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ABSTRACT

Quantum federated learning (QFL) is a novel
framework that integrates the advantages of classi-
cal federated learning (FL) with the computational
power of quantum technologies. This includes
quantum computing and quantum machine
learning (QML), enabling QFL to handle high-di-
mensional complex data. QFL can be deployed
over both classical and quantum communication
networks in order to benefit from information-
theoretic security levels surpassing traditional FL
frameworks. In this paper, we provide the first
comprehensive investigation of the challenges
and opportunities of QFL. We particularly exam-
ine the key components of QFL and identify the
unique challenges that arise when deploying it
over both classical and quantum networks. We
then develop novel solutions and articulate prom-
ising research directions that can help address the
identified challenges. We also provide actionable
recommendations to advance the practical reali-
zation of QFL.

INTRODUCTION

Federated learning (FL) transformed the field of
machine learning (ML) by promoting the shift
from centralized, cloud-based learning to distrib-
uted, on-device edge learning. With FL, devices
can collaborate in training local ML models by
sending only their local model parameters to a
central server. The server then aggregates the
parameters, updates them, and sends the updated
global parameters to all clients to repeat their
local training. Using FL, edge devices maintain
their local data, leading to increased privacy, com-
munication efficiency, and scalability compared to
centralized ML [1].

State-of-the-art communication technologies
and services incorporate large volumes of sensi-
tive data about users’ health, motion, activities,
and social behavior that are used in training
local ML models in FL frameworks. However,
recent FL advances face various challenges that
limit unleashing their full potential, which mainly
include: 1) the increasing demand for stronger
computational capabilities at edge devices due
to growing data volumes and dimensionality,
and 2) security and privacy risks stemming from
attacks on the communication of FL learning

parameters and vulnerabilities associated with
untrusted servers [1].

To address computational bottlenecks at the
edge in FL, quantum federated learning (QFL) was
proposed [2], [3]. QFL can potentially leverage
advancements in quantum computing for effi-
cient, distributed quantum learning. In QFL, local
clients utilize quantum machine learning (QML)
models, characterized by parametrized quantum
circuits (PQCs) with classically-optimized param-
eters. These QML models can outperform their
classical counterparts in complexity and computa-
tional efficiency, making QFL an effective solution
for accelerating FL tasks.

The classically-optimized nature of QML
parameters facilitates the initial deployment of
QFL frameworks over existing classical commu-
nication infrastructures. Additionally, as quantum
communication networks (QCNs) mature, QFL is
strategically positioned to leverage secure quan-
tum communication protocols, like quantum key
distribution (QKD) and blind quantum computing
(BQC) to enhance the robustness of FL against
parameter-centric attacks and mitigate server-
based security vulnerabilities [4]. Implementing
QFL over a classical network inherently presents
numerous challenges. Furthermore, a seamless
deployment of QFL over a QCN necessitates
the incorporation of classical communication
systems. This integration of both communication
paradigms in QFL deployments intensifies exist-
ing challenges, which include QML scalability,
hardware interface attenuation, and quantum
noise considerations.

Prior works [2], [3], [4], [5], [6] studied the
performance of QFL over classical networks,
while utilizing both quantum [2] and classical data
[3]. Furthermore, the works in [2] and [5] studied
the impact of data non-uniformity on overall QFL
performance. However, each of these prior works
[2], [3], [5] focused solely on individual chal-
lenges confronting QFL, and none has provided
a comprehensive analysis of QFL's challenges over
classical networks. Larasati et al. [6] provided a
short analysis of QFL basics and challenges over
classical networks. However, they did not pro-
vide an in-depth technical discussion of those
challenges, nor did they shed light on potential
solutions. Conversely, the examination of QFL
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over QCNs has been largely overlooked, even
though existing literature has explored distributed
learning and quantum computing in the context
of QCNs [4], [7], [8]. To the best of our knowl-
edge, there are no prior works that investigate the
fundamentals of QFL, as well as the associated
challenges and opportunities brought forward
by deploying QFL over classical and quantum
networks.

The main contribution of this work is the first
thorough investigation of the integration of FL
and different quantum technologies (see Fig.
1). In particular, we discuss the potential role
of quantum computing, QML, and quantum
communications in overcoming pressing FL chal-
lenges through the development of QFL. Our
proposed framework lays down the foundations
for deploying QFL over both classical and quan-
tum networks. Towards this goal, we make the
following key contributions:

+  We analyze potential opportunities related
to the integration of QML and FL to cre-
ate a QFL framework. We then study the
opportunities and prospects of deploying
the QFL framework over classical and quan-
tum networks.

