local training of QML models [3].
•	 Quantum-inspired tensor networks for data compression [11].

Quantum-specific classical FL 
attacks [1]

•	 Secure multi-party quantum computation protocols [6].
•	 Quantum differential privacy.
•	 Blind quantum computing [12].
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quantum computing platforms vary in their QEC 
capabilities, impacting qubit fidelity during QML 
training which can affect the convergence of QFL. 
Advances in QEC are crucial for improving their 
efficiency and computational demands [7]. Finally, 
developing new performance metrics that quan-
tify the intrinsic noise in QFL learning parameters 
and integrates the QML’s quantum noise with 
conventional FL performance metrics is necessary 
to efficiently capture the QFL performance.

2) Developing Variational Quantum Embed-
ding Circuits: In order to overcome the practical 
challenge of having non-uniform and non-IID client 
data in QFL, it is necessary to incorporate varia-
tional PQC architectures into the training process 
of local QML models. By doing so, each client 
can customize its embedding circuit to its unique 
data distribution. This will enhance the accuracy 
of QFL training while also minimizing the number 
of required training epochs. Moreover, to practi-
cally deploy QFL with non-uniform quantum data, 
there is a need to develop physics-based non-IID 
quantum federated datasets [2].

3) Customizing QML Models and Transpila-
tion: To address the challenges due to the 
heterogeneity of the QFL client quantum 
resources, client QML model ansatzes must 
be optimally customized to their adopted tech-
nology, available resources, and input data 
distribution. To do so, a promising direction 
involves the application of quantum architec-
ture search (QAS) techniques, where the QML 
architecture that optimizes the overall QFL per-
formance is selected. However, the search space 
for optimal QML architectures is vast, present-
ing a considerable challenge for conventional 
search algorithms. Here, quantum reinforcement 
learning (QRL) and quantum search algorithms, 
e.g., Grover’s search algorithm, offer promising 
solutions that can significantly accelerate the 
search process [9]. Furthermore, it is necessary 
to develop new performance metrics that cap-
ture the heterogeneity of quantum resources and 
guide the transpilation process for each quan-
tum client. By incorporating such metrics in QFL 
and optimizing QAS and transpilation based on 
them, we can ensure that QML models are tai-
lored to the specific capabilities and constraints 
of each client. Future research should further 
explore the practical steps needed to apply QAS 
techniques effectively.

4) Optimizing Resource Utilization for Scal-
able QFL: To address the limitations of NISQ 
devices and QML models, future work should 
prioritize the development of scalable QFL algo-
rithms and protocols, as well as methods for 
efficient quantum computation distribution across 
multiple quantum processors [6]. Addressing this 
scalability challenge involves considerable hard-
ware and software advances. From the hardware 
perspective, increasing the number of qubits 
and extending their coherence times in quantum 
computers is essential. Concurrently, on the soft-
ware end, the development of advanced QEC 
techniques and new algorithms for effective utili-
zation of available quantum resources is crucial. 
For example, methods that enable achieving 
more with fewer qubits, such as data re-upload-
ing models can be leveraged to train small-scale 
QML models over extremely high-dimensional 

datasets. In addition, quantum-inspired classical 
approaches, like tensor networks, may be a prom-
ising approach to enhance QFL scalability as they 
reduce the amount of processed data in QML 
models.

5) Enhancing Client Data Privacy: The 
intersection of quantum cryptography, 
recognized for its capacity to facilitate uncondi-
tionally secure communication, and QFL, which 
is founded on the principle of privacy preser-
vation amidst collaborative learning, presents a 
significant avenue for enhancing privacy in QFL. 
To thwart conventional FL attacks customized to 
QML models, quantum-based secure protocols 
over classical networks can be incorporated 
within the QFL framework to bolster client secu-
rity and privacy. For instance, protocols such 
as secure multi-party quantum computation, 
which can help in calculating federated gradi-
ents safely, could be adopted to secure sharing 
and aggregating QFL learning parameters [10]. 
Additionally, quantum differential privacy can be 
leveraged to enhance the privacy of the learn-
ing parameters in QFL frameworks [12]. Such 
techniques will be integral to ensuring client 
privacy and security within QFL deployments 
over classical networks, thereby contributing to 
QFL’s practical viability and effectiveness. Fur-
thermore, techniques like BQC and QKD can 
be leveraged to secure QFL deployments over 
QCNs, as is discussed next.