+ We list and analyze the challenges facing
practical deployments of QFL over classi-
cal networks. We thoroughly investigate the
technical aspects of every challenge and its
unique, quantum-specific impacts on QFL.
Moreover, we propose several novel solu-
tions and research directions that must be
undertaken to overcome these challenges
and ease the practical deployment of QFL
over classical networks.

+ We present the first thorough investigation
of the integration of QFL with QCNs. In par-
ticular, we articulate crucial research ques-
tions that need to be addressed and identify
key challenges that hinder this integration.
Moreover, we propose solutions and discuss
fundamental research directions necessary
to establish the foundations of QFL over
QCNes.

QFL OveR CLASSICAL NETWORKS
OPPORTUNITIES AND PROSPECTS

Deploying QFL over classical networks offers a
myriad of opportunities. In such a deployment,
QFL can exploit quantum computers at the edge

to run QML models, thus, providing enhanced
capabilities for handling large-dimensional data.
This is due to the intrinsic parallelism and proven
efficiency of quantum computers [9]. Moreover,
leveraging collaborative QML training across
multiple quantum devices in QFL could offer
faster and more efficient performance com-
pared to centralized QML approaches. This is
achieved through the aggregation of the classi-
cal QML learning parameters at a central server,
which facilitates joint learning while preserving
data privacy [2].

CHALLENGES

Real-world practical deployments of QFL over
classical networks faces many key challenges, as
discussed next.

1) Quantum Gate Noise: Local QML model
training by QFL clients involves applying quan-
tum gates and circuits, which, given the current
state of noisy intermediate-scale quantum (NISQ)
devices, are highly susceptible to significant noise
generation. This intrinsic local noise, produced
during the training phase, will be inextricably
integrated into the learning parameters, i.e., the
quantum circuit parameters. Consequently, the
information encapsulated within these learning
parameters will contain a combination of use-
ful local information and undesirable noise. This
inherent embedding of noise within the learn-
ing parameters poses a substantial challenge in
discerning the beneficial information from the
noise [7]. Furthermore, at the QFL server, the
aggregation of the intrinsically-noisy learning
parameters from different clients may result in
the obfuscation of useful information, leading to
an extended training period and a consequent
degradation in the overall QFL performance.
One additional challenge here is the fact that
the gate noise varies among different physical
realizations of NISQ devices, which results in
heterogeneous noise in the learning parameters
at the server.

2) Data Non-Uniformity: In QFL, various
clients often possess non-independent and iden-
tically distributed (non-11D) data, which follow
distinct underlying distributions. As the number
of clients with non-uniform and non-11D data
participating in QFL increases, the necessary
number of global communication rounds to
accomplish training escalates accordingly [5].
While non-lID data is a well-known challenge
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FIGURE L Proposed QFL framework at the intersection of FL and quantum technologies.
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for classical FL, this problem becomes more
pronounced within the context of QFL when
non-1ID quantum data is leveraged (like quan-
tum sensor data) due to the inherently-high
dimensionality of such data and its unique prop-
erties, like superposition and entanglement [2].
Accordingly, non-uniformity in the clients’ data
will pose significant communication overhead
during QFL training. Moreover, for efficient
QFL performance, each client’s data should be
embedded into quantum states in a way that dif-
ferences in the data are easily distinguished in
the resulting Hilbert space. This allows for more
accurate training and prediction. However, con-
ventional quantum embedding techniques that
rely on predefined quantum embedding cir-
cuits result in lossy training and degraded QFL
performance.

3) Heterogeneous Quantum Capabilities:
Participating QFL clients often exhibit hetero-
geneous quantum capabilities (numbers of
available qubits, their fidelities, lifetimes, and
memory decoherence characteristics) and utilize
various qubit topologies (like superconducting
qubits, and trapped ions), which introduce
a unique set of challenges to QFL [4]. In gen-
eral, QFL clients obtain similar high-level global
learning parameters from a centralized server.
While these global parameters correspond
to a common QML circuit and quantum gate
sequences, those gates and circuits are real-
ized as distinct, hardware-specific instructions
across diverse quantum computing platforms
available to different QFL clients. In this regard,
each QFL client must optimally transpile the
high-level global model onto its hardware
topology. However, transpiling a quantum cir-
cuit from one topology to another often does
not yield equivalent performance. In fact, it can
commonly lead to degraded performance due
to increased circuit depth or complexity. More-
over, every QFL client must optimize and map
the global learning parameters to ones suited for
its specific quantum hardware topology. After
training, the parameters must be generalized
again so that they can be shared with the server.

Challenges Proposed Solutions

- New averaging algorithms with noise isolation at server [10].
Quantum gate noise in QFL - Probabilistic noise cancellation by QFL clients [2].
learning parameters [7] - Advanced QEC techniques [7].

- Novel noise-capturing QFL performance metrics.

Data non-uniformity and - Customized variational quantum data embedding circuits [3], [5], [11]

communication overhead [5] - Real-world and synthetic non-uniform and non-IID federated quantum datasets [2], [5].
Heterogeneous quantum - 0AS equipped with quantum search algorithms and QRL[3].

capabilities [4] - Hardware-specific performance metrics to guide the transpilation operation [7].

- Advanced quantum hardware to have more qubits with longer coherence time [8].
Small-scale quantum devices [3] - Data re-uploading techniques in local training of QML models [3].
- Quantum-inspired tensor networks for data compression [11].

- Secure multi-party quantum computation protocols [6].
- Quantum differential privacy.
- Blind quantum computing [12].

Quantum-specific classical FL
attacks [1]

TABLET. Summary of challenges and proposed solutions for deploying QFL over
a classical communication network.

This back-and-forth process can introduce addi-
tional noise and errors, which can degrade QFL
performance.

4) Small-Scale Quantum Devices: In the era
of NISQ devices, the number of qubits available
for manipulation within a quantum circuit is pre-
dominantly confined to the scale of hundreds of
qubits [3]. This constraint limits the amount of
quantum gates and operations that can be exe-
cuted and restricts the feasible depth of QML
models. The number of currently feasible quan-
tum gates and operations varies across different
hardware realizations and is limited due to the
inherent restrictions of current quantum technol-
ogies. Specifically, quantum circuit noise rapidly
accumulates, and maintaining qubit coherence
over extended periods is nontrivial [4]. The con-
sequences of these limitations are particularly
significant in QFL, since each client is constrained
to train a small-scale local QML model. This
inherently restricts the capacity to analyze high-di-
mensional data and substantially diminishes the
potential benefits that would otherwise be gained
from exploiting high-dimensional QML in QFL.
As such, the small-scale nature of current NISQ
devices poses a significant bottleneck to the
expansion and maturation of QFL.

5) Quantum-Specific Classical FL Attacks:
QML models in QFL frameworks introduce unique
vulnerabilities, especially when deployed over clas-
sical networks. The direct transmission of QML
classical learning parameters creates exposure to
conventional FL attacks such as eavesdropping
and parameter tampering. These vulnerabilities
become more intricate due to quantum-specific
features like quantum superposition which may be
inherently encoded in the classical learning param-
eters. Key risks include membership inference
attacks, which, when integrated with quantum
generative models, risk exposing sensitive data,
and quantum shadow model attacks that allow an
adversary to approximate quantum circuit features
[1]. Both elevate privacy and security concerns in
QFL deployments over classical networks.

PROPOSED SOLUTIONS AND FUTURE DIRECTIONS

To address the aforementioned challenges, we
next explore various research avenues and pro-
pose potential solutions, as summarized in
Table 1.

1) Mitigating Noise and Errors: In QFL,
mitigating the noise present in the learning
parameters entails the isolation of noise from the
intrinsic useful information. This decoupling can
be performed either by the server or client. At
the server, new QFL averaging algorithms are
needed to segregate noise from the beneficial
client data distributions during the aggregation of
client learning parameters, which is a nontrivial
operation. Alternatively, at the client side, quan-
tum error mitigation (QEM) techniques such as
probabilistic noise cancellation can be utilized.
This approach involves numerous stochastic
sampling operations, which can incur substantial
computational overhead. While QEM techniques
minimize noise and errors, quantum error correc
tion (QEC) methods target completely removing
errors, which makes them complex and compu-
tationally demanding as they require additional
qubits for error detection and correction. Different
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quantum computing platforms vary in their QEC
capabilities, impacting qubit fidelity during QML
training which can affect the convergence of QFL.
Advances in QEC are crucial for improving their
efficiency and computational demands [7]. Finally,
developing new performance metrics that quan-
tify the intrinsic noise in QFL learning parameters
and integrates the QML’s quantum noise with
conventional FL performance metrics is necessary
to efficiently capture the QFL performance.