QFL Over Quantum Communication Networks

Opportunities and Prospects
While existing distributed learning frameworks 
like classical FL and QFL over classical networks 
improve user privacy by not sharing client data 
over the network, their classical communica-
tion processes remain susceptible to security 
breaches that can leak learning parameters. In 
contrast, a QFL deployment over a QCN offers 
an extra layer of information-theoretic secu-
rity as it allows the application of services such 
as QKD and BQC that are unique to a QCN. 
When QFL is deployed over a QCN, the trans-
mission of learning parameters can be secured 
using entangled quantum states combined with 
QKD techniques. Such measures prevent the 
parameter leakage to adversaries, minimizing the 

FIGURE 2. Opportunities for QFL over classical networks and QCNs.
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risks associated with data reconstruction attacks. 
Moreover, by utilizing protocols like BQC, the 
joint learning in QFL can be secured even if 
the centralized server is not trustworthy. Lastly, 
unique quantum phenomena like quantum 
entanglement inherent in a QCN has the poten-
tial to accelerate parameter sharing and enhance 
overall QFL performance [4], [8].

Challenges
We now turn our attention to challenges specific 
to deploying QFL frameworks over QCNs, where 
QML learning parameters are embedded and 
shared in quantum states and the QFL server has 
quantum capabilities.

1) Managing and Controlling Limited QCN 
Resources: The performance of QFL over a QCN 
is constrained by the clients’ available quantum 
resources and their characteristics, such as the 
quantity of successfully generated qubits, available 
quantum memory capacity, and coherent lifetime 
of qubits. Moreover, since storing quantum states 
in quantum memories entails decoherence, which 
degrades their quality or fidelity, controlling and 
scheduling quantum memories is a challenging task 
that affects the quality of QFL learning parame-
ters. For instance, quantum memories have limited 
capacities, and thus, some quantum states in mem-
ories must be discarded when stored for long 
durations, while newly generated quantum states 
must be stored at suitable memory locations to 
minimize their associated delays and gate errors, 
and maximize their fidelities [4]. In QFL, these 
characteristics will not only vary between different 
physical realizations, but will also vary between 
different clients with different capabilities, which 
further complicates the joint learning process. It is 
further challenging to create algorithms that pro-
vide accurate QFL performance and joint learning 
while controlling available QCN resources.

2) Impact of Imperfect QCN Operations on 
QFL Accuracy: When learning parameters are 
transferred as quantum information over a QCN, 
QCN nodes must perform multiple quantum 
operations, such as entanglement swapping and 
Bell-state measurements. However, due to practi-
cal imperfections, those operations often degrade 
the fidelity of the quantum information [4]. As 
such, a noisy version of the learning parameters 
will be received by the server, which can nega-
tively affect the accuracy of QFL training, resulting 
in an increased number of communication rounds, 
thus imposing a communication overhead. The 
conventional approach in a QCN to enhance 
qubit fidelity relies on QEC or entanglement dis-
tillation, where multiple low-fidelity qubits are 
consumed to generate fewer high-fidelity qubits 
[8]. However, QFL expects various clients and 
QCN nodes to have different quantum capa-
bilities, thus designing distillation protocols is 
challenging, because distillation itself can be lossy, 
and its performance varies with different quantum 
technologies and available resources.

3) QFL De-Synchronization and Training 
Latency: Owing to the probabilistic character-
istics inherent in various QCN operations, such 
as single-photon emissions and quantum mea-
surements, success rates in such operations can 
differ among heterogeneous QFL clients. Conse-
quently, the time required to prepare and transmit 

learning parameters via a QCN will vary across 
different clients after local training. This can result 
in de-synchronization in the learning parameter 
aggregation process by the server, and hence, 
lead to increased QFL training latency. For each 
QFL client, qubits generated at distinct time inter-
vals are stored in quantum memories for varying 
durations, thereby experiencing different amounts 
of decoherence. When a qubit is transferred over 
a QCN from a client quantum memory towards 
the server, the coupling characteristics of the 
selected qubit and the technology in-use will result 
in different requisite times to execute quantum 
gates and operations on that specific qubit before 
being transferred. Additionally, QEC techniques, 
essential for QFL, involve encoding a smaller set 
of qubits using a larger qubit pool for error cor-
rection. However, the use of QEC requires the 
generation, distribution, and utilization of multi-
ple qubits between remote nodes. Consequently, 
the iterative transfer of learning parameters over 
quantum channels may incur substantial delays 
due to QEC, decreasing the rate of QFL conver-
gence. Furthermore, the classical communications 
required for QCN operations introduce latencies 
and de-synchronization in QFL training. These 
delays can adversely affect time-sensitive quan-
tum operations, like Bell state measurements and 
entanglement swapping, thus acting as a bottle-
neck in QFL performance [7].