2) Developing Variational Quantum Embed-
ding Circuits: In order to overcome the practical
challenge of having non-uniform and non-lID client
data in QFL, it is necessary to incorporate varia-
tional PQC architectures into the training process
of local QML models. By doing so, each client
can customize its embedding circuit to its unique
data distribution. This will enhance the accuracy
of QFL training while also minimizing the number
of required training epochs. Moreover, to practi-
cally deploy QFL with non-uniform quantum data,
there is a need to develop physics-based non-IID
quantum federated datasets [2].

3) Customizing QML Models and Transpila-
tion: To address the challenges due to the
heterogeneity of the QFL client quantum
resources, client QML model ansatzes must
be optimally customized to their adopted tech-
nology, available resources, and input data
distribution. To do so, a promising direction
involves the application of quantum architec
ture search (QAS) techniques, where the QML
architecture that optimizes the overall QFL per-
formance is selected. However, the search space
for optimal QML architectures is vast, present-
ing a considerable challenge for conventional
search algorithms. Here, quantum reinforcement
learning (QRL) and quantum search algorithms,
e.g., Grover’s search algorithm, offer promising
solutions that can significantly accelerate the
search process [9]. Furthermore, it is necessary
to develop new performance metrics that cap-
ture the heterogeneity of quantum resources and
guide the transpilation process for each quan-
tum client. By incorporating such metrics in QFL
and optimizing QAS and transpilation based on
them, we can ensure that QML models are tai-
lored to the specific capabilities and constraints
of each client. Future research should further
explore the practical steps needed to apply QAS
techniques effectively.

4) Optimizing Resource Utilization for Scal-
able QFL: To address the limitations of NISQ
devices and QML models, future work should
prioritize the development of scalable QFL algo-
rithms and protocols, as well as methods for
efficient quantum computation distribution across
multiple quantum processors [6]. Addressing this
scalability challenge involves considerable hard-
ware and software advances. From the hardware
perspective, increasing the number of qubits
and extending their coherence times in quantum
computers is essential. Concurrently, on the soft-
ware end, the development of advanced QEC
techniques and new algorithms for effective utili-
zation of available quantum resources is crucial.
For example, methods that enable achieving
more with fewer qubits, such as data re-upload-
ing models can be leveraged to train small-scale
QML models over extremely high-dimensional
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FIGURE 2. Opportunities for QFL over classical networks and QCNss.

datasets. In addition, quantum-inspired classical
approaches, like tensor networks, may be a prom-
ising approach to enhance QFL scalability as they
reduce the amount of processed data in QML
models.

5) Enhancing Client Data Privacy: The
intersection of quantum cryptography,
recognized for its capacity to facilitate uncondi-
tionally secure communication, and QFL, which
is founded on the principle of privacy preser-
vation amidst collaborative learning, presents a
significant avenue for enhancing privacy in QFL.
To thwart conventional FL attacks customized to
QML models, quantum-based secure protocols
over classical networks can be incorporated
within the QFL framework to bolster client secu-
rity and privacy. For instance, protocols such
as secure multi-party quantum computation,
which can help in calculating federated gradi-
ents safely, could be adopted to secure sharing
and aggregating QFL learning parameters [10].
Additionally, quantum differential privacy can be
leveraged to enhance the privacy of the learn-
ing parameters in QFL frameworks [12]. Such
techniques will be integral to ensuring client
privacy and security within QFL deployments
over classical networks, thereby contributing to
QFLU's practical viability and effectiveness. Fur-
thermore, techniques like BQC and QKD can
be leveraged to secure QFL deployments over
QCN:s, as is discussed next.

QFL Over QUANTUM COMMUNICATION NETWORKS
OPPORTUNITIES AND PROSPECTS

While existing distributed learning frameworks
like classical FL and QFL over classical networks
improve user privacy by not sharing client data
over the network, their classical communica-
tion processes remain susceptible to security
breaches that can leak learning parameters. In
contrast, a QFL deployment over a QCN offers
an extra layer of information-theoretic secu-
rity as it allows the application of services such
as QKD and BQC that are unique to a QCN.
When QFL is deployed over a QCN, the trans-
mission of learning parameters can be secured
using entangled quantum states combined with
QKD techniques. Such measures prevent the
parameter leakage to adversaries, minimizing the
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risks associated with data reconstruction attacks.
Moreover, by utilizing protocols like BQC, the
joint learning in QFL can be secured even if
the centralized server is not trustworthy. Lastly,
unique quantum phenomena like quantum
entanglement inherent in a QCN has the poten-
tial to accelerate parameter sharing and enhance
overall QFL performance [4], [8].