4) Heterogeneity in QCN and QFL Com-
ponents: Navigating the inherent technological 
discrepancies among various qubit types for a 
QFL framework deployed over a QCN presents 
a significant challenge. Specifically, qubits used 
in quantum computers for QML model execu-
tion and in quantum memories as “matter qubits” 
may differ from "flying qubits" used for parameter 
transmission and those used on the server-side. 
Each hardware technology excels in specific tasks 
but may be less suited for others, giving rise to 
a tradeoff between optimizing individual hard-
ware components and maintaining technological 
consistency across the QFL framework for seam-
less operation [4]. A critical challenge here is the 
development of robust and precise interfaces that 
facilitate the transition of qubits between dispa-
rate quantum technologies, all while maintaining 
the integrity of the information they carry [7].

5) Impact of QCN Losses on QFL Generaliz-
ability: When QFL learning parameters are shared 
in qubits over quantum channels in QCNs, they 
are susceptible to several sources of loss, due to 
their fragile nature. In particular, when qubits, e.g., 
single photons of light, interact with their surround-
ing environment, they suffer from path-loss that 
scales exponentially with the travelled distance, 
and, accordingly, some qubits may be absorbed 
during this transmission [13]. As a result, some 
learning parameters shared over QCNs may be 
lost during transmission, which can yield sparse 
learning parameters of some QFL clients during 
the aggregation step at the server. In such cases, 
QFL generalizability (achieved when global param-
eter updates capture various non-uniform data 
distributions) will be degraded. This is because QFL 
training fails to capture the effect of clients’ under-
lying data distributions with sparse transferred 
parameters, as these sparse parameters play a mar-
ginal role in the global parameter update step.
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Proposed Solutions and Future Directions

Next, we propose solutions to the aforemen-
tioned challenges and identify research directions 
to enable QFL deployment over QCNs, as sum-
marized in Table 2.

1) Efficient Control and Scheduling of QCN 
Resources: To overcome the QFL challenges 
associated with limited QCN resources, novel 
scheduling and resource allocation algorithms 
are needed. For instance, developing efficient 
quantum memory scheduling policies, which 
require careful analysis of cutoff times (times 
after which a stored qubit is discarded), is nec-
essary to ensure a high quality of quantum states 
used to transfer QFL learning parameters [14]. 
Similarly, the optimal allocation of the generated 
quantum states to the available quantum mem-
ory is crucial for maximizing fidelity and, in turn, 
improving the quality of the transferred learning 
parameters and QFL accuracy. For this goal, tools 
from online optimization and classical and quan-
tum game theory, e.g., matching games, can be 
utilized to achieve optimal associations between 
QCN resources. Finally, new QFL averaging algo-
rithms are needed to incorporate the fidelities of 
quantum states that carry the learning parame-
ters in the global QFL parameter update at the 
server side.

2) Joint Optimization of QCN and QFL: To 
enhance the fidelity of quantum states carrying 
QFL learning parameters over a QCN, novel 
entanglement swap-distillation scheduling algo-
rithms are essential. These algorithms aim to 
maximize the fidelity of quantum states and 
thereby improve QFL accuracy. Concurrently, 
they must also ensure sufficient availability of 
QCN resources for the parameter transfer pro-
cess. In addition, there is a need to develop a 
framework for the joint optimization of QFL 
learning parameter aggregation and QCN dis-
tillation operations in terms of the number of 
distillation rounds and the amount of quantum 
states consumed during distillation [15]. This 
optimization framework must also account for 
available quantum memory resources, their 

fidelities, QML models’ scale, and overall QFL 
accuracy [13].

3) QFL Convergence Analysis With Entan-
glement: Quantum entanglement can mitigate 
the QFL training de-synchronization challenge 
(see Section III-B3). For instance, when QFL 
clients and server share entangled states, the 
direct transfer of learning parameters over quan-
tum channels can be circumvented. Instead, 
protocols like entanglement teleportation and 
superdense coding can be employed, requiring 
only straightforward manipulation of the shared 
entangled states [8]. Consequently, entan-
glement distribution can potentially minimize 
de-synchronization between learning parame-
ters at the server, which helps to increase QFL 
convergence rates. Additionally, analysis of 
convergence rates for QFL over a QCN must 
be redone so as to capture quantum-specific 
training delays. For instance, concepts such as 
quantum Fisher information (QFI) should be 
incorporated to identify lower bounds on the 
training of local QML models. Moreover, QFI 
can be used to develop new algorithms to 
speed-up QFL convergence. Finally, new perfor-
mance metrics that capture the fidelity of shared 
entangled states and their lifetimes must be inte-
grated in the QFL convergence analysis [9].

4) Efficient Transducers and Adaptive QFL 
Algorithms: To overcome the heterogeneity of 
QCN and QFL components as well as the differ-
ent technologies used for each element of QFL 
over a QCN, novel transducer hardware must 
be developed to efficiently map and transfer 
quantum states from one technology interface 
to another. Furthermore, novel algorithms with 
hardware-based controls and performance 
metrics must be developed to capture qubits 
characteristics and fidelities over the various quan-
tum interfaces. Additionally, there is a need for 
adaptive QML training and QFL aggregation tech-
niques that incorporate metrics and measures of 
qubit fidelity over all QFL elements [7].

5) Resource-Efficient QCNs for Generalizable 
QFL: To enhance QFL generalizability (see Section 
III-B5), non-uniform client data distributions must 

Challenges Proposed Solutions

Limited QCN resources [4]
•	 Novel quantum memory scheduling policies [13].
•	 QFL-specific resource allocation and association techniques for quantum states (online optimization and classical/quantum game theory) [14].
•	 QFL aggregation algorithms incorporating quantum state fidelity [12].

Imperfect QCN Operations and 
distillation design [4], [8]

•	 Entanglement swap-distillation scheduling protocols [15].
•	 Joint QFL optimization framework for learning parameter aggregation and distillation design.
•	 Jointly considering number of distillation rounds and consumed states, states’ fidelity, memory resources, QML size, and QFL accuracy [15].

De-synchronization and QFL 
training latency [7]

•	 Incorporating quantum entanglement to transfer learning parameters [8].
•	 Redefine convergence bounds to incorporate probabilistic effects of quantum operations and quantum-specific training delays [10].
•	 QFI to develop lower bounds on QML performance in QFL, and speed-up QFL convergence while capturing entanglement impacts [9].
•	 New performance metrics that consider fidelity and entanglement in QFL convergence analysis [4].

Heterogeneity in QCN and QFL 
components [4], [7]

•	 Advanced transducer technology [7].
•	 Novel physics-based algorithms to capture quantum state characteristics and fidelity over various technologies [4].
•	 Adaptive QML training and QFL aggregating algorithms, incorporating various measurements of fidelity [10].

QCN losses and QFL 
generalizability [13]

•	 Quantum-compatible data compression techniques for resource efficient QCNs [11].
•	 Quantum network coding for reliable quantum communications [8].
•	 Semantic representations and quantum clustering for resilient learning parameters and generalizable QFL [11].

TABLE 2. Summary of challenges and proposed solutions for deploying QFL frameworks over QCNS.
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be captured in the global learning parameters. 
Henceforth, we must ensure reliable qubit transfer 
over QCNs to avoid losing information and pro-
ducing sparse learning parameters. Accordingly, 
developing resource-efficient QCNs is necessary 
to minimize the amount of resources utilized 
during the transfer of QFL learning parameters. 
This is because resource-efficient QCNs allow the 
use of higher quality QEC, which ensures reliabil-
ity in sharing learning parameters. Henceforth, 
quantum-compatible data compression must be 
investigated, since they can minimize the quan-
tum data transmitted over QCNs, and enhance 
QFL efficiency. Additionally, quantum network 
coding can enhance QCN efficiency and QFL 
generalizability. Finally, implementing dimen-
sional reduction techniques, such as quantum 
clustering and semantic representations, is crucial 
before quantum data embedding in QFL to ana-
lyze hidden data structures. This process allows 
QML models to train using original data structure, 
enhancing resilience against parameter sparsity 
and improving QFL performance [11].

Conclusion and Recommendations
QFL is an emerging field with significant practi-
cal potential, notably in sensitive sectors such as 
healthcare and military applications. In this paper, 
we have presented a comprehensive analysis of 
QFL deployments over both classical and quan-
tum networks, while thoroughly examining the 
associated challenges and proposing solutions 
and future directions.

Building on the proposed vision for QFL, we 
conclude with several recommendations, sequen-
tially arranged from short-term to long-term 
priorities:

1) Measuring Quantum Advantage: Identify-
ing when QFL outperforms classical FL requires 
advanced algorithms and benchmarks for accu-
rate comparisons. Further, a detailed analysis of 
QML and QCN metrics is vital to establish QFL’s 
advantages over such networks, aiding in pin-
pointing suitable practical use-cases.

2) Classical-Quantum QFL Interoperability: 
To enable seamless QFL operation in hybrid quan-
tum-classical network architectures, interfaces 
between quantum and classical optics must be 
developed. Optical fibers should also be opti-
mized to handle both signal types, supported by 
efficient frequency conversion schemes in the 
semi-optical terahertz range. This will notably 
boost QFL’s speed and efficiency.

3) Ultimate QFL Security: While QCNs 
promise enhanced security for QFL, they are not 
immune to specific attacks and risks. Addressing 
these vulnerabilities calls for focused research in 
advanced quantum and post-quantum cryptogra-
phy, along with novel hardware-based designs of 
QFL’s integration with BQC to fortify QFL’s secu-
rity infrastructure.
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