CHALLENGES

We now turn our attention to challenges specific
to deploying QFL frameworks over QCNs, where
QML learning parameters are embedded and
shared in quantum states and the QFL server has
quantum capabilities.

1) Managing and Controlling Limited QCN
Resources: The performance of QFL over a QCN
is constrained by the clients” available quantum
resources and their characteristics, such as the
quantity of successfully generated qubits, available
quantum memory capacity, and coherent lifetime
of qubits. Moreover, since storing quantum states
in quantum memories entails decoherence, which
degrades their quality or fidelity, controlling and
scheduling quantum memories is a challenging task
that affects the quality of QFL learning parame-
ters. For instance, quantum memories have limited
capacities, and thus, some quantum states in mem-
ories must be discarded when stored for long
durations, while newly generated quantum states
must be stored at suitable memory locations to
minimize their associated delays and gate errors,
and maximize their fidelities [4]. In QFL, these
characteristics will not only vary between different
physical realizations, but will also vary between
different clients with different capabilities, which
further complicates the joint learning process. It is
further challenging to create algorithms that pro-
vide accurate QFL performance and joint learning
while controlling available QCN resources.

2) Impact of Imperfect QCN Operations on
QFL Accuracy: When learning parameters are
transferred as quantum information over a QCN,
QCN nodes must perform multiple quantum
operations, such as entanglement swapping and
Bell-state measurements. However, due to practi-
cal imperfections, those operations often degrade
the fidelity of the quantum information [4]. As
such, a noisy version of the learning parameters
will be received by the server, which can nega-
tively affect the accuracy of QFL training, resulting
in an increased number of communication rounds,
thus imposing a communication overhead. The
conventional approach in a QCN to enhance
qubit fidelity relies on QEC or entanglement dis-
tillation, where multiple low-fidelity qubits are
consumed to generate fewer high-fidelity qubits
[8]. However, QFL expects various clients and
QCN nodes to have different quantum capa-
bilities, thus designing distillation protocols is
challenging, because distillation itself can be lossy,
and its performance varies with different quantum
technologies and available resources.

3) QFL De-Synchronization and Training
Latency: Owing to the probabilistic character-
istics inherent in various QCN operations, such
as single-photon emissions and quantum mea-
surements, success rates in such operations can
differ among heterogeneous QFL clients. Conse-
quently, the time required to prepare and transmit

learning parameters via a QCN will vary across
different clients after local training. This can result
in de-synchronization in the learning parameter
aggregation process by the server, and hence,
lead to increased QFL training latency. For each
QFL client, qubits generated at distinct time inter-
vals are stored in quantum memories for varying
durations, thereby experiencing different amounts
of decoherence. When a qubit is transferred over
a QCN from a client quantum memory towards
the server, the coupling characteristics of the
selected qubit and the technology in-use will result
in different requisite times to execute quantum
gates and operations on that specific qubit before
being transferred. Additionally, QEC techniques,
essential for QFL, involve encoding a smaller set
of qubits using a larger qubit pool for error cor-
rection. However, the use of QEC requires the
generation, distribution, and utilization of multi-
ple qubits between remote nodes. Consequently,
the iterative transfer of learning parameters over
quantum channels may incur substantial delays
due to QEC, decreasing the rate of QFL conver-
gence. Furthermore, the classical communications
required for QCN operations introduce latencies
and de-synchronization in QFL training. These
delays can adversely affect time-sensitive quan-
tum operations, like Bell state measurements and
entanglement swapping, thus acting as a bottle-
neck in QFL performance [7].

4) Heterogeneity in QCN and QFL Com-
ponents: Navigating the inherent technological
discrepancies among various qubit types for a
QFL framework deployed over a QCN presents
a significant challenge. Specifically, qubits used
in quantum computers for QML model execu-
tion and in quantum memories as “matter qubits”
may differ from "flying qubits" used for parameter
transmission and those used on the server-side.
Each hardware technology excels in specific tasks
but may be less suited for others, giving rise to
a tradeoff between optimizing individual hard-
ware components and maintaining technological
consistency across the QFL framework for seam-
less operation [4]. A critical challenge here is the
development of robust and precise interfaces that
facilitate the transition of qubits between dispa-
rate quantum technologies, all while maintaining
the integrity of the information they carry [7].

5) Impact of QCN Losses on QFL Generaliz-
ability: When QFL learning parameters are shared
in qubits over quantum channels in QCNs, they
are susceptible to several sources of loss, due to
their fragile nature. In particular, when qubits, e.g.,
single photons of light, interact with their surround-
ing environment, they suffer from path-loss that
scales exponentially with the travelled distance,
and, accordingly, some qubits may be absorbed
during this transmission [13]. As a result, some
learning parameters shared over QCNs may be
lost during transmission, which can yield sparse
learning parameters of some QFL clients during
the aggregation step at the server. In such cases,
QFL generalizability (achieved when global param-
eter updates capture various non-uniform data
distributions) will be degraded. This is because QFL
training fails to capture the effect of clients” under-
lying data distributions with sparse transferred
parameters, as these sparse parameters play a mar-
ginal role in the global parameter update step.
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PROPOSED SOLUTIONS AND FUTURE DIRECTIONS

Next, we propose solutions to the aforemen-
tioned challenges and identify research directions
to enable QFL deployment over QCNs, as sum-
marized in Table 2.

1) Efficient Control and Scheduling of QCN
Resources: To overcome the QFL challenges
associated with limited QCN resources, novel
scheduling and resource allocation algorithms
are needed. For instance, developing efficient
quantum memory scheduling policies, which
require careful analysis of cutoff times (times
after which a stored qubit is discarded), is nec
essary to ensure a high quality of quantum states
used to transfer QFL learning parameters [14].
Similarly, the optimal allocation of the generated
quantum states to the available quantum mem-
ory is crucial for maximizing fidelity and, in turn,
improving the quality of the transferred learning
parameters and QFL accuracy. For this goal, tools
from online optimization and classical and quan-
tum game theory, e.g., matching games, can be
utilized to achieve optimal associations between
QCN resources. Finally, new QFL averaging algo-
rithms are needed to incorporate the fidelities of
quantum states that carry the learning parame-
ters in the global QFL parameter update at the
server side.

2) Joint Optimization of QCN and QFL: To
enhance the fidelity of quantum states carrying
QFL learning parameters over a QCN, novel
entanglement swap-distillation scheduling algo-
rithms are essential. These algorithms aim to
maximize the fidelity of quantum states and
thereby improve QFL accuracy. Concurrently,
they must also ensure sufficient availability of
QCN resources for the parameter transfer pro-
cess. In addition, there is a need to develop a
framework for the joint optimization of QFL
learning parameter aggregation and QCN dis-
tillation operations in terms of the number of
distillation rounds and the amount of quantum
states consumed during distillation [15]. This
optimization framework must also account for
available quantum memory resources, their

fidelities, QML models’ scale, and overall QFL
accuracy [13].

3) QFL Convergence Analysis With Entan-
glement: Quantum entanglement can mitigate
the QFL training de-synchronization challenge
(see Section I1I-B3). For instance, when QFL
clients and server share entangled states, the
direct transfer of learning parameters over quan-
tum channels can be circumvented. Instead,
protocols like entanglement teleportation and
superdense coding can be employed, requiring
only straightforward manipulation of the shared
entangled states [8]. Consequently, entan-
glement distribution can potentially minimize
de-synchronization between learning parame-
ters at the server, which helps to increase QFL
convergence rates. Additionally, analysis of
convergence rates for QFL over a QCN must
be redone so as to capture quantum-specific
training delays. For instance, concepts such as
quantum Fisher information (QFI) should be
incorporated to identify lower bounds on the
training of local QML models. Moreover, QFI
can be used to develop new algorithms to
speed-up QFL convergence. Finally, new perfor-
mance metrics that capture the fidelity of shared
entangled states and their lifetimes must be inte-
grated in the QFL convergence analysis [9].

4) Efficient Transducers and Adaptive QFL
Algorithms: To overcome the heterogeneity of
QCN and QFL components as well as the differ-
ent technologies used for each element of QFL
over a QCN, novel transducer hardware must
be developed to efficiently map and transfer
quantum states from one technology interface
to another. Furthermore, novel algorithms with
hardware-based controls and performance
metrics must be developed to capture qubits
characteristics and fidelities over the various quan-
tum interfaces. Additionally, there is a need for
adaptive QML training and QFL aggregation tech-
niques that incorporate metrics and measures of
qubit fidelity over all QFL elements [7].

5) Resource-Efficient QCNs for Generalizable
QFL: To enhance QFL generalizability (see Section
I1I-B5), non-uniform client data distributions must

Challenges Proposed Solutions
- Novel quantum memory scheduling policies [13].
Limited QCN resources [4] - QFL-specific resource allocation and association techniques for quantum states (online optimization and classical/quantum game theory) [14].

- QFL aggregation algorithms incorporating quantum state fidelity [12].

Imperfect QCN Operations and
distillation design [4],[8]

- Entanglement swap-distillation scheduling protocols [15].
- Joint QFL optimization framewark for learning parameter aggregation and distillation design.
- Jointly considering number of distillation rounds and consumed states, states'fidelity, memory resources, QML size, and QFL accuracy [15]

- Incorporating quantum entanglement to transfer learning parameters [8].

De-synchronization and QFL
training latency [7]

- Redefine convergence bounds to incorporate probabilistic effects of quantum operations and quantum-specific training delays [10].
- QFl to develop lower bounds on QML performance in QFL, and speed-up QFL convergence while capturing entanglement impacts [9].

- New performance metrics that consider fidelity and entanglement in QFL convergence analysis [4].

Heterogenity i QCN and OFL - Advanced transducer technology [7].

components [4], [7]

(CN losses and QFL
generalizability [13]

- Novel physics-based algorithms to capture quantum state characteristics and fidelity over various technologies [4].
- Adaptive QML training and QFL aggregating algorithms, incorporating various measurements of fidelity [10].

- Quantum-compatible data compression techniques for resource efficient QCNs [11].
- Quantum network coding for reliable quantum communications [8].
- Semantic representations and quantum clustering for resilient learning parameters and generalizable QFL [11].

TABLE 2. Summary of challenges and proposed solutions for deploying QFL frameworks over QCNS.
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be captured in the global learning parameters.
Henceforth, we must ensure reliable qubit transfer
over QCNs to avoid losing information and pro-
ducing sparse learning parameters. Accordingly,
developing resource-efficient QCNs is necessary
to minimize the amount of resources utilized
during the transfer of QFL learning parameters.
This is because resource-efficient QCNs allow the
use of higher quality QEC, which ensures reliabil-
ity in sharing learning parameters. Henceforth,
quantum-compatible data compression must be
investigated, since they can minimize the quan-
tum data transmitted over QCNs, and enhance
QFL efficiency. Additionally, quantum network
coding can enhance QCN efficiency and QFL
generalizability. Finally, implementing dimen-
sional reduction techniques, such as quantum
clustering and semantic representations, is crucial
before quantum data embedding in QFL to ana-
lyze hidden data structures. This process allows
QML models to train using original data structure,
enhancing resilience against parameter sparsity
and improving QFL performance [11].

CONCLUSION AND RECOMMENDATIONS

QFL is an emerging field with significant practi-
cal potential, notably in sensitive sectors such as
healthcare and military applications. In this paper,
we have presented a comprehensive analysis of
QFL deployments over both classical and quan-
tum networks, while thoroughly examining the
associated challenges and proposing solutions
and future directions.

Building on the proposed vision for QFL, we
conclude with several recommendations, sequen-
tially arranged from short-term to long-term
priorities:

1) Measuring Quantum Advantage: Identify-
ing when QFL outperforms classical FL requires
advanced algorithms and benchmarks for accu-
rate comparisons. Further, a detailed analysis of
QML and QCN metrics is vital to establish QFL’s
advantages over such networks, aiding in pin-
pointing suitable practical use-cases.

2) Classical-Quantum QFL Interoperability:
To enable seamless QFL operation in hybrid quan-
tum-classical network architectures, interfaces
between quantum and classical optics must be
developed. Optical fibers should also be opti-
mized to handle both signal types, supported by
efficient frequency conversion schemes in the
semi-optical terahertz range. This will notably
boost QFL's speed and efficiency.

3) Ultimate QFL Security: While QCNs
promise enhanced security for QFL, they are not
immune to specific attacks and risks. Addressing
these vulnerabilities calls for focused research in
advanced quantum and post-quantum cryptogra-
phy, along with novel hardware-based designs of
QFL’s integration with BQC to fortify QFL’s secu-
rity infrastructure.
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